UNCLASSIFIED

Defense Technical Informatipn Center
Compilation Part Notice

ADPO10978

TTTLE: Adopting New Software Development Techniques to Reduce
Obsolescence

[DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TTTLE: Strategies to Mitigate Obsolescence in Defense Systems Using
Commercial Components [Strategies visant a attenuer 1’obsolescence des
systemes par 1’emploi de composants du commerce]

To order the complete compilation report, use: ADA394911

The component part is provided here to allow users access to individually authored sections
ol proceedings, annals, symposia, etc. However, the component should be considered within
the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP010960 thru ADP010986

UNCLASSIFIED

Adopting New Software Development Techniques to Reduce Obsolescence

C H R Lane, E S Beattie, J S Chita, S P Lincoln
BAE SYSTEMS
Crewe Toll, Ferry Road, Edinburgh EH5 2XS, UK
Tel: +44 131 343 4932 Fax: +44 131 343 4631 E-mail: charlie lane@baesystems.com

Abstract:

This paper reports on the advanced techniques employed in the specification of software requirements and the
subsequent software development for an E-Scan demonstrator Radar Data Processor. This involves the Rapid Object-
oriented Process for Embedded Systems (ROPES) [1], UML syntax, object-oriented design, and automatic code
generation and test.

The COTS technology reported is in terms of commercially available state of the art method and tool support for the
software analysis and design. The resulting software product contains a significant proportion of COTS code resulting
from the code-generation. We are also using automation in development of our MMI, a COTS GUI-builder, and COTS
hardware and operating system.

In this paper we also report on the object-oriented method, using the ROPES process, together with information about
how in practice we are implementing the theory. We present the structure of the software and how it relates to the
application under development.

With these techniques there are significant reductions in obsolescence due to:

= customer visibility and understanding of the product under procurement, making clear the advantages and
limitations of what will be produced,

= development of a coherent, consistent and maintainable system specification,

* use of use an industry-standard model notation (UML) to capture the analysis and design, enabling portability of
the design to other tools and products,

= flexibility in catering for evolving requirements,

= development of testable requirements, enabling original functionality to be re-checked after addition of
enhancements,

= techniques for enabling the re-use or replacement of modules with defined interfaces,
*= easy and maintainable connections between specification and implementation,
* high initial quality and low rework costs.

This paper will be of benefit to those just embarking on system and software development, or considering updating
processes in a legacy project. It is also applicable to those just embarking on choice of tools and methods for initiating
programmes as well as for early feasibility studies.

Keywords: System Specification, Requirements Analysis, Real-time, UML, Object-oriented, Analysis, Design,
Modelling, Code-generation
processing, as well as controlling the activities of other
1 Introduction subsystems such as the antenna and the

) i i receiver/exciter. The TMC consists of two main areas:
The E-Scan radar project is aimed at

producing a flying demonstrator of an
electronically-scanned phased-array antenna.
It will be fully capable of tracking targets
and will provide some advanced features

Sub-Array
Receiver(s)

Data Recording/
Replay

1 v

INS

A

such as adaptive beamforming, but will not
include the full range of functionality of a Recelver/Exciter |4 o l;:slaary
system such as the Captor Radar integrated (Conventional) =™
with the Eurofighter Typhoon weapon SIP > T DAP
system.

Engineering
The Trials Monitor Computer (TMC) is the At € Display
main processor in the radar and is

responsible for the signal and data .
Figure 1

Paper presented at the RTO SCI Symposium on “Strategies to Mitigate Obsolescence in Defense Systems
Using Commercial Components”, held in Budapest, Hungary, 23-25 October 2000, and published in RTO MP-072.

23-2

the Signal Processor (SIP) is largely for handling the
flow of digital data from the receiver and processing it
continuously to obtain events relating to target
detections; the Data Processor (DAP) is event-based,
creates tracks of targets from the detections and
manages the distribution of RF power radiated, and has
an MMI for controlling other functions.

Both SIP and DAP wuse predominantly COTS
hardware, with commercial operating systems and
development tools.

This paper relates to the DAP.

2 Technical Details

2.1 State of the Art Software Tools

At the outset, the decision was made to invest in
technology to reduce the cost and timescales of
software development. This approach is key to making
a successful demonstrator in a short period.

The tools have to provide analysis and design support,
starting from requirements with a clear path through
the design to automatic generation of code from the
design (not just code frames). To validate the design,
simulation is essential and the testing support must
enable verification of the generated system behaviour
against that defined in the requirements.

From the handful of tools that met our basic
requirements, we chose the I-Logix Rhapsody tool,
which provides for full UML analysis and design, code
generation and automatic verification against
scenarios.

Our core tool set consists of Rhapsody (analysis,
design, simulation, verification), DOORS
(requirements tracking) and ClearCase (configuration
management). Although from different manufacturers,
these tools provide useful integration and have been
found to work well together. Supporting these are the
usual set of C++ compilers, host support (the Wind
River RTOS VxWorks) and other productivity
enhancements (See Figure 2).

DOORS
GUl-builder Rhapsody ClearCase
dynamic VxWorks .
. Compilers
analysis tools
Figure 2

From an obsolescence perspective the capability of the
Rhapsody tool to select a target environment is of
particular importance. As target platforms become
obsolete the tool has a number of platforms that can be
selected and the code regenerated for that particular

environment. The tool vendor is increasing the number
of target platforms supported as market forces dictate.

An early decision to purchase consultancy and training
on both tools and methods has proved to be very
fruitful and well worth the outlay.

2.2 Using UML

The UML is a notation that has evolved from Software
Development. Some of the tools, such as Use Case and
Sequence Diagrams are specifically aimed at creating a
realistic model of what the customer wants.

Previously, the specification of requirements have been
expressed as “Victorian novel” text — often disjointedly
spread across a number of documents — combined with
a collection of algorithms and little consultation with
the software engineers responsible for implementation.

This has often been followed by what is described as
the “over the wall” approach where the requirements
are passed to the software engineers and the systems
engineers move onto something else. Large amounts of
software development effort is then spent rewriting the
contents of the requirements documents into a
Software Requirements Specification (SRS). This
process is illustrated in figure 3.

The traditional approach leads to a number of
problems:

1. Generation of the requirements is difficult to
manage.

2. Traceability to, and Verification of, the

requirements is difficult to achieve.

Maintenance of the requirements is expensive.

Software is difficult to develop.

Changes in requirements (which are accepted

as inevitable) are difficult to implement.

O bW

Customer
Specification

Systems

[Algorithm System
P&?:ﬁ:ﬁﬁéy Description Specification
Document Documents

Software

Software
Reguirement
Specification

!

Software
Design

!

Software
implement-
ation

Figure 3

The approach we have adopted for the DAP is to have
an integrated systems-software team (see figure 4) and
a closely coupled SRS/ACD pair (see figure 5). This
approach is detailed below

Requirements Analysis (from the ROPES perspective)
is performed using Use Cases, Sequence Diagrams and
Statecharts. The Requirements Analysis results in a
functional decomposition of the DAP, the details of
which are captured in the Software Requirements
Specification (SRS). The Use Case descriptions give
the functional details of the system in a textual manner,
that will be utilised later in identifying objects, with the
sequence diagrams defining the Use Case behaviour in
a dynamic manner.

Customer
Customer Requirements

Modeting

tem

Systems tem
ication

Knowledge Base

Experience

Integrated
Systems/Software
Team

Software

Detalled Software Design Knowledge Base

Figure 4
Algorithmic Definition is carried out based on this
functional decomposition of the system, which is
agreed early in the project lifecycle by the integrated
systems-software team. The algorithms are described
using Activity Diagrams to show the blocks and flow
of algorithmic activity with references to mathematical
formulae and textual descriptions as appropriate. This
detail is captured in an Algorithm Control Document,
which supplements the SRS.

By using the same functional decomposition for both
documents, it becomes easier for the software team to
understand which algorithms are required to implement
a particular area of functionality (i.e. a use case).

The development of the SRS and the ACD are iterative
in nature and can allow details of algorithmic
implementation to be fleshed out much later in the
lifecycle than would normally be the case. One of the
benefits to this approach is early introduction of
software engineering effort to the process which
removes the lengthy delay whilst algorithms are
“fully” defined by systems engineers before software
development starts.

Links between the SRS and ACD enable the two
documents to give a detailed and co-ordinated
description of the System. Using hypertext links, an
engineer or customer can navigate around the

23-3

requirements with ease. Both the SRS and ACD are
embedded in the DOORS Requirements Traceability
tool.

With the creation of a closely coupled SRS/ACD pair a
detailed definition of the system exists that can be well
understood by those using it. This is the first step to
ease of maintenance and the resulting reduction in
overhead costs. Generally, maintenance of systems
documentation (inevitable in light of changing
requirements) is complicated by a poorly defined set of
requirements that are scattered across a number of
documents that have little or no real relationship. By
ensuring that the Specification is easily understandable
(using UML) and well laid out (and thus easily
navigable) the impact of change can be quickly
assessed and is less onerous to implement.

Specification

.

gt 1 -il At o

Agtora.

Figure 5

2.3 Systems-Software Integrated Teams

Experience has shown that unless the systems engineer
understands the process by which their specification
(itself another interpretation of the customer
requirements) is implemented the systems-software
review process is prone to failure. (Sometimes the
systems-software relationship goes the same way.)

With the use of a common language of understanding
that is intuitive in its usage these two problems can be
alleviated. The fact that Use Case, Sequence Diagrams
and Activity Diagrams are simple concepts to
understand, powerful in their capability for
representing complex requirements and are now widely
accepted as a way of describing requirements means
that the Software Engineers, who invariably pioneer
these new methods, can achieve “buy-in” from the
systems engineers.

For this relationship to be successful, it is essential that
the systems engineering team are given the appropriate
training in the development methodology and
sufficient time to review the software work products —
particularly the Object Analysis (both structural and
behavioural).

On the DAP, systems engineers receive the same
training in software methodology and tools as the

23-4

software engineers. A core team is formed which
allows very close inter-working to take place on a level
playing field. This enables the software engineers to
bring their experience into the development of the
system specification whilst allowing the systems
engineers a greater understanding of, and input to, the
software development process in the subsequent phases
of the lifecycle.

In particular, the integrated team work together to
create the software object analysis model. This co-
operation helps the software team to understand the
requirements and means the systems team will
understand how the software will implement the
requirements. During the creation of this model, the
integrated team can ensure, at an early stage, that the
software will implement the requirements and
algorithms stated in the SRS and ACD.

2.4 Flexibility with Evelving
Requirements

As stated, the DAP is being developed using the
ROPES process. This is an iterative/incremental means
of software development using the Spiral Lifecycle.

Use Case analysis gives a functional decomposition of
the system. In our application each Use Case has been
identified as an “Iterative Prototype”.

These prototypes are taken through the full software
lifecycle to produce working software. This gives a
great deal of scope for risk reduction in the early stages
of a programme by allowing working code to be
developed for a target platform. The choice of which
prototypes should be developed first is based on risk
impact assessment.

The additional benefit is that the prototype is re-
useable, in so much as it is a building block to be used
in the incremental development of the application.

By careful consideration, based on risk reduction and
introduction of required (phased) functionality, the
application is developed incrementally by the
integration of the prototypes.

By adopting this development process there are two
main areas of benefit in respect of flexibility.

The algorithmic development can continue during the
software development process for agreed areas of
functionality within the system (i.e. Use Cases that
may be implemented later in the programme). The Use
Cases and Scenarios give the functional structure, or
framework, of the system under development at an
early stage. This allows the OO development to
progress to the detailed design phase before the
algorithms must be completed.

In developing functional prototypes and quickly
reaching the stage where executable software is
running on a target (much earlier than in traditional
developments), problems with requirements can be
fed-back quickly and avoiding action taken. The
prototype may be re-iterated and re-incorporated in the
application to include the changed requirement.

2.5 Requirements Testability

Although the combination of Use Cases and Sequence
Diagrams gives a powerful means of specifying the
requirements there is an additional benefit to the
creation of Sequence Diagrams. The use of Sequence
Diagrams implicitly forces engineers to address the
issue of testing the functionality being defined. This is
as applicable for lower level integration test (for sub-
system use cases) as it is for high-level system
acceptance testing (system use cases).

On the DAP we use the Rhapsody CASE tool to carry
out automated Sequence Diagram comparison. That is,
the Sequence diagrams specified can be compared with
those generated by the actual model created to fulfil
the requirements.

2.6 Connecting Requirements through to
Design Models

The analysis of requirements is carried out by first of
all defining the Use Cases (i.e. the particular areas of
functionality) as shown in figure 6. The Use Cases are
initially just headlines, but are rapidly filled-out with
scenarios: there will typically be a number of Sequence
Diagrams for each use case, showing the functionality
in specific situations (see figure 7).

Data Processor
/< (eied

Antenna

——
<«i(>

Receiver

s

Sip

System Wrap
— Test
<sAct
Engineering
Display

Figure 6-a

System Wrap Test

GOAL/PURPOSE:
Perform the Radar system wraparound communication BIT test.

TRIGGER EVENT: do Radar Wraparound test request from Engineering Display operator
PRECONDITIONS: The CAR radar is in a "Standby' or Operative State.

POSTCONDITION:

Success End -'Wraparound Test Ok’ message is indicated on the Engineering Display.

Failed End - Test failed or timeout. "Wraparound Test Fail' message and the cause of failure
shall be indicated on the Engineering Display.

MAIN SUCCESS SCENARIO
See Message sequence diagram "™MSC_Sys_Wrap'

EXTENSIONS
tbd

EXCEPTIONS

1.No response from any LRIs within TBD milli seconds , Initial policy is to abort operation
and report a fault . In the future a recovery sequence (soft reset LRI and retry a max of 2 times)
may be implemented.

PERFORMANCE (Quality of service)

Priority: Low. Any radar activity in progress should be allowed to goto completion.

Performance : Test done within 100 millisecond.

Frequency: Periodic - execute during a Resource Frame BIT slot { 0.5 Hz)
Episodic - execute Wraparound Bit test on operator request

Figure 6-b

Eigoiive D T

el Deredinad.

] mklsw%

: Shek ety
W

ConT e Bl roifi

et pny T el

i e EEgE

Figure 7

At this level, the analysis is very much in terms that a
customer would understand — we are in the favourable
position of being both pseudo-customer (writing
requirements on behalf of the actual customer) and
contractor (implementing those requirements), so we
have been able to make sure that the analysis correctly
echoes the requirements.

A key advantage is that, because the Use Cases and
Sequence Diagrams are captured in the Rhapsody tool
(subsequently used for detailed design) and linked
back to source requirements in DOORS, requirements
are traceable to the implementation.

2.7 Moving From Functionality to
Objects: Domains and Subsystems

The methodology used on this project is Rapid Object-
Oriented Process for Embedded Systems (ROPES),

23-5

which brings together a number of the best practice
lines of thought, specialised for real-time applications.

The first stage in this is to define preliminary
“subsystems”, which are in effect collections of
functionality. Each use case is placed into a subsystem
— the use cases are decomposed to such a level as to
ensure that each use case is in only one subsystem,
though the subsystems will often contain more than
one use case.

In figure 8, “Radar Control”, “Burst Control” and
“Tracker” are the subsystems within the “DAP”.

The subsystems and their identified artefacts are
defined as the “Physical Model”. This is captured in
Rhapsody by a Physical package (shown in Fig. 11).

The often-difficult borderline between function-based
specification and object-based implementation is
encountered at this point: the implementation of the
use cases is by domain classes instantiated in the
subsystems.

DAP
— |/ Searchfor |
Radar
Display ACC
Schedule
burst —
RxR
~ 7 SIp
DAP N
Radar Control |
Radar Search for
Display targets ACC
Burst Control

=

RxR
Tracker %
SIp
Figure 8

Subject Matter Separation, one of the useful aspects of
the Shlaer-Mellor methodology has been imported into
ROPES, in the form of domains. Within a domain are
collected all the objects that relate to a particular
subject matter (e.g. I/O, alarms, tracking). These are

23-6

an orthogonal set to the subsystems: all objects are in
fact defined in domains, but are “used” in the
subsystems. The collection of domains identified is
referred to as the “Logical Model”. This is captured in
Rhapsody by a Logical package (shown in Fig. 11).

A domain diagram (figure 9) shows the inter-
relationships between the domains:

Project: AMBAR CAR

Aother: J, &4

CreationDate: 14/0ec/99
Purpose:

Lomains contex diagram
showing all the domains and their
dependencies.

dRadar

<<Usage>>

T . <<Usage>>
, N

<<Usage>>

dBurstManagement !
.

. <<Usage>>

<susagé>>

N . Y

dinputOutput

<<Usage>>

v

dHwAbstraction

Figure 9

Although it would in principle be possible to follow
the Shlaer-Mellor project organisation model and have
domain specialists, we have chosen to avoid the
potential for boredom in team members by dividing
work by subsystem and use-case rather than domains,
though we retain an element of domain-ownership to
ensure consistency.

2.8 From Analysis to Design

The dilemma encountered with elaborational methods
is that one may lose sight of the analysis after adding
design information. The high level objects are created
only in order that the use cases and their sequence
charts may be defined and do not take account of
whatever is found necessary for the detailed design.

One solution that has been proposed is to keep two
models, the original analysis model and the design
model (as elaborated). The difficulty with this is
keeping the two models synchronised.

The alternative is to continue with a single model thus
reducing analysis/design consistency issues. If one
utilises the idea from ROPES that several “views” of
the model can exist then one can show purely analysis
views from which the design views are subsequently
created.

2.9 Implementing Distribution

Shows how distribution is implemented when
subsystems are located on separate processors linked

dBIT

via an Ethernet bus. Normally in a single processor
system the 2 subsystem communicate with each via 2
associations links using asynchronous events:

1) MessageRouterController->iEngDisplay.
2) EngDisplayController->iDapCommand.

These associations for the distributed processor are
then realised using a combination of 2 patterns (figure
10):

1) The Proxy pattern provides location transparency.

2) Forwarder — Receiver implements the
interprocessor communication between the 2
subsystems.

p—

e

Figure 10

2.10 Units of Re-use

To achieve reduction in obsolescence, we must identify
the specific units that are available to be re-used. The
aim is to be able either to extract these units to be used
in a new system, or to be able to replace units of the
current system when changes in functionality are
required.

We have identified two main areas of re-use:

a) Subsystem Re-Use, when exactly the same
functionality (i.e. the same Use Cases) is required
in a new system, or when the complete set of
functionality is to be replaced with new
functionality in the current system. The subsystem
is a convenient unit of re-use as it instantiates all
the classes it needs to operate (it can be seen rather
as a PCB in hardware terms). When a subsystem is
moved to another place, only its external
interfaces need to be observed and attached into its
new surroundings. This is done in practice by
setting up relationships to defined inferface
classes for inputs to the subsystem and initialising
the relationships from within the systems for its
outputs. Both the identity of the interface class and
the initialisation of output relationships are
available as public operations on the subsystem.

b) Domain Re-Use, when classes in a domain,
originally designed to implement a different set of
Use Cases, can be re-used to create a new
Subsystem. The domain classes can be seen as a

“toolbox” available to implementers of Use Cases,
who are encouraged by publication of the domain
services to pick classes from there rather than
invent new classes. The benefits of the design
patterns will automatically be achieved when the
classes are used in a new Subsystem to fulfil the
Use Cases of that Subsystem. This can be a more
difficult level of re-use to achieve, because the
implementer of a Use Case may identify slightly
different requirements for the classes than those in
the “toolbox” — but by careful management
maximum use of existing classes, with inheritance
to provide for small variations, can be achieved.

Because our development method clearly identifies
both subsystems and domains in the artefacts
generated, we have a head-start on achieving re-use.

3 Results

We have found the Rhapsody tool and the ROPES
method to fit well into our environment. The
requirements analysis has provided a sound baseline
for the object oriented analysis and design, which is
proceeding well. One additional benefit is that we can
now provide to our partners in the project not just
paper documentation of the design but also animated
simulation prototypes.

By using a UML-based method we have also found it
easy to bring new recently-graduating members into
the team, making use of the training in object-oriented
techniques that now commonly forms part of software
engineering courses.

We have utilised the concepts of the Physical and
Logical models to develop the software application [2].
The Physical model defines the system to be
implemented, the logical model captures the domains
which themselves contain the essential building blocks,
or classes, of the system.

The System package contains the System Actors and
the Subsystem architecture identified during
Architectural design.

The Build package contains the incremental builds and
is effectively the instantiation of the Physical model.

3.1 First Prototype

Our first prototype is based on a wrap-test of the
system, which runs a communication check on
simulations of the other subsystems. We took this
prototype all the way from requirements through use
cases to detailed design, implementation and test.

The following diagram shows a “browser” view of the
system package structure. The domains have names
starting with “d” and are captured in the Logical
package, the subsystems “s” and are captured in the
Physical package.

=27 Packages
@ _spatem
S LR
@ Initializtion
_,@ Logical
| Eltl Packages
| =R %)
| -3 Classes
fffl':_Ll Dependencies
| - # Events
| -7 Object Model Diagrams
LB DomainClassesOverview
@ dBurstManagement
| & i
I % dHwtbstaction
% dinput0utput
I R Radar
I _,@ Physical
| =¥ Packages
| R sBursthlanagement
| - sConstantStore
: @ sDisplapMessageRouter
@ sEngDisplay
= @ sPowerlpandB | Thanagement
g Classes
/ Events
”C\ (Object Model Diagrams
| B8 Packages
' R wecBIT
El% ucDoSubsystemin/ianTest
B/ Classes
E bld_ucDoSubsystemiwrapTest
% iBitResponse_ucSubspsteriwiapT estStub
% MessageR outerController_ucS ubsystemivr:
g TestHarmess_ucDoSubspsteriwiapT est
El'tl (Object Model Diagrams
| TE TestHamess

Figure 11

3.2 Physical Medel: Object Model
Diagram

The objects involved in a use case can be shown on an
object model diagram for a particular subsystem:

)
rofect AMSAR CAR

sDispiay MessageRouter
wing o
aration for the

beysten BitResponse
raparound tost ussease,

e B

¥
g
c
s
@
b
W,

<atestacs

itsISSWrapTest

1! 1

B S elEsWiapTest

<elnterze>.

A

i
SSWrapTestinager S AntennaiO

<<htatract-n

itsRxWrapFauliReport 1

WeapFaultReport 1 Regeiverl(
<<Abairact>

isAnEWrapF auiReport 1

1 $ipio
N
WeapF aukReport <chttrat

itsSipWrapF aultReport
1

WrapFaultReport
WrapData
HeSubsy stemWrapTestResul 1

WrapTestResul

Figure 12

23-8

3.3 Logical Model: Active Class

The implementation of the behaviour of the active
classes is generally shown in a state chart;

\ ~ P Mj rrrrr |

J1 send resutbsof Wrap test to RRM for reporting to Eng Display

[ERACELEET
doingRxWaptedt...

levGetSubsystemWWiapFauhReport!
[sendWrapT estFailureDatalparams > aLr);

evTeuSimuiateFautt/
imFautiCode = params>aFauliSode

evRXrapTestDone/

IDLE iteSiplQ->GEN(evGetStatus):

Figure 13

3.4 Build Model: Usecase Instantiation

Shows the classes used to build up the use case.

AntennatO_ucSystemWrapTesiStup ®

RaceivertQ_ucSystamWrapTestStub ®

SiplO_ueSystemiWrapTestStub

SSWrapTestManager -

‘,,RxWMM,OJL;

]

RéRaiVirapf aditiaport | ©

At WrapF autiReport

HsSipWsapF aurfepon] 1 tswrapats

Sipt:WrapFaulReport
¢

)

31 WrapTestResut

Figure 14

3.5 Build Model: Subsystem
Instantiation

Shows the classes used to build up the sub-system.

iBIT

<sintertace>>

[=
iSSWrapTest
<<interface>>

itsSSWrapTestManager|1 itsBTManager|1

[
BIManager E

S$WrapTestManager

itsReWrapF auitReport|1

T
ReWrapFauliReport
itsAntWrapFauliReportyy 1
T
AntWrapFauliReport

itsBITSchedute|1 itsBITResult [t

" BiTschedule BITResult

itsSipW rapF auitRepost it

' sipWrapFaulReport
itsSubsystemWrapTestResulty 1
" SubsystemWwrapTes Result

itsWrapDatalt

WrapData

Figure 15

N SVARTIER TestDone/
evSipWeapTestDone/ jsReceiverlO->GEN(evGetStatusl):
detete itsWapData:

3.6 Build Model: System Instantiation

Shows the classes used to build up the DAP system for
standalone testing on the PC development host.

Project: AMSAR CAR

systiostDan

:EngDisplay_ucSysWrapTestStub

DisplayMessageRouter
<<subsystem>>

1
‘PowerUpandBiTManagement

<<subsystem>>

Figure 16

The wrap-test has proved successful not only as
confirmation of the tool and method choice, but also as
the first real prototype that implements part of the
functionality of the full system.

4 Conclusions

Software represents a large and increasing proportion
of the costs of current systems. Current high software
costs for almost every project indicate that this is an
area where reduction of obsolescence and increase of
re-use must be introduced if costs for future systems
are to remain within limited budgets.

While the object-oriented approach provides a basic
framework for encapsulating functionality to provide a
theoretical possibility for re-use, it does not of itself
provide the key advantage. Simple insertion of object-
oriented analysis and design into a company’s
processes does not provide all the advantages that
could be obtained, some companies finding little
benefit.

To take full benefit from object-oriented techniques, a
coherent method of capturing the requirements in a
customer-visible way, analysing those requirements to
provide the basis for the design, managing the key step
from functionality to objects and building up
functionality with prototypes must be used.

We are convinced that our use of the ROPES method
with advanced tool support will enable us to build up
software matching the requirements, to maintain that
software as requirements evolve, and to re-use
significant parts of the software in new systems having
requirements in common.

23-9

5 References:

[1] Douglass, Bruce Powel, Doing Hard Time : [2] Douglass, Bruce Powel, Effective Use Cases for
Developing Real-time Systems with UML, Objects, Real-Time Design, Version 1.3.1

Frameworks and Patterns, 1999, Addison-Wesley,

ISBN 0-201-49837-5.

6 List of Acronyms

ACD Algorithm Control Document MMI Man Machine Interface
COTS Commercial Off The Shelf ROPES Rapid Object-oriented Process for
Embedded Systems
DOORS A requirements traceability tool SRS Software Requirements Specification
GUI Graphical User Interface T™C Trials Monitor Computer
UML Unified Modelling Language

Copyright © 2000 by BAE SYSTEMS Avionics Ltd.

This page has been deliberately left blank

Page intentionnellement blanche

