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STOCHASTIC SUBSURFACE FLOW AND TRANSPORT IN FRACTAL
CONDUCTIVITY FIELDS

ALBERTO S. NDUMU, PAUL S. ADDISON
Civil Engineering Group, School of the Built Environment, Napier University,

10 Colinton Road, Edinburgh, EHJO 5DT, Scotland, UK.

Monte Carlo simulations of subsurface flow and contaminant transport of a non-reactive solute
plume by steady-state flow with a uniform velocity were performed in a two-dimensional synthetic
heterogeneous porous media whose hydraulic conductivity is non-stationary and described by multi-
scale fractional Brownian motion. Analysis of the flow and transport results indicates that the
longitudinal velocity variance is nearly constant in the longitudinal direction while in the transverse
direction it assumes a parabolic shape. The velocity variance is maximum at the impervious
boundaries and decreases in transverse direction with distance from the boundaries reaching the
minimum value at the domain centre. We observe that the particle displacement covariance is
anomalous or non-Fickian at all times t in the dispersion process irrespective of the Hurst exponent
H and grows temporally faster than linearly.

1 Introduction

Natural variability of subsurface (i.e., hydrologic and geologic systems) hydraulic
properties is the main factor controlling the flow and spreading of contaminants in
subsurface porous media. The primary physical property which exhibits large-scale
natural spatial variability is the hydraulic conductivity. One important source of error in
numerical models to simulate flow and transport in the subsurface stems from lack of
knowledge concerning the spatial variability of hydraulic conductivity. In practice, we
typically have sparse data which is inadequate to completely describe the spatial
variability. This is a consequence of the high data collection cost required to fully
characterise a given subsurface porous medium. Hence, the variation of subsurface
hydraulic conductivity cannot generally be described in all its detail and is therefore
uncertain'.

One response to the problem of the uncertainty of subsurface hydraulic conductivity has
been an interest in stochastic methods, which provide a formal framework for the
treatment of uncertainty. Spatial variability of subsurface properties is such that their
unique, deterministic, description is not feasible2, and this is formally recognised in the
stochastic approach, in which subsurface hydraulic conductivity is commonly regarded as
a random scalar field (RSF).

Stochastic theories involve the description of the local porous medium structure using a
statistical model that requires a small number of parameters to be identified from field
measurements. The detailed spatial distribution of logconductivity is conventionally
reduced to a few statistical parameters, for example, covariance function, mean, variance,
and correlation length. It thus follows that the outputs from stochastic models are
probabilistic, characterised, for example, by the statistical moments or the full probability
density function of the variable of interest.

In this study, we perform Monte Carlo experiments by generating a large number of
independent random conductivity realisations with a fractal semivariogram function,
solving the stochastic boundary value problem by repetitively solving a set of
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deterministic flow problems, each of which is an equally probable representation of the
response of the real heterogeneous medium. The flow problem is solved by employing a
block-centred finite difference scheme (e.g., Smith and Freeze3) to obtain subsurface
velocity fields. A random walk particle tracking algorithm is used to solve the transport
equation (e.g.,4"7) using realised velocity fields. Realised solutions are averaged to get
fluctuating log conductivity semivariograms, velocity variances, particle displacement
covariance and mean solute concentrations.

2 Random Field Model

In the Monte Carlo simulation of subsurface flow and transport, the first step is the choice
of the statistical model that represents the medium heterogeneity, mainly the log hydraulic
conductivity, In K(x). Most stochastic theoretical and numerical modelling approaches

(see e.g.7-9) assume that the log hydraulic conductivity Y(x) = In K(x) where K(x) is the

local hydraulic conductivity of the subsurface porous medium and x is the vector of
spatial co-ordinates, as stationary random scalar field, normally distributed and
characterised by a constant mean (Y) and isotropic exponential covariance functions e.g.,

Cy(r) = cr~e-r/I (with r = Irl, where r is the two-point isotropic lag, or is the variance

of the distribution, and A the finite integral scale). The justification for using this model
is based on geostatistical data obtained from several sites (e.g.,' 0 ). In addition, the
macrodispersivity measured from tracer tests agree approximately well with the stochastic
theory results based on the exponential model. Zhan and Wheatcraft" argue that, field
hydraulic conductivity measurements are limited, have large uncertainty and have been
carried out for relatively small spatial scales (at most a kilometre). If the measurements
are available at much larger spatial scales, conductivity values may remain correlated at
larger scales and may give rise to non-stationaryfractal or self-similar distributions 12-14

with infinite correlation length. Neuman1 5 proposes a spatial scaling assumption with a
semivariogram function given in (1) to describe such a distribution as

yy(r) = -I(Yx+ r) - Y(x)] 2) = r(r/2)2H,(1

where A is a reference scale, yo is a constant variance parameter, and the scaling

exponent H is the Hurst exponent' 6. Equation (1) has been demonstrated to be valid for
self-affine stochastic processes over the broad range 0< H< 124. The exponent H is
associated with the fractal dimension Ds=E+I-H, where E is the space

dimensionality. For 0 < H < I the variance and integral scale of the field Y grow infinitely,
thus describing a medium with spatially evolving heterogeneity. The semnivariogram,
given by (1), shows a continuous growth with distance. The presence of more than one
reference scale of variability has an influence on fluid flow and contaminant migration6.
Spatially evolving scale formations are characterised by a variance which keeps growing
with the domain size. For a bounded domain, the order of magnitude of the variance is
given from (1) by the following:



157

T2 yoR 2H (2)

where R is the characteristic dimension of the domain (upper fractal cut-off scale).
Hence, the log conductivity integral scale 2 shows the following scaling property:

2 cc c? (3)

where a is a constant that depends on H. For independent realisations of the log
conductivity field, the variance of the random processes varies because of lack of
stationarity. However, averaging over many realisations, the order of magnitude of the
variance is controlled by the above relationship. The spatial variability of the field is
controlled by H while, for a given H, the contrast existing between the actual values of
log conductivity Y is controlled by yo. Increasing yo, keeping H constant, amplifies the

contrast between block conductivites. To perform hydraulic conductivity simulations for
different H values, the same order of magnitude of the fluctuations needs to be
maintained. This was needed in order to obtain realistic fluctuations for the case H > 1/2.

From a practical point of view we impose in all cases the following condition:

YR 2H =cx (4)

where o-2 is the variance of the field at the maximum size of the modelled domain (upper

cut-off scale). This means that once we fix the value yo for the case H < 1/2, say [yo01 for

H = H1 , the coefficient [Y012 for the case H = H2 > 1/2 becomes:

[Y01 = [y0]IR 2 H(

2 R2 H2 (5)

Field measurements of hydraulic conductivity have indicated an approximately log-normal
distribution'0 . The same distribution has therefore been adopted for the simulations
generated in this study. Essentially, a normally distributed log conductivity field Y(x,y) of

stationary increments and isotropic semivariogram given in (1) is generated over a two-
dimensional domain, the hydraulic conductivity field is obtained by the transformation

K(x,y) = exp[Y(x,y)], (6)

where K(x,y) is the conductivity assigned to the point x,y of the domain. The turning

band method'9'20 was used to simulate the hydraulic conductivity fields. Using this
approach we do not require to filter the wavelengths larger than the field dimension
(fractal cut-off scale), from the Y spectrum. The larger scale of variability is limited by
the field dimension, and the cut-off is introduced by the fact that the generation is
performed in a finite domain similar to the work of Bellin et al.,6 . Since the log
conductivity field Y is non-stationary, the mean value of Y is maintained constant in each
realisation of the field Y, by conditioning the field to a given constant value2'. This
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translates to conditioning the mean velocity field to a given constant value. Figure (1a)
and (lb) shows two realised fractal hydraulic conductivity fields generated using the
turning bands method. The simulated fields pertain to H = 0.3, and H = 0.8 respectively.

These fields show dramatically different behaviour. When H> 1/2, Y is positively

correlated and the fields shows smooth variations and large-scale persistence 22 of the
positive and negative values, Fig. lb. Conductivity values tend to cluster above or below
the mean for quite some distance before they change to the other side of the mean. When
H < 1/2, Y is negatively correlated and leads to less persistence within the conductivity

values, and hence Y varies erratically, Fig. 1 a.

(a) H =0.3 (b) H 0.8

Figure 1: Fractal Hydraulic Conductivity Fields Simulated by Turning Bands Method.

To address model accuracy, we consider the following statistic:

I N 2

where N denotes the number of pairs of log hydraulic conductivity Y with separation

equal to r. yr,(r) is the semivariogram obtained by spatial averaging all the equi-distant

pairs in a single realisation over a single replicate and assuming stationarity. The
reconstructed expected value of the log conductivity semivariograms for H = 0.3,0.8, are

shown in Figure (2a) and (2b) respectively. The expected values are computed in a Monte
Carlo sense averaging over a number of MC independent realisations as

(, = MC '- (8)
MC Jj=

according to the following convergence criteria 6

1 M Y -I /2"M-I y•'(rk)-Y' r <6 (9)
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where rk is the distance of the two point lag along the North-South (NS) and East-West
(EW) directions of the modelled domain and M is the number of points used to discretise
the semivariogram. The simulated and theoretical semivariograms (Eq. (1)) along NS
(squares) and EW (triangles) directions for different H values agree well in both cases in
Fig. 2 although the accuracy deteriorates with lag. The plotted semivariograms shows that
the variance grows infinitely with lag distance for a medium described by a semivariogram
given in Eq. 1.

90
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(a) H = 0.3 (b) H = 0.8

Figure 2: Simulated zMC(r) and theoretical g y(r) = a(r/A2H) semnivariograms along NS and EW for fields

in Figure (1).

3 Stochastic Finite Difference Flow Model

Steady-state confined flow of groundwater in a two-dimensional, horizontal, saturated,
imcompressible porous medium with physical heterogeneity represented by simulated
spatially varying fractal conductivity fields is considered in this study. Flow simulations
were performed in a Monte Carlo manner for fractal fields of various H values. The
simulation domain is a square domain where constant hydraulic heads are assigned at the
left and right boundary and the no-flow condition on the top and bottom to create a
uniform mean velocity i7. The numerical simulations are performed for fixed domain of
252 x 252A. Bellin et al.7 suggest that flow and transport solutions are not affected by
refinements of the grid size involving more than four points per integral scale 2 . Here, we
choose the following grid sizes in the longitudinal and transverse directions,
Ax = Ay = 2/4.

Steady-state subsurface flow in the 2-d domain is described by

V.q(x) = V.(-K(x)Vo(x)) = 0 (10)

where q(x) is the Darcy flux relative to the solid matrix and "(x) is the hydraulic head.

The flow equation is discretised by employing a mesh centered-finite difference scheme.
The hydraulic heads at the nodal points are solved with the boundary conditions given
above by a Gauss-Seidel method with successive over relaxation (SOR). In order to
compute nodal heads, the interblock hydraulic conductivities are computed by geometric
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averaging of adjacent conductivity values. This form of averaging ensures continuity of
the head field and conservation of mass flux across block boundaries17. Darcy's law is
applied to obtain the flux components q(x) and nodal velocities are computed by finite

differencing with a constant porosity value of q = 0.3.
In order to check the accuracy and efficiency of the finite difference approximation of

the flow equation, we calculated the local mass balance error which can be defined18 as

e = (Qo,, - Qix)/Qi" x 100% (11)

where Qo,,, and Q, are the total volume of flow out of the right boundary and into the left

boundary, respectively. The mass balance error decreases when a smaller value of
convergence criterion, u, in the iterative scheme is used (the head changes in all nodes
between two iterations is less than or equal to p, iteration stops). We found that for each
Monte Carlo simulation e is always less than 4% for each Hurst exponent H. These
result, show that the finite difference solution is reasonably accurate, and accordingly, the
obtained velocity field is sufficiently accurate to be used in the transport model. The mean
velocity computed for Hurst exponent and with reference to 1500 Monte Carlo
realisations was equal to unity leading to the conclusion that the mean velocity can indeed
be assumed constant and unit in each realisation.

4 Stochastic Solute Transport Model

The random walk particle tracking method is commonly used in the field of statistical
physics to model processes involving diffusion. This approach has also been used
successfully to simulate reactive and non-reactive transport in the subsurface4

,
7. The basic

idea is to approximate the spatial distribution of a transport quantity by a set of moving
particles. The spatial location of particles are updated at each time step according to the

following equation23

X(t + At) = X(t) + [V(X,t) + V. d(V(X,t))]At + [2d(V(X,t))AtJ" 2 . Z (12)

where X(t + At) is the updated position of the particle that was at X(t) in the previous

step, V(X, t) is the velocity vector at the old position at time t, d is the local scale

dispersion tensor, At is the time step, and Z is a vector of normally distributed random
numbers of zero mean and unit variance. The second term on the right-hand side moves
the particle advectively on the basis of the local velocity field at each point. The third term
is important when stagnation regions or sharp fronts exist within the field 23. The last term
accounts for the local scale dispersion. The particle velocity needed in (12) is obtained by
using a bilinear interpolation utilising the four velocity values surrounding the particle
position. Eq. 12 is used to track 2000 non-interacting particles initially distributed along a
strip of length 62 normal to the mean flow direction of the domain. A constant

dimensionless time step At'= 0.05 was chosen such that the fraction of the cell's length
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traversed by a particle in a single time step is much smaller than one. The dimensionless

time is given by t' = it/2. The particle tracking experiments are performed in the inner

core of the flow domain that is not affected by the boundaries. Particle tracking is
terminated during each Monte Carlo run before the contaminant plume exits the inner core
of the modelled domain.

5 Results from Flow and Transport Stochastic Analyses

Numerical generation of synthetic hydraulic conductivity fields, flow computations and
transport simulations were carried out in a Monte Carlo manner for each Hurst exponent
H. The simulation was terminated when the convergence criteria given in (9) were
satisfied. For each Hurst exponent at least 1500 Monte Carlo runs were required to attain
convergence. Numerical analyses were then carried out to calculate mean statistical
quantities of interest from the flow and transport simulations.

Bellin et al.7 show that the presence of boundaries influences the hydaulic head and
velocity variabilities in two-dimensional domains. In Fig. 3, we plot results for the head
variances o-2 for different values of H averaged over 1500 Monte Carlo realisations.

The head variability assumes a parabolic shape for each value of H. The parabolic shape
of the curves reflects the statistical heterogeneity of the standard deviation in hydraulic
head due to the constant head values specified on the boundaries of the flow domain. The
head variance is zero at the fixed boundaries as expected and increases at the centre of the

domain where it is maximum. The variance of hydraulic head a2-, increases with H.

0.25

0.02 H0.

-0.05 .. . . i . . . . W-. . 8.I . .

0 5 10 15 20 25

Figure 3: Head Variance o-2 along the Longitudinal Axis for different values of H.

Figs. 4a and 4b show the average Monte Carlo longitudinal velocity variance a- along

the center line in the longitudinal direction (dashed curve), and also the center line along
the transverse direction (solid curve), for H = 0.4 and 0.8 respectively.
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Figure 4: Velocity Variance u2• Along the Centreline in the Longitudinal (Dashed) and

Transverse (Solid) Direction.

While in the longitudinal direction o-2 is nearly constant, in the transverse direction it

assumes a parabolic shape. The longitudinal velocity variance is maximum at the
impervious boundaries and decreases in transverse direction with distance from the
boundaries reaching the minimum value at the domain centre.

Travel time statistics are important 7 because they are robust in characterising the
dispersion process blending all sources of uncertainty into a unique curve. Fig. 5
illustrates travel time statistical distributions (breakthrough curves) at three distinct
absorbing barriers placed normal to the mean flow respectively at distances 52, 102, and
15A computed by counting the number of particles the cross each barrier for each
transport simulation time. The figure is the average of 1500 Monte Carlo simulations for
the case H = 0.7. This result shows that as the plume travels further from the contaminant
source, the increased spreading of the plume results in both a corresponding attenuation
and reduction in peak value of the breakthrough curves.

0 .9 . .. ...-........ ... ..... ..
0.8 , - .. . -..

0.74 -
0.6
0.5
0.4 I P.

0.3
0.2 5 -

0.1 -- - ---'ý

0
0 2 4 6 8 10 12 14 16 18 20

Figure 5:Travel Time Statistics for H = 0.7.

At the end of each Monte Carlo run, the moments of the dispersing plume are computed as

follows: (a) the trajectory of the plume centroid:

R( = 1-' Y- Ximl P (t) (13)
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where X7m'Pt) (i =1,2 ) are the coordinates of the p -th particle for the realisation m and

Np is the total number of particles; (b) the second-order central plume moment:

I NP
S'7(tW = Ne' Y[Xi-1 (t) - RY'(t)][Xj-'P(t) -Rj-(t)] (14)

The moments (13) and (14) represent the overall plume behaviour in each one of the
(equally probable) log conductivity fields. Average trajectories (R1Qt)), and the average of

the second spatial moments (S (t)) are obtained by taking expectations over MC

independent Monte Carlo realisations:

(Ri (t)) = 2- m=I1R (15)

MC.=

(s Y)) S,7T) (16)
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exponent increases the second spatial moment increases with dimensionless time, a result
that is consistent with the findings of Hassan et al. 5. For each value of the Hurst exponent
the second spatial moment increases non-linearly (non-Fickian) for all simulation times.
This result can be explained by the fact that as the solute migrates in the porous medium,
it continuously encounters spatially evolving scales of heterogeneity (fractal), hence the
dispersion remains non-Fickian for all length scales below the scale of heterogeneity of
the modelled domain (upper fractal cut-off scale R).

6 Summary

A two-dimensional numerical fractal-based Monte Carlo simulation model is developed to
study flow and transport in heterogeneous media of spatially evolving heterogeneity.
Realisations of the log fluctuating conductivity field are generated from a fractal or non-
stationary distribution. The long range correlation of the hydraulic conductivity field is
evident in the numerically obtained semivariograms. The flow simulations are carried out
by solving a finite difference equation over a two-dimensional domain with uniform mean
flow in one direction. The velocity field obtained from the conductivity realisations
exhibits long range correlations. A random walk particle tracking technique is used to
solve the solute transport problem for non-reactive solutes. The transport simulations
indicate that higher Hurst exponent H (more persistence) of log conductivity results in
more longitudinal spreading of the contaminant plume. Results also show that irrespective
of the Hurst exponent the transport process is non-Fickian at all times for a dispersion
process below the upper fractal cut-off scale R.
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