
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO10880
TITLE: Developing Correct Safety Critical,

Hybrid, Embedded Systems

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: New Information Processing Techniques for
Military Systems [les Nouvelles techniques de
traitement de l'information pour les systemes
militaires]

To order the complete compilation report, use: ADA391919

The component part is provided here to allow users access to individually authored sections

f proceedings, annals, symposia, ect. However, the component should be considered within

he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADP010865 thru ADP010894

UNCLASSIFIED

1S-1

Developing Correct Safety Critical, Hybrid, Embedded Systems*

Alexander Pretschner, Oscar Slotosch, Thomas Stauner
Institut fuir Informatik, Technische Universitd.t Miinchen

Arcisstrafe 21, 80290 Miinchen, Germany

{pretschn, slotosch, stauner} in. turn. de

Abstract means of formal techniques.

AutoFocus. Discrete systems are modeled using
Several aspects of the development process of correct graphical description techniques for structure, be-
safety critical discrete and hybrid embedded systems havior, and interaction. In this paper we shortly
are discussed. The general process and its support present AuToFocus, a tool prototype for model-
by the CASE tool AuToFocus is outlined. This is ing discrete embedded systems that we will use to
illustrated along the lines of a simplified version of model a hybrid system, namely a simplified version
NASA's Mars Polar Lander. It is argued that spe- of NASA's crashed Mars Polar Lander. The mod-
cific aspects of hybrid systems do require the modifi- els are based on a common formal semantics and can
cation of classical theories on software development, therefore be used to support the development process
and these modifications are discussed. The paper from the requirements engineering phase throughout
concludes by focusing on one part of the develop- the test phase. The existing features of AUToFo-
ment process, namely testing. A novel approach to cus suffice to model discretizations of hybrid sys-
the automated generation of test cases for discrete as t6 ms. These discretizations, however, usually alter
well as hybrid systems is presented. The Mars lan- the model which reduces the set of properties that
der's crash serves as an example for the derivation of can be derived from a system model.
meaningful test cases.
Keywords. Reactive Systems, Validation, Devel- Hybrid systems. The development of hybrid sys-
opment Process, Automatic Test Case Generation, tems is an interdisciplinary task. Usually engineersCASE from different disciplines are involved and must dis-

cuss their designs. Graphical description techniques
are one element very useful to support this commu-

I Introduction nication. Just as for safety critical discrete systems,
it is furthermore desirable to apply a high degree of
mathematical rigor in the development of safety criti-

Safety critical systems. Developing correct safety cal hybrid systems. Today formal methods for hybrid
critical software for hybrid, embedded systems is a systems are still an active area of research, and there
difficult and error prone task. The functional re- are hardly any tools available which could yet be used
liability of the resulting systems is at least as im- in industrial practice. In this paper we therefore out-
portant as security aspects. High quality of the re- ;w& ýPm -Frw.,2& Lv-•, inn wj•e:t,•+- ý,az; ?.S
sulting systems can only be achieved using a well -AjTE•PDjs) ýýn 11-vYn wi fb w•rxetq frv ra-
structured development process. We present a de- tinuous systems in a development process for hybrid
velopment process that integrates many methods for systems that is feasible today. We discuss shortcom-
quality assurance for discrete systems. In this paper, ings of this method and outline how our work on by-
discrete systems refer to discrete event systems. How- brid modeling and validation leads to an integrated
ever, those discrete event specification techniques we development process for hybrid systems which is close
consider also have a discrete-time execution model. to the current AuToFocus approach for discrete sys-
For mixed discrete-continuous systems (or "hybrid tems.
systems") we discuss elements necessary to obtain a
similar integrated process, taking into account dis- Testing. Much work has been devoted to check-
crete as well as continuous aspects. The process for ing validity and consistency of a specification. By

discrete systems is an extension of the V-model [22]. now, testing is the only practicable, scalable means
It is based on system models that are validated by of validating the conformance of an implementation

w.r.t. its specification, even though Dijkstra's popu-
*This work was supported with funds of the Deutsche lar remark that testing can only reveal the presence

Forschungsgemeinschaft under reference numbers Br 887/9 but never the absence of errors undoubtedly holds
and Be 1055/7-2 within the priority programs Design and de-
sign methodology of embedded systems and KONDISK [10], true. We discuss the role of testing as a comple-
and by the DASA. ment to formal methods and present a novel approach

Paper presented at the RTO IST Symposium on "New Information Processing Techniques for Military Systems",
held in Istanbul, Turkey, 9-11 October 2000, andpublished in RTO MP-049.

15-2

based on Constraint Logic Programming to automat- present, CASE tools with useful semantic checks are
ically generating test cases for discrete as well as hy- not available. Recently, model checking tools have
brid systems. Experimental results from a case study been connected to tools based on statecharts or SDL,
of a safety critical system, the Mars Polar Lander, are but due to the complex semantics of these languages
discussed. We also take into account the integration without practical relevance. A systematic generation
of testing processes into the development process of of test sequences is also not available. Checking ad-
safety critical systems and our method's benefits and equacy is reduced to simulation facilities.
shortcomings. AuToFocus, on the other hand, also allows for

Overview. The remainder of this paper is orga- semantic validation. These validation techniques are
nized as follows. In section 2, we briefly discuss prin- based on the simple and intuitive semantics of AUTO-

ciples of a software development process for reliable Focus [21], and can be used to support model-based

discrete systems. Section 3 describes shortcomings development steps according to the V-model within

of this classical approach w.r.t. hybrid systems and all phases; in particular, testing is supported at the

suggests modifications that remedy these shortcom- design, implementation, integration and system re-

ings. Specifically, we argue for integrated descrip- quirements levels.

tion techniques right from the beginning. Section 4 Modeling hybrid systems with AUToFocus is done

then describes the CASE tool AuToFocus and its by a simple discretization of the continuous behavior,

description elements. Since so far there is no tool sup- and this approach allows to integrate discrete and

port for the integrated development process of Sec. 3, continuous parts in a single model (as will be shown

section 5 exemplifies the use of a discrete modeling in the example in Section 5).

tool for a hybrid system, the Mars Lander. Section 6
discusses the generation of test cases for discrete as 3 Hybrid Systems
well as hybrid systems along the lines of our example.
Section 7 concludes this paper. Related work is cited In this section we outline how a conventional formal
in the respective sections. tool for discrete systems, such as AUToFocus, can

be used within the development of hybrid systems.
We discuss advantages and drawbacks of such an ap-

2 Notes on the Development proach, and present a more visionary approach not
Process yet supported by tools. The new approach is sup-

posed to prevent these drawbacks. It results from

For safety critical systems, we advocate a develop- carrying over ideas like graphical specification with

ment process that heavily relies on models. In this different systems views and model based validation

process, models are developed in phases known from based on formal methods to hybrid systems. A cen-

conventional software development processes. These tral characteristic of the proposed approach is that

models are then validated, and the last step is to gen- it is based on notations that have a clearly defined

erate code from them in order to get an executable semantics.

implementation. A last validation step consists of A conventional development process. A con-
testing the developed systems in interaction with ventional development process for hybrid systems
their environment, for example together with other builds upon isolated description techniques for purely
components or hardware. Model validation is the discrete and purely continuous components. Pop-
key factor for producing highly reliable programs for ular in industry are tool couplings such as us-
safety critical systems. Useful models should describe ing Statemate together with Matrixx or the MAT-
the developed system from different views by means LAB/Simulink/StateFlow environment [11, 9]. For
of various hierarchical diagrams. The diagrams can the development of safety critical systems we advo-
be used to capture requirements, architecture, design cate the use of formal methods and notations wher-
and implementation decisions, and to represent test ever possible. This hinders the use of current com-
sequences. inercial tools like Statemate, ObjectGeode, Rational

Model validation may be seen as checking consis- RoseRT or Stateflow. Their notations only have a
tency. It can be applied at several levels: syntac- formal syntax, but the semantics remains imprecise
tic consistency (checking names), completeness con- and ambiguous, or very complex. A semantics for
sistency (checking references and types), semantic the coupling with continuous tools in not defined
consistency (checking refinement relations), and ade- anyway. However, tools like AuToFocus are avail-
quacy [28, 4], i.e., conformance of a model with possi- able which support the design of discrete systems
bly informal requirements. Many available tools per- based on formal notations such as architecture de-
form a syntax check with fixed built-in routines. For scriptions, extended automata and MSC dialects [23].
this purpose, modern tools use the object constraint For continuous systems there also are analysis and
language OCL [38] of UML which, in principle, could simulation tools based on block diagram notations,
also be used to check completeness of the models. At e.g. MATLAB [36]. Note that we regard block di-

15-3

requirements,
system environment

prequirements tspeciqicatuon, insrmal validatio

environment model Sar, reoneueat
(mbbsmal thx, SSDs q

z7• "'-..•enlorced early paritioning

a w discrete parts continuous parts conventional
h toS T'D,, ke i(block daga ms) t chiiiques

i odel code

requirements,

systehn environment

hybrid descripoion requirepaens specificatione, om vldhadion

b wrte onuigteeeitn olse Figurer tmdesine hstpefo:rm aI vauidat of eeomn

techniques (Hischare s HySCs)eps and refwinement

the discrete p a n iflate partitioning

discrete parts hybrid parts continuous parts
i...r..o (syCharts) p (block diagrams)conventional conv entoal

techniques i techniques

Figure 1: A conventional development process (top) and an integrated development process with hybrid de-
scription techniques (bottom).

agram descriptions of continuous systems as formal Drawbacks. So far, the only currently available
here, because a mathematical model can be associ- technique for examining properties of the mixed sys-
ated with individual blocks and their interconnection tern is simulation. There are hardly any analytical
in a straightforward manner. (Nevertheless, the user methods regarding the mixed model and there are no
has to keep in mind that the selection of integration techniques which support design modifications that
algorithms for simulation can have a great impact affect both parts of the model. In fact such mood-
on simulation results and can cause them to differ ifications could necessitate a redesign of the whole
strongly from the mathematical model.) As soon as model.
the system under development is partitioned into dis-
crete and continuous parts, a formal specification can Furthermore, in such a development process a
be written down using these existing tools, see Figure designer has to perform a number of development
1, top. Well-known techniques from the discrete and steps informally, i.e., without documenting them

continuous world can then be applied to the respec- with clearly defined notations, before a clearly doc-
tive parts of the model. For instance, model checking umented process can start, i.e., a process relying on
and automatic test case generation may be used for formal description techniques. In particular, these
the discrete part and analysis of eigenvalues for the steps include partitioning the design into discrete and
continuous part. continuous parts which may involve an (implicit) dis-

cretization of some parts. This is unsatisfactory since

15-4

the partitioning decisions may be difficult to alter allows to obtain greater confidence in the model be-
later on. Apart from that, the resulting coupled dis- fore a partitioning. Namely, testing and model check-
crete continuous model often is not natural for some ing techniques can be used to analyze requirements
components of a hybrid system. For example, analog and refinement techniques can be used to guarantee
to digital (AD) and digital to analog (DA) converters, some requirements by construction. By postponing
and in some systems the environment, are inherently implementation related questions changing require-
hybrid components. ments can more easily be taken into account. Thus,

errors made in the initial development phases can be
Recommendation. As no formal hybrid nota- found earlier and are therefore cheaper to correct.
tions with tool support that is suitable in practice The development process we propose in Figure 1,
are available today, there currently is no real alter- bottom, is based on description techniques devel-
native to the outlined conventional development pro- oped within our group in the last years. For re-
cess. We therefore propose to use informal text cou- quirements specification and environment modeling
pled with formal descriptions where possible in this it uses the MSC-like notation HySC [15], and the
process: Writing down mathematical formulae ex- combination of architecture diagrams and a hybrid
pressing hybrid behavior directly is hardly reasonable automata variant which is subsumed in HyCharts
for bigger systems. In the context of AUToFocus [16]. A methodological transition from HySCs to Hy-
we recommend using architecture descriptions (SSDs, Charts is ongoing work (for similar work on discrete
see Sec. 4) already during the requirements capture systems see [24]). Succeeding steps in the figure re-
phase and to describe the behavior of system com- fer to HyCharts rather than to HySCs. As notations
ponents informally with text or, where practicable, for the discrete and the continuous part we propose
with mathematical formulae, until the partitioning DiCharts [17], a discrete-time variant of HyCharts,
into discrete and continuous components has been and (continuous time) block diagrams, repectively,
performed. Figure 1, top, outlines the conventional taht can be integrated easily into the HyChart nota-
process and its support by AuToFocus. For the dis- tion.
crete part the model checking and testing techniques Note that the aspect of postponing the partitioning
already implemented in the tool can be employed, of a system into discrete and continuous parts is re-
They enable a more rigorous analysis of the discrete lated to the area of hardware/software codesign [6].patthan what is possible with other tools for dis- ltdt h rao adaesfwr oein[]
part tThere, the decision on which parts of a system are
crete systems that do not have a formal semantics. implemented in hardware and software is postponed

Outlook: An integrated development pro- to later phases. However, unlike hardware/software
cess. In a development process with hybrid descrip- codesign the partitioning into discrete and continu-
tion techniques, such as the one depicted in Figure 1, ous components proposed here does not yet imply
bottom, the designer is able to formally specify mixed how the components are implemented. The discrete
discrete continuous models at early stages of the de- part could be implemented in software or on digi-
velopment process. In the context of formal methods, tal hardware, the continuous part can be turned into
we refer to "refinement" as altering (or augmenting) a discrete-time model and implemented in software
a system's functionality without violating properties (or digital hardware), or it could be implemented in
that have already been established. If validation and analog hardware.
transformation techniques, such as simulation and While there is hardly any tool support for the in-
refinement, are available for these description tech- tegrated process today, a close coupling of discrete
niques, the model can be systematically designed to and continuous notations in the HyChart style is im-
meet those system requirements which affect its dis- plemented in the MaSiEd tool [1], which also allows
crete as well as its continuous aspects. Rudimentary simulation. The HyTech tool [18] (or other tools, e.g.,
versions of such techniques already exist and are an Uppaal or Kronos) which offers model checking of hy-
area of current research (e.g. [3, 10]). In later steps brid models is another element needed as support for
the model can be refined into discrete, continuous, an integrated development process. Presently, how-
and possibly some remaining hybrid submodels. For ever, its application is limited due to scalability prob-
the discrete and continuous submodels conventional lems and deficits of the underlying hybrid automata
techniques can then be used to realize those proper- model [29]. Promising tool approaches for the future
ties which only affect the respective part. Thus, the should couple analysis algorithms like those imple-
availability of formal hybrid description techniques mented in HyTech with modular graphical descrip-
and supporting methods for them pushes the point at tion techniques, e.g. HyCharts, in comprehensive tool
which systematic development, i.e. development with frameworks, such as accomplished with AuToFocus
formal description techniques, can begin towards the for discrete systems.
beginning of the analysis phase. A partitioning into Note that the development process for hybrid sys-
discrete and continuous submodels can be postponed tem proposed in [9] can be regarded as an intermnedi-
towards subsequent development phases. Such a de- ary between the two processes outlined here. There,
velopment process with hybrid description techniques the authors propose to complement block diagrams

15-5

and automata-based notations with formal specifica- statements are copied to the appropriate ports and
tions using Z [34]. the local variables are set according to the postcon-

dition. Actually the postcondition consists of a set of
actions that assign new values to local variables, i.e.,

4 AUTOFOCuS the assignments set the automaton's new data state.

Communication semantics. AUToFocus com-
AUToFocus [19, 20] is a tool for graphically speci- ponents have a common global clock, i.e., they all
fying embedded systems. It supports different views perform their computations simultaneously. The cy-
on the system model: structure, behavior, interac- cle of a composed system consists of two steps: First
tion, and data type view. Each view concentrates on each component reads the values on its input ports
a fixed part of the specified model. and computes new values for local variables and out-

Structural view: SSDs. In AuToFocus, a dis- put ports. After the clock tick, the new values are

tributed system is a network of components, possibly copied to the output ports where they can be ac-

connected one to another, and communicating via so- cessed immediately via the input ports of connected

called channels. The partners of all interactions are components and the cycle is repeated. This results

components which are specified in System Structure in a time-synchronous communication scheme with

Diagrams (SSDs). Figure 4 shows a typical SSD. In buffer size 1. Values on the output ports are copied

this static view of the system and its environment, over the channels to the appropriate input ports and

rectangles represent components, and directed lines the cycle is repeated. This results in a non blocking

visualize channels between them. Both are labeled synchronous communication.

with a name. Channels are typed and directed, and Interaction view: MSCs. Message Sequence
they are connected to components at special entry Charts (MSCs) are used to describe the interaction
and exit points, so called ports. Ports are visualized of components. In contrast to Message Sequence
by filled and empty circles drawn on the outline (the Charts as defined in [23], AUToFoCus MSCs refer
interface) of a component. As SSDs can be hierar- to time-synchronous systems. In the following, the
chically refined, ports may be connected to the inside term MSC always denotes these time-synchronous se-
of a component. Accordingly, ports which are not re- quence charts. Progress of time is explicitly modeled
lated to a component are meant to be part of unspec- by ticks which are represented by dashed lines. All
ified components which define the outside world and actions between two successive ticks are considered
thus the component's interface to its environment, to occur simultaneously, i.e., the order of these ac-
Components can have local variables to store values; tions is meaningless. An action in an MSC describes
these variables can be used to describe the behavior a message that is sent via a channel from one com-
and the interaction of components. ponent to another.

Behavioral view: STDs. The behavior of an Au- MSCs can be used to describe requirements, sim-

ToFocus component is described by a State Transi- ulation traces, counter examples (from model check-

tion Diagram (STD). Figures 5 and 6 show typical ing), and test sequences. Figures 7 and 8 show a

STDs. Initial states are marked with a black dot. typical test case specification as well as a satisfying
test case that satisfies it.

An STD consists of a set of control states, transi-

tions and local variables. The set of local variables Datatype view: DTDs. For the specification of
builds the automaton's data state. Hence, the inter- user defined data types and functions AUToFocus
nal state of a component consists of the automaton's provides Data Type Definitions (DTDs). Definitions
control as well as its data state. A transition can in DTDs are written in a functional style. For hybrid
be complemented with several annotations: a label, systems functions with continuous ranges can be de-
a precondition, input statements, output statements, fined, for instance:
and a postcondition, separated by colons. The pre- const GMars = 3.73;
condition is a boolean expression that can refer to fun speed(last:Floatdt:Float)
local variables and transition variables. Transition = last+GMars*dt.
variables are bound by input statements, and their
life-cycle is restricted to one execution of the tran- Features of AuToFocus. In addition to its model-
sition. Input statements consist of a channel name ing capabilities, AUToFocus allows for checking con-
followed by a question mark and a pattern. An out- sistency between views as well as simulating models
put statement is a channel name and an expression (using OCL). For the German BSI (Federal Agency
separated by an exclamation mark. The expression for Security in Information Technology) several val-
on the output statement can refer to both local and idation techniques have been integrated into AuTo-
transition variables. A transition can fire if the pre- Focus [33]. The result is a model validation frame-
condition holds and the patterns on the input state- work that supports
ments match the values read from the input. After
execution of the transition the values in the output 0 model checking and bounded model checking to

15-6

check temporal properties (invariants) [31], force where rhe is the lander's (negative) change of
"mass and vf the (negative, approximately constant)

m abstraction techniques to safely reduce complex rocket's exhaust speed. By ignoring friction effects
models to simpler ones, and letting h(t) denote the lander's height one de-

"• interactive theorem proving techniques to verify rives h , gmars - 4 "Vf and thus the lander's

arbitrary security requirements, and vertical speed (Fig. 2-3) from F(t) ; me(t) •h =

"* systematic generation of test sequences and test Fw(t) - Fthr(t). For simplicity's sake, horizontal
cases [39, 26, 27]. forces have been ignored. Oversimplifying again, we

furthermore assume a simple PD controller for the

All these validation techniques are based on the sim- lander, modeled by fhi j C1 - (vf(t) - Vreq) + c2 * V,

ple and intuitive semantics of AUToFOCuS [21], and for adequate gains c1 , c2 and the lander's required
can be used to support model-based development speed, Vreq. This yields the system's second descrip-
steps. This framework also allows to generate Java tive equation (Fig. 2-4) for this state. The control
and C code from the validated models in order to get variable is thus rht (or fim, respectively) which re-
executable implementations. flects an increase or decrease in fuel to be burnt.

In order to model the system with AUTOFocus,
5 The Mars Lander the above equations have to be discretized (i.e., lin-

earized). Being the results of two AuToFocus sim-

This section describes our example, a spaceship sim- ulations, the curves in Fig. 3 have been obtained af-

ilar to the doomed Mars Polar Lander that allegedly ter discretization with step size At = .01. It shows

did not complete its mission due to a faulty design [8]. height and velocity for two behaviors of the space-

The discretization technique we apply is common in ship. After a certain time, it is caused to start its

the design of discrete-time control systems [30]. The landing procedure by leaving the orbit (event "en-

next section then shows how automated test genera- ter"; events are symbolized by long vertical arrows).

tion could have helped in avoiding this problem. When a maximum speed (45 m/s) is reached, the
rockets are ignited ("rocketsOn"). Some time later,

Behavior. The hybrid system and its environ- the legs are caused to open. From now on, the behiav-
meit may be described by four main distinct states: iors differ. The intended behavior is that when the
The lander may be orbiting (orbiting) or falling spaceship actually lands, it should turn off its rockets
freely after leaving its orbit (Rockets Off). Fur- (trajectories with annotation "rockets on"). Ground
thermore, the lander may have ignited its retro rock- contact is inferred from a shock in the legs.
ets (Rockets On) in order to slow down its vertical If, on the other hand, opening the legs causes the
movement, and ant it may have landed (Landed). rockets to be switched off, velocity immediately in-
While orbiting, the lander's vertical speed, ve(t), is creases which results in a crash (trajectories anno-

tated with "rockets off"). This is what allegedly hap-
pened to the real spaceship: Opening and adjusting

ve(t) t 0.0 (1) the legs caused some sensors in the lander to believe

Vt (t) - v1 (to) ;Z / ma dt = gmars * (t - to) (2) the spaceship had landed for the legs sensed a shock.
1(-(According to [8], engineers were well aware of this

e. problem. When testing the system, they encountered
v(t) (groas -- M . vf)dt + ve(to) (3) a wiring problem, fixed it, and did not re-run their

f, mef(t) tests. Nonetheless, we will use this example as a mo-
meq ; I (cl . (ve(t) - Vreq) + C2 " e)dt (4) tivation for a semi-automated generation of test cases

to in Sec. 6.)

Structure. The above equations show that two
Figure 2: Mars Lander orbiting/landed (1), falling main variables are involved, namely the change of
without (2) and with (3,4) rockets. mass, rhq, and the lander's vertical speed, vj(t). This

motivates the systems top level structure as described
zero (Fig. 2-1). This behavior is also exhibited when by the SSD in Fig. 4 that consists of three com-
the lander has landed. Once it has left its orbit, we ponents: a Lander, a Physics, and a Controller
assume it is freely falling without friction. Its be- component. All components receive the current time
havior can thus be described by Fig. 2-2 where the via channel T from the environment. The value of
planet's gravity, gmars, is assumed to be constant. T is assumed to be present throughout every time
Strongly simplifying, the system's dynamic behav- slice, and to be increased by a constant value. The
ior in state RocketsOn may be modeled as follows, controller sends control commands to the other comn-
Let Fw(t) ; g mars - me(t) be the lander's weight ponents, in order to switch the lander's rockets on
force with me(t) being the lander's mass. Further- and off, to enter the landing phase, and to open the
more, let Fthr(t) = me " vf be the rocket's thrust legs for landing. It has a local variable CState to

15-7T A
ener fckts openLegs

nnter O RcktO) landed (crashed) landed
900 , ,-------- ,

"t1 Ovelocity (crash)
800 height (crash)-

10'velocity
700 height700\

600

rockets off
500

400

300 rockets on

200 1
100

0

0 10 20 30 40 50 60 70
time (s)

600 - - r-

500

40l712*mnass (crash)......

400 c off 10*0massdot (crash) -------
1/2*mass

300 -1 O0*massdot

rockets on

200

100

S..............

10-300.......

-400 1-
0 I 1 20 30 40 50 60 70

time (s)

Figure 3: Spaceship crashes and lands.

record the spaceship's state since it needs to know become more complex. The behavior of component
when to issue which command. The initial value of Physics is separated into two states (see Fig. 5).
this variable is Waiting; the type of this variable State Control Off just outputs the current speed
is a DTD data CState = Waiting I Ron I Roff. (and does not react to changes of mass), whereas in
When port Sensor receives True, this should (!) in- state Control On, the new speed is computed from
dicate that the lander has sensed ground contact, and the last speed and the actual change in mass (Eq. 3).
in turn its rockets will be switched off. Component Physics has several local variables to

store past values, used for integration, and differen-
muthelly diffe denti e Ion ofder Fig com- e ad 2 a-4 a tiation, LastT:Float, for instance, to compute time

mutually dependent. In order to compute the val- differences. The denotation of the transition labels
ues independently, the computation has to be sepa- in Fig. 5 consists of functional terms computing new
rated into two subcomponents, namely Lander and values according to the discretized equations. The
Physics. The main interaction is between Lander, behavior of component Lander is separated into four
and Physics: the environment sends the current ve- states (see Fig. 6), each representing a differential
locity to the lander (channel V), and the lander, in equation or the respective computation of new val-
turn, sends its change in mass to the environment ues (mainly for the local variables: LastT, LastV,
(channel Mdot). Channel Speed is only necessary for LastM, Lastf, and Legsfut) and for the output Mdot.
the initial value of the control process. Lander and In the initial state Orbiting the lander waits for the
Physics could have been grouped together into one command enter from the controller (received at port
hierarchic component. This is advisable if systems

15-8

:Control'; T?t:Heigtrl'LastH;Speed LastV:LastT = t

diff. equation (1)

:Controlenter; T?t:Height!LastH;SpeedfLastV:LastT T

start da *ng

diff. equations (3,4) ld dift. equation (2)S-start Rockets

fRockets Off free fallingfree
falling

[(LastH = 00)::Speed010. ; Height!00: O :
t~uch~ n touc, doc wn

touch
n

lne diff. equation (1)

Figure 6: Behavior of Component Lander

Local Variables: working

CnState Waling

open legs working Control On
IL j Height:Float

Control.:.om andsr

Sensor Bool T:Float ýtop controlnsoTI
Confrol:Co mds restarting

V:1Float Speed:Float
T 71 d f:Foat

Y :Conrol P1e.: Co tr l ..

C: :T?t;Control?;Speed?v::LastT=t;LastV=v
Figure 4: System Structure Diagram

Figure 5: Behavior of Component Physics

Control). Unless no enter command is present, ini-
tial values are sent to the environment. This is done
within the transition labeled flying and the follow- This last transition has no precondition (since
ing semantics: t>LastT is a general assumption on time).

The states Rockets On and Rockets Of f control
"* input pattern Control? denotes no input on the lander during the landing phase (with and with-

port Control, out boosters); control commands RocketsOn and

"Rocket sOff from port Control can be used to switch
* input pattern Tt denotes that the input on port between the two respective equations. If the height

T is bound to transition variable t, is less or equal to zero in one of the states, the lander

reaches the final state landed.
"* output patterns Height !LastH, and

Speed! LastV denote the sending of the current Shortcomings. Suitably discretizing a continu-
values of the variables to the output ports, ous model is a difficult problem. We chose a simple

piecewise linearization with trapezoidal approxima-
"• action LastT = t stores the value t into the lo- tion. Problems with this approach include a con-

cal variable LastT. servative determination of At as well as meaningful

15-9

error estimations. Thus far, we use the same At for case specifications can, for instance, be written down
all components (in accordance with user-defined step as mathematical formulas [12], formal specifications
sizes for each component). This approach may re- [37, 5, 32], as MSCs [13, 26, 27, 39], as partial I/O
sult in efficiency problems, but it solves the problem traces or constraints over them [26, 27, 7]. A test case
mentioned below for communicating components in- is an artifact that satisfies a given test case specifi-
tegrating over a same variable in the case this variable cation and may be formulated in the same forms as
is t. The automatic generation of discretized systems test case specifications. A test sequence, finally, is an
from continuous equations is subject of ongoing work. executable test case, e.g., an I/O trace. [27] discusses
Especially methods are developed to break systems of this terminological framework.
differential equations into single components, to de- Our work aims at (semi-) automatically deriving
termine appropriate discretization methods, and to test cases from test case specifications that may be
to find good timing rates for the components. used for both, interactively white box testing a spec-

ification and (semi-)automatically black box testing
an implementation. As indicated above, the interac-

6 Testing tive part plays an important role in the development
process. Even though it is undoubtedly true that a

Approaches to ensure a system's reliability include sst s le though t hougter bre t

validating a model w.r.t. its specification as well as syi pem ented or odele weobelieve that im

checking an implementation's conformance w.r.t. the isni ande inte racti etesting h elin ta ndingla

specification. Formal methods, such as model check- model. This is related to the rapid prototyping ap-

ing, allow for determining a system's correctness in proach in software engineering; we even see simula-

terms of user defined properties usually formulated in tioas a s of theesing proessi[6l2]I tion as a specialization of the testing process [26, 27].
an (unintuitive) logic, e.g., the Linear time TemporalLogic LTL. Without suitable (and usually hard to de- However, it is worth emphasizing that most likely

Logi LT. Wihou suiabl (ad usall har tode- none of the commonly used approaches to quality as-
termine) abstractions, model checking is restricted to no e of th commoned appras to quality -finie satespacs wich forinsanc, tyicaly row surance will do it alone. In contrast to formal meth-
finite state spaces which, for instance, typically growan inherently incomplete process. As
exponentially with the number of variables involved. ods tetin ds an ihrnt icolet e pro casNot urpisigly indstral pplcabiityhasnotyet formal methods yet do not scale to real size applica-N ot su rp risin gly, in du strial app licability h as not yet ti n , h s d e c t h a to b a c p ed ut or e n
been achieved. In the following, we describe how a tins, tis thas to be ace t tesin
classical approach to quality assurance, namely test- n i p remar thatseng caningis upprtedby UTOOCU. Weadvcat an only reveal the presence but never the absence of er-ing, is supported by A uT o F o c u s. W e advocate anro s a o ap l e to f m l m th d : O e c n n y
integration of mathematically complete techniques rors also applies to formal methods: One can only
(model checking) with testing. In addition to specify- check properties that have been formulated by a hu-

ing test cases during the design phase, testing should man. This process, however, obviously is also neces-

also be done interactively, for certain errors can only sarily incomplete.

be revealed by "playing around" with the model. Test case specification. The specification of
This kind of testing may thus be seen as a debugging test cases or properties to be checked requires in-
aid. This is, in fact, the case for most of the spec- tuitive and, if possible, graphical description tech-
tacular software faults the model checking/theorem niques. One problem with formal techniques surely
proving communities use as a motivation for their lies in the fact that without an intense formal edu-
work. The discussion of test management strategies cation properties are hard to express in formalisms
and particular techniques such as mutation analysis such as LTL or the Temporal Logic of Actions TLA
and fault injection is beyond the scope of this article [25]. We hence advocate the use of a variant of Mes-
and thus omitted. sage Sequence Charts [23] for the specification of test

Applicability and Terminology. We distinguish cases [13, 39, 26, 27]. MSCs (HySCs) are augmented

between possibly informal requirements, a specifica- with elements for talking about states in condition

tion which is called a model if it is written down boxes [15] as well as constructs for expressing itera-

formally (e.g., in AuToFocus), and an implemen- tion and the necessity of certain transitions to fire.

tation. Testing an implementation is usually done The identification of typical test purposes, e.g., caus-

w.r.t. its specification, e.g., [32, 26, 27]; the speci- ing the system to output certain values, reaching

fication is thus considered to be correct. Obviously, states, executing transition sequences [39], led to the

this is a strong and usually unrealistic assumption. incorporation of these language constructs.
However, we think it is one necessary step. The tech- An important concept is that of negation (negating
niques sketched below and explained in more detail transitions, the reachability of states, or forbidding
in [26, 27, 39] allow for the determination of test se- certain inputs or outputs). However, a suitable se-
quences on the grounds of a test case specification. mantics for MSCs in the context of test cases seems
A test case specification is the formalization of some to be incomplete in the sense that between two el-
test purpose, i.e., reach a particular state or cause ements in an MSC, arbitrarily many others may be
the system to throw a particular exception. Test present. Apparently the formal definition of a se-

15-10

mantics for negation in this context is not obvious
[24] and subject of ongoing work.

In AUTOFOCUS, test cases may be specified by
both LTL formulas and MSCs. In the following, Lander: Orbiting
we focus on the derivation of test cases from sys-
tem and test case specifications. In the remainder
of this section, the system specification should be Height!h;h>-1O.O

thought of as an AUToFocus model, and the test I
case specification is formulated using MSCs. Coin- Speedls; s>o.01

puted test cases (I/O sequences) are displayed in the
form of MSCs themselves for inspection by a human
(or comparison with expected test results, i.e., corre-
spondence of the model's output with the output as Lander: Landed
described in the test case specification). Note that in

this paper we concentrate on testing a specification
and do not take into account testing implementations
even though computed test sequences can be fed into Figure 7: Test case spec.: Reach state landed.
an implementation for conformance testing with the
specification. checking [2] can be found in [39].

Testing discrete systems. This paragraph briefly
describes the generation of test cases from test case Testing hybrid systems. In principle, the above
specifications by means of Constraint Logic Program- automatic CLP based generation of test sequences is
ming (CLP) as well as of propositional logic. These also applicable to mixed discrete-continuous systems,
methods automatically derive test sequences from for numerical or algebraic solvers can easily be con-
system and test case specifications. nected to the CLP system. Yet, assuming that con-

CLP is the result of integrating two declarative tinuous activities take place within particular states

programming paradigms, namely logic and constraint of the system and that there is a continuous data flow

programming. Distinctive features include inverta- between components, a number of problems arise.

bility of functions, the use of free (logical) variables First of all, it is not clear how a continuous data flow

that may be bound during program execution, built- can be simulated on ordinary computers (in control

in search mechanisms - backtracking -, and a seman- systems, however, there indeed is a continuous flow of

tics based not only on terms but rather on arbitrary data). Secondly, numerical solvers also discretize dif-

domains. It turned out that AUToFocus models ferential equations and solve these equations with dif-

can very naturally be translated into CLP languages. ferent, possibly even dynamic, integration step sizes.

The idea is to feed the executable model with partial It is not clear how to handle the situation where one

I/O traces and make the test case generation sys- component triggers a transition dependent on, e.g.,

tern create actual test cases (possibly partial I/0 se- the global time. Assume that two components run at

quences subject to certain constraints, e.g. ranges for different speeds, i.e., with different integration step

variables) by relying on the above mentioned built-in sizes. If one component integrates over a common

search mechanism and by using logical variables. By variable and meanwhile receives a value for exactly

imposing constraints (e.g., in the forms of MSCs) on this variable that has been determined according to

the set of all possible system execution, the search an earlier time, it has to stop its integration process

space can significantly be reduced. Further analyses and to step back. This results in severe methodical

such as automated interval analyses or (manually de- as well as efficiency problems, both of which are sub-

rived) classification trees [14] for variables then allow ject of ongoing work, based on (1) the semantics for

for the determination of meaningful test sequences hybrid systems as defined in [35] and (2) a modifica-

(taking into account, for instance, range boundaries tion of the AUToFocus semantics where continuous

that yield equivalence classes to be tested). [26, 27] activities do not take place on transitions but rather

contain a more detailed description of this approach. within states. This applies only to hybrid testing
since real time simulation forbids re-calculating cer-Testing based on propositional logic is suitable tmvral onais

only for small finite systems (in particular, for sys-

tems with small, finite variable ranges). AUToFocus Example: Testing the lander. In accordance
models as well as test case specifications are trans- with these considerations, so far the methods for de-
lated into propositional logic and combined into a sin- riving test cases described above have only been im-
gle formula which is fed into a propositional solver. plemented for discrete systems. As AUToFocus is
The results (binding of free variables in traces) are based on an inherently time-discrete semantics, this
translated back into MSCs. A detailed description paragraph illustrates the derivation of test sequences
of this approach which is related to bounded model for the discretized model of the Mars lander. Due

15-11

Lae Cr scenarios, one of which consisted of test case specifi-
cations with verdicts and has been created indepen-
dently of the modeling process. The second scenario

Ziader: Orbiting is closer to the area of rapid prototyping, where test-

ing is seen as a debugging aid. In the case of Fig. 8,

Controllenter both scenarios may apply. However, there obviously
is need for an engineer who derives from the test se-
quence that using a shock in the legs as ground de-

l e: ker Off tection mechanism is a bad idea!

. [7 Conclusion

ControllRocketsOn A central aim of our work is the support of a sys-
- - - - - - tematic design of correct safety-critical hybrid em-

Lanier: Rockets On bedded systems. For discrete systems we think that
a number of effective validation and verification tech-

Height!3147192,. niques has been integrated within the AuToFocus
H 0 . framework. In this paper we presented an example

Controi!openLegs of an ad-hoc discretization of a hybrid system, using
discrete formal models. The model allowed an im-

Senor.!touchDown proved validation; in particular, important test sce-
S-narios have been derived. Secondly, precise require-

,ontrol!RocketsOff ments for dealing with hybrid systems in the con-
-... . -text of discrete CASE tools have been obtained: (1)

systematic discretization support, and (2) extending
Lander: Rockety Off formal modeling and validation methods with con-

I tinuous features to hybrid methods. Thirdly, a new
- -development process for hybrid systems has been pro-

HeighV-0.0112 posed and discussed.P- •In the future we will further evaluate how AUTO-
Laed• i [Focus can be applied in the development of safety

l critical avionic systems and what is necessary to
make it compatible with the certification process re-

Height!-r.0112 quired for such systems. Furthermore, a testing med-
sped'67.3899l " hodology (which test cases to choose, how many, etc.)
Mass'863.2130 "M . is the subject if future work.

Acknowledgment. We would like to thank

Figure 8: Test case: Lander crashes. Michael van der Beeck for helpful comments on this
paper.

to space limitations, we concentrate on just one test
case specification which is, however, sufficient to con- References
vey the principal idea. Figure 7 shows the graphical
specification for the test case "find a system run that [1] J. Albert and J. Tomaszunas. Komponen-
makes component lander reach state landed'. A de- tenbasierte Modellbildung und Echtzeitsimulation
rived corresponding test case specifying this specifica- kontinuierlich-diskreter Prozesse. In Proc. of
tion is depicted in Fig. 8. Note the close relationship VDI/VDE GMA Kongrefl Mefl- und Automa-
with the State Transition Diagram of Fig. 5. This tisierungstechnik, 1998.
system run makes the lander crash for its final ve- [2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Sym-
locity when touching the ground is much too high bolic Model Checking without BDDs. In W. Cleave-
(approximately 67 m/s). Obviously, this is just one land, editor, Proc. TACAS/ETAPS'99, LNAI 1249,
test case for the given specification. Another suc- pages 193-207, 1999.

cessful run leaves the rockets ignited until the space- [3] M. S. Branicky. Stability of switched and hybrid
systems. In Proc. 33rd IEEE Conf. Decision andship actually has had ground contact. Both possible Control, 1994.

runs are depicted in Fig. 3 in forms of the respec- [4] P. Braun, H. LUtzbeyer, B. Schdtz, and 0. Sloto-
tive variables' trajectories. Note that in case of the sch. Consistent integration of formal methods. In
crash there is no automated means for assessing the Proc. 6th Intl. Conf on Tools and Algorithms for the
outcome of a test case, nor some help in order to de- Construction and Analysis of Systems (TACAS'O0),
tect the fault. Above, we described two possible test 2000.

15-12

[5] E. Brinksma. A theory for the derivation of tests. Formal Methods (FME'97), LNCS 1313, pages 122-
In S. Aggarwal and K. Sabnani, editors, Proc. 8th 141. Springer Verlag, 1997.
Intl. Conf. on Protocol Specification, Testing, and [22] IABG. Das V-Modell. www.v-modell.iabg.de, (doc-
Verification, pages 63-74, 1988. uments also available in English), 2000.

[6] K. Buchenrieder and J. Rozenblit. Codesign: An [23] ITU. ITU-T Recommendation Z.120: Message Se-
overview. In Codesign - Computer-aided HW/SW quence Charts (MSC), November 1999.
Engineering. IEEE Press, 1995. [24] I. Kriiger. Using MSCs for design and validation of

[7] A. Ciarlini and T. Friihwirth. Using Constraint distributed software components. PhD thesis, Tech-
Logic Programming for Software Validation. In 5th nische Universitat Miinchen, 2000.
workshop on the German-Brazilian Bilateral Pro- [25] L. Lamport. The temporal logic of actions. ACM
gramme for Scientific and Technological Coopera- Transactions on Programming Languages and Sys-
tion, K~nigswinter, Germany, March 1999. tems, 16(3):872 923, 1994.

[8] CNN News. NASA: Premature engine shutdown [26] H. L6tzbeyer and A. Pretschner. AutoFocus on Con-
likely doomed Mars lander. 28.3.00, www.cnn.com/ straint Logic Programming. In Proc. (Constraint)
2000/TECH/space/03/28/lander.report.02/. Logic Programming and Software Engineering, Lon-

[9] M. Conrad, M. Weber, and 0. Miiller. Towards a don, July 2000.
methodology for the design of hybrid systems in au- [27] H. L6tzbeyer and A. Pretschner. Testing Reac-
tomotive electronics. In Proc. of ISATA '98, 1998. tive Systems with Constraint Logic Programming.

[10] DFG. Priority program KONDISK (analy- In Proc. 2nd workshop on Rule-Based Constraint
sis und synthesis of continuous-discrete systems). Reasoning and Programming, Singapore, September
www.ifra.ing.tu-bs.de/kondisk/, 2000. 2000. To appear.

[11] M. Fuchs, M. Eckrich, 0. Miiller, J. Philipps, and [28] B. Miiller. Unterstiitung von Entwicklungss-
P. Scholz. Advanced design and validation tech- chritten auf Objekten mit unterschiedlichen OCL-
niques for electronic control units. In Proc. of the Konsistenzanforderungen. Master's thesis, Institut
International Congress of the Society of Automotive fur Informatik, TU Miinchen, 2000.
Engineers. SAE International, 1998. [29] 0. Mfiller and T. Stauner. Modelling and verifica-

[12] M. Gaudel. Testing can be formal, too. In P. Mosses, tion using linear hybrid automata - a case study.
M. Nielsen, and M. Schwartzbach, editors, Proc. Mathematical and Computer Modelling of Dynami-
Intl. Conf. on Theory and Practice of Software De- cal Systems, 6(1):71-89, 2000.
velopment (TAPSOFT'95), LNCS 915, pages 82-96, [30] K. Ogata. Discrete-Time Control Systems. Prentice
Aarhus, Denmark, May 1995. Hall, 1987.

[13] J. Grabowski. Test Case Generation and Test Case [31] J. Philipps and 0. Slotosch. The quest for correct
Specification with Message Sequence Charts. PhD systems: Model checking of diagrams and datatypes.
thesis, Universitat Bern, 1994. In Proc. IEEE Asian Pacific Software Engineering

[14] M. Grochtmann and K.Grimm. Classification trees Conference (APSEC'99), pages 449-458, 1999.
for partition testing. Software Testing, Verification, [32] S. Sadeghipour. Testing Cyclic Software Compo-
and Reliability, 3:63-82, 1993. nents of Reactive Systems on the Basis of Formal

[15] R. Grosu, I. Kriiger, and T. Stauner. Hybrid Se- Specifications. PhD thesis, TU Berlin, 1998.
quence Charts. In Proc. of ISORC 2000. IEEE, 2000. [33] 0. Slotosch. Overview over the project Quest.

[16] R. Grosu, T. Stauner, and M. Broy. A modu- In Proc. of FM Trends 98, LNCS 1641. Springer-
lar visual model for hybrid systems. In Proc. of Verlag, 1998.
FTRTFT'98, LNCS 1486. Springer-Verlag, 1998. [34] J. Spivey. The Z Notation: A Reference Manual.

[17] R. Grosu, G. 5tefg.nescu, and M. Broy. Visual for- Prentice Hall, 2nd edition, 1992.
malisms revisited. In Proe. International Confer- [35] T. Stauner and G. Grimm. Prototyping of hy-
ence on Application of Concurrency to System De- brid systems - from HyChaxts to Hybrid Data-Flow
sign (CSD'98), 1998. Graphs. In Proc. of WDS'99 (satellite workshop to

[18] T. Henzinger, P.-H. Ho, and H. Wong-Toi. A user the 12th International Symposium on Fundamentals
guide to HYTECr. In TACAS 95: Tools and Al- of Computation Theory, FCT'99), Electronic Notes
gorithms for the Construction and Analysis of Sys- in Theoretical Computer Science 28. Elsevier Sci-
tems, LNCS 1019. Springer-Verlag, 1995. ence, 1999.

[19] F. Huber, S. Molterer, A. Rausch, B. Schhtz, M. Sih- [36] The MathV"lorks Inc. MATLAB.
ling, and 0. Slotosch. Tool supported specification -ww.mathworks.com/products/matlab/, 2000.
and simulation of distributed systems. In B. Kri.mer, [37] J. Tretmans. Test generation with inputs, outputs
N. Uchihira, P. Croll, and S. Russo, editors, Proc. and repetitive quiescence. Software-Concepts and
Intl. Symp. on Software Engineering for Parallel and Tools, 17(3):103-120, 1996.
Distributed Systems, pages 155-164. IEEE, 1998. [38] J. Warmer and A. Kleppe. The Object Constraint

[20] F. Huber, S. Molterer, B. Schiitz, 0. Slotosch, and Language. Addison-Wesley, 1998.
A. Vilbig. Traffic Lights - An AutoFocus Case [39] G. Wimmel, H. Latzbeyer, A. Pretschner, and
Study. In 1998 International Conference on Ap- 0. Slotosch. Specification Based Test Sequence Gen-
plication of Concurrency to System Design, pages eration with Propositional Logic, December 2000. J.
282-294. IEEE Computer Society, 1998. Software Testing, Verification & Reliability (STVR):

[21] F. Huber, B. Schitz, and G. Einert. Consistent Special Issue on Specification Based Testing. To ap-
Graphical Specification of Distributed Systems. In pear.
J. Fitzgerald, C. Jones, and P. Lucas, editors, Indus-
trial Applications and Strengthened Foundations of

