
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADPO10677
TITLE: Six Facets of the Open COTS Box

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Commercial Off-the-Shelf Products in

Defence Applications "The Ruthless Pursuit of
COTS" [l'Utilisation des produits vendus sur
etageres dans les applications militaires de
efense 1'TExploitation sans merci des produits

commerciaux"]

To order the complete compilation report, use: ADA389447

The component part is provided here to allow users access to individually authored sections

of proceedings, annals, symposia, ect. However, the component should be considered within

he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADP010659 thru 'M eVASSIFIED

19-1

Six Facets of the Open COTS Box

(March 2000)

Daniel H. Dumas
Certified Consultant IT Architect, Network Computing

IBM Belgium
Square Victoria Regina 1

B- 1210 Brussels, Belgium

ability to use it on the platforms that are most
Summary widely used within the organisation (including

Although procurement of COTS software for possibly heterogeneous platforms), and the
Althougheprocuremene a atiofs COs sof ded f breadth of applicability of the solution, to

Defece pplcatins as ong ncldedunderstand the economies of scales and of skills

evaluation in terms of the products' respect for

standards and norms, actual experience has often that can be realised. This touches upon factorsstanard an nomsactal xpeiene hs otencommonly referred to as the "openness" and the

revealed shortcomings in the ability to deploy perenniality of the solution.

solutions based on these packages widely over a

period of time. We look here at what additional Although procurement of these offerings for
factors need to be considered in order to make Defence applications has long included
the use of COTS software more likely to bring evaluation of how well they respect official
continuing benefits over the life of an application standards and norms, actual experience has often
system. The six aspects that are considered in revealed shortcomings in the ability to deploy
the paper are: them widely even over a few years' time. We
* Presentation interfaces may wonder, then, what additional factors need
* Release compatibility to be considered in order to make the use of
* Portability COTS software more likely to bring continuing
* Programming interfaces benefits over the life of an application system.
* Security interfaces We will consider here six facets of the definition
• Management interfaces of "open software" that need to be taken into

account in evaluating COTS offerings. These

Introduction will be presented symbolically by looking at the

The advantages of using COTS software kind of information we might hope to find

packages and components are widely known and written on the six sides of the cardboard box that

appreciated, namely: the COTS software is delivered in.

* Rapid availability (by definition: off the shelf)
* Lower initial costs (because fixed Six Facets that should be considered

development costs are spread over a wider in COTS software evaluation
user population)

* Widespread and higher quality education Each of the six sides of the box that a COTSofferings (again because of the wide userbase) software is typically delivered in can serve to
remind us of a separate, important aspect that

In choosing a particular software package, an needs to be considered in evaluating the

organisation will also look to such factors as the software, in order best to ensure its long-term
applicability in a particular environment.

Paper presented at the RTO IST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS"", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP-48.

19-2

XML or client-side Java functionality. The Web
Those six aspects, that we will detail in the rest Browser, of course, has the distinct advantage of
of this paper, are the following: running on multiple platforms.. It can also
" Presentation interfaces connect to multiple servers simultaneously. This
"* Release compatibility allows easy passive integration, as well as active
"* Portability integration via hyperlinks. Increasingly, as well,
"* Programming interfaces it can be used to provide slightly different
"* Security interfaces presentation interfaces to users according to
"* Management interfaces their individual preferences, through the use of

style sheets.

Presentation interfaces An approach that goes further than this is to
Let's consider the top of the box first - and with

the first thing that you see when you look into support multiple user interfaces. Indeed, if
it,e ftre: the presee wherfaces. sufficient consideration is given, at the time of
a new software: the presentation interfaces, application development, to the separation

This aspect, especially when we are dealing with between presentation functions and business

graphical interfaces, has an undeniable emotional logic, the same application can be designed to

impact at the time of product selection. work indifferently with various interfaces. As

Ergonomy of use in some cases may merit a possible interfaces, we might imagine the

detailed and objective study, including how long following:

it takes to accomplish some benchmark series of * A non-graphical, or transactional, interface

tasks, for both the inexperienced and the to the server functions, via a specific

experienced user. It remains, of course, difficult Application Programming Interface or a

to quantify to what degree evaluations are Messaging interface

conditioned by more subjective elements such as 0 A specific Client GUI (graphical user

the use of colour and graphical elements, and the interface)

aesthetic elements of information layout. 0 A standard Web Browser GUI
* An interface to portable devices such as

The nature (and in particular, the complexity) of Personal Data Assistants, cell phones or
the presentation interface can also have an pagers
impact on performance in environments with * An output interface such as print, e-mail,
bandwidth or processor constraints. It is pager or FAX
appropriate that this be taken into consideration * A telephony user interface, which could be
at the time of evaluation, but this aspect is rarely touch-tone or voice activated

apparent in a demo or pilot environment, where
bandwith and processor capacity is typically There are multiple approaches possible to
unconstrained, providing universal presentation interfaces. The

intelligence required in order to adapt the

But beyond considerations such as usability and presentation format to a particular device can

attractiveness, the choice of presentation either be located in an intermediate server, or

interfaces has a real impact on the ability for a transcoder, or can be built into the device itself,
product to be used at various locations within based on standard datastreams that are defined

the organisation, and to integrate with various to be applicable for data transmissions to a wide

other applications, variety of devices. It is important to see which of
these approaches is adopted by a particular

If a single type of user interface is used, an software package, and to evaluate how the

approach that presents significant advantages is approach fits in with the planned deployment of

to communicate to the user interface with a Web various user interfaces within the organisation.
Browser-supported data stream, such as HTML,

19-3

The idea of universal access to applications is might we find there? Version X.Y.Z. New!
gaining credibility through recent advances in the Improved! Bonus!: now includes product ABC
standardisation of separation between content (demo version).
description and layout, based on the use of the
eXtensible Markup Language (XML - which, in Questions we might ask upon seeing all this
contrast to HTML, is not a markup language in include:
the sense of presentation layout, but a content * Why the new release? (as well as: when was
description language) and the eXtensible Style the previous release? when is the next one
Language (XSL) specifications. planned?)

• What statement of requirements motivated

Both the transcoding and the device-resident the new function and improvements?

style sheet approach can provide increased * How does the additional product included in
flexibility for customisation of the presentation the package affect me and what
interface. Typically, though, they will be used for dependencies does it create?

different types of applications. COTS software is fundamentally oriented to a

The approach that will leave the greatest mass market. New releases can serve a number

flexibility for customisation of the look of the of purposes in this environment:

presentation interface by individuals will be the ° They are a delivery mechanism for error

approach based on a style sheet selected at the maintenance

device. This will generally allow the user to 0 They are a mechanism to generate renewed

adjust the presentation interface without interest

requiring any modification to the business logic. * They incorporate new technology

It's an approach that has advantages for the " They allow adjustments in positioning
editor of the software as well: it allows them to relative to competitive products, and to

avoid developing specific customisation products the vendor owns, has acquired, or

Application Programming Interfaces (API's), and is forming marketing alliances with

will reduce needs to provide access to source Because market share is an important
code, with the accompanying negative impacts consideration, COTS products typically try tothat has on maintainability of code and on thecosdrtnCT poutsyialytyo

cover as large a spectrum of function as possible
ability to protect intellectual capital and software - sometimes earning them the reputation of
assets. "bloatware"! This inevitably results in their

There are other types of applications where the containing features that are not strictly required

transcoder approach is more powerful, of for a particular application. Additionally, and
more importantly, the focus very often turns to

course: in cases where the datastreams are
non-standard or unstructured, for instance. One rapid product cycles rather than to managed

application where use of this kind of service has change.

appeared recently is in providing multilingual In this context, it is not infrequent to see
interfaces to a single-language application. The problem determination and the application of
transcoder in this case is used to accomplish fixes reduced to very minimalist proportions:
translation of text on-the-fly. install the next release and hope your problem

goes away. The policy of maintenance for
releases for a particular COTS product certainly

Release compatibility merits investigation. Is corrective maintenance
Let's go back to the imaginary box that our available between releases? How can it be
software has just been delivered in, and take a delivered?
look at the front side now. What kind of things

19-4

Release "chum" has a negative influence on the upgrade decisions are taken by independent
length of availability and on the effective support entities or distributed entities that need to
period of a release. How frequently do releases interoperate.
change? Is this acceptable in terms of the period
foreseen to roll out a product to the various Obviously, these are all essential change
users in the organisation? management considerations that need to be

understood before a given organisation leaps
Change management considerations apply not into a new release. But when we consider the
only to the area of corrective maintenance, but question of release compatibility across
to the implementation of functions that have organisations, the question gains a new
been requested as part of the product dimension of complexity: Organisations
requirements process. Historically, input to the throughout the world are not marching in
requirements process has been restricted to a lockstep. Different organisations are doing
small number of influential players. The advent different things at different times. No version
of the Internet is changing that in certain IBM plan could ever be made that would make all of
and Lotus laboratories, where requirements from a COTS supplier's customers happy.
a much broader public of developers is solicited
during the product development cycle. Customers have to have the discipline to

navigate through releases, and have some
Eventually, even if hopefully not during the restraint to do version control. Industry on the
initial rollout period, the organisation will other hand, who too rarely make public
probably end up considering migration of users commitments to maintenance of a particular
from one release to another, or one version to release, could do better to provide maintenance
another, of any given COTS product. A number of prior versions over a fixed minimum number
of other important questions will inevitably arise of years. But this does not appear to be a
at that time: will the things that I have prevalent trend. I do have one COTS software
customised or developed continue to work with box that states: "Maintenance will be provided
the new release (forward compatibility)? Will the until No maintenance will be provided after
things that I was doing with the previous release that date". It just happens to be for IBM DOS
continue to work with both the new and the old 4.0!
release if I perform them with the new release
(migration compatibility)? Will the fact of using New releases can also entail additional licensing
the new functions in the new release prevent me fees in addition to the unaccounted human costs
from interoperating with users using the old associated with the installation, configuration
release (backward compatibility)? Is there some and problem determination efforts required for
way to configure so that compatibility is ensured those new releases.
(e.g., disabling the use of the new functions or
new data formats until migration is complete)? Portability
What needs to be done to move users from theold release to the new release, and data from the Moving on to the right side of the box, we might
old release to the new release, and fraiom t see a text such as the following: "Requirements:old release to the new release (migration Windows 95 or 98, Intel Pentium 133MHZ or
planning)? greater with a minimum of 24MB, a Sound
Although forward compatibility is widely Blaster compatible sound card and SVGA
practised, and backward compatibility is graphics capability configured for at least
practised andsiblethackw compatibiite ir 800X600 resolution." A number of questions
sometimes possible, the ability to configure for might typically come to mind:
automatic backward compatibility is rarely a Will this software be applicable to my other
foreseen. These last considerations can however y
be especially important in situations where

19-5

and/or other operating systems? Or will I at JVM, implemented across various hardware and
least be able find the equivalent software operating system platforms, allows the same
available for the other operating systems? "100% Java" byte codes to be executed in the

"* Will this work with the new operating same way regardless of the instruction set and
system version (NT 4.0, Windows 2000, services of the underlying physical machine and
etc.) that I am planning on installing (or that operating system. The principle is: "Write once,
I will be forced to install for some other run everywhere". Though there is a certain
reason)? overhead associated with this additional level of

"* Will it interoperate with my other systems, abstraction, techniques such as Java compilers
or with the systems in other organisations and Just-in-time Java compilation now allow
that I need to deal with? performance-critical processes to achieve results

"* How scalable is the package? Can it take that reasonably approach the performance of
advantage of additional memory, additional native instruction-set execution for equivalent
processors, additional machines or more functions. Java-based applications that
powerful machines, in order to accomplish correspond to user performance expectations are
more work? increasingly becoming available, and this trend

can be expected to continue
Portability has to do with flexibility across
technologies and over time. Whereas in the Portability is also affected by the architectural
considerations concerning release compatibility approach followed by the solution. Functions
we were considering constant platforms and that risk being dependent on specific platforms
varying software, here we are considering can be separated from the other functions, and
constant software and varying platforms. accessed via a protocol that allows the function

to be located elsewhere, in order to make the
We are looking to be able to deploy a overall functions accessible from a wider range
COTS-based solution widely and to keep it of platforms. This is essentially acknowledging
viable over a number of years, eventually in a that portability is most important across the
number of different organisations that need to machines that have the greatest number of
work together. In order to accomplish that , we instances installed, while an organisation can
need to accommodate changes in technology and afford to have a limited number of servers for
possible changes in hardware and operating which portability is not considered an issue
system vendor strategy. The rhythm of change of (typically, which have specific characteristics of
hardware and operating system technology availability, performance, security, or other
continues "relentlessly" as well! It is therefore criteria).
desirable for the software to have a high level of
abstraction from the hardware and operating In terms of the communications protocols used
system level. between the dissociated functional layers, we

can speak of synchronous protocols (requiring
Packages and components that we can both sender and receiver to be active and
characterise in this way generally are designed to accessible - e.g. as in the use of a TCP
run on multiple platforms today. The greater the socket-to-socket protocol) and asynchronous
number of platforms supported, the greater the protocols (allowing processing to go on with
effective openness of the software. guaranteed delivery at a later time, when the

receiving application is not active or accessible,
A major advance in portability has occurred e.g. as in MQSeries message queuing). Both of
recently with the advent of the Java Virtual these types of communication are available on a
Machine (JVM) and the standards that have wide variety of platforms.
been defined in the area of application
development based on the Java language. The

19-6

The various approaches to separation of function, and therefore can be used very
functional elements can be characterised in terms productively. An example of such high-level
of architectural tiers. Although there are function is that provided by such a specification
different approaches to counting the number of as Enterprise Java Beans (EJB). In addition to
tiers involved, the following should be generally the support for the Java language and Object
recognisable to everyone, at least in theoretical Request Broker for connection to the function of
terms. It is presented here in an order that other (eventually remote) objects, the EJB
corresponds in general to an increasing order of container provides transactional functions (such
portability: as management of the unit of work and scope of
"* Monolithic applications recovery), session management functions (via
"* Two-tier client/server applications EJB Session Beans), persistent data store

(presentation function located in the client, functions (via EJB Entity Beans) and access
communicating to business logic in an control functions.
application server with integrated data store)

"* Three-tier client/server applications We can distinguish multiple levels of openness in
(presentation function located in the client, the area of programming interfaces. We can find:
communicating to business logic in an * Undocumented/unofficial interfaces (true
application server, communicating in turn to "proprietary interfaces")
a data store server) ° Official interfaces with limited programming

"* Four-tier client/server applications function (e.g. "wizards")
(simplified presentation function located in * Official interfaces in a proprietary
the client ("light client" = browser), some programming language (e.g. Oracle PL/SQL
presentation logic located in the web server, script)
business logic in an application server, ° Official interfaces in a non-proprietary
communicating in turn to a data store server) programming language (e.g. the use of

COBOL, C or Java)
Separation of the function into additional tiers
increases their independence. It makes it easier The usefulness of the limited-function interfaces
to "live with", and integrate to, those isolated is also conditioned by which middleware they

elements in the overall solution that are the most foresee. Sometimes a small door can open onto

difficult to change and that may have the a very large playing field! Take, for instance, a

greatest need for stability and the least communications interface to SMTP, to EDI, or

portability, to MQSeries. Or take an SQL API, allowing the
relational database to serve as an integration
point to other processes, which might run

Programming interfaces asynchronously, or synchronously through
On the back of the box, we often find some triggers or through stored procedures.
information about the interfaces supported -
though perhaps not nearly in the detail needed in The web browser, with its capability of being in
order to put them into practice! In order to fact a client to multiple servers at the same time,
extend a package or integrate it into a larger even on the same web page, and with its
context, programming is often necessary. How programming capability, also provides an
easy - or difficult- will that be with the package integration point for applications, provided of
at hand? course that the application foresees using a web

browser interface.
Often this is a question of experience, and
Internet sites for developers and user forums can For server-type implementations, additional
provide interesting insights sometimes. But there technical analysis of the limitations of the
are certain interfaces that provide very high-level interfaces can also be important. Such items as

19-7

their support of caching, buffer handling, Management interfaces
threading and connection pooling can have an And now for the side that everyone forgets to
important impact on their scalability.. look at. Until there are problems, that is!

Security interfaces Typically we are going to be rolling out COTS

On the left side of the box, it would be nice to software to large numbers of users, perhaps in

see something about how the package handles various distributed locations, and then we are

security and access control. Does it provide and going to have to maintain an inventory of who

use its own system? Does it build on the facilities has what level, detect problems that might

of the operating system? occur, manage the application of maintenance,
perform backups, provide for recovery, maybe

Even the most mundane applications (for provide remote debugging or remote assistance,
instance - a word processor!) may have to operate, monitor performance and availability,
handle personal, restricted or confidential etc..
information. Issues such as user identification,
authentication, access control, encryption and How do we manage the cost of doing that?

non-repudiation must be addressed. At times,
the operating system can be counted on to The Management and Monitoring Interfaces

deliver these functions (when, for instance, it is a provided by software applications can in theory

question of providing access control for support multiple objectives in the organisation,

information located on the machine). At other including failure detection, deployment tracking

times, certain aspects need to be handled on an for initial roll-out or maintenance, detection of

application level (for instance for data that needs misuse, assembling and tracking performance

to be transported, that needs to be digitally data, remote operations, assistance or

signed, that needs additional granularity of debugging, etc. But there must also be some

access within a given file, etc.). coherence in the interfaces provided across the
various applications in order for this to be viable.

The interfaces available within a COTS package
can determine whether these aspects will require
(or even allow) specific development, whether it COTS software will generally lack these

will work with existing infrastructure (such as capabilities to manage themselves. What is more

smart cards, readers, digital certificates, important is that they interface to some central

directories, existing definitions of users, groups management and monitoring facility that does

and roles, encryption algorithms, etc.) or have these capabilities. Here is an area where the

whether a separate infrastructure will need to be Programming APIs can come to the rescue.

set up and maintained. They can allow alerts to be implemented
relatively easily, based on some reusable

One approach taken in this area is that of standard functions. An example of this are the

providing a standardised interface to an external Java classes (functions) provided to send alerts
"pluggable security module", which can provide to the Tivoli Enterprise Management facilities.

cryptographic services of various sorts. This is
the CDSA model, originated by Intel, and used Conclusion
in various recent IBM products today. It is also By considering these various facets of openness,
the model being used by Lotus to separate the By ciderts varo use of Op S
grade of security provided in a particular IT architects can improve the use of COTS
environment from the actual standard function of components in complex Information Technology
the underlying messaging product, projects. It took some time for software

19-8

companies to embrace the open movement.
Today, with companies increasingly responsive
to customer needs, and new technologies
addressing a broader range of interfaces, we are
ready to move forward to a more
comprehensive definition of openness, and, as
shown by a few of the examples from IBM
related in this paper, we can expect that the
companies providing Commercial Off-The-Shelf
software will be prepared to respond.

