
UNCLASSIFIED

Defense Teclhnical Information Center
Compilation Part Notice

ADPO10671
TITLE: Detection of Malicious Code in COTS
Software via Certifying Compilers

DISTRIBUTION: Approved for public release, distribution unlimited

this paper is part of the following report:

TITLE: Commercial Off-the-Shelf Products in
Defence Applications "The Ruthless Pursuit of
COTS" [l'Utilisation des produits vendus sur
tageres dans les applications militaires de

defense "l'Exploitation sans merci des produits
commerciaux"]

To order the complete compilation report, use: ADA389447

rhe component part is provided here to allow users access to individually authored sections

f proceedings, annals, symposia, ect. However, the component should be considered within

he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

ADPO10659 dim AfASSiIED

13-I

Detection of Malicious Code in COTS Software via Certifying
Compilers

Robert Charpentier and Martin Salois
{Robert.Charpentier@drev.dnd.ca, Martin.Salois@drev.dnd.ca}

Defence Research Establishment Valcartier
2459 Pie XI Blvd. North

Val Bdlair, Quebec, Canada
G3M IX5

April 2000

Abstract Exploiting COTS software through integration poses a
distinct dilemma. On one hand, COTS software is very

Information technology is more and more a vitally impor- attractive; its use promises to reduce development time
tant underpinning to our economy and to our society. It is and costs. On the other hand, it introduces new risks into
embedded in everyday applications and animates a wide military information systems: hidden functionalities, trap
class of systems that range from small to large and from doors, private control codes giving enhanced privileges,
simple to extremely sophisticated. Among the probable logical or temporal bombs [6], etc.
threats for military information systems, the presence of A feasibility study completed in 1998 indicates that a
malicious code within COTS applications has been identi- variety of software analysis techniques can be applied to
fled as a major risk that has not received a lot of attention. the management of the risk associated with COTS soft-
Like a virus that has infiltrated an information system dur- ware in military information systems. Among them, the
ing an electronic information exchange, malicious code exploitation of certifying compilers appears to be a very
integrated into a commercial application could remain un- powerful technology for the efficient yet exhaustive verifi-
detected andpresent a major riskfor the safety of informa- cation of software with minimal human supervision. This
tion within a military system. In this paper, techniques to paper summarises the lessons learned in the MaliCOTS
detect malicious code within commercial applications are project, carried out jointly by DREV and Laval Univer-
reviewed. Emphasis Is placed upon the certifying corn- sity. The proposed strategy will, after successful imple-
piler which enforces a formal security specification while mentation, ensure the safe integration of previously un-
compiling the source code. This emerging technology of- trusted software in military information systems via certi-
fers the most comprehensive and sustainable approach.for fying compilers.
large applications and for the periodic certification of up-
grades.

2 Malicious Code

1 Introduction Malicious codes are fragments of programs that can af-
fect the confidentiality, the integrity, the data and control

The Defence Research Establishment, Valcartier (DREV) flow, and the functionality of a system without the ex-
carries out an extensive R&D program in Command and plicit knowledge and consent of the user. We distinguish
Control Information Systems (CCIS) for the Canadian De- between intentionally malicious and unintentionally mali-
partment of National Defence (DND). During the Infor- cious code. Malicious individuals who, for example, use
mation Warfare Workshop held in Ottawa in Oct. '96, such programs to access confidential data generally intro.
several R&D challenges were identified and presented to duce the first. The second is due to inadvertent human
DND and industry representatives £17]. Trusted software error, especially during development of the software.
design and validation was one of the areas where addi- To detect malicious code in COTS software, one must
tional effort was deemed necessary to meet DND needs, be able to distinguish between its types. Starting from the
Of particular concern was the integration of Commercial- taxonomy proposed by McDermott & Choi [12], a new
Off-The-Shelf (COTS) software into military information taxonomy has been defined that is specifically intended to
systems. facilitate the detection of malicious code in COTS soft-

Paper presented at the RTO IST Symposium on "Commercial Off-the-Shelf Products in Defence Applications
"The Ruthless Pursuit of COTS" ", held in Brussels, Belgium, 3-5 April 2000, and published in RTO MP.4&

13-2

SHeurist ic-based Analysis

icAnays i , Flow-based Analysisi Heuristic-based Analysis

Monitoring

Da Testing
Dynamic Analy Injecting Faults

Wrapping

L [Formal Verification
Certification while compiling Proof-Carrying Code

Typed Assembly Language

Figure 1: Potential techniques to detect malicious code in COTS software

ware [3]. plexity.
One of the key concepts of the MaliCOTS project is al- Reference [4) contains a comparative analysis of these

ways to refer to a security policy to distinguish an accept- techniques. In summary, ad hoc techniques consist of code
able activity from a potential threat. It reflects the fact that inspection in search of a known malicious signature or its
software functionalities can nevcr be considered malicious generalisation (often called a heuristic). This approach
in and of themselves; even reformatting a disk or destroy- has bccn very successful in detecting viruses within ex-
ing a file are useful operations in certain circumstances; changed files, but its effectiveness in detecting malicious
that is why such capabilities were devised and made avail- code in large software applications is limited since a priori
able to system users. But in many operational contexts knowledge is needed (i.e., either signature or behaviour
these functions should not be made available to end-users profiles).
because of the associated risks. The most rigorous way to Static analysis of code comes from the world of pro-
enforce such a policy is to formalise these constraints ex- gram optimisation and software analysis. It consists of
plicitly in a security specification based upon permissible examining the code (perhaps in some abstract representa-
access mechanisms. This strategy is documented in more tion) without running it. At present, static analysis is es-
detail in this paper. sential to COTS certification because it gives a relatively

In practice, threat that system analysts are typically precise idea of program bchaviour for all possible execu-
concerned with are: tion conditions. However, the technique is limited in capa-

* the presence of' trapdoors in COTS packages (as bility, especially when source code is not available, which
f th n presenie oWitrdoos NOT S e [, is typically the case for COTS. The process requires enor-
found in Unix, Windows NT & '98 [6, 9]), mous human effort for very large applications [5].

" license expiration logic [16], Dynamic techniques examine the behaviour of the
code while it is running. Such analysis is a pragmatic

" hidden communications (e.g., a CD player software approach that offers short-term benefits. Many variants
that is reported to send 'your listening preferences' are available: monitoring execution, running an exhaus-
to a distributor periodically [15]), and tive suite of tests, injecting faults in critical variables or

* other undesirable functionalities such as those wrapping the commercial code into a software shell that

present in the flight simulator in Excel '97 and the detects and filters out unwanted activities. Another paper

Word '97 pinball machine [1, 2]. presented in this conference deals with dynamic detection
and provides supplementary information [18].

The next section summarises the feasibility study, Each of these techniques has its place and offers short-
completed in fall 1998, into ways to detect such malicious term solutions to the detection of malicious code in COTS
code. software. However, they are all reactive, in the sense that

they evaluate the COTS package after development, when
detection is made more difficult by the lack of access to

Technology Options to Detect Ma- some code.
licious Code in COTS Software Being unsatisfied with this situation, we have searched

for a truly innovative approach to COTS integration
Figure I identifies a variety of techniques applicable to the that will overcome existing difficulties with the non-
MaliCOTS project, in order of increasing level of com- availability of source code, with time-consuming manual

13-3

Security Specifications

i0
Iq

i 2Certifying

inspection or software and with difficulty in ensuring the a verifier (or a verifying linker) that enforces a formally
completeness of verification, expressed security specification. By doing so, the final ex-

Certifying compilers have emerged as an extremely ecutable application can be assembled safely and sealed
powerful technology to manage the risk associated with with a security tag before integration into a critical infor-
COTS integration. The basic idea is to put enough "intel- mation system.
ligence" into the compiler that it will not only produce the This is a very flexible approach. Not only can the an-
executable code but also pertorm formal security verifica- notations be produced rapidly and independently of the fi-
tion. As shown in Figure 2, thc compiler needs two inputs: nal integration but also different local security policies can
the source code and the security policy. The compiler then be enforced in different parts of an organisation on a single
translates the source code into the appropriate intermiedi- annotated component. Another great advantage of this ap-
ate language (e.g., assembly, byte code, etc.) along with proach is that there is no need for the software integrator to
embedded security annotations. have access to the source code. The only requirement for

The next section describes the concept and gives a the software producer is to adopt an annotation structure
practical fcel of its capabilities in our particular context, that the integrator can recognise and verify for correctness.

This key feature protects the intellectual property of soft-
ware producers.

4 Certifying Compilers; Concept & The second step of the process (verification) starts with

Practice a comparison of the annotations with the object code. Any
anomalies in the compliance of the code with the anno-

4.1 Concept tations can easily be flagged for further investigation. In
other wards, if the code is modified after it was annotated,

As in human health, prevention is certainly the best cure. or if the annotations are changed without any code modifi-
So it is worthwhile from a security standpoint to elaborate cation, the verifier will rapidly detect it. The only compo-
methodologies that guarantee that COTS software prod- nent that one must trust in this system is the verifier itself;
ucts are free of any malicious code from the start. In order there is no need for trustworthiness in the code producer,
to do that, we propose the inclusion of intelligence in the the annotating compiler or the transmission channel up to
compiler to allow enforcement of a security specification the verifier. This is a vcry important feature for security
while compiling, architects, who may deal with the trustworthiness of only

Figure 3 illustrates the most general scheme to pro- one component, the verifier.
duce trusted software while compiling. The first step con-
sists of compiling the source code and introducing static 4.2 Annotation Structumes
annotations in the object file (i.e., byte code for JAVA, as-
sembly language or other intermediate language). It is a So far we have not described the content and the struc-
rather simple and mechanical process to introduce the an- ture of the annotations the compiler produces. Many op-
notations. Secondly, the annotated code is submitted to tions exist, each with its advantages and disadvantages, In

13-4

Security
Specifications CIC21

00
UAnnotating Annttos

cj

t Unsafe nfore
S w.r.t policy

Figure 3: Certifying compiler - generalized concept

the MaliCOTS projects, we examined three possibilities high-level security requirements. At this time, TAL can
closely: handle:

* PCC (Proof Carrying Code), developed under the * control flow safety (i.e., programs cannot jump to
leadership of Peter Lee and George Necula at CMU code that was not verified and stack preservation is
(Carnegie Mellon) and at Berkeley University; enforced),

" ECC (Efficient Code Certification), led by Dexter * memory safety (i.e., access to initialiscd memory lo-
Kozen from Cornell; and cations and array bounds checking) and

" TA (Tyed ssemly anguge),desgnedby type safety (i.e., the compatibility of types in opera-

Greg Morissett at Cornell University. tions).

Complementary annotations in the "ECC style" will
PCC is a technique to ensure the safe execution of un- be considered later in the MaliCOTS project if they are

trusted mobile code. When code is transferred between needed.
a client and a producer, the producer must append to the In summary, type annotations are static approxima-
code a formal proof that it is consistent with some shared tions of the behaviour of the program. Essentially, they
security policy. The client can easily check the proof by correspond to typing preconditions on code labels. Before
using a simple and easy-to-trust proof checker. PCC is a transferring control to any label, the register, stack and
very comprehensive and secure approach [14]. relevant variables must contain values of the types spec-

ECC was designed to be a much lighter solution to ified. The type-checker matches each instruction operand
code certification. The annotations contain structured in- against these constraints to ensure that they do not violate
formation that qualifies the safety of the code, It was de- safety properties.
signed for efficiency and performance, sacrificing some of
the rigour of other approaches [10]. 4.3 Example

TAL proposes to introduce "type"-typing information-
into the code. Basically, software types are static descrip- To illustrate the concept of annotations, we will now
torts of logical entities (e.g., variables, constants, character examine a simple program written in C (Code Excerpt I)
strings...) and of how they are used in the code. These and compile it to assembly language with annotations
annotations are light and informative and can easily be (TALx86 code) as shown in Code Excerpt 2, whcre an-
produced and managed within a comprehensive security notations appear in bold. An expression such as "eax: B4"
policy [13]. indicates that the register "eax" must contain four bytes if

TAL was selected as the technology of choice for the the following instruction is to be executed. Inference rules
detection of malicious code in COTS software. Type an. are used to verify formally that all conditions are met be-
notations provide an automatic way to verify that a pro. fore the activation of a given operand (e.g., an arithmetic
grain will not violate safety properties and, potentially, operation or a call procedure like those shown in Figure 4).

13-5

Code Excerpt 1: Sample C code
#define TABLEAU 100
unsigned int premiersTABLEAU;

lnt estPremier(Int nombre, int compte{
Jnt i = 0;
int iPremier = 1; //sans preuve du contraire, c'est un nombre premier

for (i - 0; i < compte; i++)

if (nombre % premiersi 0

iPremier - 0;
break;

return iPremier;I

(ArithBin) e op: B4 e op2: B4 e - ValidBinops(op,op2) c Writeable(op)
a - arithbin opl,op2 :c

(Call) 6 I- cop: {g } e - gi(eSp) = sptr{g2 :: C) E I- E.y[esp: sptrfg2 :: (e.(ep))}] _ g1
6 - call cop 6[: 92]

Figure 4: Two inference rules enforcing annotation checking in TAL

As part ofthe MaliCOTS project, we are developing an the certification of COTS packages. The MaliCOTS team
ANSI C compiler that will produce assembly language for values them greatly and attempts to integrate them into a
x86 processors along with the corresponding TAL anno- common framework.
tations. Our compiler is based on LCC (Lean retargetable However, it is evident that more efficient and less time-
C Compiler); a public-domain compiler that is well docu- consuming techniques are needed to handle COTS soft-
mented and for which source code is available (7]. A beta ware, especially when pcriodic upgrades must be certified
version of our TaICC compiler is available for government and when security policies must be met that vary signifi-
release, to allow a broader community to become familiar cantly throughout an organisation.
with the annotation technology. More information can be
obtained from the authors of this paper. Certifying compiler is a powerful enabling technol-

For next year, we are planning the development of a ogy to meet this challenge. By formally specifying lo-
JAVA annotating compiler that exploits the same anna- cal security policies and by annotating an intermediate
tation structure as TaICC. It will probably be based on form of the code, the whole process is brought under con-
JIKES, an IBM shareware compiler that is part of Linux trol. Marginally acceptable functionalities and suspicious
packages. Emerging commercial products will also be code segments may require later manual inspection, but
considered ([II]). the software core can be certified autonomously by the

verifier.
This approach is also general enough to contribute

5 Discussion & Conclusion to other kinds of certification, including interoperability
compliance, reuse policy, maintainability specifications,

In view of budget reductions and decreasing human re- etc., which are not examined by the MaliCOTS team at
sources, integration of COTS software appears to be the this time. Once these additional policies are expressed
only sustainable approach for Canadian DND [8]. At formally, simply passing the verifier over the annotated
the present time, system analysts have only such labour- code would enforce them. Even though they arc simple
intensive techniques as static and dynamic verification to and compact, type annotations are very expressive. Our
certify COTS software. It is expected that these techniques R&D on the detection of malicious code confirm that they
will remain useful (and mandatory, in many instances) for have a strong potential for structuring and normalising the

13-6

integration of COTS software into critical systems. [10] D. Kozen. Efficient Code Certification (ECC).
The expected benefits of certifying compilation are ex- Technical Report TR98-1661, Cornell University,

tensive and far-reaching. We hope that this paper will Jan. 1998.
create enough interest in the technology that international
collaboration can be organised to explore this ambitious [11] P. Lee and G. C. Necula. Cedilla systems inc.
certification paradigm more fully. http: //www. cedil lasys temis .corn/.

[12] J. P. McDermott and W. S. Choi. Taxonomy of
Computer Program Security Flaws. ACM

References Computing Surveys, 26(3):211-254, Sept. 1994.

[1] T. E. E. Archive. Excel 97 Flight to Credits. http: [13] G. Morrisett, K. Crary, N. Glew, D. Grossman,
//www.eeggs. com/i tems/718 .html. R. Samuels, F. Smith, D. Walker, S. Wcirich, and

S. Zdancewic. TALx86: A Realistic Typed
[2] T. E. E. Archive. Pinball in Word 97. http: Assembly Language. In ACM SIGPLAN Workshop

//www. eeggs. com/items/763 .html. on Compiler Support for System Software, May
1999.

[3] J. Bergeron, M. Debbabi, J. Desharnais, B. Ktari,
M. Salois, and N. Tawbi. Skeleton of a Taxonomy [14] G. C. Necula. Proof-Carrying Code. In Proceedings
for Malicious Code. Technical report, DREV, Nov. of the 24th ACM Symposium on Principles of
1998. Programming Languages, pages 1-14, Paris,

France, Jan. 1997. http: //www. ca. cniu. edu/
[4] J. Bergeron, M. Debbabi, J. Desharnais, B. Ktari, -necula/pop197.ps.gz.

M. Salois, N. Tawbi, R. Charpentier, and M. Patry.
Detection of Malicious Code in COTS Software: a [15] NTSecurity.net. Leap of Faith Now Required for
Short Survey. In First International Software Real Networks?
Assurance Certification Conference (ISACC'99), http://www.ntsecurity. net/forums/
Washington D.C., Mar. 1999. Section Cl. 2cents/news. asp? IDF=173&TB=news,

Nov. 1999.
[5] J. Bergeron, M. Debbabi, M. M. Erhioui, and [16] Quarterdeck. Aids Information Kit Trojan.

B. Ktari. Static Analysis of Binary Code to Isolate h16]wQuarterdeck.onKTr a
Malicious Behaviors. In 4 th International http://www. quarterdeck., com/quarc
Workshop on Enterprise Security, Stanford
University, California, USA, June 1999. IEEE [17] R. Roy, editor. Strategic Investment Workshop
Computer Society Press. Proceedings. CRAD, Oct. 1996. Canadian Eyes

[6] J. T. Egan. Information Security Threats toOnly.

Software Development. In Software Technology [18] M. Salois and R. Charpentier. Dynamic Detection of
Conference, USA, Apr. 1997. Malicious Code in COTS Sofware. In Commercial

Off-The-Shelf Products in Defence Applications
[7] C. Fraser and D. Hanson. A Retargetable C "The Ruthless Pursuit of COTS", Neuilly-sur-Seine

Compiler: Design and Implementation. Cedex, France, Apr. 2000. NATO, RTO.
Addison-Wesley, 1995. ISBN 0-8053-1670-I,
q. http://www.cs.princeton. edu/
software/lcc/. 6 Acknowledgments

[8] C. M. Hanrahan. Changing the Culture (COTS vs. The authors wish to thank the MaliCOTS collaborators
Development). In COTS Software Seminar, Ottawa, who contribute to this ambitious research effort Cur-
Feb. 1998. rently, 12 Laval University graduate students and 4 pro-

fessors are involved. Special thanks must be addressed to
[9) G. Hoglund. A *REAL* NT Rootkit, Patching the Dr Mourad Debbabi, who has led this team with compe-

NT Kernel. Phrack Magazine, 9(55), Sept. 1999. tence and dedication.

M37

Code Excerpt 2: Corresponding assembly language with annotations in TAL
estPremier:

LADELTYPE <All[s1: Ts, ni: Sint 1.4 ESP: sptrIS(O)l (f ESP: sptrS(O)J 34::34::sl ,
£3?: sptriS(nI)J si , EAX: B4 D)AX::34::B4::s1 , EB?; sptrlS(nI) 1)1>

push ebx
push esi
push edi
enter 8,0
L8:
LABELTYPE < AIII 51: Ts, nI: Sint 1.4 ESP: sptr[S(O)I B4AU::4 A u::E4 Ax=114 AX::B4 AX:: B4 Ax::

({ ESP: sptr[S(O)J B4::B4::sl , EP: sptrlS(nI)I i1 , EAX: B4))AX::B4::B4::sl , ED?:
sptrlS(-B)l B4 Au::B4Au::B4 AX:B4AX:D4 AX :B4AX: :((ESP: sptrjS(@)j B4::34::sl , ED?:
sptrIS(nI)1 sl , EAX: 34))A x::B4::B4::sl) >

may dword ptr (-4) [ebpl ,0
may dword ptr (-9) [ebp] ,1
may dword ptr (-4) Eebpl .0
jmp tapp(L5, < 61, n1 >
L2:
LABELTYPE < Ali si: Ts, ni: Sint 1.4 ESP: sptr[S(0)I B4Ar::B4m..w::B4Ax::B4 AX:: B4 Ax=114 A

({ES?: sptrIS(O)I B4::B4::sl , EB?: sptrlS(nl)j si , EAX: B4))AX::B4::B4::sl , El?:
sptrlS(-R)j D4'rw::B4 Arw::B4x::34 AX::B4A x::B4 AX:(I ESP: sptrS(O)j B4::B4::sl , EBP:
sptrlS(nI)1 si , EAX: B4))AX::B4::B4::sI }>

mov edi,dword ptr (20) tebp]
may eax,edi
may edi,dword ptr (-4) (ebpl
may edi,dword ptr (_premiers) [edi*4]
xar edx,edc
div edi
cmp edx,0
irie tapp(L6, < sI, n1 >
L9:
LABIELTYPE < Alit sl: Ts, ni: Slat 1.1 ESP: sptrS(O)l B4 Arw::B4 Arw:B4 AX::B4 AX: :B4Ax::B4'x::

(I ESP: sptrS(O)1 B4::B4::sI , EBP: sptrlS(nl)l sl , EAX: B4)AX: :B4::B4::sI , EBP:
sptr[S(48)j B4 A r::B4 Arw:B4 AX::4 AX:B4AX: :14AX::(I ESP: sptrS(O)I B4::B4::sl , EB?:
sptrtS(nI)J si , EAX: B4))Ax::B4::B4::sl I}>

mov dword ptr (-9) [ebp] ,o
imp tapp(L4, c si, ml. >
LG:
LAJELTYPE < A111 si: Ts, nI: Slnt 1.4 ESP: sptr[S(O)J B4 Arw::D4 AFw::B4AX::34 AX::B4AX::B4 AX::

((ESP: sptrlS(O)1 B4:4,:sl, ,EB: sptrlS(nIlj s1 , EAX: 34))A x::B4::34::sl , ED?:
sptr[S(-S)] B4 A r::4A.w::4x::B4 AX::B4 AX::4 A x::((ESP: sptrlS(O)I 34::84::sl , 13?:
sptrIS(nl)j si , EAX: B4 I)AX::84::B4::s) >

LABELTYPE < Alit si: Ts, al: Slnt 1.4(ES?: sptrIS(O)i B4Arw::B4 AM:: B4 A::B4 AX::B4AX::84 AX::
(I(ESP: sptrS(O)j B4::B4:.:sl , EBP: sptr[S(nI)l ii , EAX B4))AX::34::B4::sl , EB?:
sptrS(4)1 84 Arw::B4 Arw::B4 AX: -.4 AX::B4 A ::B4x::((ES?: sptrIS(O)1 B4:;84;::l , 13?:
sptr[S(nl)j sl , EAX: B4))AX::B4::B4::sI) >

inc dword ptr (-4) Eebp]
LS:
LABELTYPE < AM11 sl: Tz, nI: Sint 1.4 ESP: sptr[S(B)J B4Ar:B M:4A::4A:B X:4A:

(I ESP: sptrjS(O)l 34: :B4::xl , EBP: sptrlS(m1)j s1 , EAX: B4))A x::D4::34::sI , EDP:
sptlS(S)IB4rw:D4A::DAx:D4x.: 4A.:B4 :(ESP: aptrS(O)i B4:B4::a , B?:

sptrIS(al)] sl , EAX:. 34))AX.:B4-::34::s1)>

mov edi,dword ptr (24) (ebp]
cmp dword ptr (-4) (ebpj ,edi
J1 tapp(L2, < al, ni >

