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TARGET DETECTION USING SALIENCY-BASED ATTENTION

Laurent Itti and Christof Koch
Computation and Neural Systems Program

California Institute of Technology
Mail-Code 139-74 - Pasadena, CA 91125 - U.S.A.
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Much evidence has accumulated in favor of a two-component
1. SUMMARY framework for the control of where in a visual scene attention

Most models of visual search, whether involving overt eye is focused to [1,2,3,4]: A bottom-up, fast, primitive mecha-

movements or covert shifts of attention, are based on the con- nism that biases the observer towards selecting stimuli based
cept of a "saliency map", that is, an explicit two-dimensional on their "saliency" (most likely encoded in terms of center-cept surround mechanisms) and a second slower, top-down mecha-
map that encodes the saliency or conspicuity of objects in the nism wit v slc on cti whic directs te"so-

visual environment. Competition among neurons in this map

gives rise to a single winning location that corresponds to the light of attention" under cognitive, volitional control.

next attended target. Inhibiting this location automatically Koch and Ullman [5] introduced the idea of a saliency map to
allows the system to attend to the next most salient location, accomplish preattentive selection (see also the concept of a
We describe a detailed computer implementation of such a "master map" in [6]). This is an explicit two-dimensional map
scheme, focusing on the problem of combining information that encodes the saliency of objects in the visual environment.
across modalities, here orientation, intensity and color infor- Competition among neurons in this map gives rise to a single
mation, in a purely stimulus-driven manner. We have success- winning location that corresponds to the most salient object,
fully applied this model to a wide range of target detection which constitutes the next target. If this location is subse-
tasks, using synthetic and natural stimuli. Performance has quently inhibited, the system automatically shifts to the next
however remained difficult to objectively evaluate on natural most salient location, endowing the search process with inter-
scenes, because no objective reference was available for com- nal dynamics.
parison. We here present predicted search times for our model We here describe a computer implementation of a preattentive
on the Search2 database of rural scenes containing a military selection mechanism based on the architecture of the primate
vehicle. Overall, we found a poor correlation between human visual system. We address the thorny problem of how infor-
and model search times. Further analysis however revealed mation from different modalities - in the case treated here
that in 3/4 of the images, the model appeared to detect the from 42 maps encoding intensity, orientation and color in a
target faster than humans (for comparison, we calibrated the center-surround fashion at a number of spatial scales - can be
model's arbitrary internal time frame such that no more than 2- combined into a single saliency map. Our algorithm qualita-
4 image locations were visited per second). It hence seems tively reproduces human performance on a number of classical
that this model, which had originally been designed not to find search experiments.
small, hidden military vehicles, but rather to find the few most
obviously conspicuous objects in an image, performed as an Vision algorithms frequently fail when confronted with realis-
efficient target detector on the Search2 dataset. tic, cluttered images. We therefore studied the performance of

our search algorithm using high-resolution (6144x4096 pixels)
Keywords: Visual attention, saliency, preattentive, inhibi- photographs containing images of military vehicles in a com-
tion of return, model, winner-take-all, bottom-up, natural plex rural background (Search2 dataset). Our algorithm
scene. shows, on average, superior performance compared to human

observers searching for the same targets, although our system
does not yet include any top-down task-dependent tuning.

2. INTRODUCTION
3. THE MODEL

Biological visual systems are faced with, on the one hand, the

need to process massive amounts of incoming information The model has been presented in more details in [8] and is
(estimated at around 10^8 bits per second in the optic nerve of only briefly described here (Fig. 1).
humans), and on the other hand, the requirement for nearly Input is provided in the form of digitized color images. Dif-
real-time capacity of reaction. ferent spatial scales are created using Gaussian pyramids [7],

Surprisingly, instead of employing a purely parallel image which consist of progressively low-pass filtering and subsam-
analysis approach, primate vision systems appear to employ a pling the input image. Pyramids have a depth of 9 scales,
serial computational strategy when inspecting complex visual providing horizontal and vertical image reduction factors
scenes. Particular locations are selected based on their be- ranging from 1:1 (scale 0; the original input image) to 1:256
havioral relevance or on local image cues. The identification (scale 8) in consecutive powers of two. Each feature is com-
of objects and the analysis of their spatial relationship usually puted by center-surround operations akin to visual receptive
involve either rapid, saccadic eye movements to bring the fields, implemented as differences between a fine and a coarse
fovea onto the object, or covert shifts of attention. It conse- scale: the center of the receptive field corresponds to a pixel at
quently appears that the incredibly difficult problem of full- scale c={2, 3, 4} in the pyramid, and the surround to the cor-
field image analysis and scene understanding is taken on by responding pixel at scale s=c+d, with d={3, 4), yielding six
biological visual systems through a temporal serialization into feature maps for each type of feature. The differences between
smaller, localized analysis tasks. two images at different scales are obtained by oversampling

Paper presented at the RTO SCI Workshop on "Search and Target Acquisition ", held in Utrecht,
The Netherlands, 21-23 June 1999, and published in RTO MP-45.
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the image at the coarser scale to the resolution of the image at 3.2.1. f'usion of itqfortation
the finer scale. One difficulty in combining different feature maps is that they

Input imageeJ represent a priori not comparable modalities, with different
dynamic ranges an(d extraction mechanisms. Also, because a
total of 42 maps arc combined, salient objects appearing
strongly in only a feNw maps risk to be masked by noise or less

/. I •salient objects present in a larger number of maps.

Prcviousl,. we have shown that the simplest feature combina-
tion scheme - to normalize each feature map to a fixed dy-

namic range. and then sum all maps -yields very poor detec-
Center-surround differences and normalisation tion performance for salient targets in complex natural scenes

It +. I• [9]. One possible wray to improve performance is to learn in-
Feature maps ear map combination weights, by providing the system with

examples of targets to be detected. While performance im-
I I roves greatly, this method presents the disadvantage ofS-Conspicuity •- maps •- ~1--. yielding different specialized models (that is. sets of map

weights) for each target detection task studicd [9].
Linear combinations AWhen no top-down supervision is available, we propose a

Saliency map simple normalization scheme. consisting of globally promot-
1 Inhibition of Return ing those feature maps in which a small number of strong

peaks of activity (conspicuous locations) is present, while
globally suppressing feature maps which contain comparable

Central Representation peak responses at numerous locations over the visual scene.

This "within-feature competitive" scheme coarsely ressembles
non-classical inhibitony interactions which have been observed

Figure 1: General architecture of the model. Low-level vis- electrophysiologically[ 10].
ual features are extracted in parallel from nine spatial scales.
using a biological center-surround architecture. The result- The specific implementation of these interactions in our model
ing 42 feature maps are combined to yield three conspicuity has been described elsewhere [91 and can be summarized as
maps for color, intensity and orientation. These, in turn, feed follows (Fig. 2): Fach feature map is first normalized to a
into a single saliency map, consisting of a 21) layer of ite- fixed dynamic range (between 0 and I), in order to eliminate
grate-and-fire neurons. A neural winner-take-all network feature-dependent amplitude differences due to different fea-
shifts the focus of attention to the cur.rently most salient im- ture extraction mechanisms. Each feature map is then itera-
age location. Feedback inhibition then transiently suppresses tively convolved by a large 2-I) Derivative-of-Gaussians
the currently attended location, causing the focus of atten- (DoG) filter. The [)oG filter, a section of which is shown in
tion to shift to the next most salient image location. Fig. 2. yields strong local excitation at each visual location,

which is countcractcd by broad inhibition from neighboring
locations. At each iteration, a given feature map receives input
from the preattentive feature extraction stages described
above, to which results of the convohltion by the DoG are

3.1. Extraction of early visual features added. All negative values are thcn rectified to zero, thus
making the iterative process highly non-linear. This procedure

With r, g and b being the red, green and blue channels of the is repeated for 10 iterations.
input image, an intensity image I is obtained as l=(r+g+b)/3.
From I is created a Gaussian pyramid l(s). where s={0..8} is
the scale. The r, g and b channels are normalized by I, at the
locations where the intensity is at least 10% of its maxinm,u
in order to decorrclate hue from intensity. Four broadly tuned teature -7"(7>

color channels are created: R~r-(g+b)/2 for red. G=g-(r+b)/2 extraction ',
for green, B=b-(r-+g)/2 for blue. and Y=(r+g)/2-1r-gj/2-b for
yellow (negative values are set to zero). Four Gaussian pyra- rectification
mids R(s), G(s), 13(s) and Y(s) are created from these color
channels. From 1, four orientation-selective pyramids are also
created using Gabor filtering at 0, 45, 90 and 135 degrees. 1o saliency map DoG filtering

Differences between a "center" fine scale c and a "surround" Figure 2: Illustration of the spatial competition for salience
coarser scale s yield six feature maps for each of intensity implemented within each of the 42 fCeature maps. FBach map
contrast, red-green double opponency, blue-yellow double receives input from the linear filtering and center-surround
opponency, and the four orientations. A total of 42 feature stages. At each step of the process. the convolution of the
maps is thus created, using six pairs of center-surround scales map by a large Diffcrence-of-Gaussians (DoG) kernel is
in seven types of features. added to the current contents of the map. This additional in-

put coarsely models short-range excitatory processes and
long-range inhibitory interactions between neighboring vis-
pual locations. The map is hal f-wNave rectified, such that

The task of the saliency map is to compute a scalar quantity negative values are eliminated, hence making the iterative
representing the salience at every location in the visual field, process non-linear. Ten iterations of the process are carried
and to guide the subsequent selection of attended locations, out before the output of each feature map is used in building
'Thie feature maps provide the input to the saliency map. which the saliency map.
is modeled as a neural network receiving its input at scale 4.
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The choice of the number of iterations is somewhat arbitrary: After normalization, the feature maps for intensity, color, and
In the limit of an infinite number of iterations, any non-empty orientation are summed across scales into three separate "con-
map will converge towards a single peak, hence constituting spicuity maps", one for intensity, one for color and one for
only a poor representation of the scene. With very few itera- orientation (Fig. 1).
tions however, spatial competition is very weak and ineffi- Each conspicuity map is then subjected to another 10 itera-
cient. Two examples showing the time evolution of this proc- tions of the iterative normalization process. The motivation for
ess are shown in Fig. 3, and illustrate that using of the order of the creation of three separate channels and their individual
10 iterations yields adequate distinction between the two ex- normalization is the hypothesis that similar features compete
ample images shown. As expected, feature maps with initially strongly for salience, while different modalities contribute
numerous peaks of similar amplitude are suppressed by the independently to the saliency map. Although we are not aware
interactions, while maps with one or a few initially stronger of any supporting experimental evidence for this hypothesis,
peaks become enhanced. It is interesting to note that this this additional step has the computational advantage of further
within-feature spatial competition scheme resembles a "win- enforcing that only a spatially sparse distribution of strong
ner-take-all" network with localized inhibitory spread, which activity peaks is present within each visual feature, before
allows for a sparse distribution of winners across the visual combination of all three features into the scalar saliency map.
scene.

3.2.2. Internal Dynamics And Trajectory Generation

By definition, at any given time, the maximum of the saliency
map's neural activity is at the most salient image location, to
which the focus of attention (FOA) should be directed. This
maximum is detected by a winner-take-all (WTA) network
inspired from biological architectures [5]. The WTA is a 2D
layer of integrate-and-fire neurons with a much faster time

Iteration 2 Iteration 4 constant than those in the saliency map, and with strong global

Iteration 0 inhibition reliably activated by any neuron in the layer. In
order to create dynamical shifts of the FOA, rather than per-
manently attending to the initially most salient location, it is
necessary to transiently inhibit, in the saliency map, a spatial
neighborhood of the currently attended location. This also
prevents the FOA from immediately coming back to a strong,
previously attended location. Such an "inhibition of return"
mechanism has been demonstrated in humans [11]. Therefore,
when a winner is detected by the WTA network, it triggers

Iteration 6 Iteration 8 Iteration 10 Iteration 12 three mechanisms (Fig. 4):

1) The FOA is shifted so that its center is at the location of the
winner neuron;

2) The global inhibition of the WTA is triggered and com-
pletely inhibits (resets) all WTA neurons;

3) Inhibitory conductances are transiently activated in the
saliency map, in an area corresponding to the size and new
location of the FOA. In order to slightly bias the model to next
j*ump to salient locations spatially close to the currently at-

Iteration 2 Iteration 4 tended location, small excitatory conductances are also tran-
Iteration 0 siently activated in a near surround of the FOA in the saliency

map ("proximity preference" rule proposed by Koch and Ull-
man [5]).

Since we do not model any top-down mechanism, the FOA is
simply represented by a disk whose radius is fixed to one
twelvth of the smaller of the input image width or height. The
time constants, conductances, and firing thresholds of the
simulated neurons are chosen so that the FOA jumps from one

Iteration 6 Iteration 8 Iteration 10 Iteration 12 salient location to the next in approximately 30-70ms (simu-
lated time), and so that an attended area is inhibited for ap-

Figure 3: Example of operation of the long-range iterative proximately 500-900ms, as it has been observed psychophysi-
competition for salience. When one (or a few) locations cally [11]. The difference in the relative magnitude of these
elicit stronger responses, they inhibit more the other loca- delays proved sufficient to ensure thorough scanning of the
tions than they are inhibited by these locations; the net result image by the FOA and prevent cycling through a limited
after a few iterations is an enhancement of the initially number of locations.
stronger location(s), and a suppression of the weaker loca-
tions. When no location is clearly stronger, all locations Fig. 4 demonstrates the interacting time courses of two neu-
send and receive approximately the same amount of inhibi- rons in the saliency map and the WTA network, for a very
tion; the net result in this case is that all locations progres- simple stimulus consisting of one weaker and one stronger
sively become inhibited, and the map is globally suppressed. pixels in an otherwise empty map.
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attended b local variations iii illumination. shadows and reflections, largeIocation L' a, b , a ,b a b
numbers of "obiects" often partially occluded, and strong tex-
tures. Most of these images can be interactively examined on

a 5 mV i['-/the World-\Vide-\Vcb, at:
SM" lhttp://www.klah.caltcch.edu/- iti/attentionl

0_ __ A Overall. the results indicate that the system scans the image in

aan order which makes fInctional sense in most behavioral
situations.

It should be noted however that it is not straiglhtforward to
establish objective criteria for the performance of the system
with such images. I Jnfortunately. nearly all quantitative psy-

0 v choplvsical data on attentional control are based on synthetic
stimuli. In addition, although tlie scan paths of overt attention

(1): (2) (3) (4) (5) (6) (7) (eve movements) have been extensively studied [12], it is
_ _unclear to what extent the precise trajectories followed by theb 5mV " " ; ; i'b , ,mVI', attentional spotlight are similar to the motion of covert atten-

s0 I tion. Most probably, the requirements and limitations (e.g.,
-,spatial and temporal rcsolutions) of the two systems are re-

""lated but not identical [13].

WTA ',Although our model is mostl\ concerned with shifts of covert
attention. and ignores all of the mechanistic details of eye

01 iimovements, we attempt below a quantitative comparison be-
twecn humnan and model target search times in complex nattu-

-20 mVv ,• ral scenes, using the Search2 database of images containing
0 200 400 600 800 1000 military vehicles hidden in a rural environment.

time (ms)

Figure 4: Dynamical evolution of the potential of some 4.2. Search2 results
simulated neurons in the saliency map (SM) and in the win-
ner-take-all (WTA) networks. The input contains one salient We propose a diflicult test of the model using the Search2
location (a), and another input of half the saliency (b): the dataset. in which tarcet detection is evaluated using a database
potentials of the corresponding ncurons in the SM and WTA of complex natural images, each containing a military vehicle

are shown as a function of time. I)uring period (I). the pc- (the "target"). Contrary to our previous study with a simpli-

tential of both SM neurons (a) and (b) increases as a result fted version of the model [8]. which used low-resolution iri-

of the input. The potential in the WTA neurons, which re- age databases Nvith relatively large targets (typically about

ceive inputs from the corresponding SM neurons but have I/I 0th the width of the visual scene). this study uses very-high

tiiuch faster time constants, increases faster. The WTA neu- resolution images (6144x4096 pixels). in which targets appear

rons evolve independently of each other as long as they are very small (typically 1/100th the width of the image). In addi-

not firing. At about 80ms, WTA neuron (a) reaches thresh- tion. in the present study. search time is compared between the

old and fires. A cascade of events followvs: First, the focus of iodel's predictions and the average measured search tiOies
attention is shifted to (a): second. bothi WTA neurons are re- from 62 normal humian observers [141.

set; third, inhibition-of-return (JOR) is triggered, and iriliib-
its SM neuron (a) with a strength proportional to that neu- 4.2.1. l-,erioectal sctu/
ron's potential (i.e., more salient locations receive more The 44 original photographs \eere taken during a IISSTAF
1OR, so that all attended locations will recover from IOR inib toraptise taken (hirih a T Ac
approximately the same time). In period (2). the potential of (Distributed Interactive Simlation. Search and Target Acqui-

sition Fidelity) field test in Fort I hinter ILiggett. California.
WTA neuron (a) rises at a rmnch slower rate. because SM and were provided to us. along w\ith all human data, by theneuron (a) is strongly inhibited by TOR. \VTA neuron (b)
hence reaches threshold first. (3)-(7): In this example with '[NO I leuiian Factors Research Institute i.9 the Netherlands

only two active locations, the system alternatively attends to I
scene contained one of nine possible military vehicles, at a

(a) and (b). Note how the IOR decays over time, allowing distance ranging froii 860 to 5822 eniters from the observer.
for each location to be attended several times. Also note s
how the amount of IOR is proportional to the SM potential Each slide was digitized at 6144x4096 pixels resoluiion. Sixtytwo human observers aced between 1 8 and 45 yecars and \,vitli
when IOR is triggered (e.g.. SM neuron (a) receives more to uanbsresgdbtwn19nd4),rsndihwhenIORis rigered(e~., IX]neuon C) rceies ore Visual acuity better than 1.25 arcminin-I participated to the
IOR at the end of period (I) than at the end of period (3)). visual abett han12arcmin ici pated to the
Finally, note how the SM neurons (1o not have an o experiment (about half vere women anidh half men).
nit), to reach threshold (at 20 mV) and to fire (their thresh- Subjects were first presented with 3 close-tip views of each of
old is ignored in the model). Since our input iiiages are the 9 possible target vehicles, followed by a test run of 10
noisy, we did not explicitly incorporate noise into the neu- trials. A Latin square design 1141 was then used for the ran-
rons' dynamiics. doriized presentation ofthe imnages. The slides were projected

such that they subtended 65x46 cdeg visual angle to the ob-
4. RESULTS servers (corresponding to a linear magnifiication by about a

factor 10 compared to the original scenery). During each trial,
observers pressed a button as soon as they had detected the

4.1. General performance target. and subsequently indicated at which location on a10xl0 projected grid they' had 1`0.11d the target. Furlither details
We tested our model on a wide variety of real iniages, ranging J
from natural outdoor scenes to artistic paintings. All images on these experinents can be tound in I141.

were in color, contained significant amounts of noise, strong
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The model was presented with each image at full resolution. 4.2.4. Comparison to spatialfrequency content models
Contrary to the human experiment, no close-ups or test trials In our previous studies with this model, we have shown that
were presented to the model. The generic form of the model the within-feature long-range interactions are one of the key
described above was used, without any specific parameter aspects of the model. In order to illustrate this point, we can
adjustment for this experiment. Simulations for up to 10,000 compute a simple measure of local spatial fequency content
Ms. of simulated time (about 200-400 attentional shifts) were (SFC) at each location in the input image, and compare this
done on a Digital Equipment Alpha 500 workstation. With (sure t ealien map.
these high-resolution images, the model comprised about 300 measure to our saliency map.
million simulated neurons. Each image was processed in about It could indeed be argued that the preattentive, massively par-
15 minutes with a peak memory usage of 484 megabytes (for allel feature extraction stages in our model constitute a simple
comparison, a 640x480 scene was typically processed in 10 set of spatially and chromatically bandpass filters. A possibly
seconds, and processing time approximately scaled linearly much simpler measure of "saliency" could hence be based on a
with the number of pixels). The focus of attention (FOA) was more direct measure of power or of amplitude in different
represented by a disk of radius 340 pixels (Figs. 5, 6, 7). Full spatial and chromatic frequency bands. Such simpler measure
coverage of the image by the FOA would hence require 123 has been supported by human studies, in which local spatial
shifts (with overlap); a random search would thus be expected frequency content (measured by Haar wavelet transform) was
to find the target after 61.5 shifts on average. The target was higher at the points of fixations during free viewing than on
considered detected when the focus of attention intersected a average, over the entire visual scene (see [8] for details).
binary mask representing the outline of the target, which was We illustrate in Fig. 9, with one representative example image,
provided with the images. Three examples of scenes and that our measure of saliency actually differs greatly from a
model trajectories are presented in Figs. 5, 6, and 7. In the one simple measure of SFC. The SFC was computed as shown
image, the target was immediately found by the model, in previously [8], by taking the average amplitude of non-
another, a serial search was necessary before the target could negligible FFT coefficients computed for the luminance chan-
be found, and in the last, the model failed to find the target. nel as well as the red, green, blue and yellow channels.

While the SFC measure shows strong responses at numerous
4.2.2. Simulation results locations, e.g., at all locations with sharp edges, the saliency

The model immediately found the target (first attended loca- map contains a much sparser representation of the scene,
tion) in seven of the 44 images. It quickly found the target where only locally unique such regions are preserved.
(fewer than 20 shifts) in another 23 images. It found the target
after more than 20 shifts in II images, and failed to find the
target in 3 images. Overall, the model consequently performed 5. DISCUSSION
surprisingly well, with a number of attentional shifts far below
the expected 61.5 shifts of a random search in all but 6 im- We have demonstrated that a relatively simple processing
ages. In these 6 images, the target was extremely small (and scheme, based on some of the key organizational principles
hence not conspicuous at all), and the model cycled through a of pre-attentive early visual cortical architectures (center-
number of more salient locations, surround receptive fields, non-classical within-feature inhibi-

tion, multiple maps) in conjunction with a single saliency map
4.2.3. Tentative comparison to human data performs remarkably well at detecting salient targets in clut-

tered natural and artificial scenes.
The following analysis was performed to generate the plot
presented in Fig. 8: First, a few outlier images were discarded, Key properties of our model, in particular its usage of inhibi-
when either the model did not find the target within 2000ms of of-return dite elcit coding of s n independent
simulated time (about 40-80 shifts; 6 images), or when half or of feature dimensions, as well as its behavior on some classi-
more of the humans failed to find the target (3 images), for a cal search tasks, are in good qualitative agreement with the
total of 8 discarded images. An average of 40ms per model human psychophysical literature.
shift was then derived from the simulations, and an average of Using reasonable scaling of model to human time, we found
3 overt shifts per second was assumed for humans, hence al- that the model appeared to find the target faster than humans
lowing us to scale the model's simulated time to real time. An in 75% of the 36 images studied. One paradoxical explanation
additional 1.5 second was then added to the model time to for this superior performance might be that top-down influ-
account for human motor response time. With such calibra- ences play a significant role in the deployment of attention in
tion, the fastest reaction times for both model and humans natural scenes. Top-down cues in humans might indeed bias
were approximately 2 seconds, and the slowest approximately the attentional shifts, according to the progressively con-
15 seconds, for the 36 images analyzed. structed mental representation of the entire scene, in inappro-

The results plotted in Fig. 8 overall show a poor correlation priate ways. Our model lacks any high-level knowledge of the
between human and model search times. Surprisingly how- world and operates in a purely bottom-up manner.
ever, the model appeared to find the target faster than humans This does suggest that for certain (possibly limited) scenarios,
in 3/4 of the images (points below the diagonal), despite the such high-level knowledge might interfere with optimal per-
rather conservative scaling factors used to compare model to formance. For instance, human observers are frequently
human time. In order to make the model faster than humans in tempted to follow roads or other structures, or may con-
no more than half of the images, one would have to assume sciously decide to thoroughly examine the surroundings of
that humans shifted their gaze not faster than twice per second, salient buildings that have popped-out, while the vehicle might
which seems unrealistically slow under the circumstances of a be in the middle of a field or in a forest.
speeded search task on a stationary, non-masked scene. Even Although our model was not originally designed to detect
if eye movements were that slow, most probably would hu- military vehicles, our results also suggest that these vehicles
mans still shift covert attention at a much faster rate between where fairly "salient", according to the measure of saliency
two overt fixations. implemented in the model. This is also surprising, since one

would expect such vehicles to be designed not to be salient.
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Figure 6: A more difficult example of image from the Search2 dataset (image 0019). Top: original image; humans found the target
in 12.3 sec on average. Bottom: model prediction; because of its low contrast to the background, the target had lower saliency than
several other ob.jects in the image, such as buildings. The model hence initiated a serial search and found the target as the I0 h at-
tended location, after 4.9 sec (using the same time scaling as in the previous figure).
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FigUre 7: Fxarnple of image from the Search2 dataset (image 0024) in which the model did not find thle target. lop: original ini-
age; humnans found the target in 8.0 sec on average. B~ottom: model prediction thle model failed to find the target, whose location is
indicated by the whitc arrow. Inspection of the fcaturc maps rev ealed that the target yielded responses in the different Feature di-
mensions which are very similar to other parts of the image (foliage and trees). 'Fhe target was hence not considered salient at all.
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Figure 8. Mean reaction time to detect the target for 62 hu-
man observers and for our deterministic algorithm. Eight of

the 44 original images are not included, in which either the
model or the humans failed to reliably find the target. For
the 36 images studied, and using the same scaling of model
time as in the previous two figures, the model was faster
than humans in 75% of the images. In order to bring this
performance down to 50% (equal performance for humans
and model), one would have to assume that no more than
two visual locations can be visited each second. Arrow (a)
indicates the "pop-out" example of Fig. 5, and arrow (b) the
more difficult example presented in Fig. 6.

Looking at the details of individual feature maps, we realized
that in most cases of quick detection of the target by the
model, the vehicle was salient due to a strong, spatially iso-
lated peak in the intensity or orientation channels. Such peak
usually corresponded to the location of a specular reflection of
sunlight onto the vehicle. Specular reflections were very rare
at other locations in the images, and hence were determined to
pop-out by the model. Because these reflections were often
associated with locally rich SFC, and because many other
locations also showed rich SFC, the SFC map could not detect
them as reliably. Because these regions were spatially unique
in one type of feature, they however popped-out for our
model. Our model would hence have shown much poorer
performance if the vehicles had not been so well polished. Figure 9: Comparison of SFC and saliency maps for image

0018 (shown in Fig. 5). Top: the SFC map shows strong re-
sponse at all locations which have "rich" local textures; that

6. CONCLUSION is almost everywhere in this image. Middle: The within-
In conclusion, our model yielded respectable results on the feature, spatial competition for salience however demon-
Search2 dataset, especially considering the fact that no par- strates efficient reduction of information by eliminating
ticular adjustment was made to the model's parameters in or- large areas of similar textures. Bottom: The maximum of
der to optimize its target detection performance. the saliency map (circle) is at the target, which appeared as a

very strong isolated object in a few intensity maps becauseOne important issue which needs to be addressed however is of the specular reflection on the vehicle. The maximum of
that of the poor correlation between model and human search the SFC map is at another location on the road.

times. We hypothesized in this study that top-down, volitional

attentional bias might actually have hurt humans with this
particular dataset, because trying to understand the scene and
to willfully follow its structure was of no help in finding the 7. ACKNOWLEDGMENTS
target. A verification of this hypothesis should be possible
once the scanpaths of human fixations during the search be-
come available for the Search2 dataset. the search2 dataset and all human data. This work was sup-

ported by NSF (Caltech ERC), HIMH, ONR and NATO.
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