COMPONENT PART NOTICE

THIS PAPER IS A COMPONENT PART OF THE FOLLOWING COMPILATION REPORT:

To order the complete compilation report, use AD-A256 113.

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, etc. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

AD#: AD-P008 306
AD#: AD-P008 592
AD#: AD-P008 794
AD#: AD-P008 900
AD#: AD-P008 272
The topochemical basis for morphiceptin and dermorphin bioactivity

Toshinasa Yamazaki, Seonggu Ro and Murray Goodman
Department of Chemistry, University of California San Diego.
La Jolla, CA 92093-0343, U.S.A.

Introduction

Morphiceptin (Tyr-Pro-Phe-Pro-NH₂) and dermorphin (Tyr-D-Ala-Phe-Pro-Gly-Tyr-Pro-Ser-NH₂) are highly μ-receptor selective peptide opioids. Since the biologically important Tyr and Phe are joined by a single amino acid, the second residue plays a significant role to orient these residues in the correct array necessary for bioactivity. These two classes of opioids exhibit opposite chiral requirements at residue 2. Incorporation of L-amino acids at position 2 of dermorphin results in a remarkable reduction in bioactivity. Morphiceptin requires an L-chirality for Pro. Because of Pro at position 2, morphiceptin exhibits cis and trans isomers about the Tyr-Pro amide bond (30:70) [1]. We incorporated 2-aminocyclopentanecarboxylic acid (2-Ac₅c) for Pro. Among the four stereoisomers, only the morphiceptin analog containing cis-(1S,2R)-2-Ac₅c shows bioactivity. Although the 2-Ac₅c analogs adopt a trans amide bond about Tyr-2-Ac₅c, the bioactive analog Tyr-(1S,2R)-2-Ac₅c-Phe-Pro-NH₂ is topologically similar to morphiceptin with the Tyr-Pro amide bond in a cis configuration [2].

To extend the work on conformation-bioactivity relationships for morphiceptin and dermorphin, we synthesized tetrapeptides incorporating (L and D)-(NMe)Ala and Ala in place of Pro of the active Tyr-Pro-Phe-Pro-NH₂. Accessible at conformational space for the second residues of Tyr-(L and D)-X-Phe-Pro-NH₂ [X = Ala, Pro, and L and D(NMe)Ala] and conformational preferences of various morphiceptin and dermorphin analogs, studied by ¹H NMR spectroscopy and molecular modeling, allowed us to develop specific topologies necessary for bioactivity of peptide opioids containing Phe at the third position.

Results and Discussion

The (NMe)Ala analog is potent, displaying the similar activity profile as the Pro analog. The analog Tyr-Ala-Phe-Pro-NH₂ is inactive. Upon N-methylation of Ala, Tyr-(NMe)Ala-Phe-Pro-NH₂ exhibits cis and trans forms about the amide bonds between residues 1 and 2 (29:71) similar to Tyr-Pro-Phe-Pro-NH₂ (28:72). The α-(NMe)Ala analog is also biologically active, displaying the same potency as the dermorphin analog Tyr-α-Ala-Phe-α-Pro-NH₂. The ratio
Neuropeptides

Table 1 Selected torsion angles (deg) for bioactive conformations of the morphiceptin and dermorphin analogs

<table>
<thead>
<tr>
<th>Analog</th>
<th>Tyr<sup>1</sup></th>
<th></th>
<th></th>
<th>Second residue</th>
<th></th>
<th></th>
<th></th>
<th>(L or D)-Phe<sup>3</sup></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϕ</td>
<td>χ<sub>1</sub></td>
<td>ω</td>
<td>ϕ</td>
<td>χ<sub>1</sub></td>
<td>ω</td>
<td>ϕ</td>
<td>χ<sub>1</sub></td>
<td>ω</td>
<td>ϕ</td>
</tr>
<tr>
<td>Tyr-Pro-Phe-d-Pro-NH<sub>2</sub></td>
<td>130</td>
<td>180</td>
<td>0</td>
<td>-75</td>
<td>130</td>
<td>180</td>
<td>-110</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr-Pro-Phe-d-Pro-NH<sub>2</sub></td>
<td>130</td>
<td>180</td>
<td>0</td>
<td>-75</td>
<td>40</td>
<td>180</td>
<td>100</td>
<td>180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr-(NMe)Ala-Phe-d-Pro-NH<sub>2</sub></td>
<td>130</td>
<td>180</td>
<td>0</td>
<td>-85</td>
<td>120</td>
<td>180</td>
<td>-90</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr-d-(NMe)Ala-Phe-d-Pro-NH<sub>2</sub></td>
<td>130</td>
<td>180</td>
<td>180</td>
<td>130</td>
<td>90</td>
<td>180</td>
<td>-140</td>
<td>180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

of 19:81 was observed for cis and trans configurational isomers about the amide bond between residues 1 and 2 in Tyr-d-(NMe)Ala-Phe-d-Pro-NH₂.

Accessible conformational space for the second residues of Tyr-(L and D)-X-Phe-d-Pro-NH₂ [X = Ala, Pro and (NMe)Ala] based on 1H NMR and molecular modeling shows that the (NMe)Ala₂ analog belongs to the morphiceptin opioids, whose high µ-receptor activities are attributed to conformations with the Tyr-X amide bond in a cis configuration. On the other hand, the µ-receptor activity of the d-(NMe)Ala₂ analog is attributed to conformations, in which the Tyr-d-(NMe)Ala amide bond adopts a trans configuration, and therefore belongs to the dermorphin opioids.

Structures of Tyr-(NMe)Ala-Phe-d-Pro-NH₂ and Tyr-d-(NMe)Ala-Phe-d-Pro-NH₂, considered to be closely related to bioactive forms at the µ-receptors, are shown in Figs. 1a and 1b, respectively. The relative spatial arrangements of the functional groups, i.e., the amine and phenolic groups of Tyr¹ and the aromatic ring of Phe³, are almost the same in both the structures. However, the conformations of the second residues in these structures are different from each other (Table 1). It is worthwhile mentioning that the bioactive conformations of the morphiceptin and dermorphin analogs estimated in this investigation are

![Fig. 1. Preferred conformations of (a) Tyr-(NMe)Ala-Phe-d-Pro-NH₂, (b) Tyr-d-(NMe)Ala-Phe-d-Pro-NH₂, and (c) Tyr-c([d-A₂bu-Gly]-b(Nal(l))-b-Leu¹)] at the µ-receptors.](image_url)
T. Yamazaki, S. Ro and M. Goodman

topologically similar to the \(\mu \)-receptor active conformation of the enkephalin analog with a \(\beta \)-naphthylalanine at position 4 (Fig. 1c) [3]. Topological similarity of the preferred conformations of the morphine, dermorphin, and enkephalin analogs at the \(\mu \)-receptors indicates that these three classes of peptide opioids may interact with the same \(\mu \)-receptors.

References