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Exploring Posterior Distributions Using Markov Chains

Luke Tierney*
School of Statistics

University of Minnesota
Minneapolis, MN 55455

Abstract samples methods for viewing point clouds, such as ro-
tating plots and Grand Tours, can be used to examine

Several Markov chain-based methods are available for the joint uncertainty about three or more components or
sampling from a posterior distribution. Two important features of 0.
examples are the Gibbs sampler and the Metropolis al- A number of different sampling methods are available.
gorithm. In addition, several strategies are available In rare cases it is possible to sample directly from the
for constructing hybrid algorithms. This paper outlines posterior distribution and thus obtain an i.i.d. sample
some of the strategies that are available, and discusses from 7r. In most problems this is not possible. Either
some theoretical and practical issues in the use of these the sample hds to wA dependent, or the distribution used
strategies. In addition, some preliminary efforts to use to generate the sample has to be different from 7r. A
Markov chains to control dynamic graphics for exploring method that uses independent samples from a distribu-
higher-dimensional posterior distributions are outlined. tion similar to 7r is importance sampling. The sample is

then weighted to make up for the difference between 7r

1 Introduction and the distribution used to generate the sample. Over
the past decade, most work on sampling methods for

Suppose we are given a posterior distribution 7r on a exploring posterior distributions has centered on impor-
quantity 0 with values in a space E. Usually E will be tance sampling (Geweke, 1989; Stewart, 1979; van Dijk

a subset of ]Rk and 7 will have a density with respect to et aL., 1978; Zellner and Rossi, 1984; among others). An
a measure y, alternative approach that avoids the need for weights is

7r(dx) = 7r(x)p(dx). to use a dependent sample, such as the sample path of
a Markov chain.

For simplicity, 7r will be used to denote both the distribu-
tion and the density. We may be interested in computing
a particular numerical characteristic of 7r, or more gener-
ally in developing an understanding of what information 2 Markov Chain Methods
,r contains about 0.

Several methods for computing characteristics of pos- Markov chain methods generate a sample path from
terior distributions are now available. These include a Markov chain that has 7r as its stationary distribu-
asymptotic approximations, numerical integration, and tion. Recent work of Gelfand and Smith (1990) on
sampling or Monte Carlo methods. Sampling meth- the Gibbs sampling algorithm has renewed interest in
ods for examining posterior distributions provide ways Markov chain methods for exploring posterior distribu-
of generating samples with the property that the em- tions. Gelfand and Smith extend the Gibbs sampling
pirical distribution of the sample, or an appropriately algorithm of Geman and Geman (1984), originally de-
weighted empirical distribution, approximate the poste- veloped for Bayesian image reconstruction, to continu-
rior distribution. Using such samples, it is easy to esti- ous distributions and show how the algorithm can be
mate characteristics such as the mean or standard devi- used in a wide variety of problems.
ation of a function of 0. Marginal distributions can be Markov chain methods have a long history in Mathe-
estimated using smoothing or, in some cases, variance matical physics dating back to the algorithm of Metropo-
reduction methods. In addition, for equally weighted lis et al. (1953). The Metropolis algorithm is in fact a

*Research supported in part by grant DMS-9005858 from the general class of algorithms that includes versions of the
National Science Foundation discrete Gibbs sampler as special cases.
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2.1 The Metropolis Algorithm 2.1.1 Random Walk Chains

Metropolis et al. (1953) originally proposed the al- For E = IRk and f a density on E, set Y = x + Z, with
gorithm now known as the Metropolis algorithm as a Z drawn independently from f. Then
method of sampling from the equilibrium distribution
of an interacting particle system. The algorithm, which q(x, y) = f(y - x).
is described in Hammersley and Handscomb (1964, Sec- Thus the kernel Q driving the Metrolopis chain is a ran-
tion 9.3) and Ripley (1987, Section 4.7), was extended by dom walk. Natural choices of f are normal, uniform, and
Hastings (1970) and explored further by Peskun (1973). dmrwal . a t disto n frewa, 1989)rmayTo dfin Hatins vesio ofthealgoith, lt Qbe t distributions. Split-i distributions (Geweke, 1989) may
a Markov transition kernel with also be useful. The scale matrix for f can be taken as aconstant c times the inverse information at the posterior

Q(x, dy) = q(z, y)p(dy). mode. Good choices for the step size constant c are still
an open problem, but c = 1 and c = 1/2 seem to work

Let E+ = {x : r(x) > 0}, and assume Q(x, E+) = 1 for reasonably well in a number of examples.
x 0 E + . Then define If f is symmetric about the origin, i.e. if f(z) =

f(-z), then q is symmetric and the simpler form of the
a(, ) min r(y)q(y, 1 acceptance probability ce(x, y) can be used.

for ir(x)q(x,y) > 0. Otherwise, a(x,y) = 1. If the 2.1.2 Independence Chains

Markov chain is currently at X, = x, then the algo- Suppose f is a density on E, and we generate candidates
rithm generates a candidate Y = y for the next state Y independently from the single density f. Then
from Q(x, .). With probability a(x, y) this candidate is
accepted and the chain moves to X,, 1 = y. Other- q(x,y) = f(y).
wise, the candidate is rejected and the chain remains at
X'+J = X. The chain of candidates driving this Metropolis chain is

Since an i.i.d. sequence from the density f. The acceptance
probability for an independence chain can be written as

7r(x)q(x, y)a(x, y) = 7r(y)q(y, x)a(y, x),

a(Xy)= min W 1}
a Metropolis chain with initial distribution 7r is re-
versible. Therefore r is an invariant distribution for the
chain. Some additional conditions on ir and Q are needed for w(x) = r(x)/f(x). The function w is the weight
to insure that r is also a limiting distribution; these con- function that would be used in importance samplingditonsaredisussd i Setio 3 elo. Sncetheaccp- when the sample is generated from the density I.
ditions are discussed in Section 3 below. Since the accep- There are a number of similarities between an indepen-
tance probability Only depends on r through the ratio dence chain and the corresponding importance sampling
7r(y)/r(x), the density r only needs to be specified up
to a constant of proportionality, process. While an independence chain does not require

If q(x, y) = q(y, x), i.e. q is symmetric, then the ac- explicit use of the weights, it will rarely accept candi-

probability a(x, y) simplifies to dates with low weights. On the other hand, a candidate
with high weight will almost always be accepted. Fur-

x m) r= min thermore, when the chain reaches a point x with high
a(, y) = i- 1) weight w(x), it will usually remain there for several it-

erations, thus building up weight on x within the sam-
This is the original form of the algorithm proposed by pIe path by repetition. Another similarity to importance
Metropolis et at. (1953). Other forms of the rejection sampling is that the sample sequence is closer to an i.i.d.
probability are possible, but the form given here can sequence from 7r the closer the weight function w is to a
be shown to be optimal within a wide class of possible constant.
alternative forms (Peskun, 1973). Because of these similarities to importance sampling,

The Metropolis algorithm is actually a class of algo- it is reasonable to conjecture that guidelines developed
rithms. Each different choice of the kernel Q for gen- for choosing importance sampling densities also apply
erating candidate steps produces a different version of to choosing densities for driving independence chains.
the algorithm. Several classes of kernels appear to be In particular, it is advisable to choose a density with
particularly useful for examining posterior distributions, thicker tails than 7r and thus a bounded weight function
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w. Families like the split-t that produce good irnpor- steps from an independence chain in a mixture or a cycle
tance sampling densities are likely to be good choices for to "restart" the Gibbs sampler and thus reduce correla-
independence chains. tions while preserving the equilibrium distribution. As

another example, suppose 0 can be split into two compo-

2.1.3 Rejection Sampling Chains nents (01,02), and direct sampling from 01 102 is possible
but direct sampling from 02101 is not possible. Such a

An interesting special case of an independence chain oc- situation is considered by Zeger and Karim (1991). Then
curs when the density f is sampled using rejection sam- "Gibbs steps" for 01102 can be combined with Metropolis
pling. In attempting to use rejection sampling to sample steps for 02101 in a mixture or a cycle.
directly from r, we use a density .h and a constant c such
that, hopefully, 7r(x) < ch(x). If we repeat the process of
sampling Z from h and then U uniformly from (0, ch(Z)], 3 Some Theoretical Results
until U < r(Z), then the final value of Z has density Whatever approach is used to produce a Markov chain

f(x) oc 7r(x) A ch(r). with invariant distribution 7r, before the chain can be
used with confidence to generate samples for examining

If we do indeed have ir(x) ch(x), then f is proportional 7r certain theoretical questions need to be addressed. An-
to 7r and we obtain an i.i.d. sample from 7r. But it is swers to some of these questions can be obtained using
very difficult to insure that c is large enough for ch to some recent developments in general state space Markov
dominate 7r without choosing c excessively large, leading chain theory as described, for exampie, in Nummelin
to an inefficient algorithm with many rejections. And (1984). This section outlines this approach. A more
even then without extensive analysis of the tails of h complete discussion is given in Tierney (1991).
and 7r we cannot be certain that ch does domiiate 7r.

Fortunately, using this rejection scheme to drive an in-
dependence Metropolis chain provides a simple remedy.
If we do have 7r(x) < ch(x) for all x, then the weight The first question to be addressed is whether the invari-
function tv is a constant, no candidates are rejected, and ant distribution 7r is also the equilibrium distribution for
the rejection process produces an i.i.d. sequence from 7r the chain, i.e. whether the distribution of the chain af-
that is simply passed through the Metropolis algorithm ter n iterations converges to 7r. In discrete state space
unchanged. But if ch does not dominate 71 for some x, Markov chain theory, two conditions are needed: irre-
then, when the chain reaches such an x, the Metropo- ducibility and aperiodicity. The same is true in general
lis algorithm will occasionally reject candidate steps in state space theory. Periodicity for general state spaces
order to build up mass on* this x to make up for the can be defined in much the same way as for discrete
deficiency in the envelope ch. This introduces some de- spaces. The concept of irreducibility is a little more com-
pendence, but insures that the equilibrium distribution plicated, since individual states are usually not hit with
of the sample path is 7r even if the envelope is deficient. positive probability. It is therefore necessary to speak of

irreducibility with respect to a measure. In the present

2.2 Combining Strategies context, a natural choice for this measure is 7r itself. We
will therefore say that a Markov chain is 7r-irreducible

The Gibbs sampler and the Metropolis algorithms de- if for every set A with 7r(A) > 0 the probability of the
scribed above provide a number of Markov chain strate- chain ever entering A is positive for every starting point
gies. In addition to choosing any one of these strategies x of the chain.
and using it in its pure form, it is possible to form hybrid Irreducibility and aperiodicity need to be verified for
strategies. each Markov chain. Some useful sufficient conditions are

Suppose P1,. P are Markov kernels with invari- available for certain Metropolis chains. For example, a
ant distribution 7r. Two simple ways of combining these random walk chain is 7r-irreducible and aperiodic if the
kernels is as a mixture or a cycle. In a mixture, proba- increment density is positive on a neighborhood of the
bilities al,. . .,a , are specified, and at each step one of origin and the density 7r is positive on all of IRk. An
the kernels is selected according to these probabilities, independence chain is r-irreducible and aperiodic if the
In a cycle, each kernel is used in turn, and when the last candidate generation density f is positive whenever the
one is used the cycle is restarted. density ir is positive.

Both strategies can be used in several ways. For ex- If a chain with invariant distribution 7-irrcducible and
ample, a Gibbs sampler can be combined with occasional aperiodic, then it can be shown that the chain must be
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positive recurrent and that for 7r-almost all x, then any mixture using P with positive probability is
uniformly ergodic. For cycles a slightly more compli-

Pn(x, .) - 7r(.) 11--* 0 cated condition appears to be needed: if P is used in
a cycle and there exists a probability v and a constant

where i denotes the total variation distance and at 6 > 0 such that v(A) < P(x, A) for all A and x, then the
is the distribution after n steps of the chain started at cycle is uniformly ergodic. This condition is satisfied if P

f tis an independence kernel with a bounded weight func-
If the chain is ofaaris recurrent, then this convergence tion. Combining such a kernel in a mixture or a cycle

occurs for all . The definition of tarris recurrence is with any other kernel, such as a Gibbs kernel, therefore
somewhat technical, but a simple sufficient condition is insures that the hybrid chain is uniformly ergodic. This
available that is satisfied by all ir-irreducible Metropolis provides theoretical support for using occasional inde-
chains and essentially all ir-irreducible Gibbs samplers, pendence "restart" steps together with a Gibbs sampler

A 7-irreducible aperiodic Markov chain with invari- to improve the properties of the sampler.

ant distribution 7r is called ergodic if it is aperiodic and

positive Harris recurrent.
3.3 Limiting Behavior of Averages

3.2 Rates of Convergence In Markov chain methods, sample path averages are used

Once we know that the distribution of a chain converges to estimate expectations under the distribution 7r. A law
to 7r, the next question is to determine the rate of conver- of large numbers and a central limit theorem insure that
gence. The theory presented in Nummelin (1984) pro- these estimttes converge at reasonable rates. The law
vides several classifications for rates of convergence of of large numbe:, follows from the ergodic theorem and
ergodic chains: needs no conditions other than existence of the expecta-

tion under 7r:

Degree 2: If a chain is ergodic of degree 2, then

n 11 Pn(x, .) - 7(.) 1-- 0 Law of Large Numbers. IfP is ergodic with invari-
ant distribution 7r, and rif I < o, then for any initial

for 7r-almost all x. distribution

Geometric: An ergodic chain is geometrically ergodic =1 f
if 1 Pn(z,) - r(.) 11< M(x)rn for some r < l and n =  Ef(Xi) - 7rf jf(x)T(dx)

some function M with f Mdr < oo.. i=1

Uniform: An ergodic chain is called uniformly ergodic almost surely.

if 11 P"(x, .)-7r(.) j< Mr' for some r < 1 and some
constant M. A central limit theorem does appear to require some

conditions on the rate of convergence of the chain:

Uniform ergodicity is the strongest of these forms of

convergence and it is the easiest form to work with. A Central Limit Theorem. If P is ergodzc of degree
necessary and sufficient condition for a chain with kernel 2 with 7rP = r, and f is bounded, then for any initial
P to be uniformly ergodic is that there exist a probabil- distribution the distribution of
ity v', a constant P > 0 and an integer n > 1 such that
v(A) < P"(x,A) for all A and x. Using this condition, it V/7(f, - 7rf)
is possible to derive a variety of sufficient conditions for
uviform ergodicity For example, if p(E) < co and the converges weakly to a normal distribution with mean zero
densities q and 7r are bounded and bounded away from and variance a2 (f).
zero, then the corresponding Metropolis kernel is uni-
formly ergodic. As another example, an independence Weaker but more complicated sufficient conditions are
Metropolis kernel is uniformly ergodic if the weight func- available. Expressions for the asymptotic variance a 2 (f)
tion w(x) is bounded. are available for finite E (Peskun, 1973; Kemeny and

This condition can also be used to derive coi litions Snell, 1976). Other expressions involving certain hitting
for uniform ergodicity of hybrid kernels in terms ( F con- times are available for general state spaces (Nummelin,
ditions on the component kernels. For mixtures tL, con- 1984). These expressions do not appear to be useful for
dition is particularly simple: if P is uniformly ergodic, computing the asymptotit variance.
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4 Using a Markov Chain correlation are usually much less serious than biases in
estimates of means.

Once a Markov chain strategy with satisfactory Lheoret-
ical properties has been selected, it can be used to es- 4.1.2 Determining the Run Length
timate numerical characteristics or to provide graphical
views of features of the posterior distribution. Another consideration is to determine the total sample

size or run length required for accurate estimates. For
an i.i.d. sample of si7e n, the standard deviation of the

4.1 Numerical Uses sample mean of a function f(O) is o/-/li, whj!re a* is the

Using Markov chains for calculating numerical character- posterior standard: deviation of f(0). If a ?reliminary
istics of a posterior distribution is in principle straight estimate of a is avilable, pcrhaps from an asymptotic

forward: expectations with respect to r can be approx- analycis, then tis ,:an be used to esti:nate the sample

imated by sample path averages. There are, however, size that would be required in i.i.d. sampling. In de-

a number of issues that need to bf. conbiJered before pendent sampling, observations are generally positively

running a chain, correlated and a larger simple size will be required. If the
series is modeled as a first order autoregressive process,

4.1.1 Choosing a Sampling Plan then the standard deviation of the sample mean is

The first issue concerns the choice of a sampling plan. 0- . + P

There are two txtreme approaches. Several authors have V' 1 - p

proposed that Markov chains should be used to generate where again a is the posterior standard deviation of f(0)
n independe'lt realizations from the posterior by using and p is the autocorrelation of the series f(X,,). A rough
n separate runs, each of length m, and retaining the fi- estimate of p can thus be used to adjust the sample size
nal states from each chain. The run length m is to be for dependence in the series.
chosen large enough to insure that the chain has reached Instead of determining a fixed sample size in advance,
equilibrium. An alternate approach is to use a single it is also possible to use sequential or batch sequential
long run, or perhaps a small number of long runs. Ex- rules for determining when to stop sampling. Since prior
perience and theoretical assessments in the simulation information on the values of the posterior mean and
literature appear to favor the uze of long runs (Bratley standard deviation is often available form initial anal-
et al., 1987, Section 3.1.1; Kelton and Law, 1984). The yses, Bayesian sequential methods are a natural choice.
major drawback of using short runs is that it is virtually Batching can be used to insure that an assumption of
impossible to tell when a run is long enough based on normality for batched means is reasonable.
such runs. Even using long runs, determining how much One sequential approach that should be avoided is to
of the initial series is affected by the starting state is very plot successive sample means and stop sampling when
difficult, but some literature on the subject is available the means appear to have converged. Since sample
(Ripley, 1987, Section 6.1). A second drawback of short means change by increments on the order of O(n- 1) but
runs is that it makes inefficient use of the data: only n errors are of order 0(n-1/2 ), this approach will produce
out of a total of nm data points are used. With a single sample sizes that are too small. The presence of positive
run of length nm it is possible to use all the data, after correlations in Markov chain series makes these series
possibly discarding a small initial fraction. appear to have converged even earlier, even though the

A complication that does arise from the dependence correlations imply that errors are larger and thus larger
in using a single series is that variances of estimates are sample sizes are required than with i.i.d. sampling.
hard r to assess. Again the simulation literature offers
several alternatives, such as the use of batch means and
time serW,_ tialysis (Bratley el al., 1987, Chapter 3; Rip-
Icy, 19k:, .apter 6). For some purposes it may never- Some consideration of numerical stability is needed in
theless be useful to have an approximate independent using any sampling based method. Expressions ,lsed to
sample from the posterior. Using long runs this can evaluate log posterior densities obtained by translating
be achieved by retaining every r-th point of a sample mathematical fo.rmulas into a computer language are of-
path. The number r of points to skip in order to pro- ten reasonably stable near the posterior mode but not
duce approximate independence can usually be chosen far away from the posterior mode. This can lead to over-
much smaller than the number m of steps needed to flows or, on IEEE hardware, results that are NAN's or
reach approximate equilibrium, since small amounts of INF's. One way to avoid these problems is to carefilly
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study tht formulas for evaluating the log posterior den- chain method is to use the sample path with importance
sity and modify them to be numerically stable even for weights to calculate estimates of normal approximations
extreme parameter values. The effort required to do this and to correct for the errors in these estimates.
can be considerable. An expedient alternative that is of-
ten effective is to truncate the parameter space to a rea- 4.1.5 Monitoring Sampler Performance
sonable range that contains essentially all the posterior
probability and for which the posterior density formula In using Markov chain methods, it is important to mon-
is numerically stable. This truncation also often insures itor the performance of the samplers to insure that they
that a Markov chain used to sample from r is unifoimly are not exhibiting any unusual behavior. Gelfand and
ergodic and thus improves the beha.mor of the Markov Smith (1990) propose the use of quantile plots to moni-
chain estimates. tor performance. Monitoring sample paths of estimates

The need to allow truncation is an important consider- is also useful for this purpose, as is monitoring autocor-
ation in developing software for implementing sampling relations of the parameters. Adaptive time series models
based methods. Subroutines must allow for user sup- may also be useful for determining whether a series ex-
plied range test functions or allow the results returned hibits any unusual features.
by the log posterior subroutine to indicate a parameter For Metropolis chains it is also important to keep track
that is outside of the range. of the the number of candidates that are rejected. For

A numerical issue that is unique to Markov chain an independence chain, the proportion of rejections can
methods is the possibility that rounding may introduce be related to the total variation distance between the
absorbing states. If tis happers, results obtained from a posterior density 7r and the candidate generation density
Markov chain method may be meaningless. Again trun- f.
cation away from areas of the state space where such By monitoring the performance of a sampler, in par-
rounding may occur can be helpful. ticular in the early stages, it is possible to experiment

with different setting for sampler parameters to obtain
4.1.4 Variance Reduction samplers that are efficient for a particular problem. More

work is needed to find good strategies for making such
As with any simulation method, variance reduction tech- parameter adjustments.
niques can often significantly reduce the sample sizes re-
quired for accurate estimates. Standard variance reduc-
tion methods such -is importance sampling, antithetic
variates, conditioning, and control variates (Bratley et Numerical summaries, such as posterior means, standard
al., 1987, Chapter 2; Ripley, 1987, Chapter 5) can be deviations, marginal densities, and correlations, provide
used with any Markov chain method, insight into the uncertainty about one or perhaps two

Importance sampling can be used as a variance reduc- features of 0 at a time. For understanding uncertainty
tion method by using a Markov chain with equilibrium in higher dimensions graphical methods may be more
distribution f instead of 7r and then weighting sample useful than numerical summaries.
results with appropriate importance weights. Condition-
ing is often useful in Gibbs samplers, since the assump- 4.2.1 Plotting Samples
tions required for the Gibbs sampler imply that condi-
tional means or densities of one parameter given the rest For three-dimensional quantities, one useful graphical
are usually avai!able. Gelfand and Smith (1990) refer to method available on microcomputers and workstations
this use of conditioning as Rao-Blackwellh,.ation. with bitmapped displays is a rotatable three-dimensional

Antithetic variation can be introduced into a Markov scatterplot. By selecting every r-th entry in a Markov
chain method by using a Metopolis step in which a can- chain sample path we can obtain an approximate i.i.d.
didate step is obtained by reflecting the current state of sample from the posterior distribution and display this
the chain through a point. If the postericr density is ap- sample in a rotatable scatterplot. Three-dimensional
proximately symmetric about this point, then the sam- structures will readily become apparent as the point
pIe will be also, and the resulting negative correlations cloud of the sample is rotated.
will reduce variances of estimates of linear functions of Rotatable scatterplots are only useful for examining
0. This technique can also be used to take advantage three dimensions at a time. A method that may be use-
of approximate axial symmetries in a posterior distribu- ful for higher dimensions is the Grand Tour. Again an
tion. approximate i.i.d. sample can be selected and displayed

One way to introduce control variates into a Markov in a Grand Tour. Implementations of the Grand Tour
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Figure 1: Posterior mean of a response function. Figure 2: A second response function supported by the
posterior distribution.

are only now becoming widely available, so extensive ex-
perienze with this method is not yet available. Early 0 for a particular example. This mean exhibits a number
results suggest that this method is reasonably effective of features, such as a pronounced global minimum and
for detecting structures in four to six dimensions. a secondary local minimum. Are these features really

present in 0 or are they merely artifacts of the poste-
4.2.2 Controlling Animations rior mean? One way to answer this question is to look

at other functions 0 that are supported by the posteriorIf 0 is more than five- or six-dimensional, then it may be distribution. This can be done by running an animation

difficult enough to understand 0 itself, much less uncer- that shows graphs of different values of 0.

tainty about 0. If a graphical view of 0 is available that

is meaningful for particular values of 0, then one way of To provide a good understanding of the posterior dis-
developing an understanding of the uncertainty about 0 tribution, an animation needs to visit all areas supported
is to look at an animated version of the graph in which by the posterior. In addition, to allow the user to keep
& is moved through a variety of values that are plausible track of the changes in 0 as it moves through the poste-
under the posterior distribution, rior distribution, the animation has to move smoothly.

As an example, suppose we have a smooth response These objectives can be achieved using a random walk-
function 0 of a real variable x in some interval I that is driven Metropolis chain with the posterior distribution
measured with error. Thus we obtain measurements of as its equilibrium distribution. Using the posterior as

the form the equilibrium insures that the chain does eventually
approach all possible values of 0 but spends most of itsY = 0(x) + e. time near values that are better supported by the pos-

Our prior opinion on the function 0 suggests that this terior distribution. The correlation in the random walk
function is smooth, but does not suggest any particular insures that the chain moves in small steps, thus provid-
parametric structure. ing the visual continuity that is necessary for an effective

Several approaches are available for specifying such a animation. Thus the correlations in the Metropolis chain
prior distribution. Most involve choosing a prior on co- that are a nuisanct for numerical computations are in
efficients in some represent&.mon, such as a power series fact an advantage for this graphical application. Conti-
or spline. The coefficients of these representations are nuity can be further enhanced by interpolating between
not likely to be particularly meaningful. But a plot of steps of the random walk.
the response function 0 over the interval I is readily un- Figure 2 shows another view of the animation. View-
derstood. Figure 1 shows a plot of the posterior mean of ing the animation for this particular example for a few
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minutes quickly reveals that the global minimum is quite Kemeny, J. G. and J. L. Snell (1976). Finite Markov
well defined but the shape of the left half of the curve is Chains. ',w York, NY: Springer.
very uncertain.

A useful enhancement for this animation is the bar Metropolis, N.,A.W. Tosenbluth, M.N. Rosenbluth,
shown at the left of the two plots. The solid part of the A.1l. Teller, and E. Teller (1963). Equations of
bar represents the probability content in the posterior state calculations by fast computing machines. J.

at or below the level of the current 0, computed using a Chemical Physics 21 1087-1091.

X2 approximation. This gives a quick indication of how Nummelin, E. (1984). General Irreducible Markov
plausible the current view is. Chains and Non-Negative Operators. Cambridge:

Many variations on this animation are possible. For Cambridge University Press.
example, using the posterior distribution as the equilib-
rium of the driving Markov chain is a reasonable starting Peskun, P. H. (1973). Optimum Monte-Carlo sampling
point but is not essential. At times it may be useful to using Markov chains. Biometrika 60 607-612.
force the chain to concentrate its motion closer to the
mode, or to move farther away from the mode and pos- Ripley, B. D. (1987). Stochastic Simulation. New York,
sibly find interesting features that are farther away. This NY: Wiley.

can be accomplished by using a Markov chain with an Stewart, L. T. (1979). Multiparameter univariate
equilibrium density that is a power of the posterior den- Bayesian inference. J. Amcr. Statist. Assoc. 74
sity - by "cooling" or "heating" the posterior distribu- 684-693.
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