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“UNIFORM GEONETRICAL THEORY OF DIFFRACTION

by
N  PJH, Pathak
“ The Ohio State imfversity ElectroScience Laboralory
' 1320 Kinnear Road
Columbus, Ohio 43212

Keller's geometrical theory of diffraction (GT9) represents a major breakthrough in solving a wide
variety of electromagnetic (EM) radiation and scattering problems at high frequencies. In particular, the
GTD s an extension of geometrical optics to fnclude a class of diffracted rays via a generalization of
Fermat's principle. These diffracted rays are initiated, for example, from geometrical and electrical
discontinuities fn a scatterer, or from points of grazing incidence on smooth convex parts of the
scattering surface. However, being a purely ray optical theory, the original GTD fails within the
transition regions adjacent to geometric optical shadow boundaries where the diffracted field generally
assumes its largest value. This limitation of the GTD is overcome via the uniform version of the GTD
(1.e., UTD) which requires the diffracted field to make the total high frequency field continuous across
the optical shadow boundarfes. The UTD solutiors for the diffraction by edges and smooth convex surfaces
are réviewed in detail after introducing the basic concepts of GTD. Results based on a few additfonal UTD
solutions are also presented together with 3 few selected applications of these UTD solutions to predict
the EM radiation and scattering from complex structures.

1. INTRODUCTION

An efficient analysis of the radiation and scattering of waves by objects which are large in terms of
the wavelength can be performed via high frequency techniques, One of the most versatile and useful high
frequency (HF) techniques 15 Keller's geometrical theory of diffractfon (GT0) [1,2,37 which was developed
fn the early 1950s, The GTD constitutes a significant extension of geometrica) optics (G0) in which a
class of dfffracted rays are introduced to exist in additfon to the usual rays of GO, These diffracted
rays are postulated via a generalization of Fermat's principle with the knowledge that at high trequencies
diffraction, like reflection, fs a highly local phenomenon. Just as reflected rays originate from points
of specular reflection on an illuminated surface, the diffracted rays likewise originate from certain
localized parts on the surface; e.g., from geometrical and electrical discontinuities, and from points of
grazing incidence on a smooth convex surface as shown in Figure 1.

The shadow boundaries divide the space surrounding an 11luminated hoay into a 1it region where the G0
incident, reflected and refracted rays are present, and into a shadow reglon where these G0 rays are
absent, Thus, the GO approach is serfously in error within the shadow region where it predicts a zero
field; this limitation of GO s overcome by the GTD since the diffracted rays penetrate into the GO shadow
zone to entirely account for the field therein. Furthermore, the diffracted rays can alsc enter into the
11t reglon and thereby provide an improvement to GO in the 1it region. The total GTD field is a
superposition of the field of all the GO incident, reflected and refracted rays together with the field of
all the diffracted rays which pass through the observation point. The initial values of the diffracted
ray fields are given in terms of the diffraction coefficients just as the initial amplitudes of the GO
reflected and refracted rays are given in terms of the reflaction and transmission coefficients,

r

Due to the local nature of diffraction at high frequencies, the diffraction coefficients can be found
from the appropriate seluttons to simpler canonical problems which mode! the geometrical and electrical
praperties in the neighborhood of the point of diffraction as 14 the original problem, Consequently, the
GTD provides an efficient high frequency solution to problems that cannot ve solved rigorously. Thus, a
GTD analysts of the radiation/scattering from complex shapes can be developed by simulating these
structures with simpler shapes that locally provide a sufficiently accurate description of the dominant
reflection and diffraction effects. The GTD can also he useful in providing information on ways to
control the radiation/scattering from different parts of the structure, It is interesting that even
though GTD is a high frequency method, it 15 often found to work for objects nearly as small as a
wavelength in size, Although GTD is not a rigorous method, it generally yields the leading terms in the
asymptotic high frequency solutions of diffraction problems.

Since the GTD is a purely ray optical thsory, it fails within the transition regions adjacent to the
GO shadow boundaries where the HF field generally undergoes a rapid transition across the shadow boundary
from one ray optical form in the 11t region to another ray optical form in the shadow regioa.
Consequently, the HF field departs from a strictly ray optical character within the GO shadaw boundary
transition regions, This fatlure of the original GTD can be overcome by uniform versions of the GTD such
as the UTD [4,57 and the UAT [6]. In the present development, the focus will be on the UTD, HRasically,
the UTD remains valid within the G0 shadow boundary transition regions where the ordinary GID fails, and
secondly, it reduces to the GID outside these transition regions where the latter is indeed valid,

The GTD an< 1ts uniform versions {JTD;UAT) fail within the regions of GO and diffracted ray caustics.
Ray caustics or focii occur whenever a family of rays (i.e,, ray cong uences} merge or intersect to form a
focal surface, or a focal line or a focal point, The field near diffracted ray caustics can be described
with the help of the equivalent current method (ECM) [7,8,91 in which the GTD indirectly provides the
strengths of these equivalent currents that radiate fields at and near the caustics., Away from ¢he
caustics, the ECM usually reduces tc the GID, The ECM can in general he used provided the 60 shadow
boundaries and caustics do not overlap, In the latter situation, ECM could in some cases still be used
but only after significant modification; alternatively, the physical theory of diffraction (PTD) can be
employed. The PTD was introduced by Lfimtsev [101 in the Soviet Union at about the sawe time as Keller's
GTD was introduced n the U.5, The PTD requires an integration of the asymptotic HF currsnts on the
radiating/scattering bedy. If the PTD integrals can he evaluated asymptotically outside the confluence of
GO shadow boundary ang caustic regions, then it generally reduces to the GTD, Howaver, in some special
instances, the GID can be made to work without resorting to ECM or PT) despite a presence of a confluence
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of caustic end GO shadow boundary transition regions. Away from the special regions where it may be
necessary to use ECM or PTD, it is natural to ‘employ the more efficient GTD/UTD which unlike the ECM and
PTD requires no integration [11].

These notes will deal mostly with the diffraction by perfectly-conducting surfaces in free space,
The GTD formulation is presented after briefly introducing the concept of wavefronts, rays
and GO in Section II, Next, the UTD is discussed and UTD expressions are given for the two main
diffractfon mechanisms; namely, for edge diffraction and diffraction at a smooth convex surface. Other
UTD solutions are not included due to space Timitations. Finally, a few examples {llsutrating the utilfty
of UTD to analyze radiation and scattering problems are given in Section III, An ejut time dependence is
assumed and suppressed in the following development.

I1. THE GTD AND ITS UNIFCRM VERSION -- THE UTD

The basic 1deas of wavefronts, rays and GO are briefly reviewed at firsv. Diffracted rays which
exist in addition to the GO rays are discussed subsequently.

A. Wavefronts and Rays

A wavefront s an equiphase surface., The connection between wavefronts and rays can be made in
several ways. One such procedure which is based on the method of stationary phase 1s gescribed below,
Let E(T') and W(r') refer to the electric and magnetic field intensities at any point 7' on an equiphase
(or wavefront) surface S. The electric field E(T) at a point P ahead of the wavefront is provided by the
equivalence theorem as:

- . Kl o . - . - e-JkR
E(F) = [f ds* ()[R x Rx I(F) + YR x M(F)] 5~ 1)

in which the equivalent electric and magnetic surface current sources Jg and Mg, respectively on § are
JG(F) = at ) 5 AR = EGFY) x o' (22.2b)

The quantity Z0 denotes the impedance of free space, and vn-(zo)‘l. Also, k represents the wave number of
free space. The vector R and the unit normal vector n' to the surface S at 7' are shown in Figure 2.

Consider a rectangular coordinate system chosen for convenience so that the x and y axes are tangent
to the wavefront at 0, and OP = 2[63] as in Figure 2, It 1s noted thut n'ez at 0, It is generally true

that there s at least one point 0 on S so that 0= ﬁ'lﬁ?l; however, for the present development it is
assumed that there 1s only one such point O, If there are more points on S with the above property such

that the 5‘ directions from those points intersect at P, then P is said to be a focal or caustic point.

From the principle of stationary phase as described for example by Sflver [12], the e'JkR within the
integrand of (13 oscillates rapidly for large k to produce a cancellation (destructive interference)
between each of the spherical wave contributions to P which arise from the different elemental sources on

ds' over S that do not lie in the immediate neighborhood of 0; whereas, e'JkR changes slowly for the
spherical wave contributions to P arising from the elemental sources on ds' that are fn the {mmediate
neighborhood of 0O and thereby provide a constructive interference to P, Thus, at high frequencies (or
targe k), the dominant field contribution to P comes from 0 on S; this point 0 is called the “stationary
point.* Without details (which can be found in [121), the stationary phase evaluation of (1) ylelds the
following contribution from the stationary point:

- . —— -
£(P) - £(0) ?;;;;7 ?;;;;7 e JKS (0P| us . (3)

The expression in {3) describes the continuation of the field at 0 to the field at P along the highly
localized or “ray" path UP; the field E(P) fn (3) is thus referred to as a ray optical fleld, Figure 3
shows a ray tube interpretation of the energy transport along the central ray as indicated by ?3). The
o% and o2 in (3) refer to the principal wavefront radif of curvatures at 0, From Figure 3 one notes that
the energy flux crossing the area dA, of the wavefront at 0 is given hy |E(0)|2 dA;, and ikewise, the
ener?{ flux crassing the area dAy of ‘the same ray tube is E(P) szp. Since dkn~(91d01)(ozd¢%) and

dAg= 91’5)d*l] {(og+s)dv , it is then clear that conservation of energy in a ray tube, which in turn
requires that |E{0)]2dA,=[E(P}|2dAp, leads to
2 2 Pl P2
ee)’= 1’| oo | )

which 1s automatically implied in (3). The field E{P) at P has the same polarization as the field £(0) at
0 because the ray path is straight in a homogeneous medium, The field intensity in (3) becomes singular
when s=-]p}| or s=-]op|; these points on the ray path are marked (3-4) and (1-2) in Figure 3, and they are
referred to as ray caustics. The actual field is not singular at the caustics; clearly the simple
expression in {3) is therefore not valid at and near the caustic. cven though it is asymptotically
accurate away from the caustics. The distances py and py are also referred to as caustic distances. The
distance s is measured positive in the direction of ray propagation, The caustic distances oy and pp are
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positive if the caustics occur before the refereace point 0 as one propagatc; ylong the ray; otherwise,
they are negative. If py and pp are positive, the wavefront is convex; it "hev aro negative, the
wavefront is concave. If one of the radii (py or pp) is positive while e sther is negative then the
wavefront {s saddleshaped. If oy and pp are negative, and ifis>-lojl, or 3v~joal, then a caustic is
crossed at (3-4) or (1-2) in Figure 3, respectively so that {{p1)/{p1+s) er Z(pz)/(p +s)) changes sign
within the square root of (3), The positive branch of the square root is chosen in (§) so that

0
Yo : s” I Vo : s ‘ ej{ﬂ/Z} . if (p : s) 2o, (5)

and p=py or py., Thus, a phase jump of n/2 occurs at each causting :rossing.

The field in (3) is sometimes also referred to as an "arbitrav' ‘ay optical field since py and pp
can be “"arbitrary.” The geometry in Figure 3 is referred to as ;- .stigmatic ray tube or a quaératic ray
pencil because of the quadratic wavefront surface approximation 1t 0 chat is used in the stationary phase
approach leading to (3). It is noted that if py and pp become in- nite, then the fleld in (3) {s that of
a plane wave, If pj or pp become infinite then (3) is a cylindr’.«1 wave field. Also, if py=pp (=finite
value), then (3) is a spherical wave field. Thus, plane, cylinds .-1, spherical and even conical wave
fields are special cases of an arbitrary ray optical field; cle':r” , it follows that each of these fields
is also ray optical.

Since the wavefront surface S in Figure 3 can be associat - with either an incident, reflected or
diffracted wave, the field expression in (3) therefore appiie :jually to incident, reflected or
diffracted rays, The field is polarized transverse to the ra: ::d the wavefront at P is "locally" plane
if ks 1s sufficiently large (as fs assumed to be true in the ‘.tionary phase evaluation leading to (3));
also, the local plane wave relation between ¥ and W holds, n . .y:

H(P) ~ ¥ s x E(P) (6)
or
E(P) = - 2,5 x H(P) (n

in which & = 0P/10P| is the ray direction.

8. The 60 Field

The GO field is a ray optical field, The incident G0 field is assocfated with rays directly radiated
from the source to the field point. W en such an 1nct«nt ray congruence steikes an object, it is
transformed into a reflected ray congruence. Since th» p esent notes dea) mostly with scattering by
impenatrable objects, there are no transmitted or refr.ntel rays produced in this case. The tncident and
reflected GO rays satisfy Fermat's principle which makus the incident and reflected ray paths an extremal.
Consider a plane wave incident on a perfectly-conducting wedge or a smooth convex surface as shown in
Figures 4(a) or 4(b). The incident rays are partly blocked by these surfaces creating the sc-called
shadow zone where the incident ray optical field vanishes, The incident shadow boundary ISB in Figure
4(a) and the surface shadow boundary SSR in Figure 4(h) divide the region of space surrounding the wedge
and the convex surface into a 11t zone and a shadm- zooe,

It 1s important to note that unlike the conv ntional iIncident field which is defined to exist in the
absence of any scattering objects, the GO incice.. ray field exists in the presence of any objects that it
might i1luminate, Tt is for this reason that she GO incident fiald becomes discontinuous across the
shadow boundaries IS8 and SS8 in Figures 4(a) an' 4(b), On the other hand, the conventional {incident
field would not be discontinuous anywhere outsidy the sonrce region which produced that field,

Henceforth, the GO incident electric and magneric fields will be denoted by TV and Wi, respective

The field of the GO reflected rays that are produced by the i1luminated wedge in Figure 4(a) is also
discont nuous, In particular, the reflection shadow boundary (RSR) delineates the regions of existence
and shadow for the reflected rays in Figure 4(a); whereas, the incident and reflection shadow boundaries
1SR and RSR merge into the SSR for the convex surface in Figure 4(b),

Consider a general problem of reflection where an arbitrary G0 incident ray optical field illuminates
a smooth, perfectly-conducting curved surface, The astigmatic incident ray tube associated with the

incident ray in the direction ;‘ ts shown 1n Figure 5, This incident ray strikes the surface at OR to
produce a reflected ray in the direction ;r‘ The astigmatic reflected ray tube assocrated with the

reflected ray from Qp is aiso shown 1n Figure 5. The field E7(P) at P which is refiected from 0g can be
written via (3) as:

r
T(P) = E7(0) eIk (8)

(6] +s") (o5 + s

1t is noted that Er(P) in {8) is given in terms of Er(OR) at the point of reflection 03’ Thus, the
reference point 0 in (3) corresponds to the point Qg in {8), The caustic distances p)¥ and ppF associated
with the reflected wavefront are shown in Figure 5 along with the reflected ray distance sT from O to P.
The vatue of Er(0g) is related to the incident field E1{0g) via tne boundary condition
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nx (B0 + TG =0 . - : (9)

Here, 3 is the unit normal vector to the surface at OR. It follows from (9) that

Elg) =% - Tg) > (10)

where R s the dyadic reflection coefficient of the surface at 0. Incorporating (9) into (8) yields

%
r
opts”  oges”

a1 s’ )

i - = ~
| E"(P) = E'(Qg) - R
v

The reflected mag.ctic field ﬁr(P) is found easily from (11) via
)~y s" xEP) (12)

It is convenient to express E'(QR) and EF(P) in terms of the unit vectors (e:.el) and (e:,el) which are
fixed in the incident and reflected rays, respectively, as shown in Figure 6., The ;:,;L and s1 are

mutually orthogonal; likewise, ;:';1 and ;rare also a mutually orthogonal set. Furthermore, e: and e: 1

in the plane of incidence defined by ;1 and 3 at OR' As a result of Fermat's principle, ;r also lies in

i

the plane of incidence and 8 =" in Figure 6, Thus, if

=1 i - 1 -
t ; E (OR) - EI(QR) e, + EL(QR) e (13)
! ; and
f i
! zr Py ol Froy?
\; fg E (P)‘ = Ei(P)el + EL(P)el (14)
3 H ' where ;1.;1.P H ;:,r , then i in (10) subject to the boundary condition (9) becomes
3
Reol e r +e 6 R iR =71 (15)
;J t "1 "h 1717 g *
2 . In matrix notation, the above ; can be written as
?E | - - -
1 : R, o 10
h
- (16)
0 Ry 0 -1

Therefore, in matyix notation, (11) becomes

Ey(P) 1 o ety rr
! » 1R ) P2 e-jksr . (17)
, ENPY | o -1 |E0d| V (ofesTees")

The caustic distances or the principal radii of curvature of the incident and reflected wavefronts which

are denoted by (p{.p;) and (p;,p;), as well as their principal wavefront directions
% are given fn [137. -

It is clear that tne G0 representatfon of (11) fails at causti.s which are the intersection of the
paraxial rays (assoclated with the ray tube or pencil) at the lines 1-2 and 3-4 as shown in Figure 3,

‘i Upon crossing a caustic in the direction of propagation, (p"r+si’r) changes sign undei tihe radical in

and a phase jump of +x/2 results as explained earlfer., Furthermre, the refiected field £ of (11) fails .
in the transition region adjacent to SSB of Figure 4(b). It is important tc note that near the SSB (i.e., i

as ei+x/2), p; and og approach the following limiting values: !

*
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‘ ~

0,{Qp) cos® - .

pg + 9R ~ >0 i 3 (18a)
2 for 8' + =/2

e, ‘ (180)

where og(QR) is the surface radius of curvature in the plane of incidence at QR' and p; is the radius of

curvature of the incident wavefront in the (E,G) plane (i.e., in the plane tangent to the surface) at 0R
for ei+w/2. Furthermore, the principal directions i; and i; of the reflected wavefront approach the
following values for grazing fncidence:

an »

frb (et g) . (19)
. . . for 8° + x/2 ,

X; = (-s" x X;) +n (at ) (20)

where t {s the direction of grazing incidence at QR and S-E X n at Op. The total GO electric field EGO at
PL in the 1t region s the sum of the incident and reflected ray optical fields; hence,

- -, - Py P r
E0(p) ~ E(p) + EN(0p)e R 12 odks, (21)

(or*s"(og¥s")

In summary, ft is noted that the 60 incident and reflected fields are discontinuous across their
assoctated shadow boundaries such as IS8, RSB, and SSB in Figures 4(a) and 4(b), The failure of 60 to
account for a proper non-zero field within the shadow region behind an tmpenetrable obstacle can he
overcome through the GTD and its uniform versions, Nevertheless, G0 generally yields the dominant
contribution to the total high frequency flelds, and it constitutes the leading term in the GTD solutien.

The reflected GO field ?r(PL) for the two-dimensional (2-N) case can be deduced directly from the 3-D
case hy a3llowing pq to approach Infinity. ~hus, one may let p; z o"and p{ + = n (11) to arrive at the
2- reflected G0 fleld E(P ) as

r
r
e-jks

. - .
E"(P) = E'(Q) * R /7 , (22)

[

in which the incident ray optical field E‘(QR) v: now a cylindrical wave at 0, and the caustic distance
of 1n (22) for the 2-D case s given by

11 208!
of T * pg(QR) ’ (23)

where 81 has the same meaning as hefore, and st is the radius of curvature of the incident cylindrical
wavefront at Qg. If the cylindrical wave is produced by a 2-D 1ine source, then s! 1n (22) can be chosen
to he the distance from that line source to the point of reflection Qg on the 2-D houndary, The quantity
pg(Qg) fn {23) denotes the radius of curvature of the 2-0 boundary at the point of reflection 0g.

C. The Diffracted Ray Fields

The diffracted rays are introduced in the GTD via a generalization of Fermat's principle as stated
previousiy., Away from the point of diffracticn, the diffracted rays benave according to the laws of G0,
The $nitial value of the diffracted ray fleld {s given in terms of a diffraction coefficieat, The
phenomencn of edge diffraction will be discussed first, and it will he followed by a discussion en the
prenomenon of diffraction at a smooth convex surface, The latter phenomenon is more compticated than the
first,

(i) Edge Diffraction

When an incident ray strikes an edge in an otherwise smooth surface, it produces diffracted rays
which lie on a cone about the tangent to the edge at the point of diffraction such that the angle 8,
between the fncident ray and the edge tangent equals ‘he half angle of the diffracted ray cone as sxown in
Figure 1{a), This cone of diffracted rays is sometimes referred to as the ‘Keller cone,” and it results
from the generalization of Fermat's principle to describe rays diffracted hy an edge.

T
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Let an arbitrary ray optical field be incident on a perfectly-condicting curved wedge as shown in
Figure 7. The resultant total WF electric field E(P) at any point P exterfor to the wedge s given by

E(p) = £90(p) + E%(p) (24)

=60
where the GO field component £ (P) 1s given as

E%0(p) = E(pyu + E(PYU (26)
. € =1 -r .
The domains of existence of the incident and reflected ray optical fields E (P) and E (P) are indicated
by the step functions Uy and 1, respectively, which are defined as follows:

1, 0 <¢ < ntp’
Uy = { (26)
0, 1f x+p' < ¢ < nx
and
1, if 0<¢ < a-¢'
Up = (27}
0, 4fm-¢' <p <nn,
The azimuthal angles 4 and ¢' are made by the grojecttons of the directions of incidence and ohservation
on a plane perpendicular to the edge at the point of diffraction Og, These angles are measured from a
plane tangent to the “0" face of the wedge at Q¢ as shown in Figure 8. The plane tangent to the other
face of the wedge at Op is denoted by "nw;" it 55 also shown in Figure 8,
The 1interior wedge angle is therefore given by (2-n)r, The expressions for the G0 incident and

=d
reflected flelds have been discussed previously. The diffracted field E exists exterfor to the wedge
{t.e., for 0 < ¢ < nx). From (2), one may write the general field expression for theray diffracted in the

direction s from Q; as:

i d
(r) ~ Eip) /L_.__Ei_zi___.____ e, (28)
(o‘l’ + sg)(og .

o)

The diffracted ray tube corresponding to (28) is shown in Figure 7. The superscript “d* on od 2 and sd
denotes that these quantitfes are assocfated with the diffracted ray field component, In ord&f to relafe

Ed(P) to the incident fleld at the point of edge diffractton OE' one moves the reference Po in Figure 7
to the point of diffraction OE on the edge by letting pg + 0} so that

-d -
E(®) = e [/ e )

. {29)
og + 0
Since Ed(P) {s independent of the reference point Po, the ahove limit exists and it ts defined as
4 =d - nk
dlim ¢£; £ (Po) s € (OE) <0, (30)
91"'0

where 5: = B:(°'¢"50; k) 1s Keller's “dyadic edge diffraction cofficient® which indicates how the energy

is distributed in the diffracted field as a fynction of the angles ¢, ¢', and Bo; 5: also depends on n and
the wavanumber k, From (29) and (30), it is clear that

Te il
E4p) ~ E‘(QE) . ﬁ:(m'.so; k) ;a(;f:'sﬁ ik (31)

d

where lim og N (edge diffracted rey caustic distance), and likewise 1lim Sq % sd, as shown in Figure
pdl¢ c pdl* 0

7. Ed(P) ic polarized transverse to the diffracted ray direction sd since the field Ed(P) is ray optical;

thus, the associated magostic field can be expressed as

ey ~ v, st <) (32)
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If the incident field E‘(Q ) exhibits a rapid spatial variation at Q¢ then an additionai term referred to
as a slope diffracted fiels must he included §n (31) to describe the diffraction effects accurately;
however, that slope diffracted field will not be described here. An expression for finding the diffracted
ray caustic distance po 1s given later in {(43b).
=2

It is convenient to express the dyadic edge diffraction coefficient n: in terms of unit vectors fixed
in the incident and diffracted rays as follows. Let ;i and ; define an edge fixed plane of incidence
where e is the edge tangent at OE' Likewise, let ;d and ; define the edge fixed plane of diffraction.

The law of edge diffraction which defines the Keller cone fis ;‘-; = ;d-;. Let 30' and éo be parallel to
the edge fixed planes of incidence and diffraction, respectively as in Figure 8, and let

at - at I’y ~d ~

Bgp=s X ¢ H By =S X ¢ o (332;33b)

Here, ¢ and ;' point in the direction of increasing angles ¢ and ¢', respectively. The incident field
- -~ al A
E‘(OE) can then be expressed in terms of the triad of unit vectors (si,so,¢') fixed in the incident ray;

Mkewise, the edge diffracted fleld E9(P) can be expressed in terms of (s%,8,,8) fixed in the diffracted

ray. Thus,
F1 . B' E‘n + ;'Ei
(QE) 0 80 3 (34a)
and
o d c ed
ey = 8, B e, . (340)
Then
-k al A k abta k
De * -8y ByPg ~¢ # Dgp - {34¢c)

The D:s and D;h can be found from the asymptotic solutions of appropriate canonical wedge diffraction
problems; they are givan by:

5 - -

et = Ain = 1 1
$,6'38,) = . 7 T
& ? n/Zxksing, cos j - cor (’B‘L) cos §

) " (35)
-cos ("7)

It is noted that the Keller edge diffraction coefficient in (35) beomes sfngular at the incident shadow
boundary (ISB) and the reficction shadow houndary (RSB) which occur when ¢ax+¢' and ¢=n-¢', respectively.
Thus, the result in (31) together with (34c) and (35) is not valid at and near the GO incident and

reflection shadow boundaries, This deficlency of the GTD can be overcome via the use of uniform
geometrical theory of diffraction (UTD). According to the UTD [4,57, the total HF fleld exterior to the

=-d
wedge is still given by (24) as in Kellw,'s orfginal GTD; however, the E in (24) and (31) {5 now modified

=% s
so that Dg of {31) 1s replaced by the HTD edge diffraciton coefficient Dy so that:

= d
4 i - o -jks
E(P)=F . Dald, ¢'y 8ys K e e . f36a)
() (Qe). Delé, ¢'s 8g: k) \/_:(p =1 a
e

The Dy in (36a) can also be expressed as

At

ala
Be’ 'Bosobes - 0Deh ’ (36b)

In matrix notation, (362} becomes

- -
EB
d
l z

‘d
£
_6”

(31)

in which the Dgg and Doy are {131

o R
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X
.j_ -
Il
- e - t - - [}
D (4.4'8,) = cot ("(Zn" )) Freiat(e-0')1 + cot (1'—(;—‘}-1) frctta(-401 (
Ef 20/Zaksing, :
- - '
+ ' - ' |
: | cot 1—(%’;‘)‘ FIKL™a (04470 + cor'——(%tl FIkL ™2™ (4+4*)1 l (38)

where the asymptotic large parameter kL (with the superscripts i, rn, ro on L omitted for convenience) is
required to be sufficiently large (generally greater than 3) and

¢
2nnk® -
a*(8) = 2 cos? (""—2(6—)) . (39)

The N are the integers which most nearly satisfy the equation:

2aN® - g = tx (3%)
with
B=oto, (39¢)
Note that ne2 for a half plane or a semi-infinite curved screen, Also, n=3/2 for an exterior right angled
wedge, etc,
For exterior edge diffraction N+-0 or 1, and N---l. 0, or 1, The values of N: at the shadow and

reflection boundaries as well as their assoclated transition regions are given in Table I for exterior wedge
angles {1 <n < 2):

TABLE I
Th t t i h value of N
e cotangent is singular when at the boundary

x+(0-¢') ¢ = ¢'-x, an IS8 +

cot (Ton ) surface 90 is shadowed N0
x-(9-¢" ¢ = ¢'+n, an IS8 .

cot (Ton ) surface ¢snx s shadowed N =0
a+(9+e). ¢ = (2n-1)7-¢", an RSB .

T ) reflection from surface ¢=nx N1
n-($+4") ¢ = x-9', an RSB ! -
cot (T ) reflection from surface §=0 ] N" =0

!

For a point source {or spherical wave) type illumination, the distance paramezer s

1_stsd o,
L = e yor:| sin®g (40)

in which st and s4 are the distances from the point of edge diffracticn at 0% to the source and observation
points, respectively. Only for a straight wedge with planar faces that is §lluminated by a point source,

2

i ¢d
ro n i _5.S
L7 = U = L = (35 sta's, (41)

as in (40), For an arbitrary ray optical illumination which is charac.erized by two distinct principal
wavefront radii of curvature, oil and p;, the above L1 must be modified as shown below in the general

expressions for L" and L™ pertaining to a curved wedge; thus,

- Sd(o;*sd)pio;ﬁnzﬁo—
T du i d ; (423)
_ ol(p{*sd)(oiz"sd) | at 1s8




o
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i
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29

= derdyrr 2
s (pe+s )plpesin 8,

. (42b)
_oblefs MRt | st v

Here, L™ and L™ are the values of L™ associated with the "0" and *n" faces of the wedge, respectively.
Furthermore, p; is given by:

11 2Anengistny
rrT T . (43a)
LN a sin BO

Also pg in (36) 1s given Ly:

B Re-(si-sd)
o i Z {43b)
e Py a sin 8o .

The unit vector n is defined in Figere 8(b); whereas, Re is a unit vector normal to the edge which is directed

away from the center of edge curvature at (., The rzdius of edge curvature {3 denoted by “a" in (43), p; 1is
the radfus of curvature of the incident wav@front at 0F which 1i{es in the edge fixed plane of incidence. “In

1

the far zone when Sd>>p1 2 sd>>pf g and Sd>>pe then the L' and L tn (42a) and (42b) stmplify to

01p7 sin?p,

in which the appropriate superscripts on L, " and py are omitted for convenience, It is

Pe
noted that LY and L™ 1n (42a) and (42b) are calculated on the appropriate shadow boundaries. The transition
function, F which appears in (38) contains a Fresnel integral; it is defined hy

O
F(x) = 2j¢X ejx | dte I . {48)
'3
A plot of the above F(x) 1s 1llustrated in Figure 12, 1In (44}, /X = |VX] if x>0 and VX = ~§ |/X] 1f x<0. 1If
x<0, then F(x) |x<0‘ F* (|x]) vhere * denotes the complex conjugate. Exterfor to the (;gg) transition reglons

x becomes large and F(x)+1 so that the uniform neR in (38) then reduces to Keller's form as it should; namely,
2l

=k
Dg, outside the transition region, (45)

f=1]
©
+

Near the (ISB and RSR) boundaries, the small arqument approximation for F(x) may he employed (since x = o on
IS8 and RSB); namely, one can incorporate

F(x)x»o /3x e J(% + x) (46)

«d
into (38) to arrive at the following result for the diffracted field £ at ISB or RSB:

1:¢  continuous
7 YE 4+ (higher order) |

2 terms

)ISB;RSB
(47)

on 1it side of IS;R%B

on shadow side o’ ISB;RSB }

The above result in {47) ensures the continuity of the .otal HF fiela in (24) at ISR and RS8, The field
contribution arising from the edge excited “surface dif’racted rays* {s not included 1n (24); it may be
important for observation points close to the surface shodow boundaries (SSB) associated with the “angent to
the "0% and “n" faces of a curved wedge av fg if the “0° axd “n“ faces are convex boundaries. The result in
(36a) and (35b) along with (38) is valld away from any diffiscted ray caustics and away from the ed~e cauc.ic
at Og.

if |

for grazing angles of incidence on a wedge with planar faces, P~ = 0, and Do must be replaced by (1/2)
Dop. The reason for the !/, factor in the latter case is explaincd & follows. The incrgent and reflected €O
f?e\ds tend to corbine into a single “total incident field” as one app-oaches grazing angles of incidence;
consequently, only half of this “"total field” 1lluminating the edge at jrazing constitutes the incident GO
field while the other half constitutes the reflected GO field. The case of grazing angles of incidence at an
edge in a curved surface cannot be handied as easily as t?g case of ? wecge with planar faces. Presently, one
2

: 3
can only treat angles of ncifence that are greater than | keglfg) | wherc‘og (Oa) ts the radius ot
curvature of the surface ir the directiva of the incident way at the peint of Age diffraction Q.
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Under the above restrictions, the result in (38) for Dgc simplifies in the case of a plane or curved
screen (n=2 case) to eﬁ

x
-jz
-2 - -8 o —
Dgﬁw'o"%) " 27T sins, sec(B5)Fret a(e-4)1 7 sec(B IR a(p401] (48)

where a(8)=2 cos2(8/2) and L1sF are in {42a:;p) with the urderstanding that LT is evaluated at the RSB
corresponding to the face which is flluninated; hence the superscripts "o® and "n" in LT are dropped for this
n=2 case,

- =d
The edge diffracted field E (P) for the 2-D situation can he obtained from (36a) by allowing pgy to
approach infinity and by requiring 8, = ¥/»; thus, for the 2-D case,
_iked
e jks

£4(p) = EN(0g) « D, 000" a0/2; 1) i 149)
H

The Dp in (49) for the 2-D) case is available from (36a) and (36b) with 5,=x/2 (or sinBy = 1). Also, U fer
the 2-D case is given by (41) with 8y = 2/2; in particular,

1 sfsd .
R (50)

Likewise, L™ {s obtained from (42b) «ith By = /2, p; + ., og 2o (as 1n (22)), ind p: +w; therefore, in the
2-D case
rd
L

] (51)

Note that pr" in (51) 1s the same as the one in (23); however, pf is in general different for the “0" and "n*
faces of the wedge, with LrO and LM denoting tha values of LT for these two different faces. While the
expressfon for LT in (42b) is fixed to 1ts value on the RSB for convenience, the one in (51) can be evaluated
as a function of the observation point with almost the same ease as 1f one had approximated the value of LF hy
1ts value at the RSB, The values of L1 and L" for the 3-D case involve various caustic distances as is
evident from (42a) and (42b), These distances are generally slowly varying within the ISB and RSB transition
reglons and it 1s t. erefore convenient to approximate L1 aad L' throughout the transition regions by their
values at the IS8 and RSB as done fn (42a) and (42b). Outside the respective transition regions, the F
functions containing LY and L™ approach unity anyway unaffected b, the above approximation.

1t {s noted that the comment below (47) in regard to grazing incidence is also valid for the 2-D case,

» uk

It 1s further noted that the essential difference between D, and Dy {s that the former {s range dependent
whereas the ltatter is not. As a result, (36a) is not ray optical within the ISR and RSB transition regions;

a ak
exterior to these regions, Dy » D, as indicated before. Figure 9 illustrates the diffraction of a plane wave
by a perfectly-conducting half-plane. It is noted that the geometrical optics field is discontinuous;
however, the UTD diffracted field cancels the GO discontinuity to yield a total UTD field which is
continuous,

{11) Diffraction at a Smooth Convex Surface

The geometry for this Eroh!em of the diffraction by a smooth convex surface {s shown in Figure 10, The
tota: high frequency field E(P) for the situation in Figure 10 can be written as

-1 - -
. E (p v + EF u Ed(PL) , 1f P = P in the Tt zone,
E(P) = (52)

Epg) 11 - , if P = Pg in the shadow zone.

=i -r
The incident and reflected fields E and £ are associated with the incident and reflected GO rays shown in
Figure 11, The step function ! in {42) 1s defined below with respect to the surface shadow boundary (SSB)
as:
{1, in the 1it region which lles ahove the S$S8
0=
0, in the shadow region which 1ies below the $S8, (53)
=d
The surface diffracted field E (Pg) follows the surface diffracted ray path into the shadow region, as in
=d
Figure 11; whereas, the field € {P_) which is diffracted into the 1it region follows the reflected ray path
-r
{of £ ) in this sotution. Therefore, it is convenient in this problem to combine the GO reflected field

=r =d =gr
E (PL)U and the diffracted fleld E (Py) into a single “generalized reflected fi 4", Eg {PLIU in the 1it
region so that (52) becomes




-

—pey

£ M R £5 P a———

[

£y ={
| Eegn-u

The fields fgr(PL) and Ed(Ps) are glven symbolically by

£ p 0 + E% )y, 1f P = P in the 1 zone,

, 1f P = Pg in the shadow zane,

.a aqa el
fgr(.PL) ~ !-.'1 (@) Peerey +Rhe1e:] ___:29_5&____ e ks ,
{of+sF){pb+s")

d
t'd ' A A A A p _Jks
(Pg) ~ T {01)+ ooz +Lning) s ¢
sa(os*sa)

where the points 0, and Q

P B o e e e amm mkn S+ o s i 0 2 = = e e mma e e e AR T andoATe e

21y

(54)

(55)

(56)

and the distances s and sd are indicated in Figure 10, The surface diffracted

ray caustic distance o 14" shown 1n Figure 11, The quantities within brackets involving Xﬁ and.&s in (55) and

(567 may be viewed as gereralized dyadic coefficients for surface reflection and diffraction, resgecuvew.
Tt §s noted that (55) and (56) are expressed insariantly in terms of the unit vectors fixed in the reflected

and surface diffracted ray coordinates, The unit vectors .el. ;';. and e in (56) have been defined earlier in

connection with the reflacted field, It can be shown that cross terms actually exist in the above generalized
dyadic reflection coefficient: hut, in general their effect 1s seen to he weak within the SSB transition
region, Also these tarms vanish in the deep 11t reglon and on the §S8, hence they have been gnored in (55),

At 01. let tl be the unit vector in the direction of incidence, " be the unit outward ncrmal vector to

the surface, and Sl - El xﬁl; likewise at 02. let a similar set of unit vectors (iz. ;\2, ;’2) pe lefined with

tz in the direction of the diffracted ray as in Figure 12, In the case of surface rays with zero torsion,

bl = b2. It is clear from Figure 11 that Py in (56) 15 the wave-front radius of curvature of the surface

diffracted ray evaluated in the b, direction at 0

. First, the YTD expressions for
(56) will be given below; it will®he shown that tﬂcse exprescions are valid within th

in {55) and
region

adjacent to the SSB, Subsequently, 1t will be shown how these expressions automatically simplify outside the
$S8 transition region to reduce to those obtafnad by Keller in hs G610 reprasentatiaon, The <. h andﬁg h in
s []

(56) and (56} ace [14,151:

-f‘ e, | s
-1 /T e 12 S [1-F (XYY + P
'Tl}‘, & o ¢ H

and
L=~ ‘/'Z _e;:i.i_- ~

h a0l vV & [1-F(xd)) + P (€)
_ 20t A
TABLE 1f

Lo
L) l i . for the 1it region
- J (81)
PV
®
danj , for the shadow region
(88)

Teros of the Alry Function

Zeros of tne Verivative
of the Alry Function

Ai(-qp):o

q = 2,33811

q; * 4,08795
Ai'(-ql) = §,70121
Af*(-q,) = -0.80311

M'(-ip) =0

§y = 1.01879

d, = 3,24820
A1(-g)) = 0.53566
Af(-G,) = - "1 02

The function F appearing above has been defined earlier ia (44), The Fock type surface reflection function

~ soft . p*
Ps 1s related to the (paeq) Pekerts function (ge) by
h

s p o

eI R

P N

[EYpT

xoe e
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k4
wor | -3g
~ p = e 59
P(s) = e 4‘2«;5 (55a)
h a*(8) , (Note that =0 at $SB) {5%)

where p* and q* are finite and well behaved even when 820; these universal functions are plotted in Figures
13, 14 and 15, Also,

®
e'JI el 1, soft case (60a)
~ - v . ~
P(s\-—';-;"]dr?—t—ejs‘;o.
A - ) 2

3T, hard case (60b)

in which the Fock type Afry functions V(t) and Wp(1) are

1 -3
209(1) = Wy (1) - (1) 5 Wy(e) =75 at e/ (61a;61b)
1 2 1 [} -jons3
- e

L/ 1t-43/3

“2(7) - 7 ,’ j2u/3 dt e / . (6)(;)
e
The rest of the quantities occurring in {57) and {58) are:
ko (7] Y3
L i % ., nit") kog(*)
uEnlgdose” 1 ke f ALt Gy gl = | T (62:62:64)
1
Q kL r)2

2 L 7.1 d

t = ] dt' s X7 o= 2kt cos’ o ;x "2; lmo’é')' . (65;65;57)

0

The quantity pg (0z) in m(0g) denates the surface radius of curvature at 7y in the plane of incidence;
whereas, oq (Gé) is the syrface radfus of curvature at 0} in the t; direction, The dt' in {63} and (65) {s an

incremantal arc length along the surface ray path. The angle of incidence 8% s shown fn figure 6,

Also, the da(0y) and dn(07) in (58) dencte the widths of the surface ray tube at 0y and 03, respectively; the
surface ray tube is formeg by considering a palr of rays adjacent to the central ray a< in Figure 11, ¥he
geodesic surface ray paths are easy to find on cylinders, spheres, and cones. For example, the geodasic paths
on & convex cylinder are halical; whereas, they are great circle paths on a sphera, Ffor more general convex
surfaces, the geodesic surface ray paths rmust be found numerically, The distance jarameter L in (56) and (67)
15 given by

o{(G)) o}(0)) s(o) (0 }4s)
EE CVSIE TR I T 2
where:
s lsr . sd' ) : og(Ol) . incideng wavefront radtus of curvature (69;70)
$S8 $SR in the hl direction at Ql

r
The distance s fn {68) may he ohtained by projecting (:d) on the SS8 if the observatian point within tha

{ ‘i'O ) stde of the SS8 transition region does nat move in 2 predetermined nanner, If the oiservation point
m393§ Yeross the SSB in a prenctermined fashion then it is clear that s fa (68;63) <an be found unanhiguously.

The p;(ﬂl) and p;(ﬂl) in {68) denote the principal radii of curvature of tha incidest wavefront at 01. and

‘. which is defined in {70), has been introduced earlier in (13b), For the special case of psiat source or
spherical wave jllumination, the L in (66) and (67) simplifies to:

s's
L= S , for spherical wave illumination, (71}
where:
[N PRI | I . distance from the point source ta the 72
st 2 {0)(2)) = 0p(0)) = o (9))) poiat of graziag incidence at 9,. {72)

In the case of plane wave t)lumination, s' + = and hence (71) above simplifies to:
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L=ss , for plane wave il1lumination. (73)

. i i i
If the fncident wavefront is of the converging p < 0, or converging-diverging (p, < 0; p, > 0) type
* then the parameter L in (68) can become negative. Itlhgs not been fully 1nvestiggte now the gefieral yees

solution can be completed if L becomes negative. On the other hand, if one of the principal directions of the
fncident wavefront coincides with one of the principal planes of the surface at grazing, then one can treat a

converging, or converging-diverging (saddle) type wavefront for which L<0, by replacing F(XL'd) with
F'(iXL'dI). Note that the asterisk on F* denotes the complex conjugate operator, The use of F'(IXL'dI) when
L<0 Teads to a continuous total field at S$SB in this case.

The above UTD rasult remains accurate outside the paraxial {i.e. near axial) reglons of quasi-cylindrical
or elangated convex surfaces; a different solution fs required in these reglons and it has not yet heen
completed, It fs assumed that the source and observatfon points are not too close to the surface, Also, it
1s assumed that any caustics of the incident ray system are not too close to the surface. Furthermore, the
amplitude of the incident field is assumed to be slowly varying at Ny and 0,; otherwise, it is necessary to
add a stope diffraction contributfon, The UTD solution described ahoVe rematns accurate if kL and m are
sufficiently large, Typically kL should be larger than 3 although in some cases kL can be made smaller, Also
m should be such that 2m¥>5 or so; however, the results gennrally lose their accuracy slowly as 2m3 becomes
smaller. It is noted that the angular extent of the SSB transition region is of order ,-1 radians.

A surface diffracted field of the type Ed(P‘) can also he present in the 1t zone {f the surface is
closed; this may he seen by noting that the field cf the type Ed can propagate around the closed surface.

Also, additional contributions to Ed(P )} can be presect in rhe shadow zone for a closed surface because
surface diffracted rays can be nitiatdd at ant points of grazing incidence on that closed surface;
furthermore, these surface rays can undergo myltiple encirclements around the closed hody, However, these

additional surface diffracted ray contributions are generally quite weak in comparison to the £97 contribution
within the 1it zone for surfaces which are quite large in terms of the wavelength; hence their contribution
may he neglected 1n such cases,

The parameters EL. £, XL and Xd hecome small as one approaches the surface shadow boundary, SS8, from
both the 11t and shadow regions, As one approaches the SSB, the sma)l argument Vimiting form of the
transition function F(X) which has bheen introduced previously in (44) becomes helpful for verifying the
continuity of the total high frequency field at the SSB, 0n the other hand, the above parameters hecome large
as one moves outside the SSB transition region; in this case F(X)+1 for large X, and likewise,

5 /25 j83n2
Ps(é) ~ g 3 eJ (78)
h §¢<0
-j5%/6
Jn/6 8q e
LA e e "
TTAET L TER TG E
Ps(s)' = (75)
h §>0

- -352/6
Jur6 83 e
e-Jl/4 N e e M

T

) ,
nal 20, MAt(-G)¥

whera M = 2 {5 generally sufficient to compute 35(6) accurately for 8>>0 tn (75), In (75} and Table I, the

h d . R s
Miller type Airy function Ai(<) = Y(z)//%, and A1'(1) = T~ Ai(x), Thus, upon incorporating the limiting
values of 774} and (75), which are valid outside *he SSR _Fransitio «gion, into {57 and (58) and replacing
F(%) by 1t's asymptutic value of unity, it is clear thaLJ{s reduces to R = ¥ 1 outside the SSB transition

. . g 0 n
regton so that E97°(p) + E(P) of GO, and likewise E¥(P.)"s EQ(P,) therein, respectively, in which the Keller
surfaced diffracted ray field Eg(Ps\ is uiven by [3]

- - a : fdn(®)) / Ps . d

d i k -jkt S 2l S ks

Ek(s) ~E (Ol)' T (QI'OZ) e d“(oz) v sd(p +sd) e {76)
&

= | IR -
T (01.02) = b by, T o tnyn, T, } . on

where

Q2
Toa 1 o } "
g5 n O} e

oh (02) . (78)
n=] a

SO

P
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The D§ and = § are the Keller's GTD diffraction coefficients and attenuation constants for the nth soft (s) or

hard (h) surface ray mde. Thus, in the GTD, the surface ray field consists of surface ray modes which
propagate independently of one another. Also, this surface ray field is not the true field on the surface; it

is a boundary layer field. The D§ and « E are glven by:

-3(x12)
e
o, @) = /7% (@) HERI (792)
-§{x12)
e
[oho))” = V7w (@ T (79b)
‘h[“("ﬂn)"
and
q 3(x/5) h g J{x/6)
«r (@ =50y w(@° e 5470y ml0)® ' (80a:800)

In (79) ~ (80), Q is any point on the geodesic surface ray path, The GTD result of (76) in terms of (77) and
(78) 1s not valid within the SSB transition region,

The UTD result for the 3-D configuration can be simply modified to recover the corresponding UTD result
{or the 2-D case by allowing the caustic distances p; and og in {55) ang (56) to receed to infinity. Then,
et

p; so, 1t p; +oand pg v @, (81)
50 that
. . s T ke
Egr(PL) -~ E‘(QR). [st e e + Ry e}, e;/] y/ o ks (82)
°r+sr
in which of is as in (23), and
- A A A d
e~ (o). DsbieBriag S (83)
/<d

since (Ql . 62 Y for the 2-D case (note: b= ;1))‘ The }2: and ijh fn (82) and (83) are as defined earlier,
respectively; only the L appearing in (66) and (67) s given by

s'sd
L=3Td o for the 2-D case, (88)

where s' is the distance from the 2-0 line source to the point of grazing incidence at 0l and § 3 sd as

SS8
before, A comparison of the UTD and GTD solutions for a 2-D circular cylinder 1)luminated by a nearby line
source is illustrated in Figures 16(a) and 16(b); those UTD solutions are then compared with the
corresponding exact (Eigenfunction) solutions in Figures 17(a) and 17(b),

TII. A FEW ADDITIONAL UTD SOLUTIONS AND SONE APPLICATIONS

In addition to the basic UTD edge and convex surface diffraction solutions described above, UTD solutions
for some other canonical shapes also exist; however, the latter are not described here because of space
Timitations. UTD type solutions for the radiation and mutual coupling associated with antennas on a smooth
convex surface are given in [16-19]; also, an approximate vertex diffraction solution may be found in
[5,11,20%. A result based on a recently obtained approximate UTD solution for the field scattered by a {ully
11iluminated, semi-infinite, right-circular perfectly-conducting cone 217 is shown in Figure 18, Also, UTD
results for the 3-D diffraction by a penetrable dielectric/ferrite s.rip in Figure 19 based on the work in
{227 are shown in Figures 20 and 21, for parallel and perpendicular pelarization of the incident field,
respactively., It is noted therein that even though the incident fields are TE, or ™, the scattered fields
are not simply TE; or TH; due to a coupling between the two which is introducad by the dielectric edge when
8'¢n/2, Finally, Figures 22 ind 23 show the application of UTD to deal with more realisiic shapes [23,241.
The ogival shape in Figure 22 has a circular duct on it, 1In Figure 23, the aircraft tuselage is modeled by a
best fit prolate spheroid near the antenna location, a more recent calculation employs a composite ellipsoid
fuselage model [258.
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