COMPONENT PART NOTICE

THIS PAPER IS A COMPONENT PART OF THE FOLLOWING COMPILATION REPORT:

TO ORDER THE COMPLETE COMPILATION REPORT, USE AD-A181 274.

THE COMPONENT PART IS PROVIDED HERE TO ALLOW USERS ACCESS TO INDIVIDUALLY AUTHORED SECTIONS OF PROCEEDING, ANNALS, SYMPOSIA, ETC. HOWEVER, THE COMPONENT SHOULD BE CONSIDERED WITHIN THE CONTEXT OF THE OVERALL COMPILATION REPORT AND NOT AS A STAND-ALONE TECHNICAL REPORT.

THE FOLLOWING COMPONENT PART NUMBERS COMPRISE THE COMPILATION REPORT:

AD#: P005 302 thru P005 319
AD#: P005 319 thru P005 321
AD#: P005 321 thru P005 323
AD#: P005 323 thru P005 325

Accession For

NTIS GRAI
DTIC TAB
Unannounced
Justification

Distribution/Availability Codes

Avail and/or Dist Special

OPI: DTIC-TID
NEW AIRBLAST CRITERIA FOR MAN

AUTHOR(S): Donald R. Richmond
John T. Yelverton
E. Royce Fletcher

SUBMITTED TO: Presented at the Twenty-Second DoD Explosives Safety Seminar, Anaheim Marriott Hotel, Anaheim, CA, 26-28 August 1986.
Sponsored by the Department of Defense Explosives Safety Board, Alexandria, VA 22331-0600.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
NEW AIR BLAST CRITERIA FOR MAN

Donald R. Richmond, John T. Yelverton and E. Royce Fletcher

Los Alamos National Laboratory
Life Sciences Division
Los Alamos, New Mexico 87545

Sponsored by

Department of Defense Explosives Safety Board
Alexandria, VA 22331-0600
INTRODUCTION

The purpose of this report is to present direct-airblast casualty criteria for personnel in the open and in foxholes. The criteria relate the incident blast overpressure required to produce 1-, 50-, and 99-percent incidences of casualties as a function of the overpressure duration. Hopefully, the information presented will contribute to establishing safe limits for personnel.

Injuries from the direct-overpressure effect are usually to the hollow or gas containing organs of the body. The lungs are considered to be the target organ because their disruption by the blast permits air to enter the circulation leading to an early death from coronary and cerebral air embolism. Associated with lung hemorrhage are bloody froth in the upper respiratory tract and an increase in respiratory rate. Contusions in the lining of the gastrointestinal tract and perforations at higher blast levels are common features of direct-blast effects. Hearing loss from eardrum rupture and neurosensory lesions in the inner ear are the more far reaching direct blast effects.

DEFINITIONS OF A CASUALTY

There are several definitions of a casualty. One is death or a person incapable of performing any task. Another is a person reduced to below 50 percent of his undegraded performance level. Still another is percent incapacitation, which relates the percent that the man's performance is degraded. In this report, a casualty is defined as a combat ineffective (CI), a person who can not perform his assigned task at 5 minutes.
Human incapacitation is almost always influenced by subjectivity and by the circumstances of the casualty as well as the severity of the trauma. The only available direct-airblast criteria are based on the severity of the observed injury in animals, and it is necessary to define incapacitating lesions as injuries which, had they occurred in man, would almost certainly produce a casualty. Once the criteria are formulated, one then looks for information from accidental explosions to evaluate them. Unfortunately, well-documented cases of human exposure to blast are rare—that is, the weight of the explosive and the exact distance from the explosion and, also, the explosions usually occur inside structures or it may not all detonate at once.

Recently, the need arose to evaluate existing direct-blast criteria for personnel and, if need be, formulate new ones. Blast criteria have not been scrutinized because for conventional ordnance fragments provide the dominant effect. Because of their very short duration, blast waves of very high overpressures (that occur close-in to the charge) are required for blast injuries. In the case of nuclear blasts, having very long-durations, much lower overpressures can inflict injury. However, other effects usually override direct-blast such as nuclear, thermal, and blast displacement.

Kokanakis at BRL reviewed the state-of-the-art for blast incapacitation and concluded that existing criteria were too stringent, Reference 1. He suggested that the \(LD_{1} \) lethality curve is too severe a measure of incapacitation and would underestimate casualty production as well as the effectiveness of blast producing weapons. The \(LD_{1} \) criteria state that fifty percent of the personnel exposed to a one-percent lethal airblast overpressure would become casualties from lung hemorrhage. The lung hemorrhage would be severe enough to produce bloody froth in the trachea, mouth, nose, and increase the respiratory rate. Exertion could be fatal. This \(LD_{1} \) curve reported by Bowen,
Reference 2, was based on the dose-response curves of about a
dozen species of animals exposed to blasts of different positive
durations from high explosives in the open and in shocktubes.
Actually, more than three quarters of the animals given an LD$_1$
level of blast sustain severe lung injury.

Kokanakis proposed relating the blast overpressure required
to produce threshold lung injury to 99 percent incapacitation
(defined as the percent degradation in performance). He also
proposed blast overpressures for a 50-percent incidence of
eardrum rupture as the threshold for incapacitation, Figure 1.

For our purposes, we did not consider threshold lung injury
as incapacitating. At threshold levels, the lesions consist of
petechial hemorrhages (pinhead sized) which we find have no
affect on respiration or blood gas concentrations. Although
eardrum rupture may result in hearing loss and, thus, correspond
to a casualty by definition (unable to hear), we would only
consider severe ear injury as possibly casualty producing, i.e.,
eardrum completely destroyed and disruption of the ossicular
chain that occur at the higher overpressures.

ONE-HALF LD$_{50}$ CRITERIA

The newly proposed direct blast criteria relate a 50-percent
incidence of combat ineffectives (CI) to one-half the LD$_{50}$ blast
level reported by Bowen, Reference 2. It assumes that 50 percent
of the personnel exposed to LD$_{50}$/2 airblasts would become CI from
lung hemorrhage. A review of pertinent blast-dose response data
from animals supports this assumption. There was sufficient lung
damage to increase the lung weight, produce bloody froth in the
upper respiratory tract, and increase the respiratory rate. At
LD$_{50}$/2 blast levels, the animals also sustained contusions of the
gastrointestinal tract and ear injury of a severe form in about
half the cases. A 99-percent incidence of CI was set at the LD$_1$
level and the 1-percent CI level was found by extrapolation.
downward using the average slope taken from the animal dose-
response curves. The $LD_{50}/2$ blast curve is about 3u percent
lower than the LD_1 curve and about twice the lung threshold
curve.

Figures 2, 3, and 4 present the percent-CI curves as a
function of maximum incident overpressure and duration of the
positive pulse. Basically, the curves are those from Bowen,
Reference 2, with the 50- and 1-percent CI curves added. Figure
2 applies to man standing or prone broadside to the blast wherein
the dynamic pressure was added to the incident side-on over-
pressure. Figure 3 gives the percent-CI curves applicable to man
prone end-on to the blast where the incident overpressure alone
represents the airblast dose. Figure 4 shows the incident blast
overpressure required for the indicated percent CI for personnel
against or close to a reflecting surface oriented normal to the
wave. In this instance, the reflected overpressure represents
the airblast dose. Over the 1- to 10-msec duration range, the
incident overpressure associated with CI_{50} decreases by a little
over a factor of 3 for the broadside and reflecting geometries of
exposure. Over the same span of durations, the CI_{50} for the
end-on situation drops by a factor of 5. All these curves apply
to blast waves that have the maximum overpressure at the leading
edge of the wave. They should be used with reservations to esti-
mate man's response to more complex blast waves that occur within
enclosures.

The threshold lung injury curve in the figure was set at
one-fifth the LD_{50} and was based on the aforementioned inter-
species studies. As already mentioned, the threshold lung injury
was a trivial lesion. However, at overpressure levels required
for this lesion, one would expect a high probability of ear
injury.
DIRECT BLAST CRITERIA FOR PERSONNEL IN FOXHOLES

Curves showing the incident overpressures necessary to produce 1-, 50-, and 99-percent CI for personnel crouching in foxholes as a function of the duration of the incident wave is presented in Figure 5. The curves apply to a standard two-man open foxhole (2x6x4.5 ft deep) oriented side-on to the blast. These curves are based on the data points showing the response of animals exposed to blast in the standard foxhole or ones of comparable geometries. The datum point for man was estimated for long-duration waves, Reference 3. Data points for sheep in the standard foxhole were obtained with 64-lb and 1-ton charges, Reference 4. Those for goats in open trenches side-on were from a test using 0.75 tons, Reference 5. The other datum point for goats, at 100 msec-duration, was obtained on a 100-ton shot with subjects in the open portion of a half-covered foxhole, Reference 6. Dogs were in the standard foxhole side-on to the blast from a 40-kt shot, Reference 7. The 50-percent CI curve was first established from this data and then the 99-percent and 1-percent CI curves were drawn 30 percent above and below it. The 99-percent CI curve is equivalent to an LD\textsubscript{1} curve.

In the side-on orientation, this foxhole affords more protection from the blast than when it is end-on. Little protection is provided to the occupants when the incident shock has a high angle of incidence. A crouching position is better than prone because the highest overpressures occur at the bottom of the foxhole.

DISCUSSION

A review of the published and unpublished information on animal response to an airblast indicates the LD\textsubscript{50}/2 direct airblast criteria is sound. Data for sheep exposed to airblasts
of short duration (3-5 msec), Reference 8, intermediate durations (15 msec), Reference 9, and dogs given long-duration blasts (400 msec), Reference 10, all support the proposed criteria. A well-documented case of human exposure to the accidental detonation of a 3.5-lb uncased charge indicates that casualty predictions by the criteria are assured, Reference 11.
REFERENCES

4. Richmond, D. R., Lcvelace Foundation for Medical Education and Research, Albuquerque, NM, unpublished data.

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Lethality and Damage/ Inj ury Curves Predicted for a 70-lb Man Applicable to the Freestream Situation (from Ref. 1). The "A" curve indicates 99% incapacitation and the "B" indicates the threshold for incapacitation.</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Direct Blast Casualty Criteria Predicted for Man Where the Long Axis of the Body is Perpendicular to the Direction of the Blast.</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Direct Blast Casualty Criteria Predicted for Man Where the Long Axis of the Body is Parallel to the Direction of the Blast.</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Direct Blast Casualty Criteria Predicted for Man Where the Body is Against a Reflecting Surface Perpendicular to the Incident Wave.</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Direct Blast Casualty Criteria Predicted for Man in an Open Two-Man Foxhole (2x6x4.5 ft) Side-On to the Blast.</td>
</tr>
</tbody>
</table>
Lethality and Damage/Injury Curves Predicted for a 70-lb Man Applicable to the Freestream Situation (from Ref. 1). The "A" curve indicates 99% incapacitation and the "B" indicates the threshold for incapacitation.
Figure 2. Direct Blast Casualty Criteria Predicted for Ma, Where the Long Axis of the Body is Perpendicular to the Direction of the Blast.
Figure 3. Direct Blast Casualty Criteria Predicted for Man Where the Long Axis of the Body is Parallel to the Direction of the Blast.
Figure 4. Direct Blast Casualty Criteria Predicted for Man Where the Body is Against a Reflecting Surface Perpendicular to the Incident Wave.
Figure 5. Direct Blast Casualty Criteria Predicted for Man in an Open Two-Man Foxhole (2x6x4.5 ft) Side-On to the Blast.