COMPONENT PART NOTICE

THIS PAPER IS A COMPONENT PART OF THE FOLLOWING COMPILATION REPORT:

To order the complete COMPILATION REPORT, use AD-A152 062.

The COMPONENT PART IS PROVIDED HERE TO ALLOW USERS ACCESS TO INDIVIDUALLY Authored sections of PROCEEDING, Annals, SYMPOSIA, etc. However, the COMPONENT should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

AD#: P004 821 thru P004 861
AD#: AD#: AD#: AD#: AD#: AD#: AD#: AD#: AD#:

Accession For
NTIS GRAE
DTIC TAB
Unannounced
Justification

By
Distribution/
Availability Codes
Dist
Special

This document has been approved for public release and sale; its distribution is unlimited.

OPI: DTIC-TID
CALCULATION OF TNT AND RDX CONCENTRATION LIMITS FOR FEEDLOT WATER SUPPLIES

By

David H. Rosenblatt, Ph.D.
US Army Medical Bioengineering Research and Development Laboratory
Fort Detrick, Frederick, MD

INTRODUCTION

The occurrence of a contaminant in groundwater frequently reflects on the quality of a drinking water supply taken from that source for use by human beings. Such a water supply may have to be replaced with another source, often at considerable expense. Should the groundwater be used for cattle in a feedlot, the demand is likely to be considerably higher than for a human population living in a similar area. Thus, it is prudent to ask whether the water, though unfit for direct human consumption, might not be satisfactory for cattle. Such a situation was brought to light in 1983-1984 at the Cornhusker Army Ammunition Plant near Grand Island, Nebraska, where the Army's investigations identified a groundwater plume containing significant levels of TNT and RDX. The problem was approached from two viewpoints: (1) Would the health of the cattle be seriously impaired? (2) Would their meat, after slaughter, contain excessive levels of the two munitions compounds?

CONTAMINANT LEVELS IN WATER BELOW WHICH TOXIC EFFECTS TO CATTLE ARE UNLIKELY

If a contaminant is not expected to be a carcinogen, toxicologists conduct chronic (lifespan) or sub-chronic (generally 90-day) exposure studies to define a no-observable-adverse-effects level (NOAEL) in a suitably sensitive species. They then apply a safety (or "uncertainty") factor to estimate an acceptable level for human exposure. Results of 90-day studies in rats and in monkeys, to which a safety factor of 1,000 was applied, were used to provide the acceptable daily doses to humans, D_Ts, for TNT and RDX, respectively (Table 1). The safety factor adopted for humans is unduly high for application to cattle; concern for the latter is almost exclusively economic. Moreover, allowable chronic levels for humans are conceived in terms of a lifetime of exposure; feedlot cattle are typically slaughtered at 16-18 months, as compared to their natural life span of approximately 20 years. Only part of those short lives is spent in feedlots. For these reasons, application of a safety factor of 10, rather than 1,000, to the NOAEL should be appropriate, i.e., an acceptable exposure level for cattle would be 100 D_T. At such a degree of exposure, minimal toxic effects, such as diminished growth rate, might occur in an occasional steer—leading to virtually undetectable economic loss. Based on the values in Table 2, the value for C'_w (allowable contaminant concentration in drinking water for feedlot cattle) can be calculated:

\[C'_w = \frac{100 \times D_T \times BW}{TW} = 1100 \text{ D}_T \]

713
Values of C_w' are therefore 1.54 mg/L for TNT and 1.10 mg/L for RDX, almost 16 times higher than values of C_w, which are based on considerations of human health.

CONTAMINANT LEVELS IN DRINKING WATER FOR CATTLE BELOW WHICH EXCESSIVE ACCUMULATION IN THE MEAT IS UNLIKELY

Estimates Based on Published Bioconcentration Factor Equation - Bioconcentration factors, BF, for compounds that are not readily metabolized and that concentrate almost entirely in fatty tissue, have been expressed in terms of the ratio of contaminant concentration in the fat of beef to the contaminant concentration in their feed (dry weight basis) at equilibrium, i.e., $BF = \frac{C_{fat}}{C_{feed}}$. The following equation, with input values listed in Table 2, involves internal conversion to a basis of the ratio of concentration in meat to that in the drinking water and introduction of a factor for meat consumption by humans:

$$C_w' = \frac{C_w \times R_w \times W_{feed}}{BF \times R_m \times W_w \times f_f} = \frac{C_w \times 2.0 \times 16.5}{BF \times 0.29 \times 45.4 \times 0.3} = \frac{C_w \times 8.355}{BF}$$

Hence, $C_w' = 141$ mg/L for TNT and 308 mg/L for RDX. Both of these values are higher than the solubility limits shown in Table 1, so that there should be no concern for contamination of the meat of cattle whose only source of TNT is their drinking water supply.

Estimates Based on Approximate Experimental Biological Half-Lives of Contaminants - One-time dosage of animals with radiolabeled TNT14 and of RDX15 can provide estimates of the biological half-lives of these compounds.

It is obvious from the tissue analyses for the TNT radiolabel (summary in Table 3) that significant storage of the compound or its metabolites (not distinguished, one from the other, by the methods used) occurs in various organs, not only in fat.14 Based on the fraction F of the label remaining in the internal organs, the value for k_1, 3.46 day$^{-1}$, leads to a half-life of about 0.200 day (4.8 hours); in these calculations, unrecovered material was ignored. A far more conservative calculation involves the assumption that any labeled material not in the excretum remained in the animal; the assumption, was for male dogs, and leads to a k_1 of 1.25 day$^{-1}$. With such a value, the allowable drinking water concentration for cattle, C_w', that would derive from it would be considered a worst-case approximation.

Residual carcass radioactivity of orally delivered RDX in rats after four days15 was 9.5%, which translates into a value of $k_1 = \ln (1/0.095) \div 4 = 0.588$ day$^{-1}$, or $t_{1/2} = 1.18$ days. The carcass residual concentration for the parent compound only (not a radiolabel) was only 0.6%, whence $k_1 = 1.279$ day$^{-1}$ and $t_{1/2} = 0.54$ day.

The present input-output argument involves equating the rate of ingestion of contaminant by cattle with the rate of loss when body concentration of the contaminant has reached equilibrium. (Note that no differentiation has been made between concentration in the whole animal and concentration in edible
portions; that degree of fine-tuning is probably not justified in these calculations.)

$$C'_w \times W'_w = k_1 \times C_{\text{meat}} \times BW_s$$

Substituting $C_w \times R_w/R_m$ for C_{meat}, one obtains

$$C'_w = \left(k_1 \times C_w \times R_w \times BW_s \right) / \left(W'_w \times R_m \right) = 76 \times k_1 \times C_w$$

For TNT, the more probable value of C'_w would be $C'_w = 76 \times 3.46 \times 0.049 = 12.8 \text{ mg/L}$, while the worst case value would be $C'_w = 76 \times 1.25 \times 0.049 = 4.7 \text{ mg/L}$.

For RDX, the more probable value of C'_w would be based on exclusion of metabolites, which were identified as "one-carbon intermediates," rather than potentially toxic RDX congeners, $C'_w = 76 \times 1.279 \times 0.035 = 3.4 \text{ mg/L}$. The value derived on the basis of the radioactive label's fate is about half that.

Estimate for RDX Based on Subchronic Exposure in Rats16 - Rats provided daily with drinking water saturated with RDX (50-70 mg/L) accumulated the compound more or less evenly in the various organs. At the end of 90 days, the concentration in the organs (brain, heart, liver, kidney, stomach, colon, and fat) ranged from 0.20 to 0.65 mg/kg. Thus, one may assume a value of C'_w/C_{meat} of 100. Since $C_{\text{meat}} = C_w \times R_w/R_m = 6.9C_w$, $C'_w = 690 \times C_w = 24 \text{ mg/L}$.

CONCLUSIONS

1. From the point of view of cattle safety, pollutant limits of 1.54 mg/L for TNT and 1.10 mg/L for RDX in drinking water are suggested. This statement does not imply dire consequences from exceeding these values to some degree; it only suggests the need for increased observation of the state of animal health.

2. On the basis of published bioconcentration equations, even drinking water saturated with TNT or RDX is predicted not to pose a problem of undue flesh contamination. These compounds do not concentrate heavily in body fat, but evidently do accumulate in experimental animals to a greater degree than the equations predict. Of the drinking water concentration levels estimated to be acceptable, with regard to flesh contamination, according to various assumptions, the most reasonable appear to be 13 mg/L for TNT and 24 mg/L for RDX. These permissible values are considerably higher than levels that have been found in off-post wells near Cornhusker Army Ammunition Plant.17
TABLE 1. PHYSICOCHEMICAL PROPERTIES AND ACCEPTABLE DAILY DOSE

<table>
<thead>
<tr>
<th>Property</th>
<th>TNT</th>
<th>Reference</th>
<th>RDX</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log K_{ow}</td>
<td>1.84<sup>a</sup></td>
<td>6,7</td>
<td>0.87</td>
<td>8</td>
</tr>
<tr>
<td>BF (calc'd)<sup>b</sup></td>
<td>2.90 x 10<sup>-3</sup></td>
<td>9</td>
<td>9.51 x 10<sup>-6</sup></td>
<td>9</td>
</tr>
<tr>
<td>Solubility in Water (mg/L)</td>
<td>124 (20°C)</td>
<td>10</td>
<td>60 (23.5°C)</td>
<td>8</td>
</tr>
<tr>
<td>Acceptable Daily Dose, D_T (mg/kg)</td>
<td>1.40 x 10<sup>-3</sup></td>
<td>1</td>
<td>1.00 x 10<sup>-3</sup></td>
<td>1</td>
</tr>
<tr>
<td>Drinking Water Criterion,<sup>c</sup> C_w (mg/L)</td>
<td>0.049</td>
<td>1</td>
<td>0.035</td>
<td>1</td>
</tr>
</tbody>
</table>

^a Calculated from the value for trinitrobenzene,^b with suitable adjustment for the methyl group.^c

^b Through equation, log BF = -3.457 + 0.500 log K_{ow}.

^c D_T x 35, expressed in mg/L.

TABLE 2. EQUATION INPUT DATA NOT SPECIFIC TO THE CONTAMINANTS

<table>
<thead>
<tr>
<th>Definition of Symbol</th>
<th>Symbol</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight of a steer</td>
<td>B_{Ws}</td>
<td>500 kg</td>
<td>11</td>
</tr>
<tr>
<td>Fraction of fat in beef</td>
<td>f_f</td>
<td>0.3</td>
<td>12</td>
</tr>
<tr>
<td>Mass of fat in adult beef cattle</td>
<td>M_f</td>
<td>75 kg</td>
<td>13</td>
</tr>
<tr>
<td>Rate, per day, of human meat consumption</td>
<td>R_m</td>
<td>0.29 kg</td>
<td>12</td>
</tr>
<tr>
<td>Rate, per day, of human water consumption</td>
<td>R_w</td>
<td>2.0 L</td>
<td>13</td>
</tr>
<tr>
<td>Wt. of feed ingested daily by adult cattle</td>
<td>W_{feed}</td>
<td>16.5 kg</td>
<td>12</td>
</tr>
<tr>
<td>Daily wt. of water consumed by adult cattle</td>
<td>W_w'</td>
<td>45.4 kg</td>
<td>13</td>
</tr>
<tr>
<td>Distribution</td>
<td>Rat</td>
<td>Mouse</td>
<td>Rabbit</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>M (%dose)</td>
<td>F (%dose)</td>
<td>M (%dose)</td>
</tr>
<tr>
<td>Internala (% of dose)</td>
<td>1.09</td>
<td>1.89</td>
<td>2.68</td>
</tr>
<tr>
<td>Excretionb (% of dose)</td>
<td>90.53</td>
<td>100.54</td>
<td>77.38</td>
</tr>
<tr>
<td>Recovered (% of dose)</td>
<td>91.62</td>
<td>102.43</td>
<td>80.06</td>
</tr>
<tr>
<td>Internal + Recovered = F</td>
<td>0.0119</td>
<td>0.0185</td>
<td>0.0335</td>
</tr>
<tr>
<td>(100-Excretion) ÷ 100 = F_max</td>
<td>0.0947</td>
<td>-</td>
<td>0.2262</td>
</tr>
<tr>
<td>(k_1(\text{day}^{-1}))c = ln (1/F)</td>
<td>4.43</td>
<td>3.99</td>
<td>3.40</td>
</tr>
<tr>
<td>(t_{1/2}d = 0.693/k_1)</td>
<td>0.156</td>
<td>0.174</td>
<td>0.204</td>
</tr>
</tbody>
</table>

b. GI tract plus contents, feces, and urine.
c. The disappearance rate constant, \(k_1\), is assumed to be first-order, i.e., the disappearance rate is proportional to the amount present at any given time.
d. \(t_{1/2}\) is the half-life, assuming first-order disappearance kinetics.
REFERENCES

1. Dacre, J.C. 1980. Recommended interim environmental criteria for six munitions compounds. US Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Frederick, MD. (DRAFT).

17. Barkley, J.J. and D.H. Rosenblatt. 30 December 1984. Memorandum for Record, Subject: Meeting to determine the potential for BRDL support for USATHAMA as regards groundwater contamination at Cornhusker AAP, US Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, Frederick, MD.