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Flexible Structure Control in the Frequency Domain

R. Harding

Dr. A. Des

General Electric Space Division
Spacecraft Operations

Control Systems Design

Abstract

New techniques to analyze structure and controller interaction in the frequency
domain are defined and used to determine the modal damping requirements of the
spacecraft structure to assure control system stability and performance. Gain
and phase versus frequency (Bode and Nyquist) techniques are described which
predict system stability in the presence of uncontrolled structural modes and
errors in a priori natural frequencies and quantify control system margin for
these modes. The techniques are applied to an optimally controlled single axis
satellite with very large solar arrays. Control system actuator and sensor p
configurations are based upon system controllability a2d observability of four
dominant structural modes. Verification of the techniques is by simulation.
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INTRODUCTION 0

Preliminary analyses of Large Space Structures (LSS) have brought to light
difficult problems of designing a control system that has to meet very accurate
pointing requirements in the presence of low frequency structural modes. To
satisfy pointing accuracy requirements, the bandwidths of the attitude control
system (ACS) have to be at least one or two orders of magnitude higher than
classical development techniques can provide. Nearly all past and present
spacecraft have an ACS with frequency bandwidths which are about 2% of the
frequency of the fundamental structural mode. This frequency ratio allows the
response of the ACS to be attenuated sharply at frequencies above the bandwidth
of the controller through the use of low pass filters.

Higher bandwidths can be achieved for spacecraft with linearizable dynamic
systems by optimizing quadratic cost functionals in the presence of gaussian
noise. These optimal linearizable quadratic Gaussian (LQG) designs seem to be
a good choice, although, they have several drawbacks. The LQG controllers
require much greater resources in the onboard computers and can be unstable if
the spacecraft have dominant high frequency structural modes not accountned for
in the design. Good estimates of the modeshapes, the modal critical damping
ratios and the natural frequencies of the spacecraft structure are required for
the LQG controllers to be effective. Errors in any of these parameters may
result in unstable conditions and necessitate structure redesign, controller
redesign, or inclusion of some kind of parameter estimation/correction 0
technique. The LSS trend causes the control and structure frequency spectrums
to overlap. Interaction of these disciplines becomes of paramount importance
to insure stability as well as to meet structure size, weight, stress and other
constraints. Preliminary design will be an extremely dynamic process that must
include trades with controller complexity and structure damping design. Active
versus passive structure damping is much a trade that is addressed in this
paper.

Frequency domain design and analysis fe'L multivariable control problems has
been a subject of intense investigation in recent years. Unconditional system
stability methods for multivariable control is approached in a variety of ways
that include eigenvalue analysis, singular value determination (73, positivity
concepts [2] , and generalised Nyquist trajectories [6,93. The approach
presented here is pragmatic in that LQG methods are applied to a flexible
spacecraft, but, it is also innovative with frequency response analysis
techniques that give insight into particular state element sensitivities and
stability margins.

SUQARY

Attitu4. anti flexible mode control of a spacecraft with very large solar arrays
is simulated and analyzed for stability in the frequency domain. The LQG
controller developed for this investigation uses three torque producing ,
actuators, a rate sensor, an absolute position sensor, and four relative
position sensors. The LQG controller actively damps structural modes while
causing the attitude transient response settling time to be an order of
magnitude faster than tht rezronse of a clas,;cvl rontriller. Frequ,•-cy
response analyses show the second dominant mode to be notched from the LQG
controller response due to that mode's small observability and controllability. 0
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This conclusion is verifiad by simulation. Adding passive damping to the
second dominant mode significantly enhances plant stability margin and
decreases solar array transient response settling time. Control spillover
anleysis is accomplished by adding two uncompensated modes to the true plant
system dynamics. Frequency response analysis with simulations show the system
to be stable with uncompensated modes even with large error& in a priori
structure critical parameters. The frequency response techniques provide a
graphic ueans of measuring stability margins of state elements and prediction
of critical parameter errors that can casue instability. Examples of a priori
natural frequency error and modal admittance error tolerances are given with
results from simulations to validate these assertions.

OPTIMAL CONTROL SYNTHESIS

Most previous satellite controller designs have been able to meet the
perform-tincs specification while avoiding active control of any structural mode.
The standard design procedure rolls off the controller response at higher
frequencies so that the system response is highly attenuated at the modal
natural frequencies. Avoiding these modes while increasing the bandwidth of
the controller requires additional compensation for notching the contrcller at
the structure natural frequencies. A quadratic performance index optimization
method that allows the designer to choose the states to be controll-ed has
gained widespread appreciation as an alternative to the classical approach.
This LQG design approach leads to optimal state estimation and the control
gains based upon a weighting of the state elements and control effort. In this
manner, identifiable structural modes can be included in the controller instead
of avoided as in the case of a classical control design. This type control
will actively damp controllable and observable modes and enhance attitude
control performance. Development of an LQG controller is outlined in the

* following paragraphs.

* A linear time-invariant system can be represented in the form

x-Ax - Bu w ~

y Cx +V

* where,

A - nxn system matrix

P B - nxr control matrix

C axn measurement matrix

x nxl state vector

y uxI sensor output vector

u --I control vector

w -nx1 nloise vector
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v " mxl measurement noise vector

n - number of states

r number of actuators

m - number of sensors

The controller is designed based on estimates of A,B,C, and x so the equations

for the LQG design become

A A
x- Ax + Bu + w

A
y " Cx v v

A
where, , signifies an estimated entity and w and v are uncorrelated white

noise vectors with zero mean. Detailed information for minimizing a scalar

performance index as a function of the weighted norm of the state and control

effort can be found in several optimization texts (3,8,103. Minimizing the

performance index leads to an optimal control law

u~t) - Kl(tl)X(t) )|

where KI is rxn optimal gain matrix which is found via the following relation.

KI(t) - -R -(t)B (t)PI(t) (2)

The Pl(t) matrix is obtained by solving the backward matrix Riccatti Equation

given by

A AT A -1 AT
Pl(t) " -P1(t)A(t) A (t)Pl(t) + P(t)AB(t)Rl It)W (t) P(t)

-Qi (t) (3)

where,

RI ' constant mxm control weighting matrix

A A
- constant nxn control error weighting matrix

A
*n " number of estimated states

A
In a similar fashion, the optimal state estimate, x is found by solving the

following equation.

A A A A#(4
x _x + Bu + K2(y " (4)

0 Ii

The optimal estination gains, K2, are found via

K2(t) - P2(t)C (t)R2 (t)

and P2 is found by sulv.ng the forward matrix Riccatti equation
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A AT AT -I A
P2(t) - A(t)P2(t) + P2(t)A (t) - P2(t)C (t)R2 (t)C(t)P2(t)

+ Q2 (t) (6)
where,

... ....... .....

R2 constant mxm measurement noise covariance matrix
A A

Q2 - constant nxn state t.-,se covariance matrix

The matrix Riccatti equations, (3) and (6), are integrated until P1 and P2
reach steady state values. Due to nonlinearities of these equations, it is
useful to transform (3) and (6) to a set of linear equations to expedite their
solutions [8) .

REDUCED ORDER MODEL
Truncation of the structural modes to only those modes that must be controlled
is very important in order to minimize onboard processing. However, a robust

controller must include all dominant modes in its state space, otherwise
instabilities may result. Truncation of an infinite set of structural modes to
a reduced order model (ROM) is based upon the determination of the dominant
modes which will yield maximum deflections for a given input. The following
equation facilitates dominant mode identification.

*!

2

fm 2iWn•i ((7)

where,

-mi maximum deflection at the actuator due to the ith mode

fm -max torque of the actuator

modal admittance at the actuator of the ith mode

;j - critical damping ratio for ith mode

n4 natural frequency for ith mode
n,

Equation (7) relates maximum modal deflection for a maximum input torque. The
greatest structural deflections are due to the modes with the largest
modeshapes at the lowest frequencies. The first thirty modes for the structure
considered are generated from a finite element computer program. The rigid
body states and four out of the thirty computed modeshapes comprise the ROM. P
The four dominant modes and natural frequencies are

First Symmetric Bending (.0407 Hz)

First Asymmetric Bending (.0904 Hz)
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Second Asymmetric Bending (.1500 Hz)

Third Asymmetric Bending (.2212 Hz)

Two additional modes are used in the truth model for spillover investigation.
Their maximum deflections are at least one order of magnitude less than the
four dominant modes and, therefore, nct included in the ROM controller. These
two uncontrolled or residual modes are

Second Symmetric Bending (.0957 Hz)

Third Symmetric Bending (.1641 Hz)

The capability of the controller to maintain attitude and modal control without
knowledge of residual modes is one aspect of the robustness of the system in
the presence of destabilizing factors. All structural modes respond in varying
degrees to an actuating input, but, a robust controller does not excite
residual modes to the point of instability. Instead, it ignores these modes p
allowing the structure to damp their response. To date, as many as four
residual modes have been included in the true plant and results from .-

simulations show only slight performance degredation.

* ~CONTROLLABILITY A-ND OBSERVABILITY

Actuator and sensor configurations also have a large impact on the controller
performance and stability. System observability and controllability must be
investigated when designing any control system to insure that the controlled
and estimated states adequately span the true state space. Several methods to

i check for system ob~ervability and controllability give go/no-go type p
information but do not necessarily indicate one configuration as better or
worse than another. This investigation applies two different approaches to
define the sensor and actuator configurations. One approach maximizes the ..-

determinant of the observability ano controllability Gramiam matrices as a
quantitative configuration selection criteria. The other approach maximizes

do the real part of the eignevalues for the closed loop estimator and controller.
"Both methods evaluate various number and locations of torque producing

* 'actuators and various number, location, and type of sensors.

* Briefly, observability and controllability Gramian matrices are defined by tht
following equations [103.

tf
) AT AT

.. 0(to'tf) F T(t,to)C (t)C(t)F(t,to)dt
0 S0... • -.. I.

t
0

() f A AT AT
1Mc(to,tf) JF(tfjt)B(t)B (t)F (tf,t)dt

to

A A A
Where F is the system state transition matrix and B and C are time-invariant
matrices defined earlier. A zero determinant is indicative of an unobservable
or uncontrollable system.
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Evaluation of the closed loop controller and observer eigenvalues is an
alternative to the gramian matrix approach. The closed loop dynamics of each
can be represente.d in state variable form as

A A FA]A
x - K2C x

Maximizing the negative real parts of the eigenvalues is the configuration
selection criteria which provides the most stable system possible. The -'-

eigenvalues are a direct indication of system controllability and
observability. An eigenvalue with a zero or positive real part is indicative
of an unstable system.

Results of the two methods correlate well which provides an easy and straight
forward method for velection of actuator and sensor configurations. At this
point in the design phase, the final configurations comprise the minimum amount
of hardware for simplicity while assuring adequate system controllability and m
obtervability. Baseline actuator and sensor locations are shown in figure 1.
The sensor and actuator complements that are used throughout the anlaysis
portion of this study are listed in table 1.

LQG AND CLASSICAL CONTROL COMPARISON b
The frequency and time responses from LQG and classical controllers will now be
compared. The functional block diagram of the classical controller is shown in I
figure 2. This block diagram is in the form of a single input single
output (SISO) system to control the center body rate and attitude. The open
loop frequency responses of the classical controller are shown in figures 3
and 4. The gain plot in figure 3 clearly exhibits the low bandwidth in order
avoid the first mode.

The multiple input mu-tiple output (MIMO) frequency response of the rigid body
rate and position states can be evaluated to provide a comparison of the
capabilities of the two different controllers. The open and closed loop
response of the LQG controller is shown in figures 5 and 6. The gain plot in
figure 5 indicates a bandwidth which is almost an order of magnitude higher
than that for a classical controller because of multiple leads near cross over.
At structural frequencies, it is apparent that three modes are actively
controlled and one mode, the second dominant mode, is notched from the
controller due to that modes poor. controllability and observability. One
expects effects of this mode to be the most evident. Transient response,
figures 7 and 8, of the center body and solar array angular position show that
the LQG controller has a much faster response with a settling time less than
300 seconds while the classical controller requires more than 3000 seconds to
settle. The extremely long settling time for the classical controller is
indicative of it's inability to maintain precise attitude control when the P
spacecraft is influenced by outside disturbances such as payload or
environmental torques. The quick transient response of the center body is
performed at some expense of exciting the flexible modes while the classical
controller accomplishes its objective since it does not excite any flexible
modes. In fact, the difficult second dominant mode is the cause of the LQG
controller oscillations beyond 200 seconds. Controllability and observability
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Location 5 Loca iof Location 3
"" ~~Location 41 Location , 2 -.-

FIGURE 1. ACTUATOR AND SENSOR LOCATIONS

ELEKENT LOCATION TYPE

Actuator ] Torque producing

Actuator 2 Torque producing

Actuator 4 Torque producing

Sensor I Angualar rate

Sensor 1 Angular position

Sensor 2 Relative angular position (1) 0

Sensor 3 Relative angular position

Sensor 4 Relative angular position

Sensor 5 Relative angular position

Table 1. ACTUATOR AND SENSOR COMPLEMENT

Note 1. A relative position sensor measures local angular deflections

relative to the center body.
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of this mode can be increased by adding, or to some degree relocating, sensors
and actuators. Instead of increasing the complexity of the control system, we
first investigate the advantages of adding passive damping in order to damp the
second dominant mode.

EFFECTS OF PASSIVE DAMPING

The LQG controller gains are based on a very small damping ratio, 0.0005, for
all flexible modes. This overly conservative and simplistic approach is taken
to observe the capabilities of an LQG controller when, essentially, all damping
hsd to be provided by the control system. Realistically, damping ratios will
vary and are expected to be an order of magnitude greater which should make the
controller design somewhat more stable than shown in these analyses. Indeed,
this assertion is graphically depicted by figure 9. Stability of the
controller increases with larger values for the damping ratio. The real part
of the aigenvalue associated with the second dominant mode is a direct measure
of stability and can be thought of as the effective system damping for that
mode due to combined structure and controller damping. Transient response
simulations, figure 10, also indicate a more stable system as the damping ratio
is increased. However, increased damping reaches a point of diminishing
return. Increased active modal control derived from damping ratios greater
than .05 will require controller gain recalculation. So, it appears that
active and passive damping trades can be made with performance and stability
margins. This type of trade-off is certainly not new to system designers and
it is encouraging to be able to 4uantify such trades in modern control theory
applications.

FREQUENCY DOMAIN ANALYSES S

Assuming the synthesis of an LQG controller leads to an acceptable system, a
designer must then squire control system margin and sensitivity information.
Many studies during the last several years have shown that ROM controllers are
sensitive to certain critical parameters [1]. Modelling errors of parameters
such as damping ratios, modal natural frequencies, and modal admittances can _
invalidate whatever stability margins the designer thought existed in the

is also crucial to controller robustness for residual mode rejection. Further,
inclusion of a particular mode in the ROM state space does not assure adequate
modal control. Identifying problem modes early in the design phase is

* extremely useful for structure or passive damping design. All these concerns S
motivate development of analysis tools to show strengths and weakness of a

* control system design.

Most SISO controller designs rely heavil) .i frequency domain analysis (as well
as frequency domain synthesis such as root locus (5)), but, these well known
methods are currently in use only when system dynamics can be modelled in terms

of scalar quantities and ordinary differential equations. A distributed
parameter system with infinte modes is reduced (at some risk) to the major
modes in order to simplify system dynamic models from partial to ordinary
differential equations. This reduction allows the plant to be expressed as a
finite MIMO system. Recent HIM0 frequency response techniques draw parallels

* with SISO stability criteria in order to assure global stability over some

CCC-13
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range of plant perturbations. Yet, these other MIMO techniques seem to give a ,
stable/unstable indication at the system level with little insight into the
stability or sensitivity of the state elements.

This paper presents results of frequency analysis methods that answer many of
the stated concerns as well as provide insight into the state elements of a ROM
controller. The examples highlight these capabilities and include simulation _
results to support frequency response predictions. One concludes that the
frequency response anlaysis technique shown here is indeed useful and the
wealth of information derived for SISO systems is applicable to MIMO systems aswell. 1- 5

FREQUENCY DOMAIN APPROACH

All frequency response analyses rely on development of the system transfer
function. The concept of relating a systems output to the input, figure 11, is
fundamental to system dynamics and feedback control. The MIMO open loop
transfer function, G, is defined by

C -- (zo/x 1 )

where,

A A A
G G(A,A,B,B.C,C,K1,K2,jw)

Derivation of the system open loop transfer function is a straight forward time
to frequency domain transformation with appropriate substitutions using
equations (1) through (4). Open loop response requires loop cloture of all
states except the state of interest wich rt•ults in a scalar tranfer function. "
This transfer function is used to generate familiar Bode, Nyquist, and Nichols
plots or other frequency domain type graphs which have been widely used for
SISO analyses. Once the open loop response is obtained, the closed loop
frequency response is easily calculated from the relation

CL OL OL ,

The following examples are intended to show the validity of this approach as
well as some interesting applications.

EXAMPLE: NATURAL FREQUENCY ERROR TOLERANCE

LQG derived control and estimation gains are based on critical, a priori
structure parameters such as modal natural frequencies. Errors in the assumed
dynamics will result in non-optimal gain calculations such that system
instability will eventually result as errors become too large. Tolerances to
this type of error is essential because the true plant parameters are unknown -.
to the control aystems designer. Open loop gain and phase (Bode) plots for the
second dominant mode are shown in figures 12 and 13. A characteristic 180
degree phase shift coincides with the peak in gain at the modal natural
frequency. It is apparent from figure 13 that the phase margin of the system
may be negative at .014 Hz (i.e. an 84% error). Therefore, one expects the
system to be unstable if the natural frequency of this mode was overestimated

CCC-15
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I by some amount greater than 84%. Nyquist plots are very useful fcr modal 0

analysis because of a modes characteristic circular contour when mapped onto
the G plane. Nyquist stability criterion relates number of encirclements of

Sthe -1 + jO point to system poles and zeroes in the right half plane. The
- Nyquist plot, figure 14 exhibits an encirclement of -1 + jO with an 84% natural

frequency error as expected from the Bode plots. Transient response
simulations, figure 15, correlate very well with the Bode and Nyquist stability .
predictions that successful control is possible until the a priori second
dominant modal frequency is overestimated approximately 84%. One should note
from the Bode plots that underestimating this natural frequency will always

* result in a stable system due to some small amount of phase margin at higher
frequencies.

EXAMPLE: MODAL ADMITTANCE ERROR TOLERANCE

*. Any ROM controller is susceptable to controller spillover. Two residual modes
are included in the true plant for closer examination of this phenomenon.
Figures 16 and 17 depict the Bode plots for the larger of these two residual
modes. Closer inspection at the modal natural frequency shows a 27 DB of gain
margin which at first glance appeared to be marginally stable. This is
actually an indication of modal admittance error margin because the mode shape
magntitude defines the height of this curve. In short,

gain margin (DB) - 20 log(f(4 2 )) 0

where f is the modal admittance. Working backward, one finds that 27 DB of
gain margin equates to a factor of 4.73 error margin in the modal admittance
values. Multiplying the admittances by 4.73 raises the gain curve so that the
system is marginally stable due to zero gain and phase margins. Multiplying by
a factor greater than 4.73 results in negative gain margin thus predicting
system instability. Transient response simulations, figure 18, support the
frequency response predictions.

CONCLUSIONS

The control synthesis and analysis techniques presented here will supplement
• other MIMO control system approaches to provide important capabilities for LSS
. control design. The performance advantages of LQG controllers for LSS are

readily apparent. Precision pointing and quick transient response are very
*O desireable attributes that an LQG controller can provide even with negligible

structural damping.

However, to say the LQG controller can "do it all" oversimplifies the LQG
controller synthesis problem. Constraints on number, location, and, accuracy
of the actuators and sensors as well as onboard computational resource

* limitations will have to be considered early in the design. The designer may p
not have the desired flexibility in order to actively control all dominant
modes. The inability to control the second dominant mode is a case in point.
Simulations show that the center body can maintain precise pointing in spite of
continued oscillation of the second dominant mode. This condition may be
acceptable from a control system point of view, however, concerns with
component or structure fatigue could render this design unacceptable thus

CCC-1 7 .7
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establishing a requirement for passive damping in lieu of additional actuators
and sensors for greater active control. Passive damping can ailso increase -

stability margins so that performance enhancements are possible.

System design trades to optimize cost, performance, and reliability as a
combination of active and passive damping will require more detailed
investigation as spacecraft requirements become identified. Development and
further refinement of frequency response analyses such as the technique
presented in this paper will become the tools to perform system trades
necessary for successful LSS control system design.
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