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BOUNDARY~LAYER LINEAR STABILITY THEORY
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Leslie M. Mack

Jet Propulsion Laboratory
Californis Institute of Technology

nos e AD-P004 046

1. INTRODUCTION
1.1 Hiatortical background

Most fluid flows are turbulent rather thsn lsminar and the reason why this is so hss been the object
of study by several generstions of investigators. One of the earliest explanations was that laminar flow
18 unstable, snd the linear instebility theory was first developsd to explore this possibiiity. Such an
spprosch tells nothing about turbulence, or about the detsils of its tnitial appearance, but it does
explain why the original laminar flow cen no longer exist. A series of early papers by Rayleigh (1880,
1887,1892,1895,1913) produced sany notable resulta concerning the instadbility of inviscid flows, such as
the discovery of inflectional inatability, but little progresa was made toward the original goal.
Viscosity was comaonly thought to act only to atabilize the flow, and flows with convex velooity profiles
thus appesred to be atable., In a review of 30 years of effort, Noether {1921) wrote: "The method of
small disturbances, which can be considered essentially closed, haa led to no useful results concerning
the origin of turbulence.”

Although Taylor (1915) had already indicated that viscosity can destadilize a flow that is otherwise
stable, it remainel for Prandtl (1921), in the same year as Nosther's review paper, to independently make
the same discovery as Taylor and set in motion the investigationa that led to a viscous theory of
boundary-layer instability a few years later (Tollmien (1929)]. A aeries of papera by Schlichting (1933a,
1933b,1935,1980), and a aecond paper by Tollmien (1935) resulted in a well~developed theory with a amall
body of numerical resulta., Any expectatiou that instability and transition to turbulence are synonomous
in boundary layers was dashed by the low value of the critical Reynolds number Re po 1.6, the x Reynolds
number at which inatability firat appears. Tollmien's valus of ﬂo" for the aluius boundary layer was
60,000, and even in thg high turbulence wind tunnela of that time, transition waa obaerved to occur
betwveen lot = 3.5 2 107 and ' x 10°, In what can be considered the earliest application of linear
stability theory to transition prediction, Schlichting (1933a) caloulated the smplitude ratio of the mocat
amplified frequency as a f.inotion of Reynolds number for a Blaaius boundary layer, and found that thia
quantity had valuea betweer five and nine at the observed lo'_.

Qutside of Germany, the stability theory received little acceptance decause of the failure to observe
the prudicted wvaves, mathematical obacurities i{n the theory, and also a general feelicrg that a linear
theory could not have anything useful to say about the orfgin of turbulence, whioh 1s inherently
nonlinesr. A good idea of the low repute of the theory can be gained by reading the paper of Taylor
(1938) and the discuasion on this aubjeot {n the Proceedings of the 5th Congreaa of Applied Mechanics held
tn 1938, It was {n this atmoaphere of disbelief that one of the moat celebrated experiments in the
history of fluid mechanics was ocarried out. The experiment of Schudbauer and Skramatad (1937}, which waa
performed {n the early 1940's but not pudliahed unti] aome yeara later because of wartise cenaorship,
completely reversed the prevailing opinion and fully vindicated the Gottingsa proponents of the theory.
This experiment unequivocally demonstrated the existence of instability wavea {n a boundary layer, their
oonnection with transition, and the quantitative desoription of their behavior by the theory of Tollaien
snd Schlichting. It made an encrmous impact at the tima of fta publication, and by its very completenesa
seemed to answer most of the queationa concerning the linear theory. 7To0 a large sxtent, aubsequent
experimental work on transition went i{n other directions, and the posaibility that linear theory can be
quantitatively related to transition has not received a decisive experimental teat. On the other hand, {t
is generally accepted that flow psrameters such aa pressure gradient, suoction and heat tranafer
qualitatively affect transition in the manner predicted by the linear the~~v, and {n particular that a
flow predicted to by stabie dy the theory should remaip laminar. Thi. eipectation has cften deen
deceived, [Even 80, the linear theory, in the form of the e’, or N-fsctor, method first propoaed by Saith
and Camberoni (1956) and Yan Ingen {1956), fa today in routine use in engineering atucies of laminir flow
control [see, o.g., Hefner and Bushnell (1979)). A good introduction to the complexities of transitioa
and the difficultiea fnvolved in trying to arrive at a ratfonal approach to its prediction can de found (n
three reports dy Morkovin (1969,1978,1983), and a review article dy Reshotko (1976).

The Cersan iovestigatora were undeterred by the lack of acceptance of the atadility theory elsewhers,
and made nuaerous applications of it to boundary layera with pressure gradients and auction, This work ia
susmarised in Sohlichting’a book (1979). V¥e may make partiocular mention of the wvork by Pretsch (1942), as
he provided the oanly large body of nuaserical resulta for exact boundary-layer solulions bdefore the advent
of the compuler age by ocaloulating the atadility oharsoteriatica of the Falkner-Skan family of velooity
profiles. 7The unconviacing mathematica of the asymptotio theory was put on a aore solid foundation by Lin
(194%) and Wasow (1948), and this work haa been suciesafully coatiaued by Reid and his colladorators
[Lakin, Ng and Reid (1978)].

Whea 1o about 1960 the digital ocosputer reached a stage of development persitting the direot solution
of the primary differential equations, numeriocal reaults vere obdtained froa the linear theory during the
next ten years for many different boundary-layer flows: three-dimensionsi boundary layers {Wrown (19%9),
following the important theoretioal contridution of Stuart in Gregory et al. {1955)]; free-coavectios
boundary layers [Kurts and Crandall (1962) and Naohtaheis (1963)]; compressibdle boundary layers [Brown
(1962) and Mack (1965,1969)); boundary layera oa compliant wvalla {Landanl and Kaplan (1965)); o
recosputation of Falkner-Skan flows [Vassan, Okasuras and 3mith (1968)]; unateady boundary layers
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[Obremski, Morkovin and Landahl (1969)]}; and heated-wall water boundary layers [Watzan, Okamura end Smith
(1968)]). More recent work has focussed on three-dimensional boundary layers in response to the renewed
interest in laminar-flow control for swept wings [Srokswski and Oraszag (1977), Maok
(1977,1979a2,1979b,1981), Nayfeh (1980a,1980b), Cebec! and Stewartson (1980e,1980b), Lekoudis (1979,1980)].
A notadle contribution to linear atability theory that stands somewhat apart from the prinoipal line of
development has been provided by Caster (1968,1975,1978,1981a,1981b,1982a,1982d) in a series of papers on
the wave packets produced by a pulned point source in a boundary layer. Gaster's work on this probles
also includes a major stability experiment [Gaater and Grant (1975)].

There are a number of general references that are helpful to anyone interested in the linear theory.
Review articles are by Schlichting (1959), Shen (1954), Stuart {1963) and Rei1d (1965)., Books are by Lin
(1955), Betchov and Criminale (1967), and Drazin and Reid (1981). Schliohting's book cn boundsry~layer
theory (1979) contains two rhapters on stability theory and transition, and Monin end Yaglom's book on
turbulence (1971) contains 3 lengthy chapter on the same subject, as does the book by White (1974) on
viscous flow theory. Reviex- nf transition have been given by Dryden (1959), Tani (1969,1981), Morkovin
{1869,1v7%,1983), and Resho. ... (1976), An extensive discussion of both stability theory and transition,
not all at high speeds {n spite of the title, may be found in the recorded lectures of Mack and Morkovin
(1971).

1.2 Elements of stadbility theory

Before we get into the main body oi the subject, a brief introduction is in order to orient those who
are new to this field. The stability theory is mainly concerned with individual sine waves propagating in
the boundary layer parullel to the wall, These waves are waves of vorticity and ere commonly referred to
as Tcllelen-Schlichting waves, or TS waves, or simply as instability waves, The amplitudes of the weves,
which vary through the boundary layer and die off exponentially in the freestreas, are small enough so
that a linear theory may be used. The frequency of a wave i3 . and the wavenunmber is k = 2-/:, where
i3 the wavelength, Tha wave may be two-dimensional, with the lines of conatant phase norsal to the
freestrepn direction (and parallel to the wall), or it may be oblique, in which case the wavenumber is a
vector k at an angle . to the freestreas direction with streamwise (x) component : and spanwise (z)
component ., The phase velocity c is always less than the freestream velocity !!1. so Lhat at some point
ir. the boundary layer the mean velocity is equal to ¢. This point 18 called {he critical point, or
critioal layer, and it plays a central role in the mathematical theory. The wave amplitude usually has a
saximums near the critical layer.

At any given distance from the origin of the boundary layer, or better, at any given Reynolds number
Fe = Uyv/ , where ia the kinematic viscoaity, an instadbility wave nf frequency . will be in one of
three states: damped, neutral, or amplified. The numarical results calculated from the stability theory
are often presented in the form of diagrams of neutral stability which show graphically the boundaries
between regions of stability and instability in .,R» spaca or k,Re space. There are two general kinds of
neutral-stability diagrams to be found, as shown in Fig. 1.1 for a two-dimensional wave in a two-
dimenatonal boundary layer. In this figura, ths dimensionlesa wavenumber :‘ is plotted against R:, the
Peynclds nusber based on the boundary-layer thickness . Waves are neutral et those valuea of 1’ and Ry
which lie on the contour marked neutral; they are amplified inside of the contour, and are damped
everywhere else, With a neutral-stability ourva of type (a), all wavenusbers ere damped at suffiociently
high Reynolds numbers. In this caae, the mean flow 18 said to have viscoua {nstability. Since dagresaing
Reynolds number, or increasing viascosity, can laad to inatability, it is epparent that visocosity does mot
act sclely to damp out wavas, but can actually have a daatabliiixing influence. The inocompressible flat-
flate (Blasiua) boundary layer, and all incompresaible doundary layera with a favorable pressure gredieat,
are cxamplas of flows which are unatable only through tha action of visoosity. With a neutralestadility
curve of type (b), a non-zero nautral wavanumbar () exista at Re - ., and wvavenunbers ssaller than
{. ), ara unstable no mattar how large the Reymolds number bacomea. A mean flow with a type (b) mewtral-
sllbillly curve {a said to hava inviscid instability. The boundery layer in ar adverse pressure gradieat
18 an axample of a flow of this kind,

In both caaas (a) and (b), all waves with . leaa than the pesk value on the metutral-stability ourve
are unatable for soma range of Reynolda numbers. The Reynolds rumbsr Re,, below which mo asplificatios is
possible is called tha minimum critjcal Meynolds number. It is often an objective of stability theory to
determine Re__, although 1t muat be cautionsd thet thia quantity only tells where instadility starts, and
cannct be ni{nd upon to indicate the relative instadility of various msean flows further dowmstrean. It
i3 dafinitely not proper to identify hor with the transition point,

b wave which 1a introduced 1into a ateady boundary layer vith a particular frequeacy will preserve
that frequency as §t propagataa dovnatreas, while the wavenumber will change. Az showa ia Pig. 1.V, &
wave of frequency . which passea through the unstable region will de damped up to (Me),, the first poimt
of neutrsl atability. Between {(Re); and (Re),, the second neutral point, it will be saplified; dovastrean
of (Ra)y it will be damped again. If tha asplitude of s vave becomes large emough defore (Re)y 1o
reached, then the nonlinear prooeasea which eveiutually lead to transition will take over, sad the wave
will continue to grow even though the linsar theory says it should dasp.

The theory can ba used to caloulate amplification and damping retes as well as the frequenay,
vavenusber and Neynolds nusber of neutral veves. For example, it 1a possible to compute the amplifiestica
rate aa a function of frequency at a given Re. The neutral-atsbdility curve oaly 1deatifies the band of
unatable frequenciea, but the asplifiocation rete tells kowv fast each frequency is growiag, and whieh
frequency is growing the faateat. Even more useful than the amplification rate 15 the sxplitude histery
of a wave of constant frequency as it trevela through the uastable region. In the simplest fore of the
theory, this result can be calcoulated ia the form of a ratio of the saplitude to scme iaitial amplitude
once the ampiification rates are knova. Consegueatly, it is possible to identify, givea some iaitial
diaturbance spectrum, the frequency wvhose amplitude has inoreased the socst at cech Deymoléds muader, It 48
presusabdly one of these frequencies which, after it reaches sose oritiocal asplitude, triggers the whele
trensition proceas.
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We have divided the following meterial into three major parts: the inacompressible stebility theory
ia in Pert A, the compressible atadility theory is in Part B, and three-dimensional stability theory, both
incompressible and ocompresaible, i{s in Part C. The field of leminar instebility is a vast one, and many
topica that could well have been fincluded heve been left out for leck of epece. Ve heve restricted
ourselves striotly to boundary leyers, but even here heve omitted all flows where grevitational effects
are importent, low-apeed boundery leyers with well hesting or cooling, snd the importeant subjeat of
Gortler insteoility. Within the topice that have been ingluded, we give ¢ fairly complete acoount of what
we consider to be the essential ideas, end of what is needed to understand the publiahed literature and
sake intelligent use of a computer program fcr the solution of boundary-leyer stabdility problems.
Attention is concentrated principally on basic fdess, but elso on the formulations which are insorporsted
into computer codes bessed on the shooting-method of solving the stebility equations, Only eelected
numerical reaults are included, end these heve beer chosen for their fllustrative value, and not with any
pretension to comprehensive coverage. Numeroue references sre given, but the 1ist is by no meens
complete., In particular, s nuader of USSR referencee heve not been included beceuse of my unfamiliarity
with the Muasian language. Much use has been mede of » previous work [Mack (1969)], which is still the
most complete scurce for cospressible boundary-layer stablility theory.

FART A. INCOMPRESSIBLE STABILITT THEORY
2.  FORWILATION OF INCOMPRESSIBLE STABILITY THECRY

2.1 Derivation of parallel-flow atability equations

The three-dimensional (3D) Nevier-Stokes equations of e viscous, incompreasible fluid 1ia Cartesian

coordinatea are Y L&
.ux .u’ . 'iv_. y
« u} * C o .. P + . . u‘ 0
t . " {2.1e)
J

(2.18)

where ﬂ'i . (0' v l'), ;- (n'.y',:'). and §, 3+ (1,2,3) sccording to the sumsetion convention. The
l'lil"lhl dancte dime ntities, and overdare denote tim pendent quantities, po veloaities
. B ere ip the 3 , y 3 dtr,cuou. rupoounp, vhere X (3 the streasvise and 3 the spanvise
eoorélnau. B is the preseure; . is the demsity; is the kinemetie viscosity %/ *, with .®the
viscosity coefficient. Equations (2.1a) ars the momentum equations, aad Iq. (2.!5‘211 the ocontinuity
uation. e firet putl the Mttw in ‘unu:‘ouou fors with the veloaity sesle U.,*, the length scale
L, and the presiure saale . 0%, u are unspecified for the present. m Beyaolds ausder ie
def) ,a8 an 0.0 .
ReOLY. (2.2)
The dimennioniess equations are f{dentics) to Bgd. {(2.1) except that y 18 repleced by /R, and \' is

abeorbed into the pressure scale
Ve paxt divide esch 7low varisble luto & stesdy sead-flov ters (deaoted by an upper-case letler) and
an unsteady small disturbsooe ters (demoted by a lower-ocase letler):

U, (n,7,8,8) o U (x,7,8) o u(x,y,8,¢)
e gRIAT T Y ! (.3

Piz,y,5,t) s P(n,y,8) ¢ pln,y,5,¢) .

Wheo these eapressions sre asudatituted iato Bga. (2.1), the sean-flovw terss subtracted oul, sad the lerss
which ars quedratio ia Lhe disturbances dropped, we erfrive at the folloviag ¢imensieniess linesrized

sguaticas for the disturbance quantities:

i " “1 v, (2.8)
- (2.%)

For a truly persiiel mean flovw, of whieh a ainmple tuo-dinensionsl exzanple 48 ¢ fully-doveleped
cheanel flow, the sorwsl veloeity V 1o sere and U sad ¥ are funstioens ealy of y. The parallel-~flew

quaticns, whes writiea eut, are

4 \ :_g! ")" _d_l' - I -
RIS R iy S e (2.%0)
’ L Jv. - ol
: h O U A YU Sy e g (2.50)
: i .~ ~ L - ¢ d
Z-— " e U ;-' + o e .y & - 5a ¢ v w {2.%)
H o .
i b PO S . S [+] (2.3¢)
2 ’y 8
Adedba O0s0Al-A040 o¢lutisas B
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Cu,vow, 0T & [G(y),v(3),w(x),p(y)]T exple(xeizaut)) (2.9)

where 'and © are the x and 3 oomponents of the wavenumsber veotor k, = is the frequency, and G(y),
¥y), O(y) and f(y) are the complex funotions, or eigenfunctions, which givea the mode structure through
the boundary layer, and are to be determined dy the ordiuary differential equations given below. It {s a
astter of convenience to work with ocomplex norsal sodea; the physiocal solutions are the resl parta of Eqs.
(2.6). The normal modes are travelling waves in the x,z plane, and {n the moat general oase, :,:iand »
are all complex. }r they are real, the wave ia of neutral ?QQ‘H}? and propagates in the x,2 plane with
constant amplitude' and phase velocity o s . /k, where k = (1€+:€) 1s the magnitude of &k The angle of
K with respect to the x axis is .» hn"(.‘/ 1)e If any of 1, ¢, . are complex, the amplitude will change

as the wvave propagates.

(2.6) are substituted into (2.%), we obtain the following ordinary differential equations

When Eqa.
for the modal functions:
L Uet )8« DU & ~1iB o ; (07 = (a0, (2.70)
£( e l= )0 e -Dp o I (D% - (2erd)]e, (2.70)
1 Uecd= ) o DNY s =1.B o E 102 - (2e:®)}0 , (2.70)
G+ QeDbao, (2.70)

where D = d/dy, For a boundary layer, the boundary conditions are that at the wall the no-slip condition

applies,
0(0) s 0, %O0)soO0, &O)soO , (2.8a)

and that far from the wall all diaturbances go to 2ero,
O(y) -0, My -0, ®&y) -Oamsy - ‘. (2.80)

Since the boundary conditions are homogeneous, ve have an eigenvalue problem, and solutions of Egs. (2.7)
that aatisfy the boundary conditiona will exiat only for particular vosbinations of :,. an4 ., The
relat.on for the eigenvaluea, usually called the dispersion relation, can de written as

» ..(1..“) " (2-9)

There are sl real quantitiea in 89, (2.9); aay two of thes can be sclved for as eigenvaluves of Eqs. (2.7)
and (2,8), and the other four have to be specified, The evaluation of the dispersion relation for & given
Reynolés nuader and doundary-layer profile (0,¥V) 1s the principal task of stability theory. The
sigenvaluea, along with the correaponding eigenfunotions 0, §, ¢ and P, give a complete specifiostion of
tho norsal modss. The norsal sodes, which are the natursl modes of osoillation of the boundary layer, are
custosarily called Tolimien-Sohliohtiag (1S) vaves, or faostadility waves.

2.¢ don=parallel stadility theory

Except for the asymptotic suction douandary layer, moat boundary layers grow in the dowaatrean
dlrection, and even for a wave of conatant frequency :, , 0, ®, @ and P are all funotions of x {and 3 in
s gensral 31D boundary layer). What we have %0 deal with is a prodles of wave propagation {n & nosuniforms
sedium. Since the complete linearized equations (2.2) are not separable, they do 00t have the norsal
sodes of Lq. (2.6) as soluticns, The moat strajghtforwvard approach {s to aluply aet the non~parallel
teras Lo 2ero ob Lhe grounds that the toundsry-layer growth is smal) over a waveleagth, and it 1a the
iocel btoundary-layer profile that will dotermine the local wvave sotica. This approach, called the quasi-
or locslly-parailel theory, bas been alecat universslly adopted. It retains the parallel-flov sorsal
so0des as local solutioms, but s, of ocourse, am extra approxisation Deyood limsarisatisn sad leaves open
the question of bow importaat the adsitliedly slow growld of Lhe boundary layesr really {a. It alsc makes
for 4iffioulties 1a coeparisoas detween theory and experiseat.

The firat complete mon-parallel theortes wvere developed fndependently dy (ia order of journal
publicatioca dats) Bouthier (1972,197)), Gaster (1$7T3) and 3aric and Nayfeh (1975). Gester used the method
of sucoedsive approiisatioss; the otders used ‘be melbod of multiple scalea. There has been ocanidersble
coBtroversy os this sudject, maisly becsuse of Lhe wvay fa which Saric and Nayfeh (1975,1977) chose to
preseat their auderioal results, but 1t 1» sow generally agreed that the thres Lheories are equivaleat,
Saster's cajoulaticas of asntral-atsdility ocurves for the Blaaius Sousdary layer bBave aitnoe besa verified
te be correet by Yan 3tijn and Vaa ée Voores (190)3), and have the additional virtue of being dased on
quaatities that saa do measured axperisentally. The caleulations shov the met-parallisl teras to have
15ttle offeet o6 local 1nstadility ezseept at very lov Neysclds numbers. Nowever, i(kis does mot neea that
sop~parellel offects can Do maglected when dnaling wilh waves over distances of saAny waveleagtiha.

Ia the multipie-seale thesry, 1a additios 10 Lhe usual “Tast® 2 sedle uver vhtoh the phase changes,
there 15 3 "slew® 2 scale, 2, s &, whare : 1a a saall quantity 1deatified with /L The alow acale
goverss the boundary-layer grouth, Lhe ehange of the aigoaluactions, and a ansll adeitisnsl anplitude
sodulation The ¢isturbences are expressed ia the fers

woul® o WV, e ¢ (2.10)

1. The term amplituie will alvays refer Lo the poak or rod asplitude, sever te Lha fastastansevs
amplitude,
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with sixilar expressions for v, w and p. The mean flow is given by
U(x,y) = U(o)(x,) ey
wixy) « W) o L, (2.11)
vix,y VO e L

Here the mean boundary layer is independent of x, .iud thia 1s the only kind of boundary layer that we will
oonajider in this work. Examples are 20 planar boundary layers and the boundary layers on a rotating disk,
on a cone at zero inoidence, snd ob an infinite-span awept wing.

When Eqs. (?d!) ?5’ nuP&tuuto? ’nto Eqs. (2.8) and equsl powers of : collacted, the geroth=-order
equations for u'*/, v'V/ y ) gnd P 0) gre 1dentical to the parallel-fluv equations (2,5). The norsal
aodes, however, have the more general fors

u(O)(l.y.l.t) . A(:,)ﬂ“”(x,.y)-xp[lf)(o)(z;:,t)) ' (2.12)
where the phase funotion i»
3
(0 (x,1,1) f Oz )ax o A (xye - (O(ayye (2.13)

and A(xy) 1s » complex amplitude modulation function The dispersion relation also becomes & function of
xy:

R ‘.(0)(1(0),&“);:,) 5 {2.18)

The non-parallel theories as developed dy Bouthier, Caster, and Saric and Nayfeh eucu)‘no the diapersion
relstion only to geroth order, just as in the quasi-parallel theory. The next order (' ') enters only as a
solvability ocondition of the first-order equations. This ocondition determinss the fusction A(x,).

We shall use only the quasi-parsllel theory in the remainder of this work. Consequently, all of tle
teroth-order quantities are caloulated as functions of x in accordance with Eqs. (2.12), (2.13) and
) (2,18). However, the guasi-parallel theory cennut deteruine the quantity A(:,), and this is siaply set
equal to the initisl amplitude Ag. Ia the non-parallel theory, the product AG is a unique quantity,
independent of the normalisatios of the eigenfunction O, thst gives a precise meaning to the amplitude of
the flow variable O as a funotion of y and permits direct >omparisons of theory and experimeat. Ia the
quasi-parallel theory, only the contribution to the smplitude that comes fros the ismaginary parts of .-
and .- can be sccounted for. The correotions due to the funotion l(:,) and the x dependence of the
eigenfunctions are outside of the acope of the theory. This ilack of physical raality ia the quaai-
paralle theory introduces sn unoertajnty ino the calculation of wave asplitude and complioates comperisons
wvith experisent. More Gn the use of the quasi-parsllel theory can de found in Seotion 2.6.

2.3 TYTemporsl snd spetial theories
If : and - are real, snd . is oomplex, the amplitude will ohange with time; 1if : and ¢ are
ocomplex, ané . 13 real, the amplitude will change with x. The former case is referred to as the temporal
umaplification theory; the Jatter a3 the spalial smplification theory. If all three quantities are
cosplexs, the disturbance will grov in spece and tise. The originmal, and for sany yeara the only, fors af
the theory was the temporsl theory., owever, 1o a steady sesa flov the saplitude of a norssl sode is
iodependent ¢f Lime and ochanges only with distance. The spatial theory, which was ictroduced by Gester
{1962,1963,194%), givea this asplituds change i a aore direct sannsr than does the tamporal theory.
2.3.1 Temporal ssplificstiozn theory
With _ s . el and . and : real, the disturbasos can be writtea
R
win,y,8,t) » l(r)nn(.,t)ouﬂ(fuﬁ LG I § (2.18)
mmtmdmunnub‘rmwill
xo (a4 :2)V2 0 (2.1¢)
mmwoummumuudimmnmou
votaa”tes) . (2.1

phane velooity ¢, whieh 10 the velonitly with vhieh the sonstanti-phise linse 0ove asraal tc thessslves,
the magaitude

EY

o /b , (2.19)

and 30 12 the direstion of i. 10 4 represeats Lhe nagritute ~f § at seae partiesliar y, say the y for
wiieh @ 1o & ssxions, then 1t fellows frea By (2.15) that

(17ae/e) o b S (2.19)

poral aaplificationr rate. OVviessly & eould have Doca shesen at aay y, or
1able boasees u, 0040 Bg. (2.15) would be Lhe sane. It 15 1015 preperiy that enebles
1astability veve is the same sammer 05 the amplituds of s veter
though We trus weve asplituds L2 & Nuetios of 7 oad the Jarticular flow vartshle selested

| §-2
Set
iég
i
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bate Ve may distinguich three possidle casses:

4 €0 damped wave ,
4= 0 neutral wave , (2.20)
g 20 amplifiad vave .
The wcapiex frequency may be written
- = ko s k(o o 19y) . (2.21)
The real part of G {s equal to the phaae velocity o, and ha‘ 18 the tervie’ «anl’ ' 'atica reve, The

quantity o appears frequently (as o) .n the iiterature of .muu, theory. FHowuiwt, .} Chinot 5 uend in
the spatial theory, and since general wave theory employa only 2z and -+, with toe phase velocily being
introduced as necessary, ve shall adopt the same procedure.

2.3.c 3pstial amplification thecry
In the apatial thecry, . ia resl and the wvavenumber componeata : and . are ocaplex, HWith
{2.22)

1.1,_01:1. :'t;roi:" o

we can write the normal modes in the form
u(x,y,z,t) » G(y)erp[-( [‘xldx . .":)lup(ﬂf‘uréx e - 1] {2.23)

By snalogy with the temporal theory, we say define & real vavenumder vector J; with magnitude

ke (o2, (2.28)
4 The angle betweea the direction of k snd the x axis is
R Y I IS I (2.25)
and the phase velooity is
¢ r Wk . (2.26)
It followa from Bq. (2.23) thet
(adaasax o -, 2.21)

and ve can {dentify - ap the smplification rate in the 1 direction. In like sanner -8, ia the
asplification rate 18 the 1 4irection. Isdeed, Lhe spatial amplifioation rate {8 a veotor 1ike the
vaveRuRbder vector with sagritude

ey e V2, (2.2¢)
and angle
] ; BT S TR (2.29)

vith reapect to the 1 atuls. The agdlificationa rate -.. 1a oL this pointl & free psrsmeter, sad ita
selection §8 left for future comsidersiisa

For he speeial dousdary layers t2 e cosslidored in Lhis work (see 5 3), we dafise & spatial veve to
b3 anplifict or danped according tu whethor §te anplitude fncreases or decroasea 1) the 3 direction,
Therefore, the thres puesidie weaed wRkisl correaposd to My, (2.20) wre:

iyt DM canped wave
~y @ osutral weve (2.30)
-y 0 wmplified vave .

' 2.3.3 Belaties betveen Lamperal and spatiel theories

. 4 lasisar boundary layer is & &ispersive nodius for Lhe prepegatise of L1~otadility wavea. That s,
” { different frequensies prepagate with differest paase veloeities, se thatl the individual harseals
00PONIBLS 16 & group ol vwaves ot onn 2100 vil] be diapereed (dlaplaced) frea cash other at soae later
tise. 1a o conservetive ayotea, vhere 220rgy 10 20l sichang™ delvesa Lhe waved a8é the nedive, as
overall questily swih s the emergy 6-asity oFf amplitude pregagetes wild Lbe grewp velesity. Purtdersers,
the group veloaity ses 4o conni@ered a preparty of the indiviéudl waves, and to fellow a partioulsr aereal
sefs vo e the grewp velesity of that sede. Besouse of Canping ond anplifiestion, Lastadility weves 18 o
buundary fayer ¢o set coastitute & conservelive systen, 804 the greup veleeitly 18 in goasral seaples.
Mevever, vene of 1he 16000 of C0MBErvalive Gpetens are i1l wesful. If ve coesiar 08 cdeerver Doviag at
the grewp valesity of & asraal nede, 00 vave 10 Lo uoviag frese 7 reforesss will appesr 10 uaderge
tonperal amplificatisn, while fa the frame st rest 1t mdergoss spatial amplifisation




-

| AP S T WA

e e R S W < i

3.7

Thus we can write

d/dt » C.d/dx (2.3}

‘ ’
where in this arguaent C. is the aagnitude of E:,.. the real part of the group velooity veotor &, and x_ 18
the coordinate in the direction of r Therefore, 1f wy ia the tesporal asplification rate, the lpl!lll
ampiificatior. rate in the direction parallel to C,. is immediately given to be

“Ciy)e /€, (2.32)

The probles of converting a temporal to a spatial amplification rate was first encountered by
Schlichting (1933a), who used the two-dimenaional veruion of Rq. (2.32) without comment. The same
relation wes xlso usecd later by Lees (1952), and justified on intuitive grounds, but the first
msthemstios] dcrivetion was given by Gsster (1362) for the 2D case, and the relation bears hic name.
Gaster's derivation is straightforwvard and cen de generalized to three dimensions with the result given
sbove in Eq. (2.32). It 1s escential to ncte that the Caster relation {e only an approximation that ia
valid for small amplification rates. Within the approzisation, the frequercy and wavenusber of the
spatial vave are the 4880 as for Jhe tesporal wave. If we use the complex group veloocity {in the adove
derivation, we arrive st the separate transforsationa for constant frequency and conataant wvavenusber
obtained by Nayfeh and Padhye (1379) from another point of view. In this approach, I. (2.32) oorresponds
to a transformation of oonstant wavenumber,

We can also make use of E§. (2.32) to arrive at a useful result for spstial waves. The same argusent
that led to Rq. (2.32) alsn applies to a ocomponment of the grov) velocity. Therefors,

~(3), - /Coo0a(: =), (2.33)
*
where ~( 1, )- is the spatial amplification rate in the arditrary direotion .. ‘The quantity tp 18 the real
part of tl‘n'«-pln group velocity angle & defined by
Cg#wCoos: , CosCasin: , (2.38)

where C' and C_ are the complex 31 and x ocosponents of é, and C ia the ocosplex magnitude of C. Klisinating
-4/Cp br B (!.32). we srrive at

G v () gloonte - i) (2.35)

Tuia relation, whiok may appear ratber obvious, ia not a general relation valid for two arditrary anglea.
It 18 only valid vhen one of the tvo angles ta .. VWhen both angles are arbitrary, a more complicated
relatios exista and bas “een derived dy Nayfeh and Padhye (1979). There is als0 a amsll change in
unless the group-veicelity angle {2 real. Ve might close this sudject by noting that while the varicue
Nayfeb-Pedhye transforsat’on forsulas use the ocosmplex group-velocity, they toc are nmot exsot decawse the
grovp velooity is cossidsred to be onnmstaat ia the tramaforsatioa Ve recocasend 1o the intereeted resder
Lo exanine the instructive muserical ezasples givea by Nayfeh sad Padhye,

2.4 DMeductica to fourth-oréer systes

Squatioes (L.7) comstitute a aixth~erder syetea for the veriadles §, ¥, 6, §, D8, DO, as can be shove
by rewritiag thenm as six firat-order equations., THis systes say de reduced to fourth order for tae
doterminstion cf efgenvalues. Ose approash is to sultiply Bq. (2.7a) by : ant Bq. (2.7c) by - and add,
and thea sultipiy Bq. (2.7.) by : and Bq. (2.Ta) by . and sudtraet, to arrive at the following system of
squations fer the variables .04, 0, -8, and Bt

TR L R g R I L R N L S DL (2.38a)
1omu= 3t o 0hoe ) (02 - G2, (2.368)
1Bt J b bo (Du=B0it o | (07 - LIeD))( 00, (2.3e)
TR % VI I (2.36)

uheore 8qs. (2.70) and (2.7¢) bave >a08 Guplicatod for convenionse as Bqs. (2.340) and (2.36¢). The peint
te nete fo that Eqo. (2.386a), (2.300) add (2.384) are s feurid-order systen for Lhe dopondsatl veriables
decl, § and b The fourid varisble of thic spsten 1o 08 D8. The Gopendent varisbie ;f<cl appoars saly
1a Ba. (2.3%¢). Therefore, we may doternine the oigeavalues fred the fewrth-order sysiss, asné if
subseyusetly the cigeafuastions § ant § are aseded, ey are ohlalned My selving Lbe sescni-erder eguaties
"a”‘)-

2.80.1 Tremsfermstiicas Lo I8 equatlioas - temperal theery

The adove equations are 1xe 0nee Lhat we will wse, but tacy aloe offer a banis te diseuse seac
trasafernsiions that Bave boes usad $u Lhe past. 1If ) and : are real, whe isterprelalies of the
squstions 18 evidest. Myuatica (2.34a) 13 the scnestiuva eguaiipe 18 e direstien perallel o ant By
(2.36¢) 10 Lthe penentug oqsaticn 18 the ¢irestion sernal Lo & 10 the 5,8 plans. Ingeed, 1€ we use the
treasferesiions




Ue Berw , We WU, (2.37)
wesalernt wwe 1@ -0, (2.37b)
24,242 (2.370)
and leave ., R, ¥ and € unchenged, Bgs. (2.36) decome
TR T I (Lt I (2.38¢)
1010~ )¢ e Dp e, (07 -2, (2.380)
1010 Jw o VO o 2 -2, (2.380)
tiue D00 . {2.384)

These tranaforaed equations sre of the fora of Bqe. (2.7) for s two-dimensional weva (3s0) in 8 tvo-
disensional boundery leyer (¥Vs0) except for the presence of Eq. (2.380). W¥We may observe froas Bq. (2.70)
that even with =0, a § velooity component will exist whenever there is s ¥V beosuse of the vortioity
produotion term DVWY,

Thus in s 3D doundary layer with velocity profiles (C,¥) et Reynolds nuaber B, the eigenvaluse of an
oblique LamADACLAL weve osn be Obtsined from the sigenvalues of a 2D vave of the same frequency 1o ¢ 2D
boundsry layer st the same Reynolds sumbder with the velooity profile of the 31D beundary lsyer i the
direction of the vavesumbder veotor. The key result that it is the lstter velocity profile that goverss
the 1natsbility ves obtained by Stuert [Gregory et al. (1955)]) f1a his clsssio atudy of the stability of
three-dimensional boundary layers, snd dy uan end Lism {1959) [see also Lia {1955)) in their study of the
stedbility of onmpressible doundary lagera. Ve shall refer to this veloefty profile as the directional

profile.

A sligbtly different transformation vas employed by Squire (1933) sad bears his name. 3quire's
original trensformaticn was for a 2D boundary layer and the Orr-Sommerfeld equation (see Sectioer 2.5.1),
but a generslizaetion valid for a 3D boundary layer is

VeUeWiten, , Ws¥-Ucta, , (2.39)
us 8¢ tan. , ved-0tan |, (2.399)
ve e [ e, Bea (2.390)
e L e ew . (2.3%¢)

Vhen Eqe. (2.39) are sudatituted fste BQa. (2.36), the resultsat equations are the osme ad Bqs. (2.38)
oxcept thotl -, B, ¢ ond § sre replsced ¥y the correspondiag tilde quantities. Thus the tramsformed
equations, ezoept for the ¥ equation which ¢oes mot eater the eigeavaiue prodles, sre agais iz 2D feram,
byl aow the Beysolds sumbder has 8130 deen tressforsed Lo the mew ecordisate aystea. This traasforsatioce
relates the olgeavaluee of as oblique Lamaaral veve of fregqueasy . 1is & 3D bowadary layer with velooity
profiles {U,¥) at Beynolds ausbder B 10 ¢ 20 wave ¢f frequeney -/cos §8 8 2D boundary layer st Reyaolids
susber Beee. with veloeity profile UsWtan,. It cas be fsterpreted as the sa80 retatioca of seerdisat s as
1a the transforsstion of By. (2.37) plus the redefiaitios of ibe Pefercace velesity fres U) te Ujeess.

For s 3D bondary layer, the gesoralised Squire transforastion 18 serely s €iffereat vay of doing
whatl has slreedy been acccaplished ¥y UBqs, (2.)6). Nowever, for s twe-dimeasionsl deundary layer (¥e0),
vhieh vas the cade cotsidered by Muire, U ¢ U and the dineasionlese velositly profile 15 unshanged by the
trensfersstioa This sesss thet Bunerical stability results for shligue tempors] vaves ses famediately
odtalaed frea kmiws results for 2D veves §5 the same veloeily prefile. Purthersere, since 8 ¢ Rooe., the
snalilest Doyscide nusber at valeh 8 weve of say frequeney kedeses wastadle {ainiswn eritjcal Seymslds
twaber) uwst alvays seouwr for ¢ 2D weve. This (s the selodreted Iquire theoresw. It spplies oaly te the
siainue eritieal Boyacida muader and a2t (0 e oritical Beyaside cunber of 3 partioular frequensy, fer
whioh fastadility say vell eeour firet feor st eblique vave, It should alee e 20ted that the theores
applios ealy te ¢ self-sinilar dountary layer vhere the valocity prefils §s tatepeadent of A

2.4,2 Tremaforustions Lo 2D egua‘lons - spetial Lheery

Yhea : sad ¢ ore souplez, 100 1sterpretation of the tranafere~’"108 equations (2.]7) oo & retatios
of coordimates 10 leet, Docouss the trensfursed velseitly prefiles are mepies. There 1o oae easeplion,
bowever. Ia gearel, Lhe guaatity :/:, vhieh fer o Legparel weve 15 csey, 15 casples. m{ ll‘:z&-
W e AL $8 1f the spatial anpiifiesties rets veeter (o parallel 1o LDe waveaunder veeter, 1/ils 1
real ond oqual te ¢esi. Thee 1t veuld appear Lhat the oligoavalues of o spalial vave seuld etill b
seleuisted froa L1he 2D equations (o Lhe t1lée ceordinates. Uafortuaately, this expeetation 1o ast
correoot. Whea :and : ore resl,

TIEY " TIN (2.80)
bt there 18 o0 justification For applyiag Be. (2.30) separatealy te the reosl and laaglnery parts of o
csaples : whea /1 15 csmples, Ve are sbls, Dewever, 36 derive the corvesi tressfermatise rule frvs Ny,
{2.39). ¥ith voy sd ‘l‘ L] (“,“

(oylg o=y oeelr-s,) , (2.8%)

ant with s 0 §,
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- (-11)‘/oo|:r . (2.81b)
Rliainating (- !‘)‘. we obtain

=y v -y oon(- ~:.)eont, . (2.810)

Convequently, Eq. (2.80) can be used for :, only when the real part of the group-velooity angle 1a zero.
There ia also a saall shift in the vn-m&or veotor whensver by ¢ 0.

An slternative procedure for apatial weves fa to use the equations that result frgs the
transforaations of Eq. (2.39), dut to not invols Eq. (2.80) when 1/:1s cosplex. The quantities R and .
are domplex, as are 0 aid ¥ for » 3D boundary layer, but this causes no diffioulty in s nusericsl
solution, Such a procedure, whiah asounts to a generalised cosplex Squire tranaforsation, was
inocorporated into the JPL viacous stability code VSTAWYS?. The approsch with RBqa. (2.36), which has the
advantage that no tranaformations are needed in deterasining the ejgenvalyes, i» used in the never JPL
stability codee VSTAB/3D, VSTAR/AF and SPREQ/EV. It should be ~oted that even in the spatial theory, the
goveraing real velocity profile 1is the profile ir the direotica of %

2.% 3pecial foree of the stadility equations
2.5.1 Orr-Sommerfeld equation

A aingle fourth-order equation can de derived from Egs. (2.36) by eliminating 10+.@ from K. (2.36a)
by {2.33d), and, after differentiation elimicating Df by (2.36d). The result ise

(17 = (:20.2)120 o 40 (00w )02 = (120:0)) o ( DPUecDPN): S (2.82)
with the bdoundary ocoaditions
%(0) = 0, 0) = 0,
®y) * o, DA(y) "0 asy- - . (2.83)

¥hen Wsl, Bq. (2.82) reduces to the equation for a 2D bouadary layer obtatned dy Squire (1933). When &(n
sdditioa 0,

(0 - D200 (o= )D? - 1Y) - PPN . (2.48)

Tais 18 Lhe Orr-Sommerfeld equatiorn and §s the basis for most of the work that hes been dome i2
incoapreasib.e stadility theory. It is often derived fros the vortieity squation, im whiok case ? i3 the
viguafuastioa of the streas fumetien The Orr-Scamerfeld esquatiosn 1a valid for s two-diseasions) wave {a
a two-disensionsl beuadary layer. However, Lhe gemsralised 3quire treamaforsstiea, Bg. (2.39), recusse the
3D equation (2.82) to Bq. (2.48) in the tilde ceordimates. Consequently, for 3D dousdary layers sll
chlique temporal vaves can be obtaised by sclviag » 20 prodies for the rescrsalised veloeity profile in
the direction of the wavenumsbder veolor, and when the boundary layer 1s tvo-disensjenal, fer the sase
velocity profile. The " Orr-Somperfeld equatioa and tke same tramsforuation can also de used for spstial
odlique waves, but 1r 1s cosse B 18 complen, and for a )Y boundary layer so is U. The faviscid foru of
the coaylex Squire sforastiea ves weed by Canter and favey (1948) for as usbousded 2D shear flow, and
the ceamplete viac fore by Caster (1979) for a Blasius bouddary liyer. Vhea ome ia 2ol tryiag to malke
use of previocu: osputed tvo-dimensional eigeavalues, it 15 perhaps esinpler to use Bq. (2.42) teo
caloulate 3D o values a8 meoded, thus avoidiang traniforsations 5a B and ..

2.5.2 3ystem of liret-erder equatiocas

There are a suaber of stadility prodlens thal casset do reduced te a fosrtheordsr systes, and
Werefore are avt goversad dy Lhe Orr-Joanerfsid equetioa 4 sore flezidle approsch ia o werk frea lhe
outlset vwilh o ayatea of firet-erder eguatiocss. Vith the dafliattiiecas

‘,l\‘.".‘:l suo.u,!’-',l‘nﬁ,

o M- 8,3, 0.0, (2.88)

8o, (2.34) ean o written as 613 firet-erder squatioas:
w2, (2.00)
Ly o [+de Zoin( ive W= ) )2, o B0 Wity e e, (2.,000)
I, o ~13y , (2.0%e)
B2y ¢ ~iUnly - [1Becda) o Gleim) gy, (2.00)
L YOI P (2.%e)
08y o Lo-BwinRye [2erdesntizan 0y, . (2.0

The dousdary contitices are
300) a0, O)ee, LlO)eo ,
Lty -0, iy} - 0, iy) - Gesy--. (2.07)

et
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The fact that the firat four of Eqs. (2.86) do mot oontain ts or ¢ oconfirma that eigenvalues can be
obtained from » fourth-order system even though the stability squetions oonatitute a aixth-order systea.
It 1s only the detersination of all the eigeafunctions that requires the solution of the full sizth-order
system. The adbove formulation 1s applicable when « and - are complex as well 83 reul, and to 3D as well
ss 2D boundary layers. Only the transformstions of Bq. (2.37d) enter in this formulstion, and thea only
in the definitions of the dependent variadbles I,, I.t. k and l& No transformastions are involved in the
determination of the eigenvalues. Another polut o nbte 18 that only the first derivatives of Uand ¥
appear in Bge. (2.46) instead of the senond derivativea which are present in the Orr-Scamerfeld squation,

2:5.3 Uniform mean flow

In the freestream, the mean flowv (s unifors and £qs. (2.86) have constant oceffioients. Tharefors,
the aclutions are of the fora

z(ﬂ)(,) . ‘(l).q(Ai,) R (1s1,6) , (2.38)

whet» the l(” are the six-ocomporent solulion vectors, tho ‘y are the ckaractertistic vrﬂuo {the tura
eiginvalue 1 reaerved for the :, , . wh.oh satiafy the disparsion rejstion), and the A srs the nix-
cosponanl charscteriatic vectors {not to de confuard with the vave smplilude A in Eq. (2.12)). The
charsoteristic values ocour in pairs, and are easily found to be

N2t sy (2.%9a)
3 0 et ey - V2, (2.480)
‘8,6 % 3, o)

where U, and ¥, sre the freestrean values of U(y) and ¥(y). Only “o upper signe aatiesfy the boundary
conditions at ¥ © . The compoments of the charscteriatic vector A( are

L M (2.508)
AL TR (2.500)
ey, (2.500)
R (PR R VL LA (2.504)
Af’” .0, li” 0. (2.500, )

For real :,:  and . thia aclution 1s the limearized potential flov over a vavy wall moviag ia the
eirection of the vavedumber veotor with the phase velosity ./k It esn Do ocalled the imvijzeid solutioa.
although this desigastioa 15 velid oaly is the fresstresas.

The compomeats of the sharsoteristic veetor l(l) are

M., (2.418)
Ty P T R S S AL (2.919)
R VLA T T R P L (2.310)
Va0, Mo, V.o, (2.514,0,0)

This selulicn reprosesnts & viseous weve aad oad b called the (iret vizeous selutiea.

The eharacteriestic vestor A(” 15 & socond visesus deluiiva, and LLs canpoastts are

%00, a0, (2.520,4)
a0, Y0, £2.92¢,4)
Al e, (2.92¢)
TULLITI PLIE T TR IR S AL (2.320)

Tie three liasarly iatepeadect seivtiess 811, oY) sag a3 ore e By 20 toe sumerteal setded Lrat we
will w8e 10 odlais We oipsavalues. a0 hay provide 1he iaitial sentitisas for Lhe mmmerisal Li.egretien

¥, cas 23acrve Lisl tds voeond viseous nejutict 000 2169 Do vallid S Lhe duubdary layper Ad & pwie
0068 4f 34, 2y 828 I, \ro ali aore. TRLS fellevs Tres Bqs. {2.84). Ia the setaties of B4. (2.370), the
oaly :u-ur) flaw vailable, 1s 1u, vhere 10 the teaporal Lheory v 18 Lo slgenlfunetien of the
fivetuation valeeily sereal o Bul alsee e 2u/:8 = Ju/ i 18 Lhe Tlucinatiise vertielly conponssi
sareal to the wall, l,uuu-a&.unn’,umwudn. Tals 1 Nerpretation 10 valis fee
Sots the tenperel oas 3atlal eerten The aigrasclviisns of Lhe sessad-order wualies (261 with .

vere firel cenifered ¥ quire (19310, eat vere preves 07 Ala 40 Do aluage stadla Decestly 1t wes sbwa
by Sartert (19834,19030) that the Bguire modes previds e
1a0tability ot lsw, ut fiaite, anplitedss of & pridery 20 Lastadility weve

E




ing

2.6 Wave propagation i @ growving boundary layer

We Rave already discusaed some aspects of this problea {a 3Section 2.2, snd we have chcsen to use the
quasi-parallel rather than the noa-parsllel theory, In the quasi-parsllel thsory, the norzsl-mode
solutions sre of tha fora

u(x,y,8,t) = &0(y;x)enp{17(n,y,s,t)] , (2.%3)

with siuilar expressions for the other flow varizbles. The slowly varying amplitude A(x) of the non-
parallel solution Eq. (2.12) has besn sel equal to the oonstant Ay snd

X
i1 {R.3,t) -jn(n)dn . .'(li)l - .(l‘)l o (2.58)

gqustion (2.54) is the same a3 EB3. (2.13). Ve have left. and . as functions of the slow scals xy 13
order to make it clear that )/ 'z = 1, just as for striotly parallel flov., Tha eigervalues :,- and .
satiefy tha looal dispersion relation Bq. (2.1%), and the eigenfunotion G(y;x) 1s also a slowly varying
funotion of 2. Conseguently, at eaoh z a different eigenvalue prodblem bas to be aoclved dbecause of Lhe
change in the doundary-layer thiokasss, or velooitly profiles, or, as is usually the case, both, The
probles we must resolve iz how to "connedt® the possidle eigenvalues at each x 50 that they represent s
contiauous wave train propagating through the growing boundary layer.

In a steady doundary layer, whioh is the only kind that we shall oconsider, the dimeasional frequency
of a sormsl mode ia constant. For & 2D wave in & 2D boundary layer, . = 0, and the complex wavesumber :
1in the 3ypatial theory, or the resl wavenumbder : and the tmaginary part of the frequeacy ., in the
‘enporal theory, are obtained as aigeavalues for the jocel bDoundary-layer profiles. The oaly problea here
1s the relstively minor ode of caletlating the wave amplitude as a function of x from the ampliffostion
rate, and we shall discuss this in Section 2.6.2.

2.6.1 Spanvise vavenumber

¥hen the wave s odbligue, 4 0, and it 158 nc3 obvious how to proceed, Aceording to the dispersion
relation, : is a function of - ss vell as of 2, How 40 we choose . at each x? The saswer is provided
by the same procedure as used 1n coBeervative wave theory. Vhen we differentiste By. (2.58) witk respect
to z (not x,) and 2, ve odtain

v (2.9%)
e ok, (2.5%9)

where ..c 1s the QQERIAR Yeotor wavenumber. Thus it follows direetly that

kg0, (2.%%)

snd k, 1a irrotatiosal. This coaditica is & gonarslisstiona Lo a moacoaservetive systes of the welleksows
result for the rsal waveruaber vector ia comsarvative kinsgatiec vave theoey.

In the doundary layers we will cosaiéur here, Lhe aean flov 15 Lndependeat of 5. Coasequeatly, if we
restrict ourselves to spatial wives of esastamt - ot the iaitial 2, thay ean be repressated ¥y s agle
20rRal 8060 Seceuse the sigeavalus : vwill alse e {adependact of 3. Therefere, according to Ig. (2.38J)
the sought~after Sawaetreem ooadition o ' §s

o const, (2.96)
One caution 13 that If the reference lesgth L' is iteslf & fuaetion of 3, ¥ L] it will de if I.. o °C fer
example, the arsusent had te be zlightly medifted and 8q. (2.56) refers te rether thas te .

It st1ll remalas to speeify the §aitla} value of . . Batlurally ccowurring i1natadility wvaves L2 a
boundary layor will de s superpcaitien of rorasl nedes, vwilh s apeetrus over both . aad : that will
depond o8 the partieulsar origia of the vaves. It ia predadly ealy (o a sontrelled euperinest wilh »
suiltable wavenaber thet & sitgle cersil 0ede st e Seited. Per ssanple, the vidreling ridiea firs! weed
by Schubever and Skrsastad (1947) 1 thair eclodrated exporinest eseilss a spatianl 2D sersal sede vwilh the
froqueasy of the ridder It 15 0lse pooatibio o conesive of vevenaslsre that assite alngle chliqus mersel
80408 15 doundary layers vhich are fadepeadont 27 3, Sued sersal sedes will have as iasital - s VOi0R
Batahes thetl of the vaveasker, and, 1002406 Lhe VAVO ¢aa grov o8ly la 5, the 1nitial -, auat de ers.
Thass sorsal 9edes are vell-suited for wee 1a 0ta8ility ca’eulatisns for Lhe erlinetien of lesation of
transition. I8 the salaviations, ' 10 sasigned 80 ¢ paraseter, 18 sors, 284 Bq. (2.94) osvatrela the
m-nnuu.luuo(.—'. mw;tfwmmnm sieal waves Lhat 088 Vo preguecd by
a suitadle vaveasher, Dut Lhey are aloe deaveniont Lo use 15 all saleulations of aorsel sedes, soek ad
trensitise predietien, vhere ve e 10tereeted 15 Lhe largeel possidle grewth of asy mereal oeds, o ke
pist-soures salionlaticns of Seetios 1. la sarlise wverk o0 tve-diBetsionsl jlaser Seountary layers, smae
results fros whieh will appear 1o later Sedtianes, 100 sngle ¢« was egB &8 2D jeraseter Lo Bald
*202La0¢, Fatder L3as 1, 08 130 vavs Srepagaias S2vAZirean. 4liheugh y 30 80arly conateat 1% anch
Seshiary lagars, 1 chongss onvgh 00 thal 106 waoumPliss o Sesalast ., Jr oot wquiveiend ta By (2.54).
1a the wert o8 Wres-4igommismal bouninry layese pressated iu Destisns 1) and 18, By (2.98) 1o applied te
i opaitnise wovemmmders, dut the direstiss of the spatial 2aplifisstiicn rete ia olther parellel te We
leeal prtemtial fiew, ar, sosnsiomlly, (5 the Cirestien of the real part of the growp-velesity engle.

3.6.2 Sene weelul ferwilms




"

L' e x'/ul‘(:'n"? . (2.57)

which 1o the ususl length acsle of the Falkner-Sksn faaily of boundary layers, and of asay ronsisilar
boundary-layer solutions, Other length scales that have been used are the boundary layer thickness, the
displacement thioknees, and the iaverse unit Reynolds nuabdber. The velooity scsle is Uy (x ), the looal
velooity at the edge of the doundsry layer, VWith these ohoices, the Reynolds nusber in the stability
equations is

R HE S W N T WS UL SUL (2.58)
The disensionless coordinate normal to the wsell,
yo (s 2, (2.59)
is the usual independent varisble of doundary-layer theory.

The dimensionlesa quantities u, 5, w, R and y referenced to L. may be converted to other length
sgales, such as dieplacesent or momentus thickness, by sultiplying by the dimensionless (with respect to
L") dieplacesent or somentus thickness. The latter quantities are slmost always cobtained &s part of »
boundary-layer ul‘ul‘uon. To convert 2, ! sud . to dimensionless quantities based on the inverse unit
leynolds nusber - /ul. it is only necessary to divide 2,8and .. by R.

The dimensional circular frequency '.u' of s normal mode is oonstant as the wave travels downstreas,
but the dimensionless frequency

TN ] (2.59)
is a function of x. It has become almost etandard to use
re.. 'l (2.60)

in place of . se the dimensionless frequency, However, I is slso s funotion of x for anything dut a
flat-plate boundary layer. For the Falkner-Skan fasily of velooity profiles, the disensionless velooity
gradient,

» e (x*/0d)e0]/a’) (2.61)

10 oconstant and relsted tc the usual Hartree paramester 'Y (the subsoript h is used to avoid oonfusion with
the wavi.susber oomponent ), by

‘v 2/ (met) (2.62)
The variadle dimensionless frequency for oconatant O is
P(R) o P(Rg) (Ry/m)MW (1) (2.63)

where R, 18 the Reynolds nusbder at the initisl x station. Wheo s stadility code can handle several
frequencles at onos, it ia more cosvenieat to use some [ixed velooity as the reference velocity 20 that F
will remain comstaat for each frequency. For the nossimilar boundary layers on sirfoils, the JPL
stability oodes use the velocity ia the undisturbed {reestrean.

vith L. s funetion of l.. the frrotationality comdition Bq. (2.56) applies ‘o the dimensiosnal
spanwise vaveaumbder. For the Falimer-8Skan fasily, the dimensionless - for comstant ¢ ia givea by

F(R/E(RG) o (WRg)(1-8)/(108) (2.60)

¥g mote that for a Blasius boundary layer (@e0), : inoreases linearly with . The dimeasiocsal vavesumber
1, is almost, but mot quite, ocoastast, decause there i» a small fncrysse 18 the phase veloeity with
iooreasing A As & resull, the wave csagle : JAGCSASAA A8 the wave travels dowastreas. This inoreass {s
st moat a few degrees for a plamar douadary layer, lNowever, ch sa sxisyasmetrie body, it ‘h the
reunfereatial veveouabder par rediaa that is comstant. Thus, meglectiag the small decresse iaa_, tans
18 iaverae.y proportionsl to the radivs. For iastance, on a cone, vhers the redius ia uenurn(. an
obligque wvave 1s rapidl<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>