
-T- . > . . . - . -. •. "« -^l»!.^ V. '■- «f Kl V H.^ « " • '

MP002605
Concurrent Algorithms as Space-time Recursion Equations*

31

Marina C. Chen and Carver A. Mead^

Introduction

It is by now well recognized that VLSI technology has brought about a medium which
allows the realization of orders of magnitude more computing elements per unit cost
The more significant contribution of VLSI to Computer Science will be in the uti'ization
of many hundreds or thousands of these elements concurrently to achieve a given com-

S?™11; ? 1S Clear ^ existence Proofs of s^ innovative designs as systolic arrays
[KUNG & LEISERSON80], tree machine algorithms [BROWNINGSO], computational ar-
ray. [JOHNSSON ET AL.81], wavefront arrays [KUNG,S.Y.80], etc. that vast performance
improvements can be achieved if the design of so-called "high-level" algorithms is released
from the one dimensional world of a sequential process, and the cost of communications h
space as weh as cost of computation in time is taken into consideration [SUTHERLAND &
MEAD77]. While this higher dimensional design space provides a great playground for in-
novative algorithm design, it also introduces pitfalls unapprehended by those accustomed
to the world of a single sequential process. Verification of algorithms becomes much more
crucial m system designs because debugging concurrent programs can very easily become
an exponentially complicated task in this rich space. The real difficulty lies in the high
degree of complexity of concurrent systems. The well-known hierarchical approach can
be usea to manage the design complexity for such systems. A system is broken down into
successive levels of sub-systems until each is of a manageable complexity. The effectiveness
of this approach relies on two basic tools: A design and verification methodology for each
level and an abstraction mechanism to go from one level to the next. The latter is crucially
important, for without it the consistency of the whole system is imperiled.

^ In this paper, we describe a methodology and a single notation for the specification
and verification of synchronous and self-timed concurrent systems ranging from the level
of transistors to communicating processes. The uniform treatment of these systems results
in a powerful abstraction mechanism which allows management of system complexity. ^

Traditionally, due to the assumption that the cost of accessing variables in memory is
the same regardless of their locations, sequential algorithms ignore the spatial relationships
•This work iS sponsored by System Development Foundation and its initial phase by Defense Advanced

^moOUrlT^O^ I^Vr #3r71 and m0Ilit0red W 0ffiCe 0f N-l Re-arch ContTact TfiN00014-70-C-0o9<. One of us (M-C.) was supported by an IBM Doctoral Fellowship

'Computer Science Department, California Institute of Technology, Pasadena, California.

>*---" -- J» J* ^ -* ," •• ,'' ," •"" -I _ .\ v*". ... * t •,'„•,•.. * ■, «< J^' ,

32

of variables. In addition, tlie steps of a computation have not been explicitly expressed
as a function of time, but are rather implied by programming constructs. Languages
that cannot express the spatial relationships of variables cannot take into account the
most important aspect in the design of a concurrent algorithm, i.e. ensuring locality of
communications, taking advantage of the interplay of variables in space (in practice up to
3 dimensions) to achieve higher performance. The implicit "time" causes programming
languages to suffer either from not being able to abstract the history of computation (e.g.
in applicative and data-flow languages [KAHN74, BAKUS78]), or not being b.ble to abstract
computation in a clean functional form (e.g. in assignment-based languages). Here we
choose to make "time" an explicit parameter of computation. We call our representation
of computation a "Space-time Algorithm".

In [CHEN82], CRYSTAL (Concurrent Representation of Your Space Time ALgorithm),
a notation for concurrent programming is proposed. The fixed-point approach [SCOTT
& STRACHEY71] is used for characterizing the semantics. Within this framework, a
program is expressed as a set of systems of recursion equations. Unknowns of the equa-
tions are data expressed as functions from the space-time domain to the value domain.
For a deterministic concurrent system, such as a systolic array, a single system of equa-
tions results, and the semantics of such a system is defined as the least solution of the
equations. The semantics of concurrent systems in general can be characterized as the
corresponding set of solutions of the set of systems of equations. In this paper, we con-
centrate on deterministic concurrent systems at the communicating sequential processes
level. We will first present briefly considerations that are generic to all systems, i.e., the
underlying model of computation, the representation, and the mathematical semantics of
the systems. Various inductive techniques (see for example [MANNA74]) used in verifying
recursive programs can be directly applied in verifying space-time algorithms and proving
their properties. We demonstrate this framework by presenting both the synchronous and
self-timed version of the matrix multiplication on systolic arrays [Kung & LeisersonSO]
with its proof of correctness. The notion of wavefront is especially important in this class
of computations. We define the "phase" of a computation wave in a way that is analogous
to the wave in physical world. The set of all possible "phases" can be formalized as a
well-founded set, upon which the inductivt proof is based.

Model of Computation

The model consists of an ensemble of sequential processes each of which has its own
local state and ports for communicating with other processes. Depending on the level of
system concerned, these processes can be as simple as a single transistor or as fancy as a
conventional von Neumann type machine. A sequential process consists of a function that
maps from inputs and current-states to outputs and next-states. Such a function uniquely
defines a sequential process. It is the generator of the output sequence and state with given
initial state and an input sequence. The state captures the semantic abstraction of the
history. No assertion about the process can depend upon history in a way not caotured

S^^^N^VWAV.V; vlv •.v.v.y/--.«"..

. _ . - . ■- ■- ■%

by the state A single invocation of the function i) evaluates the function, iijupdates the
state and outputs, iii)increinents the process's "time", all as an atomic event.

In a particular process, "time" is a measure of how many invocations have occurred
and space is where the process is located. «Time" is a property local to each process!
Note that state is explicitly represented, a function is not defined from the historv of inputs
to outputs as m the applicative and data flow model of computation. Communications
among processes in space are specified by identifying inputs of one process with outputs of
other processes in the space-time domain. Also note that a transition from one invocation
to the next withm a sequential process can be viewed as a communication in the uime
domain (fixed in space).

The "slicing" of a SPquential process into a sequence of functions is done at the
communication with the external world. Inputs from several different processes which are
angned m time and used as arguments to a single function are considered as one external
input event, i.e. one invocation. Within the same slice, no side-effects are allowed j e
each slice is strictly functional. We enforce this discipline by using a purely applicative
programming notation (like pure Lisp and Backus's FP notation) to implement atomic
^unctions, which cannot be further sliced either in space or in time. Any higher level
system is constructed by composing atomic functions and other existing systems using
recursion equations. The resulting system is always transformed into a function from
inputs and current-states to outputs and next-states, i.e. a sequential process. It is often
the case that once the system is implemented, a sequence of inputs can be conveniently
considered as a set of inputs at the next level up. Although internal state is used as part
of the implementation, the outputs can be expressed as a function of such a sequence
of inputs without refering to the state. In such a case we abstract the process as an
applicative function and it can, once again, be treated as if it were atomic. In real-time
systems, this kind of abstraction is not possible since the sequence of inputs cannot be
treated as a static input, making explicit state still necessary.

Thus space-time algorithms are either purely applicatiye programs or recurs'on equa-
tions. Note that m this way, states can be expressed without side-effects. The change
from viewing an applicative system as the universe to using it only for .n atom is the key
to the applicability of our framework to real systems. The applicative model of comput-
ing suffers one major drawback in not being able to retain the result of a computation
so that it can be used in a different place or at a later time. The data flow model is a
remedy for this problem only in space. The essential ability to use a result in several
places is captured by the data-flow equations devised by Kahn [KAHN74]. Unfortunately
this model_ stilllacks the essential capability of capturing the state, the result in the
time domain. This fact is manifested in the proliferation of assignment-based data-flow
languages [ACKERMAN, W.B.]. The elegance of data-flow equations cannot help the im-
plementation of real world systems where state is necessary. The space-time recursion
equations using a purely applicative language can be applied to real world problems*

l^^utT^RlTB2]S iS beSt CaptUred ^ a quote by Perlis "Pu^ ^^e ianguages

V\-- ■-.-■■.■"■:-v"-.-\-,-.--vv%'''-,-"-.-"--'--% ••■-■■ .'•---,■■ ^---■•---.--.■,-..-■■ -.-..%.-.. -^ -. -. -, ■., -. .. -.-..-, ..,._..

- • ~ 's -—.—-: ».-i •_. v^v v. •■_ v ». "-'«■^^ >-'-►■'.•. ■■ •- -.

34

This insight is the most important coctribution of our work to computer programming.
We thus retain the elegance and formal cleanness of functional application together with
the essential ability to abstract history into a compact form.

Representation

Let x = {xi,X2)...,xm) denote the inputs and current-states of a process, where
Xi € Di for 1 = 1,2,..., m. Here 0,- is the domain* where the input or current-state i
assumes its value. We define a function / which maps the vector of inputs and current
states to the vector of outputs and next states:

f :Dm^Dn
)

/ = (Xx./1,Xx./2,...,Xx./„) ^

where n is the total number of outputs and states.

Each component, Xx./,-, of such a function is an element of [Dm -* D]. These functions
must be monotonic (see for example [MANNA 74]) over Dm.

In order to capture the notion of flow of the data and the structure of these data
we define data streams. Each "stream" of data is represented by a function from the
space-time domain V to the value domain D. We next define structured processes which
define the location of the processes making up the ensemble, as a function in the domain
[y ^[pm^ pji Thia flmctioi! is d(!filied by cases for differeiit process types .m the gpace

Cases are specified in the notation of [DlJKSTRA 76]. The complexity of this definition
reflects the heterogeneity of the process types.

The relationship among the structured input and output data streams and structured
processes and functions are defined in a point-wise manner. In the space-time domain an
ootput is the result of the application of the function at that point to input data streams
at that point. Through connections, the input (current-state) streams of one function are
identified with output (next-state) streams of other functions, or with initial/boundary

Jnm rm tllerefore defille 3tr^^ed connections also as a function in the domain VV ->
[D -* D\]. The description of this function reflects the regularity of the connections By
substituting the equations of structured connections into those of structured processes
we obtain a system of recursion equations that deflne output streams in terms of output
streams and initial/boundary conditions.

An obvious restriction on these recursion relations is that the time components can
only increase by on-, unit at a time, i.e. an argument presented to the input of a function
at its time" t will affect the value of that function which appears at its output at its
^ime t + l.

I

> - • -^ -•-•.•. . • --■ . • ,1 - '. ' -^
- - ■ ■ ■

35

ID general, an input stream at a giren point in the space-time domain can connect
to an output stream at any other point in space. In specific cases, such as when the
low-cost neighboring communications are used, inputs are connected to outputs of neigh-
boring processes. In the case of such neighboring connections, the relations are local in all
dimensions. It is then possible to use difference equations for our specificatioD, Recursion
relations retain more information in the sense that the "phase" of a computation wave
is embedded in the description. For more complex situations, involving non-local connec-
tions, the greater generality of recursion relations is essential.

Semantics and Abstraction

By the well-known fixed-point theory[LASSEZ, NGUYEN &SONENBERG 82] the
unique minimum solution of any system of recursion equations exists. This -ninimum
solution is taken to be the function that the system computes. The process of finding this
mmimum solution can be described intuitively by the following successive approximation
procedure. We first approximate the solution bv the set of n data streams that are totally
undefined in the space-time domain and substitute them into the right-hand side of the
recursion equations. This substitution results in the left-hand side which is a set of data
streams that are defined only on the point in space-time domain where initial values are
set. These data streams are the inputs to the algorithm and we refer to them as initial
streams. Now we substitute these initial streams again into the recursion equation and get
another sat of data streams that have even more points in the space-time domain defined
We repeat this process until no more points in the space-time domain become defined
Ihis process corresponds exactly to the process of computation. The only restriction is
that our functions must be monotonic, i.e. each data stream at any iteration is always
at least as well defined as it was on the previous one. We do not allow non-monotonic
functions that destroy results which have already become defined. Refer to [MANNA741
[STOY77] for the formalism.

The resulting minimum solution consists of n data streams. Each data stream is a
function over [V - D]. In order to construct a higher level system using the system we
have just obtained, we need to encapsulate the system as a sequential process or a function
The function defining a sequential process or the single applicative function is from value
domain to value domain. This encapsulation usually involves some transformation from
the original data structure to the space-time domain for the inputs and a corresponding
transiormation for the outputs. Technically, the procedure is as follows:

(1) _ The input mapping function maps all initial/boundary values from an abstract
input data structure to the inputs unconnected to any output in the sp?ce-time
domain.

(2) Compute the least fixed point solution
above.

in the space-time domain as described

-,' v" -.- ■
. ■". --. .-. •--.>.-

■ -. •, ■ v •, •.- •_" .., ..-,,-.---.•.-,-,-.' . . ■ . « . - .. jr. . _• .. ^•.

36

(3) The resulting outputs occur at those points in the space-t.me domain designated
as outputs of the system. The output mapping function maps these outputs from
an element of [V ~* D]n to an element of the output value domain Dn'.

The result of this procedure is the abstract definition in the value domain, of the
function (type [Dm -> Vn]) implemented by the space-time algorithm.

Matrix Multiplication on a Systolic Array—Program and Semantics

In his paper, Kung described various matrix related operations performed on an array
of interconnected hexagonal elements. We present his algorithm for multiplying two full
matrices in CRYSTAL and prove the correctness of the algorithm.

As shown in figure 1, hexagonal elements are connected into a hexagonal array Each
element has three inputs and three outputs as shown by the incoming and outgoing arrows
respectively. Such a process performs an inner product operation in the north and south
direction , i.e. cout — c,-rt + ain X 6,n, and transmits the other two inputs as they were
i.e., aout = ain;hout = bin. ''

The two matrices to be multiplied, A and B, and a matrix C are fed into the array
as shown m the figure. The resulting matrix C will come out at the top of the array as
shown. Kung's original algorithm assumes a global clock thus every process performs an
operation synchronously. When data items are fed from the boundaries of the array due
to the fact that every process is forced to perform an operation even before any meaningful
data reacnes the process, proper initialization of the system by padding zeros in the input
streams and disposal of garbage data are necessary. The same algorithm with a different
timing scheme, e.g. self-timed [Seitz 80] scheme can simplify conceptually the interaction
of processes and the flow of data and renders a simpler initiation of the system This
simplification results from the fact that the self-timed scheme assures that each process
does not perform any operation until all the meaningful data items have reached the
process. On the other hand, the self-timed scheme does not have any global control the
ordering of the system events is an emergent property of the local synchronizations. Thus
the specification of the ordering relations among invocations of processes has to - tferified
from initial data arragement since self-timed elements are triggered by the arrival of data.

Both algorithms can be described by CRYSTAL programs. We will present both
versions as examples of our notation and verification methodology and discuss some of the
design issues of synchronous systems vs. self-timed systems.

In writing a CRYSTAL program, one need to choose an appropriate coordinate system
for the processes m space. The data Row of the array has a symmetry which can be
described by the dihedral group of order 3 [LlN &MEAD 82]. As shown in Figure 1 the
3-aimensional Cartesian coordinate system is chosen to reflect this symmetr- ^he center

..._

.. . -. ■/; ;^v:::o: :v:sv:::v->^:-v^ >;

. "to . ■% "V

FIGUHE 1, The Space Coordinate System For A
Hexagonal Array

37

,■•■•.•'■.■■'-.■■

"• . - -•- , ■ ."■ -A .'- ,.-.•-

38

FIGURE 2

v ■-
*..' ■- 'S»' -," *Ji, *^ .-• -'■■>■•>'.• s-"/'///" '.-' \-':

o -.' «.■

39

of this hexagon can be viewed as a corner of a cube. The hexagon is made of the three
taces tnat contain the corner.

Next we choose a coordinate system in the time domain according to the system
timing scheme^ If the system is synchronous, then t denotes the number of system
clock cycles. For a self-timed system, each process has its own cime frame If it is a
deterministic system, there exists a unique partial ordering of all events of the system
For a nondetermmistic system, there exists more than one possible partial ordering of
system events. Thus the synchronous system is a special case of deterministic systems
where the unique partial ordering on events is controlled by the system clock.

Letx,y,zt be non-negative integers. Define the following predicates which specify
the location of processes in the space-time domain as shown in Figure 2. For example ^
restricts the zy plane to an area within the specified bounds in the first quadrant

<pxsl ==(n > z >0) A (n >-y > 0) A (2 = 0)

<PyZ =(n > y > 0) A (n > 2 > 0) A (2 = 0)

ipsx =(n > z > 0) A (n > 1 > 0) A (y = 0)

fx ={n> x>0)A{y = 0)A{z = 0)

<Py={n> y>0)A{z = 0]A{x = 0)

<pz ={n > z > 0) A{x = 0) A{y = 0)
Vxtfz ss(x = 0) A (y = 0) A {z = 0)

<ph ==ipxif v <pyz V ipxx VptVipyVip: V (pxyz

fa =(0 < |x - y| < 3n) A (0 < min(22 -y,2y-x)< 3n) A{z = 0)

<pb =(0 <\z-x\< 3n) A (0 < min(2z -x,2x-z)< 3n) A (y = 0)

^=(0< |y-z| <3n)A(0<min(2y-2,2z-y) <3n)A(x = 0)
ip, =ipa V ipb V <Pc

<Pa' =<Pxy V (pZx V <pz

iph> =<pyz V <pzy V (fy

PC =Pxy V <pzx V Vx

(pt=0 <t < 4(n - 1) + 1

We use the notation p to indicate the negation of the predicate <p. Define the space-time
domain of he array M = { [x> y, z,t) : p, A<pt}. From now on unless otherwise specified
[x, y,z, t) always refers to any [x, y,z,t] eV.

Let Ain, Bin, and Cin be the input data streams (a function over [V -> D]] and A,
Bout and Cout be the output data streams. Then the following process definition spedfv
how each output stream is related to the input streams. For example, each hexagonal
element within the hexagon (when ^ holds), has an inner product element for computing

;•:':•:-:•.->:■;>:.■■:>:."-;. •■:.--:A>V-.

. • . -»-'..--, i-^, .. .■"* _% V« .% . .'.V V.".'.'. _•-

- "^ •.-

40
cout and two delay elements for computing aoui and bout. The definition below defines for
all the elements in the space-time domain in a structured way.

Process Definition

A,,. = Hx, y, z, l).^^ Am(Z'V'2-' - l] (.2a)

(<Pc A {fyz VfyW <pz) -> Cin{x, y,z,t- 1)
Cout - Hx, y, z, t).{ tpi _ Cin{x} y,2,t-l)+ Ain{x, y, ^ « - 1) x Bin{x, y,z,t- 1) [2c)

yeUe -> _|_

Next we define the connection plans for all the elements. It specifies which output
connects to which input in a structured way.

Connections

Bin = Hx,y,z,t),\t>Q-* l,pb -> B™*(* + l>y,* + i,t)
[Pv -+ Bout{x,y-l,z,t)

\else -> J_.

{t = Q^Cin{x,y,z,t)

t>Q^S<Pc^C0Ut{x,y + l,z+l,t)

else -* J_.

By substituting (3a) into (2a), we obtain

ty 1 _+ J ^ -* Aovti* + 1, y + 1, ^ i - 1)
[tPa.! -+Aou^z, j/, *, i - 1)

(36)

(3c)

(4)

:.-
{i = 0 ->• ^..„(i, y, z, t)

^o^K^^f + ^y + W) (3a)
l^a' -+ A,ut(a:, y, ^ - 1, i) v ;

e/«e -+ J_.

H=ü-+Bin{x,y,z,t) S

■ -*•'/"'. ^/-"•', ■'.''■'. 'I','-'. -'. ■'. -', •', -". >". •'. -". •', ■", •". ■", •' .". -'. .", .' .■ .", .- .- -- .- .- ,~ .- .- ,- .•.-,•.-»-■ ■ • s

- - .- .- _• r j- *• -■ «• -■ -,■ . : r_ r. •^. - . ^, ■ . • . • - • - " ._'" <' •. •,■

41

Similarly, we can substitute (3b) into (2b) and (3a), (3b), (3c) into (2c) to obtain a system
Oi recursion equations m ^«t, Boxxt and Cout and the initial conditions.

inn.MnTh ^^ ^ the behavi^ ^ the hexagonal array itself independent of the
nput to the array. Next we specify the input and output transformation functions which

relate the structure of the hexagonal array with the abstract data structure of matrices.

Let h = [hi, hi, hi] denote the initial streams and h00 = (h™ A?0 h^) dpnofp f>,0

m AS MTS wh:f rthe minimum soiution of the *b™ ^'o&±L:Z-™
rtl Matex wah elements from the domain V can be thought of as a function from the

tr thffo^si!0 p We denote the resulting matrix by x' B' -d c' -d

domain of integers from 0 to n - 1: >/

domain of matrices: X = [J^/2 —>. p]>

domain of data streams: S = [V -> p]j

domain of transformation functions: T = [V — J^2]

r ~ [M2 ~> v]

We define the input transformation function iga,9b,<jc) 6 T3:

9a = [la, Ja), gh = {Ib,Jb), ge = {Ie,Je)

where

Ia = X(x;y,2,t).l2y-* = 0 (mod 3) -> ^x
[else -* J_

4 = X^ y, ^ t)> " y S 0 (^od 3) -> ^p

/6 = X(x,y,^i).|2a;-^ = ö(mod3)

Jb ^ Hx,y,z,t).[2*-x = Q (mod 3) -. ^

2x—i

h = Hx, y, z, t)^ " * = 0 (mod 3) -. ^

^ = X(x, y, *, i).|2i' - ^ -0 ^^3) -^ ^
yehe -> J_

We use the shorthand notation

Qa[x, y, z, t) = [Ia{x, y, z, t), JJx, y, z, t)]

\

\

(?)

(6a)

'\ehe~*± 6 W

(6c)

.v.y;.-,,•-. --. --. •w-. -/-.•■.•>.•.•.-/-.

-w ■- ■%. V *_ ^ ■ ^1 ■.-, V •_ •. - - ", • ." <.■ - T «. ■r- —■ —■ —■ —w

for component-wi=c application of the argument (x, y, z, t) to a rector of functions such
\fa> Ja)-

then the inital streams are defined as

'{2y - x = 0 (mod 3)) A (2z - ?/ = 0 (mod 3))

42

as

hla = Hx,y,z,t).<
t = 0

t> o-*±

->Aga{z,y,z,t)
^else —> 0

Pa' -^0
else —*■ J_

(2x - z = 0 (mod 3)) A{2z-x = 0 (mod 3))

hb =Hx,y,z,t)
\t = 0_>\'Pb~*\ -*B9b{x,y,z1t)

else —> 0
<PV -* 0
else —► _L

(7)

(M (2y - z = 0 (mod 3)) A{2z-y = Q (mod 3))
C?c(a;,J/,2,i)

e/ae —► 0

e/ae —► _]_
i > 0 -► J_

.1 Ai ti where A*, Aj, Aj 6 5, A, ^, C € A(, (*m)

Output Transformation Function {ya)g'b,9'c) 6 T'3:

where

Xa = X(t, j). max(y - i, 0),

ra = x(i, y). max(t - y, o),
Za = X(i,y).n— 1.

Xb = X(i, y). max(i - j, 0),

Kft = X(i,y).n— 1,

Zft = X(», y). max(y - i, 0).

Xc = X(i,y).n — 1,

Yc = X^yj.max^-^O),

Zc = X(t, j). max(y - i, 0).

^a ^ Tj ^ T^c ^ X(?, y).n + min{i, j) + i + j. (8)

■v-;-S-V'y->»v-- .'■■.■•■>'-.■>■"-■.

■ • ■ " •--_--. -w .■_■. • ■ •■ ' k • • ' w ■ - • * '■ . - . ■ - « _ - l^. k ^ . V \ %^ \, \ **. ** "». v^ -. ^. -." . ^ fc ^ , * , ■ . 1

-*•

-•

10

As before, ^(»,y) denotes the component-wise application of (t,y) to the four components
43

efore, g'a{i,j) denotes the component-wise application of ft,y) to the four comoom

The resulting matrice;, are defined as follows,

i A = h~g'a,B' = hrg'b,C'=:h~ c So

where h™, h?, hf £ S, the final streams

A'^^eX; g'a,g'h,g'c£7'{*out)

We now verify that the above system of iecursion equations and the input output
transformation functions con-ectly implement the familiar matrix operations, i.e.

A{i,j)=A[iij) (9a)

&{i,3)~B{i,3) m

n—1

C"(», i) -"= E .A(t, *) X B{k, j) + C(t, j) (gc)

where 0 < t < n, 0 < j < n

We verify first the following lemmas which are the final streams (the solution of the
recursion equations) in the space-time domain.

Lemma A,B:

A>vLt{x,y,z,t) — < Ain(x + max(i - l _ 2) 0), y + max(iS - 1 - z, 0), max(z -{t-1), 0), 0)

lüa
C^i V <Pb' ->

ioutiz, y, z,t) = l Bin{x + max(t - 1 - y, 0), max(y - (i - 1), 0), z + max(< - 1 - y), 0)

(10a)

else —> _|_

Lemma C: ^ '

Let ^ =t-l + k-y,U2=t-l + k-zlV1~{t-l-x-k)-(y + k) Vn~
\{-1-x-^-iz+k)'Ki=1-^M^t-l)^dK2=mm{n-l-y,n-l-z>t-l-j,).
Deiine

^ = S A^ix + k + inax(Cr
2,0), j/ + max^o, 0), max(-

k^Ki
^2,0),0)

X Bin{z + k + max(f71,0),max(-Z71,0),z + max(?7i,0),0)

^ -^ -•-••--■-• -^ •-«■•-" ■ •.• ".• .- .- v .-. ,■. J". > ,■ ■ -• .'■ >" -": ■, „ ■ •■". - , - . ■

and

So = ^ A.n(max(F2J 0),y + k + max(y2) 0), max(-F2, 0), 0)
fc=0

X 5t-n(iii3x(y1,0),max(-y1 !0]!z + k + maxC^,0),0),
then

{^c V £V -►
C.-n(inax(x - (i - 1), 0), y + inax(i - 1 - x, 0), 2 + max(i - 1 - 1,0), 0)

+\{x, y, z, t).Si{x, y, z, t) + \{x, y, 2, i).52(x, y, z, t)
else —>• _

These relate outputs on any point in space-time domain to the initial input streams.
Since they are total functions in space-time domain, the solution of the equations is
automatically the minimum. Thus one way of verify them is simply substitute them into
the recursion equation and check if the equations hold. The simple substitution technique
will not work in general, since the final streams are not necessarily total in the space-time
domain. In this case, an inductive proof showing that the final streams are the minimum
solution is necessary.

The computation waves of such a system are very instructive in such proofs. We
observe that there are two triangular waves, one incident wave proceeding toward the
origin. Another is a reflected wave proceeding outward from the origin. We define the
phase of the reflected wave to be x + y + z-t and that of the incident wave to be
x + y + z + 2t. A wave front is defined in the traditional way as the locus of all points
of the wave having the same phase. With t fixed, there are many of such wavefronts
spread out in space. In this particular system, we number these wavefront positions by
w - x + y + z. Notice that the partial result of a particular element of a matrix is
carried on by a single wavefront with one value of phase. Intuitively, the induction for
the reflected wave is on the wavefront of phase ^ and w = A to phase 0 and w = A +1.
For the incident wave, inductions proceeds from w = ktow = k-2.

The pair (0, w) can be formalized as a well-founded set (a set with no infinite decreas- ft
ing sequences, so that induction is valid on the set) with the binary relation -< which is
defined as the transitive closure of -<*, the binary relation defined below only on neigh- -<
boring elements:

incident wave: (^1,^) -<*(&>, ^2) if ^ = 02 and ^ = wo + 2.

reflected wave: (^i,^) -<*(&., ^2) if </>i = h and «n = wo - 1. ^ V
The inductive proof is given in [CHEN 82]. _<

By composing the input and output transformation functions with the initial and
final streams, we obtain (9a), (9b), and (9c). The detailed proof is in [CHEN 82].

Self-timed Systems

A self-timed system differs from a synchronous system in the sequencing of system
events. In a synchronous system, all processes are activated simultaneously by the same

'.■•"-■ ■-■■V-V-'.',>"-"-'''--V-''-.''%"\'v.''■."%•'- "• ■'■-'■ -v-v-vvv-",-.v■".■.•;■." v y v w v>" •"■ v-'-
--.y.'--. •-;•■. -r-y

r J"i " . ^. ■ .

to

clock cycle, i.e. all processes have the same invocation number. The invocations of each
process are ordered by the linear sequence of the clock. Thus all the invocations f. t]
where* is the space parameter and t is the time parameter, have a unique partial ordering
-< denned to be ^ a

(«i,ii) -< {S2}h) if -8i = so and ti < to.

In a self-timed system, the ordering of the system events is not self-evident as in the
synchronous system. Each process is invoked only when all of its inputs are readv Thus
the overall system timing is an emergent property of the ensemble attributed by the local
synchronization of all the processes in the system. In such a system, the "time" component
of the space-time domain is a function of the space component, i.e., each process has its
own time-frame. The relation between time-coordinates of two communicati g processes
needs to be asserted in the connection plans. This time-domain relationship among
processes must be verified since it depends on the initial data arrangement because self-
timed elements are triggered by the input data.

The following is the space-time algorithm for the self-timed matrix multiplication on
the systolic array. We define a few more predicates to specify where tne initial data will
be put. Notice that this set of predicates covers much less area than the set pa <pb and
Vo since the self-timed algorithm does not need padding zeros in the input data streams.

^={0 < jz-j/j < n)A(o < min(i,y) < „) A (-? = 0)

Vb =(0 < k - a;| < n) A (0 < minfo x)<n)r\{y = 0)

iP5S=(0< \y-z\ <n)A(0<min(y,2)<n)A(2 = 0)
We also redefine

ip, =ip-a W <p-b\J <p-c

<Pt{x, y,z)=Q<t<n-l- max(z, y, z)
Process Definition

A,M = Xfe „, z, »).{2eVJj " A""(''"'Z' ^ "■Z)) (12a)

B.« = X(..,,., t).{2eZT ^^ "'Z' ^ "'Z)) W
r -u * fa A ,10!" ^^'^ V') - C.-„(i, v, z, t(z, y, z))
'" ~ H!C-V' '■ ()i ^ -* C^x- y- '• «(*■ ^ ')) + ^„(z, y, z, t[x, y, z)) X Bin(X, y, z, t{x, y, z))

[else —► _

Connection Plans
(12c)

ft=0~*Ain{x,y,z,i{x,y,z))

= \ix,y,z}t).\t>0^l(p--* Aout{x + 1'V + 1'z>ti*'y>z)-l) m ^
[<Pa' -> Aevtix, y,Z-l, t{x, t, z)) ^^

Kelse —>• I .

■.•.".•.•.-.■..• •• / •*.-'.-•.-■.-'.-'.•-.■■,-■--,-.•. - --.,-,.,, • ,•

". tr, -' - • • ■ • - • - ■ - -.•rj'."^..^v •. '/ ■. ■..-..v. •.'-.■■.- ,%.-.--• - - ■ ■.■ • • • - ■ • ■ • - • - ■•.-"•^r-.- -

.-■

46

Bin = \{x,y,zJt).lt>0->llp-h^Boutix + l,y,z + l,t{x,y,z)-l)

{t = Q~>Cin{z,y,z}t{x,y,z))

t>0->fa-* C^t{f, y +hz + l, t{x, y, z) - 1)

Input transformation functions: The functions {ga,gh,gc) G T3 map from the space-
time domain f to the matrix indices .A/2 as specified in (5).

ga = (X(z, y, 2r, t).y} \{x, y, z, t).x)

9b s (X(x, y, 2, t).x, \{x, y, z, i).z)

9c = (X(z, y, z, t).y, \{x, y, z, t).z)

The initial streams are defined by using the composition of the input transformation
functions and the matrix function.

Äi=BM«>y,'MK leise-*±

{[else -+
■ Bgb{x,y,z,t)

hb=Hx,y,z,t){ \else-*±

Ä«=M«.y,^^K \e^e-^_L (14)
[t>0->±

Output Transformation Functions: The functions ig'a, g'b, g'c) E T'3 define the space-
time coordinates associated with each element of the output matrix.

g'a^iXa.Ya.Z^Ta], g[= iXb,Ybl Zb, T,), g'c = {XC)YC)Zc,Tc).

.»-.» .■•

where 47

Xa = X(t,y).y - min^, j),

Ya == X(i,y).t-miii(4,y),

Za = X{t,y) n — 1 — iniii(i,y).

Xb = \{i,j).i-mm{i,j],

Yb = \{i,j).n - 1 - min^y),

Zb = \{i,j).j-m.m{i,j).

Xc = X(t,y).n — 1 — iniii(t,y),

Yc sX(t,y).t-mm(t3y),
Ze = x^, y).y - miii(t, y).
^1 = 76 = 7^ = \[i) y). min^, y).

In the connection plan we have used the following assertions.

(IS)

t{x, y,z) = .

'<Pä

Pa'

Vh'

We'

i(i + l,y,z + l) + l
y t[x, y-l,z]
i(x,j/ +1,^+1) + !

► t{x - I, y, z)

(16)

Proof:

We prove these assertions by inductioc on the well-founded set of wavefront
number k.

'■ = {£= ■ - + t{x,y,z) : x,y,z and t are non-negative integers. }

with the usual less-than (<) ordering on the rationals.
(i) base case: k « 0. Since !B,y,z,« are all non-negative integers, we have x = y =

I 7 \r \ By (14)' A'"(0'0^0'0)' ^(0.0,0,0) and ^(0,0,0,0) are initial
data, thus the process is initiated. Notice also that none of the other processes
can proceed since there is at least one input undefined for each of them The
induction hypothesis is vacuously true in this case,

(ii) induction step. We assume that the hypothesis (16) is true for all k < kQ We
then show that it must be true for k = kQ. The proof consists of three steps.

(lj For a given k, inputs to processes of invocation t[x, y,z)-\ were generated
by processes with t{xiy,z) ~ 1 or t{x,y,z) - 2. We use this fact later to
demonstrate that the processes' invocations occur in lock step, i.e. no process
invoked more frequently than any other.

r»«l

>V-V-V-V--.AV-'.VV.'. •■V-V-^N* V r,-\--<«-..---vvv-- -% -v- <. -% -r,.-, •-, •-. •-. ■•. --..-. •-. -.■. .-. ••. .-,.-,.-. -

'-*•-..«.. -^ i • *' ,- w- .- .' v« .»

48

{z + l,y + l,z)

(2) All outputs of the previous invocation have been taken before another in-
vocation is initiated.

(3) All inputs to an invocation t{x,y,z) come from invocations of t{x,y,z) and
t{x,ytz) — 1, depending upon location.

We consider a process at [x, y, z) with k* = ^f^ + t{x, y, z). From Figure 1, it has
three inputs a.m, b.m and c.i from the following neighboring processes respectively.

a.» : (^ ■
\!Paf

h. • M -* (« + 1, J/,^ + 1)
\<PV ~*(x,y- 1,z)

C%n-\<pcl-*{x-l,y,z) (17)

Since Ao - 1 < Ao, the hypothesis is true for this same process at t{x,y,z) - 1 the
previous invocation. By the induction hypothesis (16), this invocation takes its inputs
from the above processes at their time t{x, y,z)-l or *(*, y,z)-2 depending on where
the process is located.

This process provides outputs to the following neighboring processes.

<W • l^a A (z > 0) A (y > 0) -> (a; - 1, y - 1, z)
{<pa' y <pxy<pv~* [x, y,z + \)

bom ■ fa A ^ >0)A (^ > 0) -^ (z -1. y^ -1)
{<pb, y<pxy(pz-*{x,y +1, z)

cout ■ fa A (z > 0)A ^ > 0) -* (:c' J/ - i^ -1)
' l^c' V <Pz V <pv-+{x + I, y, z)

We assert that these outputs from the invocation number t{x, y,z)-l of process [x y z)
are taken by either invocation number (ifoy,*) - 1) or t{x,y,z) of these neighboring
process depending upon their locations. Since

x+y+z+l x_l+y_1+2 9
 + (^,^^-1) = 1^ ±- + {t[x,y,z). l) + l = k-2 <k

6 3

Thus the induction hypothesis can be applied. Process [x, y, z) is ready to start a new
invocation once all of its three inputs are ready. Since the processes that orovide output
to it at their respective time frame t{x, t/, z) - 1 or t{x, y, z) satisfy the following inequality

 + t{x> y, z) - 1 = 1_ + t[Z) V)Z)^k_^<K

.-.-.•.•.•.■--.• r» -^ ,T . . • • ^« -.,-. -. -. - ■.•.■.■.-. ,. ■ . ■ . ' . - . - i ' . - ~* . • . - , ■ '. • . TVZ

49

:

the induction hypothesis applies to them. Process [x, y, z) has three and only three inputs
ready at their respective locations after its invocation number t[z, y,z)-l The align-
element insures that no invocation can occur before all three inputs are ready, thus process
[x,y,z) has its invocation number t{x,y,z) occurring. This proves the above assertions.D

This algorithm is also deterministic for we can define a partial ordering -< onihe
invocations of processes. This binary relation is defined as the transitive closure of Ihe
binary relation -< * as follows.

{x,yuz,t{x,y,z)) -<*(zo,yo,Äo,*(2o,Ito,«o))

s^uchthat6^ {xi'yi'Zl'c{Xuy^z^^y^z^t^y^z^ ^ {*z,y*,**A**,y^z))

lPi -+ {{xi = ^o) A (t/! = y0) A [z, = zo - 1) A itix1,y1>z1) = t{x0,yo,z0)))
[ipa, -. {{x, = 2o + 1) A (t/! = yo + 1) A {z1 = zo) A (^i,^,^) = t{xo,y0,z0) -

and

1))
(18a)

(<p-b -H. ({x2 = rco) A (y2 = yo- 1).A {z2 = z0) A {t{x2, y2,z2) = t{x0, y0,z0)))
IW ~> [[x2 = x0 + 1) A {y2 = yQ) A (zs = ^o + 1) A {t{x2,y2,z2) = t[xQ,yQ,

and

^o) - 1})
(1«6)

^c/ -. (Z3 = xo) A (j/3 = yo + 1) A (*3 = zo + 1) A (t(xa, V3,^) = ^o,yo, zo) - 1)

This definition can be derived from (16) with the existance of the align-element forJhe
inputs of each process as an assumption.

Now we proceed to verify the algorithm by proving two lemmas.

Lemma a,b:
r<Pä V (pai ->

A<,ut{x,y,z)t)~{ Af„(A + i,y + i,0,0)

BovLt[x,y,z,t) = <
(<Pb V <Pb' ->

Bin{x + t,0)z + t) 0)
else —* _[_

(ISa)

(156)

Lemma C:

n f * (^ V ^^HF'"^^^ " ^ 0)' ^ + max(i - x> O)«Ä + max(i - 2,0). 0)
^^(z, y,z,t) = l + 2:j+*o A.n(Ä(t/ + i, o, 0) X Btn{k, 0. z + t, 0)

(^e/se -+• _j_

(19c)

-. ■. v .-.
r ,- ." ." .H '

">/j-';vV/>-'>/%'""/>.'>.C^C--V-">'Iv\-'-'>.-!i,!v'kZ%-,>.- -.'"O^"'-." N

50

Similar to the synchronous case, we can either prove by direct substitution or by
induction on K, the set of wavefront number. By composing these lemmas with input and
output transformation functions, we can derive (9a), (Qb) and {9c].

From both algorithms, we observe that the input and output transformation functions
and the semantics of the hexagonal array are much simpler for the self-timed version. This
result is not accidental, for the interaction among flows of data for this particular algorithm
only utilizes one third of tlr maximum space-time resources. In the self-timed version, only
one third of the processes (all processes with the same k = ?±|±^ +t{x, y, z)) are active at
any instant. In the synchronous version, all processes are active at all times, thus padding
zeros are necessary. The simplicity of the self-timed version is a pay-off of the more
sophisticated synchronization method. It is necessary to prove that local synchronization
gives rise to the global sequencing relations among all the processes. Describing these two
algorithms in CRYSTAL not only shows the capability of our framework but also provides
many insights into the the complexity of various aspects of these two different timing
schemes. We have achieved one of the important goals of this research - by providing a
formalism m which one can gain a much deeper understanding of the subject one describes
m the process of so doing.

Conclusion

^ We have presented a notation and formal semantics for general non-linear systems
with memory. An essential part of the semantics is a methodology for abstracting the
behavior of such systems so they can be used as components at a higher level. The
semantics of a particular system consists of

(i) An input mapping function from the value domain to the space-time structure
of the system.

(ii) A function in the space-time domain which completely defines the operation of
the system.

(iii) An output mapping function from the space-time structure to the value domain.

The abstract semantics of the system is obtained by eliminating space-time variables
to yield a function in the value domain alone. When it is possible to eliminate all
intermediate variables, as it was with the Kung array, the abstract system is purely
functional. When some intermediate state variables remain, as in the case where real-time
input is necessary, the system is defined by an abstract sequential process. Such a process
is defined bv a system of recursion relations in time. From an engineering point of view
the input and output mapping functions serve as precise interface specifications for the
system.

The methodology can be applied to any system: linear, non-linear, time-varying
history-dependent. We believe it provides, for the first time, a unified approach spaning
the range from computer programs to linear transfer functions; from transistor circuits
to high level communicating sequential processes.

.^ ^ "- "^ !V' ^ -. ". •. ". -. ■, -. ". ", ,-, «»"I '. «, «, ■- ■- --• • ■ 1-v- -'..'•, -^ ■ -. ■ ■ • - - . ," v" , \.'* " ■

References
51

[ACKERMAN 82]

[BACKUS 78]

[BROWNING 80]

[CHEN 82]

Ackerman, W.B.
Data Flow Languages
Computer, 15(2):15-26, February 1982.

Backus, J. Can Programming Be Liberated from the von
Neumann Style?
A Functional Style and Its Algebra of Programs
CACM, 21(8)613-641, August 1978. '

Browning, S.A.

The Tree Machine: A Highly Concurrent Computing Environment

Ph.D. thesis, California Institute of Technology, January
1S80. J'

Chen, M.C.

Ph.D.Thesis in Preparation, California Institute of Technology.

[DlJKSTRA 76]

[JOHNSSON 81]

[KAHN 74]

Dijkstra, E.W.
A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, New Jersey, 1976.

Johnsson, L., Weiser, U., Cohen, D. and Davis, A.
Towards a Formal Treatment of VLSI Arrays
Technical Report 4191, California Institute of Technology
January, 1981.

Kahn, G.
Proc. IFIP Congress 74.

The Semantics of a Simple Language for Parallel Programming,

[KUNG &LEISERSON 80]

[KUNG, S.Y. 80]

Kung,H.T. and Leiserson C.E.
Algorithms for VLSI Processor Arrays.
Mead &Conway, Introduction to VLSI Systems Addison-
Wesley, 1980, chapter 8.3.

Kung S. Y.
VLSI Array Processor for Signal Processing.

A -*. ?■. •"•,'"".■ ■-■;

■ - ' OA." -' -. • ■ v." ■ ■ ^^

... t. ■ .* .*

52

Conference on Advanced Research in Integrated Circuits
MIT., 1980.

[LASSEZ,NGUYEN&SONENBERG]

Lassez,J.L., Nguyen.V.L, and Sonenberg,E.A.
Fixed Point Theorems and Semantics: A Folk Tale
Information Processing Letters, 14(3):112-116, February 1982.

[LIN &MEAD]

[MANNA 74]

[PERLIS 82]

[SEITZ 80]

[SCOTT & STRACHEY 71]

[STOY 77]

Lin T.Z. and Mead C.A.
The Application of Group Theory in Classifying Systolic
Arrays
Display File 5006, California Institute of Technology, March
1982.

Manna, Z.
Mathematical Theory of Computation.
McGraw-Hill, New York, 1974.

Perlis, A.J.
Epigrams on Programming.
SIGPLAN Notices, 17(9), September 1982

Seitz, C.
System Timing.

Mead &Conway, Introduction to VLSI Systems Addison-
Wesley, 1980, chapter 8.3.

Scott, D. and Strachey, C.
Toward a Mathematical Semantics for Computer Languages
Fox, .]., editor. Polytechnic institute of Brooklyn Press New
York, 1971.

Syoy, J.E.
Denotational Semantics: The Scott-Strachey Approach.
The MIT Press, Cambridge, Massachusetts, 1977.

[SUTHERLAND & MEAD 77]
Sutherland I. and Mead C.
Micro-electronics and Computer Science
Scientific American 237(3):210-229, September, 1977.

I . o^>:-.<--v-:->:'^v:%-:vi:v":N-:->:-.rv:-.<-:- j • - ■. - - ■'-.v-v -."Xl"

