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Introduction 

It is by now well recognized that VLSI technology has brought about a medium which 
allows the realization of orders of magnitude more computing elements per unit cost 
The more significant contribution of VLSI to Computer Science will be in the uti'ization 
of many hundreds or thousands of these elements concurrently to achieve a given com- 

S?™11; ? 1S Clear ^ existence Proofs of s^ innovative designs as systolic arrays 
[KUNG & LEISERSON80], tree machine algorithms [BROWNINGSO], computational ar- 
ray. [JOHNSSON ET AL.81], wavefront arrays [KUNG,S.Y.80], etc. that vast performance 
improvements can be achieved if the design of so-called "high-level" algorithms is released 
from the one dimensional world of a sequential process, and the cost of communications h 
space as weh as cost of computation in time is taken into consideration [SUTHERLAND & 
MEAD77]. While this higher dimensional design space provides a great playground for in- 
novative algorithm design, it also introduces pitfalls unapprehended by those accustomed 
to the world of a single sequential process. Verification of algorithms becomes much more 
crucial m system designs because debugging concurrent programs can very easily become 
an exponentially complicated task in this rich space.  The real difficulty lies in the high 
degree of complexity of concurrent systems.  The well-known hierarchical approach can 
be usea to manage the design complexity for such systems. A system is broken down into 
successive levels of sub-systems until each is of a manageable complexity. The effectiveness 
of this approach relies on two basic tools: A design and verification methodology for each 
level and an abstraction mechanism to go from one level to the next. The latter is crucially 
important, for without it the consistency of the whole system is imperiled. 

^ In this paper, we describe a methodology and a single notation for the specification 
and verification of synchronous and self-timed concurrent systems ranging from the level 
of transistors to communicating processes. The uniform treatment of these systems results 
in a powerful abstraction mechanism which allows management of system complexity.    ^ 

Traditionally, due to the assumption that the cost of accessing variables in memory is 
the same regardless of their locations, sequential algorithms ignore the spatial relationships 
•This work iS sponsored by System Development Foundation and its initial phase by Defense Advanced 

^moOUrlT^O^  I^Vr  #3r71   and   m0Ilit0red  W  0ffiCe  0f N-l  Re-arch  ContTact TfiN00014-70-C-0o9<. One of us (M-C.) was supported by an IBM Doctoral Fellowship 

'Computer Science Department, California Institute of Technology, Pasadena, California. 



>*---"       -- J»       J*       ^      -*        ,"        ••        ,''       ,"        •""     -I    _     .\    v*".    ...    *     t    •,'„•,•..    *    ■,   «<   J^'    , 

32 

of variables. In addition, tlie steps of a computation have not been explicitly expressed 
as a function of time, but are rather implied by programming constructs. Languages 
that cannot express the spatial relationships of variables cannot take into account the 
most important aspect in the design of a concurrent algorithm, i.e. ensuring locality of 
communications, taking advantage of the interplay of variables in space (in practice up to 
3 dimensions) to achieve higher performance. The implicit "time" causes programming 
languages to suffer either from not being able to abstract the history of computation (e.g. 
in applicative and data-flow languages [KAHN74, BAKUS78]), or not being b.ble to abstract 
computation in a clean functional form (e.g. in assignment-based languages). Here we 
choose to make "time" an explicit parameter of computation. We call our representation 
of computation a "Space-time Algorithm". 

In [CHEN82], CRYSTAL (Concurrent Representation of Your Space Time ALgorithm), 
a notation for concurrent programming is proposed. The fixed-point approach [SCOTT 
& STRACHEY71] is used for characterizing the semantics. Within this framework, a 
program is expressed as a set of systems of recursion equations. Unknowns of the equa- 
tions are data expressed as functions from the space-time domain to the value domain. 
For a deterministic concurrent system, such as a systolic array, a single system of equa- 
tions results, and the semantics of such a system is defined as the least solution of the 
equations. The semantics of concurrent systems in general can be characterized as the 
corresponding set of solutions of the set of systems of equations. In this paper, we con- 
centrate on deterministic concurrent systems at the communicating sequential processes 
level. We will first present briefly considerations that are generic to all systems, i.e., the 
underlying model of computation, the representation, and the mathematical semantics of 
the systems. Various inductive techniques (see for example [MANNA74]) used in verifying 
recursive programs can be directly applied in verifying space-time algorithms and proving 
their properties. We demonstrate this framework by presenting both the synchronous and 
self-timed version of the matrix multiplication on systolic arrays [Kung & LeisersonSO] 
with its proof of correctness. The notion of wavefront is especially important in this class 
of computations. We define the "phase" of a computation wave in a way that is analogous 
to the wave in physical world. The set of all possible "phases" can be formalized as a 
well-founded set, upon which the inductivt proof is based. 

Model of Computation 

The model consists of an ensemble of sequential processes each of which has its own 
local state and ports for communicating with other processes. Depending on the level of 
system concerned, these processes can be as simple as a single transistor or as fancy as a 
conventional von Neumann type machine. A sequential process consists of a function that 
maps from inputs and current-states to outputs and next-states. Such a function uniquely 
defines a sequential process. It is the generator of the output sequence and state with given 
initial state and an input sequence. The state captures the semantic abstraction of the 
history.  No assertion about the process can depend upon history in a way not caotured 
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by the state   A single invocation of the function i) evaluates the function, iijupdates the 
state and outputs, iii)increinents the process's "time", all as an atomic event. 

In a particular process, "time" is a measure of how many invocations have occurred 
and space is where the process is located. «Time" is a property local to each process! 
Note that state is explicitly represented, a function is not defined from the historv of inputs 
to outputs as m the applicative and data flow model of computation. Communications 
among processes in space are specified by identifying inputs of one process with outputs of 
other processes in the space-time domain. Also note that a transition from one invocation 
to the next withm a sequential process can be viewed as a communication in the uime 
domain (fixed in space). 

The  "slicing" of a SPquential process into a sequence of functions is done at the 
communication with the external world. Inputs from several different processes which are 
angned m time and used as arguments to a single function are considered as one external 
input event, i.e.   one invocation.  Within the same slice, no side-effects are allowed j e 
each slice is strictly functional. We enforce this discipline by using a purely applicative 
programming notation (like pure Lisp and Backus's FP notation) to implement atomic 
^unctions, which cannot be further sliced either in space or in time.   Any higher level 
system is constructed by composing atomic functions and other existing systems using 
recursion equations.   The resulting system is always transformed into a function from 
inputs and current-states to outputs and next-states, i.e. a sequential process. It is often 
the case that once the system is implemented, a sequence of inputs can be conveniently 
considered as a set of inputs at the next level up. Although internal state is used as part 
of the implementation, the outputs can be expressed as a function of such a sequence 
of inputs without refering to the state.   In such a case we abstract the process as an 
applicative function and it can, once again, be treated as if it were atomic.  In real-time 
systems, this kind of abstraction is not possible since the sequence of inputs cannot be 
treated as a static input, making explicit state still necessary. 

Thus space-time algorithms are either purely applicatiye programs or recurs'on equa- 
tions.   Note that m this way, states can be expressed without side-effects.   The change 
from viewing an applicative system as the universe to using it only for .n atom is the key 
to the applicability of our framework to real systems. The applicative model of comput- 
ing suffers one major drawback in not being able to retain the result of a computation 
so that it can be used in a different place or at a later time.  The data flow model is a 
remedy for this problem only in space.   The essential ability to use a result in several 
places is captured by the data-flow equations devised by Kahn [KAHN74]. Unfortunately 
this model_ stilllacks the essential capability of capturing the state, the result in the 
time domain.   This fact is manifested in the proliferation of assignment-based data-flow 
languages [ACKERMAN, W.B.]. The elegance of data-flow equations cannot help the im- 
plementation of real world systems where state is necessary.   The space-time recursion 
equations using a purely applicative language can be applied to real world problems* 

l^^utT^RlTB2]S iS beSt CaptUred ^ a quote by Perlis "Pu^ ^^e ianguages 
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This insight is the most important coctribution of our work to computer programming. 
We thus retain the elegance and formal cleanness of functional application together with 
the essential ability to abstract history into a compact form. 

Representation 

Let x = {xi,X2)...,xm) denote the inputs and current-states of a process, where 
Xi € Di for 1 = 1,2,..., m. Here 0,- is the domain* where the input or current-state i 
assumes its value. We define a function / which maps the vector of inputs and current 
states to the vector of outputs and next states: 

f :Dm^Dn
) 

/ = (Xx./1,Xx./2,...,Xx./„) ^ 

where n is the total number of outputs and states. 

Each component, Xx./,-, of such a function is an element of [Dm -* D]. These functions 
must be monotonic (see for example [MANNA 74]) over Dm. 

In order to capture the notion of flow of the data and the structure of these data 
we define data streams. Each "stream" of data is represented by a function from the 
space-time domain V to the value domain D. We next define structured processes which 
define the location of the processes making up the ensemble, as a function in the domain 
[y ^[pm^ pji  Thia flmctioi! is d(!filied by cases for differeiit process types .m the gpace 

Cases are specified in the notation of [DlJKSTRA 76]. The complexity of this definition 
reflects the heterogeneity of the process types. 

The relationship among the structured input and output data streams and structured 
processes and functions are defined in a point-wise manner. In the space-time domain an 
ootput is the result of the application of the function at that point to input data streams 
at that point. Through connections, the input (current-state) streams of one function are 
identified with output (next-state) streams of other functions, or with initial/boundary 

Jnm rm tllerefore defille 3tr^^ed connections also as a function in the domain VV -> 
[D -* D\]. The description of this function reflects the regularity of the connections By 
substituting the equations of structured connections into those of structured processes 
we obtain a system of recursion equations that deflne output streams in terms of output 
streams and initial/boundary conditions. 

An obvious restriction on these recursion relations is that the time components can 
only increase by on-, unit at a time, i.e. an argument presented to the input of a function 
at its time" t will affect the value of that function which appears at its output at its 
^ime   t + l. 

I 
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ID general, an input stream at a giren point in the space-time domain can connect 
to an output stream at any other point in space. In specific cases, such as when the 
low-cost neighboring communications are used, inputs are connected to outputs of neigh- 
boring processes. In the case of such neighboring connections, the relations are local in all 
dimensions. It is then possible to use difference equations for our specificatioD, Recursion 
relations retain more information in the sense that the "phase" of a computation wave 
is embedded in the description. For more complex situations, involving non-local connec- 
tions, the greater generality of recursion relations is essential. 

Semantics and Abstraction 

By the well-known fixed-point theory[LASSEZ, NGUYEN &SONENBERG 82]   the 
unique minimum solution of any system of recursion equations exists.   This -ninimum 
solution is taken to be the function that the system computes. The process of finding this 
mmimum solution can be described intuitively by the following successive approximation 
procedure. We first approximate the solution bv the set of n data streams that are totally 
undefined in the space-time domain and substitute them into the right-hand side of the 
recursion equations. This substitution results in the left-hand side which is a set of data 
streams that are defined only on the point in space-time domain where initial values are 
set. These data streams are the inputs to the algorithm and we refer to them as initial 
streams. Now we substitute these initial streams again into the recursion equation and get 
another sat of data streams that have even more points in the space-time domain defined 
We repeat this process until no more points in the space-time domain become defined 
Ihis process corresponds exactly to the process of computation.  The only restriction is 
that our functions must be monotonic, i.e.  each data stream at any iteration is always 
at least as well defined as it was on the previous one.  We do not allow non-monotonic 
functions that destroy results which have already become defined. Refer to [MANNA741 
[STOY77] for the formalism. 

The resulting minimum solution consists of n data streams. Each data stream is a 
function over [V - D]. In order to construct a higher level system using the system we 
have just obtained, we need to encapsulate the system as a sequential process or a function 
The function defining a sequential process or the single applicative function is from value 
domain to value domain. This encapsulation usually involves some transformation from 
the original data structure to the space-time domain for the inputs and a corresponding 
transiormation for the outputs. Technically, the procedure is as follows: 

(1) _ The input mapping function maps all initial/boundary values from an abstract 
input data structure to the inputs unconnected to any output in the sp?ce-time 
domain. 

(2)   Compute the least fixed point solution 
above. 

in the space-time domain as described 

-,' v" -.-   ■ 
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(3) The resulting outputs occur at those points in the space-t.me domain designated 
as outputs of the system. The output mapping function maps these outputs from 
an element of [V ~* D]n to an element of the output value domain Dn'. 

The result of this procedure is the abstract definition in the value domain, of the 
function (type [Dm -> Vn ]) implemented by the space-time algorithm. 

Matrix Multiplication on a Systolic Array—Program and Semantics 

In his paper, Kung described various matrix related operations performed on an array 
of interconnected hexagonal elements. We present his algorithm for multiplying two full 
matrices in CRYSTAL and prove the correctness of the algorithm. 

As shown in figure 1, hexagonal elements are connected into a hexagonal array  Each 
element has three inputs and three outputs as shown by the incoming and outgoing arrows 
respectively. Such a process performs an inner product operation in the north and south 
direction , i.e. cout — c,-rt + ain X 6,n, and transmits the other two inputs as they were 
i.e., aout = ain;hout = bin. '' 

The two matrices to be multiplied, A and B, and a matrix C are fed into the array 
as shown m the figure. The resulting matrix C will come out at the top of the array as 
shown. Kung's original algorithm assumes a global clock thus every process performs an 
operation synchronously. When data items are fed from the boundaries of the array due 
to the fact that every process is forced to perform an operation even before any meaningful 
data reacnes the process, proper initialization of the system by padding zeros in the input 
streams and disposal of garbage data are necessary. The same algorithm with a different 
timing scheme, e.g. self-timed [Seitz 80] scheme can simplify conceptually the interaction 
of processes and the flow of data and renders a simpler initiation of the system    This 
simplification results from the fact that the self-timed scheme assures that each process 
does not perform any operation until all the meaningful data items have reached the 
process. On the other hand, the self-timed scheme does not have any global control the 
ordering of the system events is an emergent property of the local synchronizations. Thus 
the specification of the ordering relations among invocations of processes has to - tferified 
from initial data arragement since self-timed elements are triggered by the arrival of data. 

Both algorithms can be described by CRYSTAL programs. We will present both 
versions as examples of our notation and verification methodology and discuss some of the 
design issues of synchronous systems vs. self-timed systems. 

In writing a CRYSTAL program, one need to choose an appropriate coordinate system 
for the processes m space. The data Row of the array has a symmetry which can be 
described by the dihedral group of order 3 [LlN &MEAD 82]. As shown in Figure 1 the 
3-aimensional Cartesian coordinate system is chosen to reflect this symmetr-   ^he center 
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FIGURE  2 
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of this hexagon can be viewed as a corner of a cube. The hexagon is made of the three 
taces tnat contain the corner. 

Next we choose a coordinate system in the time domain according to the system 
timing scheme^ If the system is synchronous, then t denotes the number of system 
clock cycles. For a self-timed system, each process has its own cime frame If it is a 
deterministic system, there exists a unique partial ordering of all events of the system 
For a nondetermmistic system, there exists more than one possible partial ordering of 
system events. Thus the synchronous system is a special case of deterministic systems 
where the unique partial ordering on events is controlled by the system clock. 

Letx,y,zt be non-negative integers. Define the following predicates which specify 
the location of processes in the space-time domain as shown in Figure 2. For example ^ 
restricts the zy plane to an area within the specified bounds in the first quadrant 

<pxsl ==(n > z >0) A (n >-y > 0) A (2 = 0) 

<PyZ =(n > y > 0) A (n > 2 > 0) A (2 = 0) 

ipsx =(n > z > 0) A (n > 1 > 0) A (y = 0) 

fx ={n> x>0)A{y = 0)A{z = 0) 

<Py={n> y>0)A{z = 0]A{x = 0) 

<pz ={n > z > 0) A{x = 0) A{y = 0) 
Vxtfz ss(x = 0) A (y = 0) A {z = 0) 

<ph ==ipxif v <pyz V ipxx VptVipyVip: V (pxyz 

fa =(0 < |x - y| < 3n) A (0 < min(22 -y,2y-x)< 3n) A{z = 0) 

<pb =(0 <\z-x\< 3n) A (0 < min(2z -x,2x-z)< 3n) A (y = 0) 

^=(0< |y-z| <3n)A(0<min(2y-2,2z-y) <3n)A(x = 0) 
ip, =ipa V ipb V <Pc 

<Pa' =<Pxy V (pZx V <pz 

iph> =<pyz V <pzy V (fy 

PC =Pxy V <pzx V Vx 

(pt=0 <t < 4(n - 1) + 1 

We use the notation p to indicate the negation of the predicate <p. Define the space-time 
domain of  he array M = { [x> y, z,t) : p, A<pt}. From now on unless otherwise specified 
[x, y,z, t) always refers to any [x, y,z,t] eV. 

Let Ain, Bin, and Cin be the input data streams (a function over [V -> D]] and A, 
Bout and Cout be the output data streams. Then the following process definition spedfv 
how each output stream is related to the input streams.   For example, each hexagonal 
element within the hexagon (when ^ holds), has an inner product element for computing 

;•:':•:-:•.->:■;>:.■■:>:."-;. •■:.--:A>V-. 
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cout and two delay elements for computing aoui and bout. The definition below defines for 
all the elements in the space-time domain in a structured way. 

Process Definition 

A,,. = Hx, y, z, l).^^ Am(Z'V'2-' - l] (.2a) 

(<Pc A {fyz VfyW <pz) -> Cin{x, y,z,t- 1) 
Cout - Hx, y, z, t).{ tpi _ Cin{x} y,2,t-l)+ Ain{x, y, ^ « - 1) x Bin{x, y,z,t- 1)  [2c) 

yeUe -> _|_ 

Next we define the connection plans for all the elements.  It specifies which output 
connects to which input in a structured way. 

Connections 

Bin = Hx,y,z,t),\t>Q-* l,pb -> B™*(* + l>y,* + i,t) 
[Pv -+ Bout{x,y-l,z,t) 

\else -> J_. 

{t = Q^Cin{x,y,z,t) 

t>Q^S<Pc^C0Ut{x,y + l,z+l,t) 

else -* J_. 

By substituting (3a) into (2a), we obtain 

ty 1 _+ J ^ -* Aovti* + 1, y + 1, ^ i - 1) 
[tPa.! -+Aou^z, j/, *, i - 1) 

(36) 

(3c) 

(4) 

:.- 
{i = 0 ->• ^..„(i, y, z, t) 

^o^K^^f + ^y + W) (3a) 
l^a' -+ A,ut(a:, y, ^ - 1, i) v    ; 

e/«e -+ J_. 

H=ü-+Bin{x,y,z,t) S 
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Similarly, we can substitute (3b) into (2b) and (3a), (3b), (3c) into (2c) to obtain a system 
Oi recursion equations m ^«t, Boxxt and Cout and the initial conditions. 

inn.MnTh ^^ ^ the behavi^ ^ the hexagonal array itself independent of the 
nput to the array. Next we specify the input and output transformation functions which 

relate the structure of the hexagonal array with the abstract data structure of matrices. 

Let h   = [hi, hi, hi] denote the initial streams and h00 = (h™ A?0 h^) dpnofp f>,0 

m AS MTS wh:f rthe minimum soiution of the *b™ ^'o&±L:Z-™ 
rtl    Matex wah elements from the domain V can be thought of as a function from the 

tr thffo^si!0 p We denote the resulting matrix by x' B' -d c' -d 

domain of integers from 0 to n - 1: >/ 

domain of matrices: X = [J^/2 —>. p]> 

domain of data streams: S = [V -> p]j 

domain of transformation functions: T = [V — J^2] 

r ~ [M2 ~> v] 

We define the input transformation function iga,9b,<jc) 6 T3: 

9a = [la, Ja),      gh = {Ib,Jb),      ge = {Ie,Je) 

where 

Ia = X(x;y,2,t).l2y-* = 0 (mod 3) -> ^x 
[else -* J_ 

4 = X^ y, ^ t)> " y S 0 (^od 3) -> ^p 

/6 = X(x,y,^i).|2a;-^ = ö(mod3) 

Jb ^ Hx,y,z,t).[2*-x = Q (mod 3) -. ^ 

2x—i 

h = Hx, y, z, t)^ " * = 0 (mod 3) -. ^ 

^ = X(x, y, *, i).|2i' - ^ -0 ^^3) -^ ^ 
yehe -> J_ 

We use the shorthand notation 

Qa[x, y, z, t) = [Ia{x, y, z, t), JJx, y, z, t)] 

\ 

\ 

(?) 

(6a) 

'\ehe~*± 6 W 

(6c) 

.v.y;.-,,•-. --. --. •w-. -/-.•■.•>.•.•.-/-. 
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for component-wi=c application of the argument (x, y, z, t) to a rector of functions such 
\fa> Ja)- 

then the inital streams are defined as 

'{2y - x = 0 (mod 3)) A (2z - ?/ = 0 (mod 3)) 
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as 

hla = Hx,y,z,t).< 
t = 0 

t> o-*± 

->Aga{z,y,z,t) 
^else —> 0 

Pa' -^0 
else —*■ J_ 

(2x - z = 0 (mod 3)) A{2z-x = 0 (mod 3)) 

hb =Hx,y,z,t) 
\t = 0_>\'Pb~*\        -*B9b{x,y,z1t) 

else —> 0 
<PV -* 0 
else —► _L 

(7) 

(       M (2y - z = 0 (mod 3)) A{2z-y = Q (mod 3)) 
C?c(a;,J/,2,i) 

e/ae —► 0 

e/ae —► _]_ 
i > 0 -► J_ 

.1  Ai  ti where A*, Aj, Aj 6 5,       A, ^, C € A(, (*m) 

Output Transformation Function {ya)g'b,9'c) 6 T'3: 

where 

Xa = X(t, j). max(y - i, 0), 

ra = x(i, y). max(t - y, o), 
Za = X(i,y).n— 1. 

Xb = X(i, y). max(i - j, 0), 

Kft = X(i,y).n— 1, 

Zft = X(», y). max(y - i, 0). 

Xc = X(i,y).n — 1, 

Yc = X^yj.max^-^O), 

Zc = X(t, j). max(y - i, 0). 

^a ^ Tj ^ T^c ^ X(?, y).n + min{i, j) + i + j. (8) 

■v-;-S-V'y->»v-- .'■■.■•■>'-.■>■"-■. 
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As before, ^(»,y) denotes the component-wise application of (t,y) to the four components 
43 

efore, g'a{i,j) denotes the component-wise application of ft,y) to the four comoom 

The resulting matrice;, are defined as follows, 

i A = h~g'a,B' = hrg'b,C'=:h~ c   So 

where h™, h?, hf £ S, the final streams 

A'^^eX;       g'a,g'h,g'c£7'{*out) 

We now verify that the above system of iecursion equations and the input output 
transformation functions con-ectly implement the familiar matrix operations, i.e. 

A{i,j)=A[iij) (9a) 

&{i,3)~B{i,3) m 

n—1 

C"(», i) -"= E .A(t, *) X B{k, j) + C(t, j) (gc) 

where 0 < t < n,    0 < j < n 

We verify first the following lemmas which are the final streams (the solution of the 
recursion equations) in the space-time domain. 

Lemma A,B: 

A>vLt{x,y,z,t) — < Ain(x + max(i - l _ 2) 0), y + max(iS - 1 - z, 0), max(z -{t-1), 0), 0) 

lüa 
C^i V <Pb' -> 

ioutiz, y, z,t) = l    Bin{x + max(t - 1 - y, 0), max(y - (i - 1), 0), z + max(< - 1 - y), 0) 

(10a) 

else —> _|_ 

Lemma C: ^     ' 

Let ^ =t-l + k-y,U2=t-l + k-zlV1~{t-l-x-k)-(y + k)  Vn~ 
\{-1-x-^-iz+k)'Ki=1-^M^t-l)^dK2=mm{n-l-y,n-l-z>t-l-j,). 
Deiine 

^ =   S A^ix + k + inax(Cr
2,0), j/ + max^o, 0), max(- 

k^Ki 
^2,0),0) 

X Bin{z + k + max(f71,0),max(-Z71,0),z + max(?7i,0),0) 
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and 

So = ^ A.n(max(F2J 0),y + k + max(y2) 0), max(-F2, 0), 0) 
fc=0 

X 5t-n(iii3x(y1,0),max(-y1 !0]!z + k + maxC^,0),0), 
then 

{^c V £V -► 
C.-n(inax(x - (i - 1), 0), y + inax(i - 1 - x, 0), 2 + max(i - 1 - 1,0), 0) 

+\{x, y, z, t).Si{x, y, z, t) + \{x, y, 2, i).52(x, y, z, t) 
else —>• _ 

These relate outputs on any point in space-time domain to the initial input streams. 
Since they are total functions in space-time domain, the solution of the equations is 
automatically the minimum. Thus one way of verify them is simply substitute them into 
the recursion equation and check if the equations hold. The simple substitution technique 
will not work in general, since the final streams are not necessarily total in the space-time 
domain. In this case, an inductive proof showing that the final streams are the minimum 
solution is necessary. 

The computation waves of such a system are very instructive in such proofs. We 
observe that there are two triangular waves, one incident wave proceeding toward the 
origin. Another is a reflected wave proceeding outward from the origin. We define the 
phase of the reflected wave to be x + y + z-t and that of the incident wave to be 
x + y + z + 2t. A wave front is defined in the traditional way as the locus of all points 
of the wave having the same phase. With t fixed, there are many of such wavefronts 
spread out in space. In this particular system, we number these wavefront positions by 
w - x + y + z. Notice that the partial result of a particular element of a matrix is 
carried on by a single wavefront with one value of phase. Intuitively, the induction for 
the reflected wave is on the wavefront of phase ^ and w = A to phase 0 and w = A +1. 
For the incident wave, inductions proceeds from w = ktow = k-2. 

The pair (0, w) can be formalized as a well-founded set (a set with no infinite decreas- ft 
ing sequences, so that induction is valid on the set) with the binary relation -<   which is 
defined as the transitive closure of -<*, the binary relation defined below only on neigh- -< 
boring elements: 

incident wave: (^1,^) -<*(&>, ^2) if ^ = 02 and ^ = wo + 2. 

reflected wave: (^i,^) -<*(&., ^2) if </>i = h and «n = wo - 1. ^ V 
The inductive proof is given in [CHEN 82]. _< 

By composing the input and output transformation functions with the initial and 
final streams, we obtain (9a), (9b), and (9c). The detailed proof is in [CHEN 82]. 

Self-timed Systems 

A self-timed system differs from a synchronous system in the sequencing of system 
events. In a synchronous system, all processes are activated simultaneously by the same 
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clock cycle, i.e. all processes have the same invocation number. The invocations of each 
process are ordered by the linear sequence of the clock.   Thus all the invocations f. t] 
where* is the space parameter and t is the time parameter, have a unique partial ordering 
-< denned to be ^ a 

(«i,ii) -< {S2}h) if -8i = so and ti < to. 

In a self-timed system, the ordering of the system events is not self-evident as in the 
synchronous system. Each process is invoked only when all of its inputs are readv Thus 
the overall system timing is an emergent property of the ensemble attributed by the local 
synchronization of all the processes in the system. In such a system, the "time" component 
of the space-time domain is a function of the space component, i.e., each process has its 
own time-frame. The relation between time-coordinates of two communicati g processes 
needs to be asserted in the connection plans. This time-domain relationship among 
processes must be verified since it depends on the initial data arrangement because self- 
timed elements are triggered by the input data. 

The following is the space-time algorithm for the self-timed matrix multiplication on 
the systolic array. We define a few more predicates to specify where tne initial data will 
be put. Notice that this set of predicates covers much less area than the set pa   <pb and 
Vo since the self-timed algorithm does not need padding zeros in the input data streams. 

^={0 < jz-j/j < n)A(o < min(i,y) < „) A (-? = 0) 

Vb =(0 < k - a;| < n) A (0 < minfo x)<n)r\{y = 0) 

iP5S=(0< \y-z\ <n)A(0<min(y,2)<n)A(2 = 0) 
We also redefine 

ip, =ip-a W <p-b\J <p-c 

<Pt{x, y,z)=Q<t<n-l- max(z, y, z) 
Process Definition 

A,M = Xfe „, z, »).{2eVJj " A""(''"'Z' ^ "■Z)) (12a) 

B.« = X(..,,., t).{2eZT ^^ "'Z' ^ "'Z)) W 
r     -u * fa A ,10!" ^^'^ V') - C.-„(i, v, z, t(z, y, z)) 
'" ~ H!C-V' '■ ()i ^ -* C^x- y- '• «(*■ ^ ')) + ^„(z, y, z, t[x, y, z)) X Bin(X, y, z, t{x, y, z)) 

[else —► _ 

Connection Plans 
(12c) 

ft=0~*Ain{x,y,z,i{x,y,z)) 

= \ix,y,z}t).\t>0^l(p--* Aout{x + 1'V + 1'z>ti*'y>z)-l) m ^ 
[<Pa' -> Aevtix, y,Z-l, t{x, t, z)) ^^ 

Kelse —>•   I . 

■.•.".•.•.-.■..• •• / •*.-'.-•.-■.-'.-'.•-.■■,-■--,-.•. - --.,-,.,, • ,• 
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Bin = \{x,y,zJt).lt>0->llp-h^Boutix + l,y,z + l,t{x,y,z)-l) 

{t = Q~>Cin{z,y,z}t{x,y,z)) 

t>0->fa-* C^t{f, y +hz + l, t{x, y, z) - 1) 

Input transformation functions: The functions {ga,gh,gc) G T3 map from the space- 
time domain f to the matrix indices .A/2 as specified in (5). 

ga = (X(z, y, 2r, t).y} \{x, y, z, t).x) 

9b s (X(x, y, 2, t).x, \{x, y, z, i).z) 

9c = (X(z, y, z, t).y, \{x, y, z, t).z) 

The initial streams are defined by using the composition of the input transformation 
functions and the matrix function. 

Äi=BM«>y,'MK leise-*± 

{[else -+ 
■ Bgb{x,y,z,t) 

hb=Hx,y,z,t){ \else-*± 

Ä«=M«.y,^^K \e^e-^_L (14) 
[t>0->± 

Output Transformation Functions: The functions ig'a, g'b, g'c) E T'3 define the space- 
time coordinates associated with each element of the output matrix. 

g'a^iXa.Ya.Z^Ta],    g[ = iXb,Ybl Zb, T,),    g'c = {XC)YC)Zc,Tc). 
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Xa = X(t,y).y - min^, j), 

Ya == X(i,y).t-miii(4,y), 

Za = X{t,y) n — 1 — iniii(i,y). 

Xb = \{i,j).i-mm{i,j], 

Yb = \{i,j).n - 1 - min^y), 

Zb = \{i,j).j-m.m{i,j). 

Xc = X(t,y).n — 1 — iniii(t,y), 

Yc sX(t,y).t-mm(t3y), 
Ze = x^, y).y - miii(t, y). 
^1 = 76 = 7^ = \[i) y). min^, y). 

In the connection plan we have used the following assertions. 

(IS) 

t{x, y,z) = . 

'<Pä 

Pa' 

Vh' 

We' 

i(i + l,y,z + l) + l 
y t[x, y-l,z] 
i(x,j/ +1,^+1) + ! 

► t{x - I, y, z) 

(16) 

Proof: 

We prove these assertions by inductioc on the well-founded set of wavefront 
number k. 

'■ = {£= ■        -        + t{x,y,z) : x,y,z and t are non-negative integers. } 

with the usual less-than (<) ordering on the rationals. 
(i) base case: k « 0. Since !B,y,z,« are all non-negative integers, we have x = y = 

I 7 \r \  By (14)' A'"(0'0^0'0)' ^(0.0,0,0) and ^(0,0,0,0) are initial 
data, thus the process is initiated.  Notice also that none of the other processes 
can proceed since there is at least one input undefined for each of them    The 
induction hypothesis is vacuously true in this case, 

(ii) induction step.  We assume that the hypothesis (16) is true for all k < kQ   We 
then show that it must be true for k = kQ. The proof consists of three steps. 

(lj For a given k, inputs to processes of invocation t[x, y,z)-\ were generated 
by processes with t{xiy,z) ~ 1 or t{x,y,z) - 2.   We use this fact later to 
demonstrate that the processes' invocations occur in lock step, i.e. no process 
invoked more frequently than any other. 

r»«l 
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{z + l,y + l,z) 

(2) All outputs of the previous invocation have been taken before another in- 
vocation is initiated. 

(3) All inputs to an invocation t{x,y,z) come from invocations of t{x,y,z) and 
t{x,ytz) — 1, depending upon location. 

We consider a process at [x, y, z) with k* = ^f^ + t{x, y, z). From Figure 1, it has 
three inputs a.m, b.m and c.i from the following neighboring processes respectively. 

a.» : (^ ■ 
\!Paf 

h.    • M -* (« + 1, J/,^ + 1) 
\<PV ~*(x,y- 1,z) 

C%n-\<pcl-*{x-l,y,z) (17) 

Since Ao - 1 < Ao, the hypothesis is true for this same process at t{x,y,z) - 1 the 
previous invocation. By the induction hypothesis (16), this invocation takes its inputs 
from the above processes at their time t{x, y,z)-l or *(*, y,z)-2 depending on where 
the process is located. 

This process provides outputs to the following neighboring processes. 

<W • l^a A (z > 0) A (y > 0) -> (a; - 1, y - 1, z) 
{<pa' y <pxy<pv~* [x, y,z + \) 

bom ■ fa A ^ >0)A (^ > 0) -^ (z -1. y^ -1) 
{<pb, y<pxy(pz-*{x,y +1, z) 

cout ■ fa A (z > 0)A ^ > 0) -* (:c' J/ - i^ -1) 
' l^c' V <Pz V <pv-+{x + I, y, z) 

We assert that these outputs from the invocation number t{x, y,z)-l of process [x y z) 
are taken by either invocation number (ifoy,*) - 1) or t{x,y,z) of these neighboring 
process depending upon their locations. Since 

x+y+z+l x_l+y_1+2 9 
 + (^,^^-1) =  1^ ±- + {t[x,y,z).  l) + l = k-2 <k 

6 3 

Thus the induction hypothesis can be applied. Process [x, y, z) is ready to start a new 
invocation once all of its three inputs are ready. Since the processes that orovide output 
to it at their respective time frame t{x, t/, z) - 1 or t{x, y, z) satisfy the following inequality 

 + t{x> y, z) - 1 = 1_ + t[Z) V)Z)^k_^<K 
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: 

the induction hypothesis applies to them. Process [x, y, z) has three and only three inputs 
ready at their respective locations after its invocation number t[z, y,z)-l The align- 
element insures that no invocation can occur before all three inputs are ready, thus process 
[x,y,z) has its invocation number t{x,y,z) occurring. This proves the above assertions.D 

This algorithm is also deterministic for we can define a partial ordering -< onihe 
invocations of processes. This binary relation is defined as the transitive closure of Ihe 
binary relation -< * as follows. 

{x,yuz,t{x,y,z)) -<*(zo,yo,Äo,*(2o,Ito,«o)) 

s^uchthat6^ {xi'yi'Zl'c{Xuy^z^^y^z^t^y^z^ ^ {*z,y*,**A**,y^z)) 

lPi -+ {{xi = ^o) A (t/! = y0) A [z, = zo - 1) A itix1,y1>z1) = t{x0,yo,z0))) 
[ipa, -. {{x, = 2o + 1) A (t/! = yo + 1) A {z1 = zo) A (^i,^,^) = t{xo,y0,z0) - 

and 

1)) 
(18a) 

(<p-b -H. ({x2 = rco) A (y2 = yo- 1).A {z2 = z0) A {t{x2, y2,z2) = t{x0, y0,z0))) 
IW ~> [[x2 = x0 + 1) A {y2 = yQ) A (zs = ^o + 1) A {t{x2,y2,z2) = t[xQ,yQ, 

and 

^o) - 1}) 
(1«6) 

^c/ -. (Z3 = xo) A (j/3 = yo + 1) A (*3 = zo + 1) A (t(xa, V3,^) = ^o,yo, zo) - 1) 

This definition can be derived from (16) with the existance of the align-element forJhe 
inputs of each process as an assumption. 

Now we proceed to verify the algorithm by proving two lemmas. 

Lemma a,b: 
r<Pä V (pai -> 

A<,ut{x,y,z)t)~{        Af„(A + i,y + i,0,0) 

BovLt[x,y,z,t) = < 
(<Pb V <Pb' -> 

Bin{x + t,0)z + t) 0) 
else —* _[_ 

(ISa) 

(156) 

Lemma C: 

n    f *      (^ V ^^HF'"^^^ " ^ 0)' ^ + max(i - x> O)«Ä + max(i - 2,0). 0) 
^^(z, y,z,t) = l        + 2:j+*o A.n(Ä( t/ + i, o, 0) X Btn{k, 0. z + t, 0) 

(^e/se -+• _j_ 

(19c) 

-.   ■.   v .-. 
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Similar to the synchronous case, we can either prove by direct substitution or by 
induction on K, the set of wavefront number. By composing these lemmas with input and 
output transformation functions, we can derive (9a), (Qb) and {9c]. 

From both algorithms, we observe that the input and output transformation functions 
and the semantics of the hexagonal array are much simpler for the self-timed version. This 
result is not accidental, for the interaction among flows of data for this particular algorithm 
only utilizes one third of tlr maximum space-time resources. In the self-timed version, only 
one third of the processes (all processes with the same k = ?±|±^ +t{x, y, z)) are active at 
any instant. In the synchronous version, all processes are active at all times, thus padding 
zeros are necessary. The simplicity of the self-timed version is a pay-off of the more 
sophisticated synchronization method. It is necessary to prove that local synchronization 
gives rise to the global sequencing relations among all the processes. Describing these two 
algorithms in CRYSTAL not only shows the capability of our framework but also provides 
many insights into the the complexity of various aspects of these two different timing 
schemes. We have achieved one of the important goals of this research - by providing a 
formalism m which one can gain a much deeper understanding of the subject one describes 
m the process of so doing. 

Conclusion 

^ We have presented a notation and formal semantics for general non-linear systems 
with memory. An essential part of the semantics is a methodology for abstracting the 
behavior of such systems so they can be used as components at a higher level. The 
semantics of a particular system consists of 

(i)  An input mapping function from the value domain to the space-time structure 
of the system. 

(ii)  A function in the space-time domain which completely defines the operation of 
the system. 

(iii) An output mapping function from the space-time structure to the value domain. 

The abstract semantics of the system is obtained by eliminating space-time variables 
to yield a function in the value domain alone. When it is possible to eliminate all 
intermediate variables, as it was with the Kung array, the abstract system is purely 
functional. When some intermediate state variables remain, as in the case where real-time 
input is necessary, the system is defined by an abstract sequential process. Such a process 
is defined bv a system of recursion relations in time. From an engineering point of view 
the input and output mapping functions serve as precise interface specifications for the 
system. 

The methodology can be applied to any system:   linear, non-linear, time-varying 
history-dependent. We believe it provides, for the first time, a unified approach spaning 
the range from computer programs to linear transfer functions; from transistor circuits 
to high level communicating sequential processes. 
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