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ABSTRACT

04'The accuracy of firing a gun from a moving combat vehicle is
affected significantly by the accuracy with which the gun

MCC muzzle is positioned to fire the projectile along a pre-
dicted path. Traditionally the problem of accuracy improve-
ment has been addressed through gun mount stabilization
while the motion of the barrel is treated as an uncontrolled
additional dispersion in the trajectory of the projectile.
Modern control technology provides a means of stabilizing
the unmeasured gun muzzle. Minimization of a quadratic
cost function coupled with estimation of unmeasured states
ensure accurate muzzle response to command inputs as well
as minimize reaction to base motion and external firing

A disturbances.

INTRODUCTION

Future fire control systems will be required to exploit the
mobility of high performance weapons platforms. The accuracy
with which the projectile can be launched along a predicted
path must be improved or the demands placed on the gun by
modern fire control systems will far exceed its capabilities.
Traditionally, weapon control has been accomplished by direct-
ing the axis of the gun support gimbal. The gun barrel and
therefore the absolute round exit angle is open loop with
respect to the axis of rotation. Errors due to barrel bend-
ing and induced oscillation are accepted and included in the
total firing accuracy budget. The motion of the barrel tip
relative to the support gimbal is treated as an uncontrolled
additional dispersion in the trajectory of the projectile.
It would be desirable to remove most of this dispersion so
that each round may be fired in the predicted direction.

Therefore, a need exists to stabilize and control the barrel
tip in the presence of external turret motion or firing dis-
turbances. Since useful muzzle position and rate information
is difficult to obtain, conventional feedback techniques
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cannot be employed to control the barrel tip. The problem,
then, is to use modern control theory employing state vari-

ble feedback and to supply the necessary parameter infor-
mation through state estimation. In the approach presented
here, the control emphasis has been placed on the barrel tip .
angular rate rather than position to ease the demands on the
state estimator and provide the fastest command response and
disturbance rejection. An optimal control technique with
control tuning is employed to achieve the best response
while maintaining adequate margins for model imperfections
and estimator lag.

Effective state estimation depends on the degree of model
fidelity and a model definition which allows the observation
of every state via available measurements. Therefore, to
impose a practical challenge to an otherwise academic approach, •
an Emerlec-30 (a twin 30 mm naval gun mount produced by
Emerson Electric Co.) was chosen as the control test bed for
the barrel tip optimal control and estimation technique. The
only practical implementation of this technique, which re-
quires the execution of numerous recursive equations in real
time, demands the speed, memory, and flexibility of a digital
processor. Therefore, the technique is configured such that
all processing can be executed in a standard micro or mini-
computer with serial or parallel I/0.

This paper presents the results of applying an optimal control
and state estimation technique to achieve control over the
barrel tip angular rate of a 30 mm gimballed gun mount.
Simulation results are derived from a model of the test mount
with all of its parameter characteristics and lim.cations.

TECHNICAL APPROACH

The general approach to this project has been to use optimal
control and estimation techniques to achieve muzzle stabili-
zation and control of a test bed gimballed gun mount (an
Emerlec-30). Since a good optimal controller and an effective
state estimator depend on model fidelity, the first step was
to develop a representative math model of the gun mount plant
using test data. The Emerlec-30 contains an electric motor
drive geared to each control axis of the gun barrel. Frequency
response data was obtained between various points from motor
command to barrel tip by using a dual channel spectrum analyzer
and rate gyros. Since high order estimators result in unwieldy
algorithms for microprocessor implementation, a practical goal
in model development was to restrict the order to as low as
practical and still model the dominant characteristics. The
frequency response data suggested that a series three body,
fifth order model, such as shown in Figure 1, was adequate.
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Using this basic model, parameters were calculated and ad-
justed, and damping terms were added until a very good fre-
quency response match was obtained. Because the math model
is fundamental to the real time estimator and is a key element
in the development of the optimal control gains, its fidelity
as a model of the actual plant is important. The more model
imperfections allowed, the greater the control margins necessary
for successful performance and a more suboptimal controller
results. In addition, modeling imperfections cause unwanted
estimator error dynamics that usually add more phase shift to
the controller loop.

After defining the math model of the plant, a suitable sampling
frequency is chosen to adequately control the highest frequency
of interest through a digital computer. A sampling rate of
100 Hertz was chosen for good control out to the firing fre-
quency of 10 Hertz. The continuous plant frequency domain
definition was then transformed to the digital time domain
for use in the control and estimation algorithms. This trans-
formation was accomplished on a computer by a truncated series
expansion of the system state transition matrix.

OPTIMAL CONTROL DEVELOPMENT

The word "optimal" in its general sense means "best" or "most
desirable." In controls, as in other endeavors, the engineer
is always searching for the best solution to the problem at
hand. Via classical techniques (Nyquist, Nichols, Bode, root
locus, etc.) the control problem concerns itself with finding
"optimum controller settings", which is a process of para-
meter optimization. In optimal control techniques, the
problem is concerned with finding the best control strategy
for a given system and cost function. In determining an
optimal control strategy, no prior assumptions or commit-
ments are made that would fix the controller structure; on
the pther hand, in parameter optimization, the problem is to
first fix the structure of the controller (e.g., a propor-
tional-plus-integral controller, etc.) and then attempt to
determine the optimum parameters. The aim of optimal control
is to find some policy, which, when applied to the system in-
put, will optimize the system's performance with respect to
some cost function.

Although the variational viewpoint is the basis from which the
engineer seeks an optimal strategy, its mathematical difficulty
and computational complexity are so great that real progress
in the field started only after major breakthroughs by Bellman
(dynamic programming, 1960) and Pontryagin (maximum principle,
1962). Since then, the problem has attracted the attention of
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- many control mathematicians who have offered formal, rigorous,
and general, but often very abstract, contributions. Even
though engineers can often obtain solutions only by using
simplified system models and simple performance indices, the
optimal control approach has been an important tool, for
example, by pointing the way to better controller structures,
or by providing a measure of performance so that a designer
can dIetermine.whether there is any sizable room for improve-
ment in his design.

The approach taken to achieve control over virtually an
unmeasurable entity, the barrel tip of a gimballed 30.mm
gun mount, was to employ optimal control theory to define
the control strategy and then identify and circumvent the
problem areas with classical techniques. A parameter optimi-
zation of the resulting hyb-:id system then results in the
best solution that can be practically implemented.

The control scheme chosen was a variation on R. Bellman's
dynamic programming with modifications suggested by various
standard control textbooks. The scheme is based on the
principle of optimality, which states that an optimal policy
(best system input sequence) has the property that whatever
the initial state and initial decision are, the remaining
decisions must constitute an optimal policy with regard to
the state resulting from the first decision. The criterion
for optimality was the minimization of a quadratic cost

# function. This function combines the sum of the squares of
the errors between the actual system states and desired states
plus the sum of the squares of system input values. The latter
term keeps the control policy feasible by penalizing excessi-
vely large input values (i.e., infinite energy cannot be
supplied to the system via the controller). As with most
criteria, they are not all-encompassing. Achieving a minimum
error in a certain desired state may not assure good step
responses, frequency responses, or system disturbance immunity.
Therefore, the cost function is adjusted through the values
of an error state weighting matrix until the optimal policy
derived from cost function minimization results in desired
system response.

To illustrate the technique, consider the continuous system
described by the differential equation:

x(t)] = [A]x(t)] + Blu(t)

where x(t)] is the system state column vector, u(t) is the
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input, [A] and B] are coefficient matrices. The z-transform
of this system results in the state transition equation:

x(n+l)] = [O(T)]x(n)] + e(T)]u(n)

where T is the sample interval and

[A]T[•(T)] = e

rT

E (T)] J [I(T-X) ]B]dx.

Then, if the desired states of the system can be described by

xd(n+1)] = [ l(T)]xd(n)],

error states can be defined by

y(n)] = xd(n)] - x(n)].

An error state transition equation can then be defined by

y(n+l)] = [r(T)]y(n)] + R(T)]u(n)

where [r(T)] is a function of [t(T)] and ['i(T)], and a(T)] is
a function of e(T)]. An optimal control. policy would then be
a set of input commands, u(n), that drive the error states in
such a way that a certain performance criterion is exactly
satisfied. This optimal policy should have the form

u(n) = H(T)] y(n)]

where H(T)] is the transpose of the optimum gain column
vector, H(T)]. This equation suggests that control can be
achieved through state variable feedback.

To continue the design, a suitable performance criterion must
be selected. Since the system is defined with error states,
initially the best policy would be that which drives the
errors to zero. In essence, the minimization of the sum of
the square of the errors should suffice. Therefore, a quadratic
performance index (or cost function) was defined by

NI = y(n)][S]y(n)] + xu2(n-1)

n=l

S)
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where [S] is the error weighting matrix, X is an input penalty
factor, and N is the last and of an N-stage the Usingche principle of optimality, and working from the Nth stage

backward to the start of the process, the optimum gain vector
is developed:

Q(T)] {[S] + [P(NT-jT-T)]}[r(T)]
H(NT-jT)] --

Q(T)] {[S] + [P(NT-jT-T)]I(T)] + )

where j = 0, 1, 2, ... , N-l, and

[P(NT-jT)] [r(T)] {[S] + [P(NT-jT-T)]}

* {[r(T)] + s(T)] H(NT-jT)] }

These equations are solved recursively starting with j=N-I and

[P(NT-jT-T)] = [P(O)] = 0.0

For an infinite stage process, the indicated iteratious can
be carried until the optimum gain vector values H(NT-jT)]P,
reach a steady state. These steady state values are then
used in a fixed-gain feedback control configuration in which
the only variables affecting the optimal policy are the error
states. Since the optimal control policy will always result
in the minimization of the cost function, changes in system
performance can be effected by changing the cost function.
This is accomplished by adjusting the error weighting matrix
[S], and the input penalty factor, X. Adjustments are made
until the desired performance is achieved.

While the optimal control technique is an excellent way of
handling a multiple feedback control law design, it does not
automatically build in stability margins to allow for model
imperfections or estimator lag. Therefore, using the results
of the optimal control law development as a base system, each
subloop was analyzed and tuned as necessary to provide adequ-
ate stability margin. Additional dynamics were included as
necessary when the best control could not be achieved with a
simple gain feedback. A block diagram of the resulting system
is shown in Figure 2. This control law tuning is an exercise
in classical control law design but retains the optimal con-
trol configuration. Optimal control tuning is the key to
reliable and accurate pointing of the barrel tip. The best
performance characteristics of the optimal controller are
retaine , as evidenced in the Figure 3 frequency respons' cf
barrel tip vezsus input command, while added stability -:. ,rgin
assures successful implementation.
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Besides a performance goal of good input command response out
to the 10 Hertz firing frequency, an essential goal for sta- )
bilization is good rejdctibn of VehicIe disturbances. The
highest dominant rate disturbance frequency expected from.the
vehicle in typical applications is 1 Hertz. Therefore, at
least 90% attenuation of all disturbances up to 1 Hertz was
a primary consideration during control law development. As
shown in Figure 4, this goal, and more (greater than 20 db
attenuation below 1 Hertz), was achieved. A time history
of the barrel tip response to a 1 Hertz, 10 deg/sec vehicle
rate disturbance is shown in Figure 5.

ESTIMATOR DEVELOPMENT

With an approach directed at control over an unmeasured system
state, a state estimator is not only necessary but becomes the
fundamental-backbone of the control law. The accuracy with
which the bdrrel tip can be pointed by the controller depends
primarily upon the accuracy with which the barrel tip state
variable can be estimated. A simple predictor type estimator,
based solely on the propagation of plant input commands
through a math model, derives its accuracy from the fidelity
of the model. However, perfection is seldom achieved. A
typical gun mount is difficult to precisely model due to
complex structural interaction, mount-to-mount production
variations, and day-to-day environmental changes resulting in
friction and gear backlash variations. Therefore, in a prac-
tical application, the predictor type estimator will usually A

fail.

A predictor-corrector type estimator, based on feedback con-
trol concepts, offers a viable solution to the estimation
problem. Although this type estimator is not without its
problems, it is more immune to modeling imperfections than
the essentially open loop predictor. The predictor-corrector
propagates all inputs and disturbances through a math model
the same as'a simple predictor. A correction to the predicted
states is then made based on the error between measurements of
actual states and their estimated counterparts. Modeling
imperfections, instead of causing estimate divergence as
encounteredyin the predictor, results in varying degrees of
underdamped estimate performance depending on the degree of
iperfection and the gains associated with the correction.

Therefore, the choice of a correction gain vector, L3, must be
matched to the expected modeling imperfection and plant dynamics.

A somewhat painless approach to determining L] is to employ
Ackermann's' formula. This -formula a-llows the placement of
estimator characteri-tic roots anywhere in the z-plane unit
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circle. By placing estimator poles in desired locations, a
desired characteristic equation will result. This equation
can be reoresented by:

eae (z) = k- alzk-i + 2 z 2+ + ak,+

where k is the order of the system. Then, using the state
transition matrix of the system model, [o(T)], a matrix
characteristic equation can be constructed:

a)= [,(T)]k + kI[-(T)k- +.
ek

This equation is dual with ae (z). Finally, with a vector
relating the measurement to the measured states, D] the
Ackermann formula allows L] to be determined by:

D] [,D(T) 0

- 2
D] [O(T)] 01

S~L] a e([o(T)]) •

-k

D] L4(T)] 1

Although painless, this approach allows pole-zero cancella-
tion to obtain the desired characteristics. As such, the
resulting estimator feedback system is very sensitive to a
mismatch between the actual plant and the math model. This
sensitivity is manifest in undesired estimated state dynamics.
To avoid the difficulties, the correction gain vector, L], is
adjusted via classical techniques so that each estimate dis-
plays a fast, damped response to system measurement.

In order to finish the fine tuning of L], the complete
estimator must be considered. A block diagram of the esti-
mator, and its relationship to the entire system, is shown A,
in Figure 6. Since measured states include anti-aliasing
filter and sensor dynamics, they are somewhat different
from the plant states that are to be controlled. These
differences must be accounted for in the estimator definition. j
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Since the measured states are adequately filtered for anti-
aliasing and do not need to be estimated, a reduced-order
estimator can be constructed by partitioning the state
transition equation into measured and unmeasured states:

a(n+l)l] I [[a] ['ab]] Xa(n)]

i•Xb(n+l) [ Ib] xb(n)]

0a] ba b

aa
+ u(n) + w(n)

where xa (n)] is the measured states, xb(n)] the unmeasured

states, u(n) the plant input, and w(n) is the vehicle dis-
turbance. An associated measurement equation can be described
by:

y] xa (n)(

y.n)] 0 xb(n)]]

Using the partitioned aefinition of the system, the estimator
algorithm is described by the following three equations:

)(n+l)] = [tbb] (n)] + [1)ba]Xa(n)]

+ ab]u(n) + ]b~w(n) ,

"a(n+l) =[aa]Xa(n)] + [IabI%(n+l)]

+ 0 a ]u(n) + T a ]w(n)

b(n1-l)] = b(n+l)] + aL]D] {xa(n+l)] - 3Ea(n+l)]},

where x] is an intermediate prediction of the measured and

measured states and x] is the corrected estimate. The sti-
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mator equations are executed in the order given above. The
first equation is simply a propagation of the unmeasured
estimator forward in time through the state transition
matrix (model of the plant). Included in the equation are
the inputs, u(n), the vehicle disturbance, w(n), and the
measured states, x (n)j. The second equation is similar to

a
the first, but predicts the future measured states. Finally,
the third equation is calculated at the time N-1 so that a
comparison between the predicted measured states and actual
measured states can be made to determine the error in the [
estimate. This error, through the gain vectors L] and D

a
is used to correct the prediction resulting in the best

estimate of unmeasured states, Xb]. I

Although the estimator can be expected to add some phase lag
to the optimal control feedback states, a well designed esti-
mator will cause minimal degradation to the overall perfor-

mance. A simulation step response of the Emerlec-30 test
gun mount is shown in Figure 7. The excellent performance
displayed by the tuned optimal controller was only slightly
modified by the addition of the estimator. More importantly,
control over a critical unmeasured system state, the barrel
tip rate, was achieved.

SUMMARY

A modern control approach to firing accuracy improvements has
uen developed for a 30 mm naval gun mount. Optimal control
techniques were applied to achieve the best control over the
barrel tip while meeting the desired performance criteria of
quick, damped response to system rate inputs and attenuation
of system disturbances. The practical application of the
optimal controller to a 30 mm test bed gun mount was made
feasible by employing control tuning based on classical con-
trol techniques. Without tuning, the stability margins
obtained through optimal control design would be inadequate
for any imperfections in state estimation or plant modeling.

The key to achieving control over the barrel tip rate, since
the useful measurement of tip rate information for feedback
control is not only difficult but expensive, lies in the
successful estimation of this system state. Using feedback
control techniques, a predictor-corrector type state esti-
mator -7as developed with minimal (no more thaa 15 deg) phase
lag added to each state control loop.
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Together the tuned optimal controller and the predictor-

corrector state estimator embody a modern state variable
control technique to stabilize and drive the gun barrel
tip. Control over the tip (or muzzle) rate greatly im-
proves the pointing accuracy thereby decreasing the disper-
sion encountered when a gun is fired from a moving vehicle.
By including higher order modes of the barrel and gun mount,
the same technique could be extended to control virtually
any point along the barrel. Thus, future firing accuracy
may only be limited by the projectile itself.

The next phase of this endeavor will be to code the optimal
controller and estimator for microprocessor control of the
test gun barrel tip. Pointing accuracy will be assessed
during various laboratory controlled disturbances. Also,
a test firing should provide a real disturbance environment
and penultimate proof of concept. The final proof should
be in the field in battle conditions.
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