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Attorney Docket No. 99606 

METHOD FOR MEASURING SHEAR WAVESPEED IN AN ISOTROPIC PLATE 

STATEMENT OF GOVERNMENT INTEREST 

[0001]    The invention described herein may be manufactured and 

used by or for the Government of the United States of America for 

governmental purposes without the payment of any royalties 

thereon or therefor. 

CROSS REFERENCE TO OTHER PATENT APPLICATIONS 

[0002] None. 

BACKGROUND OF THE INVENTION 

(1) Field of the Invention 

[0003] The present invention is generally directed towards a 

method to measure the shear wavespeed in an isotropic plate.  More 

specifically, the invention is directed towards a method to 

estimate the shear wavespeed of a plate shaped test specimen using 

a mechanical shaker test. 

(2) Description of the Prior Art 

[0004] The shear wave, S-wave or secondary wave, is one of the two 

main types of elastic body waves, a type of seismic wave, that 

moves through the body of an object, unlike surface waves.  The 

shear wave moves as a shear or transverse wave, so motion is 

perpendicular or normal to the direction of wave propagation.  The 

shear wave moves through elastic media, and the main restoring 

force comes from shear effects. These waves are divergenceless. 



[0005] Measurement of material properties of elastic systems has 

been and continues to be an active area of investigation. 

Resonant techniques have been used that usually involve measuring 

the natural resonant frequencies of slender structures.  Once 

measured, these frequencies are equated to the corresponding 

analytical natural frequencies, which are typically functions of 

Young's modulus, shear modulus, length and/or mass.  The resultant 

expression can be solved, which produces an estimate of Young's or 

shear modulus at each natural frequency.  Non-resonant methods 

have also been used.  Although slightly more complicated than 

resonant techniques, these methods have the ability to estimate 

material properties at frequencies other than the natural 

frequency of the system.  Typically, non-resonant techniques 

involve equating measured data with a simplified analytical model 

of the system.  The analytical model is rewritten so that the 

material properties that are to be estimated are rendered as 

functions of the data. 

[0006] Both resonant and non-resonant methods are usually 

performed at low frequencies, where simple (though limited) 

analytical models and corresponding dynamic behavior exists. 

Ideally, the structure under testing will have only a single mode 

of energy propagation, so that the effects of other wave motion 

will not corrupt the estimation process. 

[0007] Few wavespeed estimation techniques have been developed for 

general plates and beams.  Most of the research has assumed thin 

plate (or beam) behavior where the theory is that of a single 

flexural wave propagating in the structure.  The estimation of 



Young's modulus and shear modulus have been accomplished by 

matching the theoretical eigen-frequencies of a Timoshenko beam 

model to measured data and then deducing the material parameters. 

Some techniques at ultrasonic frequencies have been derived, in 

order to support the medical imaging or the aviation industry. 

The measurement of elastic constants of thin immersed anisotropic 

plates has been undertaken using the identification of 

transmission zeros and poles based on various incident angles of 

an incoming ultrasonic wave.  The estimation of stiffness and 

damping properties of viscoelastic materials by numerically 

inverting the transmitted ultrasonic field of an immersed thin 

plate at different incident angles has been accomplished. 

[0008] A method has been devised to identify Lame constants, 

thickness, density, longitudinal and shear attenuation and 

interfacial properties of a solid layer placed between two other 

layers. This method uses normal and angular ultrasonic 

reflectivity from the middle layer.  The last three references 

involve modeling and measurement in the MHz region.  Many 

indentation material testing methods exist.  These usually consist 

of loading a location of the material and measuring the resultant 

force and depth.  Using these measurements, one can determine 

Young's modulus and shear modulus.  These methods are usually 

quasi-static and frequency independent. 

[0009] The elastic plate theory has been extensively developed, 

though thick plates have traditionally not been used to measure 

material properties because they support multiple wave types, and 

any measurement technique has to have the ability to discern 



between each wave type and its contribution to the measurement. 

Transfer function methods that measure one output (at a single 

location) versus a fixed input do not have the capability to 

separate various wave types and their associated response levels. 

SUMMARY OF THE INVENTION 

[0010] Accordingly, it is an object of the present invention to 

estimate the shear wavespeed of a plate shaped test specimen using 

a mechanical shaker test. This shaker test is accomplished by 

hanging the plate from a frame and attaching a mechanical shaker 

to one of the plate faces near the middle of the plate. Once this 

is done, the plate is shaken at various frequencies and the 

resulting wavenumber corresponding to specific wave motion is 

identified. These wavenumbers are then used in the dispersion 

equations for a plate to estimate the shear wavespeed. 

[0011] Shaker tests are mechanical tests that are used to excite 

motion in different types of structures. Typically, some form of 

measurement is concurrently taken during the test so that data can 

be analyzed. Laser velocimeters that measure the velocity of the 

structure and accelerometers that measure the acceleration are 

employed to collect the data. Once this is accomplished, insight 

into the structures response due to varying mechanical loading 

conditions can be determined. Testing simple structures such as 

plates, beams and shells is useful because analytical solutions of 

their responses have been derived and direct comparison between 

predicted response and actual response can be achieved. 

[0012] The shear wavespeed is measured in a plate in the region 

where dilatational and shear wavelengths begin to approach the 



plate thickness, i.e., fully elastic dynamic behavior.  The plate 

is mechanically excited by a point force at a fixed frequency 

while simultaneously measuring the normal velocity of the plate 

across its entire surface.  These spatial domain measurements are 

transferred into a wavevector two-wavenumber {k ,k )   domain by 

means of two Fourier transforms. Individual waves are identified 

in this domain, and the resulting wave propagation wavenumbers are 

accurately estimated.  Once they are measured, the estimated 

wavenumbers are inserted into a Newton-Raphson iterative solver 

applied to the theoretical Rayleigh-Lamb equations for the 

propagation of waves in a plate with traction-free boundary 

conditions.  Results of estimates of the squares of the shear 

wavenumbers are thus obtained, allowing for calculations of the 

shear wavespeed. 

[0013] Other objects and advantages of the present invention will 

become apparent in accordance with the present invention as 

claimed. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0014] FIG. 1 is a diagram of an experimental test setup for use 

of the current method; 

[0015] FIG. 2A is a plot of the function f(kj,ks)   versus shear and 

dilatational wavenumber using a propagation wavenumber of k =  A6.A 

rad nf1 displayed using a decibel scale; 

[0016] FIG. 2B is a plot of the function with respect to the shear 

wavenumber with the dilatational wavenumber fixed at 16 rad m_1; 



[0017] FIG. 2C is a plot of the function with respect to the 

dilatational wavenumber with the shear wavenumber fixed at 100 rad 

m ; 

[0018] FIG. 3A is a plot of the function g(k^,ks)   versus shear and 

dilatational wavenumber using a propagation wavenumber of k = 

107.2 rad nf1 displayed using a decibel scale; 

[0019] FIG. 3B is a plot of the function with respect to the shear 

wavenumber with the dilatational wavenumber fixed at 16 rad m ; 

[0020] FIG. 3C is a plot of the function with respect to the 

dilatational wavenumber with the shear wavenumber fixed at 100 rad 

m ; 

[0021] FIG. 4 is a plot of the theoretical wave propagation 

locations in the kx,ky   wavevector domain at 5 kHz; 

[0022] FIG. 5 is a plot of the experimental wave propagation 

locations in the kx,ky   wavevector domain at 5 kHz; and 

[0023] FIG. 6 is a dispersion curve in the wavenumber-frequency 

plane showing the experimental data points using discrete markers. 

DETAILED DESCRIPTION OF THE INVENTION 

[0024] A possible experimental setup for the present method is 

given in FIG. 1.  A test plate 10 is joined to a structure or 

fixed frame 12 by resilient cords 14.  Two corner supports are 

shown in the drawing, but more supports could be present.  Plate 

10 is preferably around 1 inch thick; however, almost any 

thickness can be used.  Thinner plates lose vibration modes. 

Thicker plates lose vibration through losses in lossy materials 

such as resilient materials like plastic and rubber.  Resilient 



cords 14 can be any elastic cord or spring providing sufficient 

elasticity to avoid affecting plate 10 vibration.  A shaker 16 is 

joined to the center of plate 10.  Shaker 16 can be an 

electromagnetic or mechanical shaker that is capable supporting 

the frequencies of interest.  Shaker 16 should be joined to plate 

10 at a single point.  A laser vibrometer 18 is positioned on the 

opposite side of plate 10 allowing measurement of vibrations from 

the entire surface of plate 10.  Vibrometer 18 provides a beam 20 

and detects reflections 22 of the beam.  Through timing and 

Doppler measurements, the position and velocity of the plate 10 

can be determined relative to the vibrometer 18.  Laser vibrometer 

18 can take measurements at multiple points on the plate 10. 

Vibrometer 18 can be moved in relation to the plate 10 to provide 

orthogonal measurements or measurements can be modified in order 

to make them orthogonal. 

[0025] The theory of wave motion in isotropic elastic thick plates 

is extensively developed.  The objective of this invention is to 

estimate the shear wavespeed using the theoretical Rayleigh-Lamb 

equations developed for free-free plate boundary conditions. 

Free-free plate boundary conditions correspond to the case of 

traction-free boundaries; i.e., the normal and shear stresses at 

the plate faces are zero.  There are two separate Rayleigh-Lamb 

dispersion equations based on the symmetry of the horizontal 

displacement field about the mid-plane of the plate; one 

corresponds to symmetrical waves and the other to anti-symmetric 

waves.  The Rayleigh-Lamb equation for the propagation of 

symmetric waves is written as 



_ hy    tan[^k2-k2(h/2)]    Ak2^k2-k2^k2
s-k

2 

f(kd^s) = 1 ,   0 + 7 £ = 0 
tm[Jk*-k2(h/2)\ {2k2-k2[ 

and the Rayleigh-Lamb equation for the propagation of anti- 

symmetric waves is given by 

tan[-yjk2-k2(h/2)]    4k2 ^jk2 - k2 yjk2 - k2 

(1 

(2) 

where h is the thickness of the plate (m), ks  is the shear 

wavenumber (rad rrf1) , kd is the dilatational wavenumber (rad rrf1), 

and k is the propagation wavenumber (rad rrf1) .  When equation (1) 

or (2) is satisfied, the propagation wavenumber k corresponds to 

a specific Lamb wave (sometimes also referred to as Rayleigh-Lamb 

wave) traveling in the plate.  Note that equation (1) or (2) will 

be applicable to any specific wave in the plate, but not both. 

These two equations define the wavenumber-frequency dispersion 

curves and will be used with the identification of Lamb waves in 

the medium to estimate the shear wavespeed.  The measurement or 

estimation of the propagation wavenumber of interest, k, is 

discussed in the next section. 

[0026] The relationship between shear wavenumber and shear 

wavespeed is 

ks= —, (3) 



where co is the angular frequency (rad s"1) and cs is the shear 

wavespeed (ms"1) .  The relationship between dilatational 

wavenumber and dilatational wavespeed is 

°d , (4) 

where cd  is the dilatational wavespeed (m s"1) . 

[0027] To better understand the functions f(kcj,ks)   and g(k^,ks) ,   it 

is informative to display them as surfaces with respect to 

dilatational and shear wavenumber and examine their characteristic 

behavior.  FIG. 2A is a plot of the function f(k^,k5)   versus shear 

and dilatational wavenumber using a propagation wavenumber of k  = 

46.4 rad rrf1 displayed using a decibel scale.  FIG. 2B is a plot 

of the function with respect to the shear wavenumber with the 

dilatational wavenumber fixed at 16 rad rrf1.  FIG. 2C is a plot of 

the function with respect to the dilatational wavenumber with the 

shear wavenumber fixed at 100 rad rrf1. 

[0028] FIG. 3A is a plot of the function g(k^,ks)   versus shear and 

dilatational wavenumber using a propagation wavenumber of k = 

107.2 rad rrf1 displayed using a decibel scale.  FIG. 3B is a plot 

of the function with respect to the shear wavenumber with the 

dilatational wavenumber fixed at 16 rad rrf1.  FIG. 3C is a plot of 

the function with respect to the dilatational wavenumber with the 

shear wavenumber fixed at 100 rad rrf1. 

[0029] The plate thickness h  was 0.0254 m and the frequency co  was 

(2;r)4000 rad s_1.  Note that the functions vary significantly with 

respect to the shear wavenumber and are essentially flat with 



respect to the dilatational wavenumber.  This overarching feature 

reveals two pertinent dynamic characteristics, which guide the 

estimation process:  (1) the shear wavenumber (and, hence, the 

shear wavespeed) can be accurately estimated due to the well- 

defined minimum values of the surface with respect to the shear 

wavenumber; and (2) the dilatational wavenumber will be poorly 

estimated using this method due to the poorly defined, slowly 

varying minimum values of the surface with respect to the 

dilatational wavenumber.  The estimation of the shear wavenumber, 

within this region, is relatively invariant with respect to the 

dilatational wavenumber. 

[0030] The dilatational wavespeed is assumed to be a known value 

and one convenient method to measure this wavespeed follows.  The 

dilatational wavespeed was measured using an echo reduction test. 

An echo reduction test is accomplished by insonifying the plate 

and measuring the transfer function of the incident acoustic 

energy divided by the reflected acoustic energy.  This previously 

developed estimation method identifies the peaks in the data and 

relates each specific peak to a corresponding wavelength that is a 

half integer multiplication of the thickness of the plate.  United 

States Patent No. 7,584,060 teaches one form of this test.  When 

the frequencies of the relative maxima of echo reduction data are 

determined, they can be related to the dilatational wavespeed by 

" , (5) 
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where /„ is the frequency of the nth relative maxima (Hz) and n 

is the number of wavelengths in the material that creates the 

relative maxima (cycles).  Once this relationship is known, the 

dilatational wavespeed can be calculated. 

[0031] It will later be analyzed how an error in the dilatational 

wavespeed measurement will affect the shear wavespeed measurement. 

Using the dilatational wavespeed measured using the method 

described above, the dilatational wavenumber is calculated using 

equation (4).  The propagation wavenumber is a known quantity that 

can be determined either from a simulation or via experiment. 

With both the dilatational wavenumber and the propagation 

wavenumber known, a Newton-Raphson method can then be applied to 

equations (1) or (2) for the estimation of the shear wavenumber 

that generates a value of zero for the function f(kc/,ks)   or 

g(k^,ks) .  To eliminate the ambiguity of both positive and negative 

shear wavenumbers, the estimation process is applied to the square 

of the wavenumber, rather than the wavenumber itself.  For 

equation (1) written as f(kj,ks) = 0,   the Newton-Raphson method 

yields 

lj+l 
df(kj,ks) 

d(kh 

•1 

f(kd,ks)j 

(6) 

where 

11 



df(kd,ks) _    h{\ + t3n2[^k2-k2(h/2)]} 

d(k2)        4^jk2 -k2tan[^k2-k2(h/2)] 

'•^2-k2^ 2k ^ U 

1 k2 -k2(2k2 -k2)2 (2k2-k2? 
(7) 

[0032] For equation (2) written as g(kd,ks) = 0, the Newton-Raphson 

method yields 

J/ + 1 \1 
dg(kd,ks) 

d(k2) 
g{kd,ks)j 

where 

dg(kd,ks) ^    h{\ + tan2[^kj-k2{h/2)]} 

d(k2)        4-Jkj-k2 tan[yjk2-k2(h12)] 
+ 

~(2k2 -kj) -(2k2-k2)2 

2k2^k2-k2^k2-k2   u2^k2-k2^k2-k2y 
(9) 

where j is the iteration number of the algorithm.  After every 

iteration j,   the new estimate of ks  can be inserted back into 

equation (1) or (2) to test for convergence.  This numerical 

process is applied to each specific Lamb wave at each measurement 

frequency and the result is an estimate of the square of the 

shear wavenumber.  Finally, equation (3) is used to find the 

shear wavespeed. 

[0033] Equations (1) - (8) illustrate that if the propagation 

wavenumber of any wave is known or can be measured with the 

12 



dilatational wavespeed, the shear wavespeed can be estimated. 

That is, given k  and kdl   the Newton-Raphson technique can be 

employed to solve for ks.     The process will be demonstrated with a 

numerical simulation and with experimental measurements. 

[0034] The numerical simulation technique is first applied to a 

simulated data set created using a fully elastic three-dimensional 

model of the plate.  The model is formulated from Naviers' 

equations of motion in an isotropic solid.  By modeling the 

response as a sum of a dilatational component and a shear 

component, the general form of the solutions to the displacement 

fields are determined.  Once these are known, they are inserted 

into the stress equations on free surfaces of the plate.  In the 

chosen Cartesian coordinate system, the orientation is such that 

the xy-plane lies in the major dimensions of the plate and the z- 

axis is normal to the plate.  On one side of the plate (z = 0), 

the normal stress of the plate is set equal to the stress applied 

by a point forcing function and this corresponds to a mechanical 

shaker located at XQ   and y$ .  This equation is written as 

azz(x,y,0,t) = F0S(x-x0)S(y-y0)exp(i6)t) _ (1Q) 

[0035] The other two shear stress boundary conditions at z = 0 are 

set equal to zero, i.e., 

crr7(x, y,0,t) = 0    , /iis xz\ >s*  » > f    anc} (11) 

ay2(x,y,0,t) = 0 

13 



[0036] On the other side of the plate (z = h), all of the stress 

boundary conditions are zero, and these expressions are written as 

azz(x,y,h,t) = 0, (13) 

axz(x,y,h,t) = 0 ,   and (14) 

ayz(x,y,h,t) = 0 . (15) 

[0037] This produces a linear system of six equations that can be 

written in matrix form and consist of a dynamics matrix, an 

unknown coefficient vector, and a load vector.  From this, the 

solution to the unknown constants can be determined.  Finally, 

inserting these unknown values back into the displacement fields 

yields a known solution to the displacement fields in all three 

directions. 

[0038] The simulation model corresponds to measurements of the 

normal velocity of the plate (at z=h)   divided by the input force 

(at z  = 0) (the mobility of the system.) in the kx,ky   wavevector 

domain is written as 

W(kx,ky,co) 
- = -X^iacosmfah) + X2\acacos(ah) + X,&r<»cos(/%) 

F0 

+ XAkycosm(j3h)-Xskxcocos(/3h)-X6kx(osm(j3h) 

where kx    is wavenumber with respect to x-axis rad m 1, ky    is 

wavenumber with respect to the y-axis rad nf1, i is ^-l f   ancj 

14 



«=v K j       rt v  •*• t> 

(17) 

and 

*-V /if    K v    *v -i , 

(18) 

[0039] The constants X through X&  are wave propagation 

coefficients and are determined by solving the three-dimensional 

elastic plate eguation of motion when excited by a point force. 

It is noted here that geometrical shapes other than a plate will 

support different wave pattern responses. 

[0040] To solve the propagation coefficients the dynamic model of 

the plate was developed for a system with no variation in the x- 

direction.  Because the system described here has a point load 

(located at XQ =0 and y$ =0), the previous model is extended to 

include the variation in the x-direction, as well as retain the 

variations in the y- and z-directions.  This theoretical 

development follows the previous model eguations adding this 

additional degree of freedom. 

[0041] The constants X\   through X^   are wave propagation 

coefficients and are determined by solving the matrix equation 

x = A 'f, (19) 

where x is a 6 x 1 vector written as 

x = {X]    X2    X3    X4    X5    X6}
T, (20) 

15 



the nonzero entry of the 6x1 vector f is 

A=F0, 21 

and the nonzero entries of the 6x1 matrix A are 

a]i = -A(a2 +kx +ky)-2fxa2 , (22 

au=-2ifipk [23) 

a]6 = 2i/"Ac > (24) 

a72 = 2i/jakv , [25) 

a23=-fi(02+k2
x-k

2
y)t (26) 

025 —    Z/dKxky , :27! 

<3„ = 2\juakx , :28) 

^33 — M^xky, (291 

^34 ~     M^X^y r (30) 

fl35=/y(^2-^2), (31) 

16 



fl36 = -pk2
yf (32 

aA\=~ [A(a2 + k2 + k2) + 2/ua2]cos(ah), (33: 

a,2 = -[A(a  +kx+k ) + 2/JGC ] sm.{ah), 34 

a43 = li/iipky s'm(/3h), 35) 

a44 = -2\nf5ky cos(fih), 36; 

a45 = -2iju/3kx s'm(j3h) (37) 

a46 = 2\/upkx cos(fih), (38) 

a5] = -2\^akY s\n{ah), 39) 

a52 = 2\fjaky cos(ah) , (40) 

*53 = -M(/32+k2-k2)cos(/3h), (41) 

2   ,   ;.2       ,2- a5,=-M(j3z+K-k^)sm(j3h)f 42) 

a55 = -2ykxky cos(j3h), 43 

17 



aS6=-2/*xkysm(0h), (44) 

a61 = -2\^iakx sm{ah), (45) 

a62 = 2\fJ.akx cos(ah), (46) 

a63 = ^ly [cos(^) - sin(/?/?)], (47) 

aM = /Axky [sin(/?/j) - cos(/%)], (48 

a65 = /;(/?2 - ^2) costfh) - ^ sin(^), (49; 

and 

?2      f 2 a66 = ViP - K) sin(/%) - M; COS(/?/J) . (5 0; 

[0042] In the above equations, X  and /u  are the Lame constants and 

are related to the wavespeeds by 

d=i~V ( 

and 

c-=Jp' (52 



where p is the density of the plate (kg/m3) .  Finally, the 

wavenumber in the plate is related to the kx   and ky   wavenumbers 

by 

xjkx+ky  . (53) 

[0043] When the response of the plate is at a wavenumber that 

corresponds to a Lamb wave, the propagation wavenumber equals the 

Lamb propagation wavenumber, i.e., K=k. 

[0044] Using equation (15), the mobility of the plate in the kx,ky 

wavevector domain is simulated using a set of parameters that 

nominally corresponds to experimental values.  These parameters 

are dilatational wavespeed of 1422 (1-0 . 05i) ms'1 , shear wavespeed 

of 220 (1-0 . 05i) ms"' , thickness of 0.0254 m, and density of 1100 

kg/m3.  Note that the dilatational and shear wavespeeds are 

complex.  This effect adds structural damping to the analysis that 

makes the simulation more realistic.  Once the mobility fields are 

created (or later measured), they are searched so that the 

relative maximum of each Lamb wave propagating at a specific 

frequency is identified.  From equation (53), a relative maxima 

for each specific wave in the kx,ky   wavevector domain can be 

modeled as a circle centered at kx = k,,=   0.  Hence, a circular 

function was fit to the data sets of the relative maxima points. 

For each specific Lamb wave and fixed frequency, the radius of the 

circle was determined by the mean value of the radius of all of 

19 



the individual points, via an ordinary least-square estimator. 

The resulting radius of the circle is the measured wavenumber k 

for the specific Lamb wave identified.  Once known, either 

equation (5) (for symmetric waves) or equation (7) (for anti- 

symmetric waves) is used to estimate the square of the shear 

wavenumber ks  .  From this, the shear wavespeed can be computed. 

[0045] The simulation was conducted from 1-6 kHz in increments 

of 1 kHz.  This can be conducted at any frequency above about 1 

kHz.  Below 1 kHz it has been found that standing waves occur.  It 

is noted at this point that different authors use different 

terminology to identify individual Lamb waves in the wavevector- 

frequency (or wavenumber-frequency) plane.  In this report, the 

work of J.D. Achenbach was used to define the names of each of the 

individual waves.  FIG. 4 is a plot of the wave propagation 

locations in the kx,ky   wavevector domain at 5 kHz.  The (first) 

flexural wave F(0) is denoted with an x, the longitudinal wave 

L(0) is denoted with a +, the (second) flexural wave FE(1) is 

denoted with an o, and the circles fit to the markers are denoted 

with solid lines.  For clarity, the markers have been decimated by 

80%.  Once the propagation wavenumbers are known, the shear 

wavespeed can be estimated using equation (1) for the symmetric 

L(0) longitudinal wave or equation (2) for the anti-symmetric F(0) 

and FE(1) flexural waves.  The results of this simulation are 

shown in Table 1 of estimated shear wavespeeds for simulated waves 

for six frequency values.  The average of the shear wavespeed 

estimate for the 11 simulated measurements was 220.5 ms"1.  It is 

20 



noted that the addition of structural damping produces a slight 

biasing of the estimated shear wave values for each individual 

wave.  When the damping value was set to 0, the estimation process 

produced an average value of 219.9 ms"1 , which varies slightly 

from the value of 220 ms"1 , and likely only due to discretization 

of the simulation in the wavevector domain. 

Table 1 

Wave Name and 

Symmetry 

Freguency 

f 

(kHz) 

Simulated 

k 

(rad m"1) 

Estimated 

ks 

(rad rrf1) 

Estimated 

(ms"1) 

F(0) - Antisymmetric 1 50.4 28.4 221.2 

F(0) - Antisymmetric 2 79.5 56.8 221.3 

F(0) - Antisymmetric 3 107.2 85.1 221.5 

F(0) - Antisymmetric 4 134.5 113.1 222.1 

F(0) - Antisymmetric 5 161.9 141.1 222.6 

L(0) - Symmetric 3 46.4 87.0 216.7 

L(0) - Symmetric 4 64.5 115.1 218.4 

L(0) - Symmetric 5 86.8 143.0 219.7 

L(0) - Symmetric 6 118.5 171.2 220.2 

FE(1) - 

Antisymmetric 

5 34.8 141.6 221.8 

FE(1) - 

Antisymmetric 

6 62.7 171.7 219.5 
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[0046] The initial estimate of the shear wavespeed is important 

for convergence of the algorithm.  For the FE(1) flexural wave in 

a plate, the cut-on frequency can be approximated with 

/ls|f-# (54 
2/7 

where _/[ is the cut-on frequency (Hz) where the FE (1) wave 

propagation initiates at zero wavenumber.  This simulation shows 

that the FE(1) wave does not exist at 4 kHz and does exist at 5 

kHz, which produces a minimum shear wavespeed value of 203 ms"1 

and a maximum shear wavespeed value of 254 ms-1 using equation 

(18).  Based on these values, a convergence search using initial 

estimates from 170 ms"1 to 270 ms"1 was conducted. 

[0047] As discussed in relation to FIG. 1, an experiment was 

undertaken to verify the proposed technique to measure shear 

wavespeed in a plate.  The estimation process uses the following 

assumption:  (1) The return energy from the reflections at the 

edge of the plate is not interfering with the measurement process, 

and (2) the particle motion is linear.  A plate was molded using 

Cytech Industries EN-6, a two-part urethane that consists of a 

mixture of a prepolymer and a curing agent.  The plate was 0.780 m 

by 0.755 m by 0.0254-m thick and weighed 16.6 kg.  The 

dilatational wavespeed was previously measured at 1421 ms"1.  The 

plate was mounted on four corners with bungee cords and a Wilcoxon 

Model F3/Z602WA electromagnetic shaker was attached to the back 

near the middle.  When the shaker was turned on, the front side 

was interrogated with a scanning Polytec LDV PSV-200 Doppler laser 
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vibrometer that measured the normal velocity of the plate.  The 

experiment was conducted at a room temperature of 15.5°C.  A 

square grid of 90 by 90 points with a point-to-point spacing of 

0.0082 m was used to collect 8100 spatial domain data points. 

After the data were collected, they were transformed into the 

frequency domain using a fast Fourier transform.  Next, it was 

zero padded and transformed into the kx,ky   wavevector domain using 

a two-dimensional 512 by 512 point fast Fourier transform. Once 

this was accomplished, three Lamb waves were identified based on 

their relative maxima.  Isotropic elastic plate theory predicts 

that every wave will be circular in the kx,ky   wavevector domain; 

thus, a circle was fit using an ordinary least-square estimate to 

the wavevector domain data.  Measurements were made from 1 to 6 

kHz in increments of 1 kHz. 

[0048] FIG. 6 is a plot of the wave propagation locations in the 

kx,ky   wavevector domain at 5 kHz.  The F(0) flexural wave data are 

denoted with an "x", the L(0) longitudinal wave data are denoted 

with a "+", the FE(1) flexural wave is denoted with an "o", and 

the circles fit to the markers are denoted with solid lines.  For 

clarity, the markers have been decimated by 80%.  Once the 

propagation wavenumbers are known, the shear wavespeed can be 

estimated using equation (1) for the symmetric L(0) longitudinal 

wave or equation (2) for the antisymmetric F(0) and FE(1) flexural 

waves.  Note, at the frequency of 5 kHz, the F(0) flexural wave is 

beginning to become incoherent across the major dimensions of the 

plate.  The results of this estimation procedure are shown in 
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Table 2 for all of the waves measured during the test and at all 

experimental frequencies. 

Table 2 

Wave Name and 

Symmetry 

Frequency 

f (kHz) 

Simulated 

k 

(rad nf1) 

Estimated 

ks 

(rad irf1) 

Estimated 

Cs 

(ms"1) 

F(0) - Antisymmetric 1 49.2 26.5 229.9 

F(0) - Antisymmetric 2 75.8 53.0 237.3 

F(0) - Antisymmetric 3 103.0 80.7 233.6 

F(0) - Antisymmetric 4 128.9 107.3 234.2 

F(0) - Antisymmetric 5 150.3 129.2 243.2 

L(0) - Symmetric 3 50.4 93.6 201.3 

L(0) - Symmetric 4 68.9 121.3 207.1 

L(0) - Symmetric 5 94.4 150.9 208.2 

L(0) - Symmetric 6 131.0 180.0 209.5 

FE(1) - 

Antisymmetric 

5 41.7 148.4 211.8 

FE(1) - 

Antisymmetric 

6 67.8 177.8 212.0 

[0049] The average value for the shear wavespeed estimate for the 

F(0) flexural wave was 235.6 ms-1, the average shear wavespeed 

estimate for the L(0) longitudinal wave was 206.5 ms-1, and the 

average value shear wavespeed estimate for the FE(1) flexural wave 

was 211.9 ms-1.  This indicates a mild dispersion of the shear 

wavespeed with respect to wave type.  The average shear wavespeed 
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for all measurements was 220.7 ms"1.  Using this average value and 

the value of the dilatational wavespeed, the dispersion curve in 

the wavenumber-frequency plane can be calculated.  This is 

displayed as FIG. 6 along with each data point.  The slight 

mismatch between theory and experiment is due to the variation of 

the shear wavespeed with respect to each individual wave. 

[0050] Several parameters were varied to examine the accuracy of 

the measurement technique.  First, the dilatational wavespeed was 

halved to 710.5 ms-1 and then doubled 2840 ms"1, which produced 

average shear wavespeed estimates of 224.1 ms"1 and 220.0 ms" , 

respectively.  This shows conclusively that the shear wavespeed 

estimate is relatively invariant to the dilatational wavespeed. 

Second, the thickness of the plate was thinned by 10% to 0.0229 m 

and thickened by 10% to 0.0279 m, and this produced average shear 

wavespeed estimates of 220.3 ms"1 and 222.0 ms"1, respectively. 

Finally, each of the measurements was statistically analyzed by 

calculating the standard deviation of the radius of the data 

points for each wave at every frequency.  Once known, the shear 

wavespeeds were estimated at +1 and -1 standard deviation away 

from the mean.  At -1 standard deviation, the average shear 

wavespeed was estimated to be 229.9 ms"1, and for +1 standard 

deviation, the average shear wavespeed was estimated to be 213.0 

ms"1.  These estimates are off by the original estimate of 220.7 

ms"1 by 4.4% and 3.3%, respectively, which generally indicates a 

stable estimation process. 

[0051] The shear wavespeed of an isotropic plate can be accurately 

estimated using the measurement technique developed in this 
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report.  The approach consists of exciting the plate with a point 

force, measuring the normal component of velocity over its 

surface, and transforming the spatial measurements into the kx,ky 

wavevector domain. The described technique is enabled by high- 

resolution wavevector measurement (via a scanning laser Doppler 

vibrometer).  This fine resolution, coupled with zero padding 

within the kx,ky   spectra, allows for straightforward 

identification of propagating Lamb waves and their associated 

wavenumbers.  An estimate of the shear wavespeed, using a Newton- 

Raphson method applied to the theoretical Rayleigh-Lamb plate 

equations, is straightforward.  Numerical simulations and 

experimental measurements demonstrated that the method provides 

accurate estimates of the shear wavespeed, even when other 

measurement parameters have uncertainties.  Nonconvergence of the 

Newton-Raphson method can occur, primarily due to poor initial 

estimates of the shear wavespeed, although this did not occur with 

the experimental data evaluated here. 

[0052] It will be understood that many additional changes in the 

details, materials, steps and arrangement of parts, which have 

been herein described and illustrated in order to explain the 

nature of the invention, may be made by those skilled in the art 

within the principle and scope of the invention as expressed in 

the appended claims. 

[0053] The foregoing description of the preferred embodiments of 

the invention has been presented for purposes of illustration and 

description only.  It is not intended to be exhaustive nor to 
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limit the invention to the precise form disclosed; and obviously 

many modifications and variations are possible in light of the 

above teaching.  Such modifications and variations that may be 

apparent to a person skilled in the art are intended to be 

included within the scope of this invention as defined by the 

accompanying claims. 
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