The below identified patent application is available for licensing. Requests for information should be addressed to:

PATENT COUNSEL
NAVAL UNDERSEA WARFARE CENTER
1176 HOWELL ST.
CODE 000C, BLDG. 112T
NEWPORT, RI 02841

Serial Number 11/586,278
Filing Date 26 October 2006
Inventor Donald V. Beauregard

If you have any questions please contact James M. Kasischke, Supervisory Patent Counsel, at 401-832-4230.

DISTRIBUTION STATEMENT
Approved for Public Release
Distribution is unlimited

200612122235
CONTROLLED SKIN FORMATION FOR FOAMED EXTRUDATE

STATEMENT OF GOVERNMENT INTEREST

[0001] The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or therefore.

BACKGROUND OF THE INVENTION

(1) FIELD OF THE INVENTION

[0002] The present invention is directed to the extrusion of plastics, and more specifically to a method for achieving a very smooth extrudate surface using thermoplastic syntactic foam materials.

(2) DESCRIPTION OF THE PRIOR ART

[0003] Currently, technology is being sought that produces a very low-density, extrudable thermoplastic foam material with application to communication cable jacket materials for use in underwater applications. A new lower density foamed jacket with a smoother surface is required in order to improve the speed and underwater depth performance of several communication systems. The smoother the surface, the less drag will be exhibited while
towing a cable underwater. A smoother surface will also result in improved jacket sealing and handling. Metallocene catalyzed polyolefin incorporating a thermoplastic syntactic foam material is ideally suited for producing a low density foam. Unfortunately this material exhibits a high degree of melt fracture during the extrusion process. As such, a smooth extrudate surface is difficult to achieve. What is needed, therefore, is a method of extruding metallocene catalyzed polyolefin incorporating a thermoplastic syntactic foam material in such a way as to produce a smooth extrudate surface that does not exhibit significant melt fracture during the extrusion process.

SUMMARY OF THE INVENTION

[0004] It is a general purpose and object of the present invention to disclose a method and apparatus to control the skin formation of a foamed extrudate.

[0005] It is a further object to employ an insulating plate to shield and control cooling of the die used to extrude the foam such that a low density extrudate with a solid skin and inner foamed core is achieved.

[0006] The above objects are achieved with the present invention by using a die adapter that is partially submerged in a heat transfer bath on a horizontal plane such that there is no
air gap between the die extrusion aperture and the heat transfer bath. A porous dam is positioned between the die and the heat transfer bath. A heat insulating plate is positioned between the porous dam and the die to prevent the heat transfer medium from flowing onto the die. The heat insulating plate also prevents excessive cooling of the die tip thereby allowing the necessary precise thermal control over the extrudate skin formation to prevent melt fracture and form a low density extrudate with a smooth solid skin and inner foamed core.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] A more complete understanding of the invention and many of the attendant advantages thereto will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings, wherein like reference numerals refer to like parts and wherein:

[0008] FIG. 1 is an illustration of the entire extrusion apparatus including the arrangement of the porous dam and insulating plate relative to the die and heat transfer bath;

[0009] FIG. 2a is an illustration of the die used to perform the extrusion process;

[0010] FIG. 2b is a cross sectional view of the die used to perform the extrusion process;
FIG. 3a is an illustration of the heat transfer bath and the porous dam and insulation plate.

FIG. 3b is a partial cross-sectional illustration of the die with the die tip submerged in the heat transfer bath and the porous dam and insulation plate.

DETAILED DESCRIPTION

Referring to FIG. 1, the apparatus by means of which the present invention may be practiced includes a gravity fed hopper 10 into which the components of the metallocene catalyzed polyolefin incorporating a thermoplastic syntactic foam are initially added. The components are then metered into an extruder 12, which is made up of a barrel 14 with a single screw 16. The extruder 12 also has a breaker plate 18 and then a die 20 at its terminal end. The barrel 14 is heated to heat the metallocene catalyzed polyolefin as it progresses to the die 20. FIG. 2a and 2b illustrates the details of the die, a 1/2” diameter, 10:1 L/D die adapter. The die 20 has a cylindrical extrusion channel 21 through which the compound is forced. A hot extrudate 22 leaves the die 20 into a heat transfer bath 24. The heat transfer bath consists of a reservoir 26 having copper heating coils 28 and filled with water which serves as the heat transfer medium. Referring to FIGS. 3a and 3b it is shown that the tip of the die 30 is submerged directly into the heat
transfer bath 24 on a horizontal plane. Between the die 20 and the heat transfer bath 24 is a porous dam 32 to eliminate any air gap between the tip of the die 30 and the heat transfer bath 24. A \(\frac{4}{4} \)" thick insulating plate 34 made of a nonporous liquid impermeable material is positioned between the porous dam 32 and the die 20 to support the porous dam 32 and to prevent the heat transfer medium 26 from flowing onto the die 20. Due to the insulating properties of the insulating plate 34, excessive cooling is prevented, therefore allowing precise thermal control over the formation of the extrudate with minimum melt fracture. In addition, the prevention of excessive cooling results in an integral outer skin over the foam cells which significantly reduces radial water absorption under hydrostatic pressure, while maintaining the mechanical integrity and flexibility of the foam cable jacket material. Cooled extrudate 36 leaves the heat transfer bath 24 and enters roller apparatus 40. The cooled extrudate 36 passes through the roller apparatus 40 and emerges a completed rolled extrudate.

[0014] Variables in the process such as head pressure developed is largely dependent on screw speed, melt viscosity, die design and the use of a breaker plate. In the preferred embodiment, the shear rate and residence time in the extruder 12 depend upon the invention using both a 24:1 and 30:1 L/D extruders 12. In the preferred embodiment, the screw 16 has a
compression ratio of 2.5-3:1. The screw 16 is a single stage screw with approximately one-third of the screw 16 comprising the feed section, one-third of the screw 16 comprising the transition and one-third of the screw 16 comprising the metering section of the screw. A screw with a Maddock mixing section and/or a screw with a Pulsar mixing section can be used.

While it is apparent that the illustrative embodiments of the invention disclosed herein fulfill the objectives of the present invention, it is appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Additionally, feature(s) and/or element(s) from any embodiment may be used singly or in combination with other embodiment(s). Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments, which would come within the spirit and scope of the present invention.
CONTROLLED SKIN FORMATION FOR FOAMED EXTRUDATE

ABSTRACT

An extrusion apparatus is taught that employs a die adapter that is partially submerged in a heat transfer bath on a horizontal plane such that there is no air gap between the die extrusion aperture and the heat transfer bath. A porous dam is positioned between the die and the heat transfer bath. A heat insulating plate is positioned between the porous dam and the die to prevent the heat transfer medium from flowing onto the die. The heat insulating plate also prevents excessive cooling of the die tip thereby allowing the necessary precise thermal control over the extrudate skin formation to prevent melt fracture and form a low density extrudate with a smooth solid skin and inner foamed core.