The below identified patent application is available for licensing. Requests for information should be addressed to:

PATENT COUNSEL
NAVAL UNDERSEA WARFARE CENTER
1176 HOWELL ST.
CODE 00OC, BLDG. 112T
NEWPORT, RI 02841

Serial Number 09/983,046
Filing Date 10/15/01
Inventor Gregory H. Ames

If you have any questions please contact Michael J. McGowan, Patent Counsel, at 401-832-4736.
MULTIPLEXED FIBER LASER SENSOR SYSTEM

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN THAT GREGORY H. AMES, citizen of the United States of America, employee of the United States Government, a resident of Wakefield, County of Washington, State of Rhode Island, have invented certain new and useful improvements entitled as set forth above of which the following is a specification.

MICHAEL J. McGOWAN, ESQ.
Reg. No. 31042
Naval Undersea Warfare Center
Division Newport
Newport, RI 02841-1708
TEL: 401-832-4736
FAX: 401-832-1231
MULTIPLEXED FIBER LASER SENSOR SYSTEM

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of royalties thereon or therefore.

CROSS REFERENCE TO OTHER PATENT APPLICATIONS

This patent application is co-pending with two related patent applications entitled FIBER OPTIC PITCH OR ROLL SENSOR (Attorney Docket No. 78381) and FIBER OPTIC CURVATURE SENSOR FOR TOWED HYDROPHONE ARRAYS (Attorney Docket No. 78333), by the same inventors as this application.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

This invention relates to a system for the multiplexing and interrogation of fiber optic Bragg grating based sensors.

(2) Description of the Prior Art

Fiber optic Bragg gratings are periodic refractive index differences written into the core of an optical fiber. They act
as reflectors with a very narrow reflected wavelength band, while passing all other wavelengths with little loss. Temperature or strain changes the wavelength at which they reflect. They can be made into sensors for any one of a number of measurands by designing a package that strains the grating in response to changes in the measurand.

U.S. Patent Nos. 5,633,748 to Perez et al.; 4,996,419 to Morey; 5,627,927 to Udd; 5,493,390 to Varasi et al.; and 5,488,475 to Friebele et al. illustrate the use of Bragg gratings as a sensor. All of the sensors in these patents function by using the shift of the Bragg grating reflection wavelength.

U.S. Patent No. 5,564,832 to Ball et al. relates to a birefringent active fiber laser sensor. While Ball et al. use more than one Bragg grating laser in his sensor, they use each laser singly rather than in a pair. Moreover, each laser is birefringent such that it lases in two separate polarization modes at different frequencies. Ball et al. detect the wavelength difference between these two modes. The use of birefringent sensors means that Ball et al. must arrange the measurand to affect the birefringence. Ball et al. determine the frequency difference between the two birefringent modes by electronically measuring the beat or difference frequency. The
present invention does not use lasers which are birefringent nor rely on changes in birefringence.

An alternative sensor is the fiber optic Bragg grating laser. Two gratings at matched wavelengths are written into a length of optical fiber which is doped to be an active medium. The most common is an Erbium doped silica glass fiber. When power from a pump laser is injected into the cavity, the structure emits output laser light. If the cavity is short enough, the emission is in a single longitudinal mode. Any measurand which strains the cavity causes the laser emission to shift in wavelength.

The difficulty to date has been in developing systems which can both read the wavelength shift, and hence the strain, with great sensitivity, and do so efficiently for multiple sensors. The most sensitive techniques developed have used interferometric means to measure the shift in wavelength. However, these techniques measure only dynamic changes and are incapable of reading absolute values. A device such as the Wavemeter sold by Burleigh Instruments uses an interferometric technique to give both high sensitivity and absolute measurements. However, it does so by changing the path delay in the interferometer, resulting in a slow measurement. Diffraction based spectrum analyzers have limited resolution, 0.1nm corresponding to 60 microstrains. Fabry-Perot etalon
spectrum analyzers have high resolution but read relative
wavelength.

SUMMARY OF THE INVENTION

Accordingly, it is an object to provide an improved system
for interrogating a plurality of fiber optic Bragg grating based
sensors.

It is a further object of the present invention to provide
a system as above which provides efficient measurement of many
sensors with absolute measurements, high strain sensitivity,
high dynamic range, and fast measurements.

The foregoing objects are achieved by the sensor
interrogation system of the present invention.

In accordance with the present invention, a sensor
interrogation system broadly comprises an optical fiber, at
least one sensor containing first and second fiber lasers
attached to the optical fiber with the first fiber laser being
located spectrally at a first wavelength and the second fiber
laser being located spectrally at a second wavelength different
from the first wavelength, means for causing light to travel
down the optical fiber so as to cause each of the fiber lasers
to lase at its distinct wavelength and generate a distinct laser
signal representative of the distinct wavelength; filter means
for receiving the laser signals generated by the first and
second lasers and for transmitting the laser signals from the
first and second lasers within a wavelength band, and means for
receiving the laser signals and for determining the wavelength
difference between the fiber lasers.

A method for interrogating a sensor system having an
optical fiber, at least one sensor containing first and second
fiber lasers attached to the optical fiber with the first fiber
laser being located spectrally at a first wavelength and the
second fiber being located spectrally at a second wavelength
broadly comprises the steps of causing light to travel down the
optical fiber so as to cause each of the fiber lasers to lase at
its distinct wavelength and generate a distinct laser signal
representative of the distinct wavelength. Transmitting the
laser signals generated by the first and second fiber lasers to
a filter means, allowing laser signals within a wavelength band
to pass through said filter means, providing analyzer means to
receive the laser signals passed through the filter means, and
determining the wavelength difference between the first and
second fiber lasers from the received laser signals.

Other details of the sensor interrogation system of the
present invention, as well as other objects and advantages
attendant thereto, are set forth in the following detailed
description and the accompanying drawings, wherein like
reference numerals depict like elements.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a sensor used in the system of the present invention;
FIG. 2 is a schematic representation of a multiplexed fiber laser sensor system;
FIG. 3 is an output trace from a scanning Fabry-Perot spectrum analyzer; and
FIG. 4 illustrates an alternative embodiment of a multiplexed fiber laser sensor system.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, FIG. 1 illustrates a sensor 10 to be used in the system 12 of the present invention. The sensor 10 has an optical fiber 14 containing a first optical fiber Bragg grating laser 16 and a second optical fiber Bragg grating laser 18. The Bragg gratings of each of the lasers 16 and 18 reflects at a different wavelength so that the lasers 16 and 18 emit at different wavelengths. The sensor 10 is designed so that the measurand has a different effect on the two lasers 16 and 18. In one embodiment of the sensor 10, one of the lasers 16 and 18 may be sensitive to the measurand while the other of the lasers is insensitive. In a second embodiment of the sensor 10, each of the lasers 16 and 18 may be sensitive to the measurand but in the opposite direction. The sensor 10 may
be used to measure any measurand provided that the sensor
structure can be designed which strains the fiber lasers 16 and
18 in the manner just described.

As the measurand shifts, the difference in wavelength
between the two lasers 16 and 18 changes and the difference can
be calibrated to the value of the measurand to provide an
absolute measurement.

Referring now to FIG. 2, a multiplexed fiber laser sensor
system 12 is illustrated. In this system, a single optical
fiber 20 contains numerous fiber lasers 22, two of which form
each sensor 24. Each laser 22 is located spectrally at a
different wavelength.

The system includes a pump laser 26 which provides pump
light at the distinct pump wavelength through a wavelength
demultiplexer 28. The pump light travels down the optical fiber
20 and is absorbed within each fiber laser cavity, causing each
laser 22 to lase at its distinct wavelength in a continuous
manner. The light from each laser 22 returns down the optical
fiber 20, through the wavelength demultiplexer 28, through an
optional fiber amplifier 30, to a filter 32. The filter 32
passes a narrow wavelength band and is tunable to change the
band selected. The band is wide enough to pass the laser
signals from both lasers 22 comprising a single one of the
sensors 24. All other lasers 22 are blocked or severely
attenuated. The signals then pass to a junction 34 where the
light is split to two scanning Fabry-Perot spectrum analyzers 36
and 38. One such device which may be used for each of the
analyzers 36 and 38 is the Supercavity device from Newport
Corporation of Irvine, California. Such devices provide high
finesse, thus giving a high ratio of dynamic range to accuracy.

A scanning Fabry-Perot spectrum analyzer is characterized
by a free spectral range which is the spectral dynamic range
over which spectral features can be unambiguously identified.

Two laser sensors must emit at wavelengths within one free
spectral range of each other if the scanning Fabry-Perot
spectrum analyzer is to read the spectral difference accurately.

In a typical sensor system, the laser sensors should be
separated by a particular spectral distance. This would
normally set the requirement for a scanning Fabry-Perot spectrum
analyzer with a greater free spectral range. Since the
resolution is directly related to the free spectral range, this
yields a limitation on the resolution that may be achieved. The
present invention however includes a means to measure spectral
features which are separated by more than one free spectral
range without ambiguity. This effectively extends the dynamic
range of the device without sacrificing its resolution. This in
turn allows greater resolution in the readout of the sensor.
The two scanning Fabry-Perot spectrum analyzers 36 and 38 differ in construction by the gap of the etalon and hence the free spectral range. The first analyzer 36 has a small gap, \(L_1 \), on the order of about 20 microns. Such a device with a finesse of 5000 will have a free spectral range of 60 nanometers. The free spectral range is the spectral range between orders of the interferometer. When two lasers at different wavelengths are injected into the analyzer 36, an output trace such as that shown in FIG. 3 is provided. One laser 22 in the sensor 24 produces several narrow peaks 40 separated by the free spectral range of the Fabry-Perot for that wavelength. The second laser 22 in the sensor 24 produces another set of peaks 42 with a slightly different spacing. The order number for each peak is given by the equation:

\[
n = \frac{L_1}{\lambda}
\]

where \(n \) is the order number, \(L_1 \) is the gap of the first analyzer 36, and \(\lambda \) is the emission wavelength of the laser whose peak is being considered.

The free spectral range (FSR) is much greater than the difference in emission wavelength of the two fiber lasers in the sensor 24. As a result, their peaks appear close together and the peaks share the same order. To perform a measurement, the trace generated by the scanning Fabry-Perot spectrum analyzer 36 is transmitted to a computer 37 where it is digitized and where
a computer program analyzes the trace of FIG. 3. The computer
37 may comprise any suitable computer known in the art. The
computer program may be any suitable program for identifying the
two peaks 40 and 42 and for determining the spectral spacing of
the peaks, $\Delta \lambda_1$. The computer program can be in any conventional
computer language known in the art.

Another portion of the light enters the second analyzer 38.
This device has a smaller gap, L_2, on the order of about 25 mm.
As a result, the analyzer 38 has very high resolution but a
small free spectral range. The difference in laser emission
wavelength of the two lasers 22 in the sensor 24 is so large in
contrast to the free spectral range of the analyzer 38, that
adjacent peaks of the two lasers do not have the same order
number. The order number of a laser line in this analyzer is
given by the equation:

\[n = \frac{L_2}{\lambda}. \]

where n is the order number, L_2 is the gap of the analyzer 38,
and λ is the emission wavelength of the laser whose peak is being
considered.

To obtain the spectral difference between the two lasers 22
in a sensor 24 with the resolution of the analyzer 38, it is
necessary to measure the difference between the peaks of the
same order. In a typical scanning Fabry-Perot spectrum
analyzer, this is not possible because the scan range may not be
sufficient that the same order is even displayed for each laser.
Furthermore, it is not possible to tell the order number of each
line. This invention uses the $\Delta \lambda_1$ information from the analyzer
36 to calculate the order number difference between two selected
peaks on the second analyzer 38. The measured spectral
difference between these two peaks can then be corrected for the
order number difference to give the true spectral difference
between the outputs of the lasers 22 in the sensor 24.

The trace from the analyzer 38 is also transmitted to
computer 37 where it is digitized and the aforementioned
computer program is used to analyze the trace. The computer
program in the computer 37 identifies two adjacent peaks, one
corresponding to each of the lasers 22. The scanning Fabry-
Perot spectrum analyzer scan distance corresponding to the first
laser is d_1, while the distance corresponding to the second laser
is d_2. The computer program also identifies the peaks
corresponding to the same laser by looking for uniform spectral
differences. The scan difference between two adjacent peaks of
the same laser is calculated and gives the laser wavelength.
This gives the emission wavelength of the first laser λ_1, and
that of the second laser, λ_2.
The emission wavelength of the second laser 22 may also be computed as:

\[\lambda_2' = \lambda_1 + \Delta \lambda_1. \]

The order difference between the two peaks is given by:

\[\Delta n = \left(\frac{d_1}{\lambda_1} \right) - \left(\frac{d_2}{\lambda_2'} \right). \]

It should be noted that \(\lambda_2' \) rather than \(\lambda_2 \) has been used in this calculation. The accuracy of \(\Delta n \) depends on the accuracy of the difference between the two wavelengths and using \(\lambda_2' \) is more accurate.

The scan distance difference between the two adjacent peaks of the two different lasers is:

\[\Delta d = d_2 - d_1. \]

This is now corrected by the order number difference so that the scan distance of two same order peaks are compared:

\[\Delta d' = \Delta d + \Delta n \cdot \lambda_2. \]

The sensor measurand is proportional to this corrected scan distance difference. Calibration of the sensor will yield the calibration factor.
It is noted that the use of the order number correction has allowed the system to compare features in the second analyzer 38 that do not have the same order number. It has thus greatly expanded the dynamic range of the analyzer 38 and allowed it to be configured for finer resolution.

An option is to do the entire order number correction using a single scanning Fabry-Perot spectrum analyzer. In the above illustration, \(\lambda_2 \) could have been used instead of \(\lambda_2' \) in the equation for \(\Delta n \). Since it is available directly from the trace of the second analyzer 38, the first analyzer 36 is not required. However, to ensure that the order number difference \(\Delta n \) is calculated without error, the scanning Fabry-Perot spectrum analyzer's cavity must be shortened, limiting its resolution. This option is useful when less resolution is required by the application. It reduces the system components and the cost.

An alternative configuration for the system 12 is shown in FIG. 4. In this system 12, the returning light is split by an optical coupler 50 into two paths. A tunable narrowband filter 52 is placed in either path. One filter 52 selects the wavelengths of the first laser sensor 22 of the sensor 24 to be selected. The other filter 52 selects the wavelength of the second laser sensor 22 of the sensor 24 to be selected. These
are then combined by another coupler 54 and then split to the
two analyzers 36 and 38. This alternative configuration allows
a narrower filter because each filter 52 passes one instead of
two lasers. This in turn allows the lasers 22 to be placed
closer in wavelength and more lasers to be placed on each
optical fiber 20.

As can be seen from the foregoing discussion, the system of
the present invention achieves very fine strain sensitivity, yet
does so with absolute measurements. This level of absolute
strain sensitivity exceeds that achieved by other techniques.

Many sensors are multiplexed on a single fiber. By
achieving high sensitivity, large dynamic range is achieved
without requiring the laser sensors to vary too far in
wavelength. This allows more sensors to be placed per fiber.

The measurement provided by the system of the present
invention is fast as compared to alternative absolute
measurement techniques. This results because the requirement to
scan an optical component by several centimeters is eliminated.
The rapid, short distance scanning of the piezo transducers in
the scanning Fabry-Perot spectrum analyzer is sufficient. The
measurement technique employed herein provides high dynamic
range.

It should also be noted that common mode effects affecting
both lasers of a sensor are eliminated. As an example,
temperature may cause a fiber laser sensor to shift. This shift
can cause a signal erroneously interpreted as a shift in the
measurand. Because both lasers are co-located, they both shift
in the same manner with temperature and their difference is
approximately temperature insensitive.

If desired, the two lasers 22 comprising one of the sensors
24 may also be located on separate optical fibers. When such a
configuration is used, after their filters, they would be
combined by a single coupler.

It should be noted that any sensor configuration which
results in the measurand producing a different effect on the two
lasers may be used in the system of the present invention.

It is apparent that there has been provided in accordance
with the present invention a multiplexed fiber laser sensor
system which fully satisfies the objects, means, and advantages
set forth hereinbefore. While the invention has been described
in the context of specific embodiments thereof, other
alternatives, modifications, and variations will become apparent
to those skilled in the art having read the foregoing
description.
MULTIPLEXED FIBER LASER SENSOR SYSTEM

ABSTRACT OF THE DISCLOSURE

The present invention relates to a sensor interrogation system which comprises an optical fiber, at least one sensor containing first and second fiber lasers attached to the optical fiber with the first fiber laser being located spectrally at a first wavelength and the second fiber laser being located spectrally at a second wavelength different from the first wavelength, a pump laser for causing light to travel down the optical fiber so as to cause each of the fiber lasers to lase at its distinct wavelength and generate a distinct laser signal representative of the distinct wavelength, at least one filter for receiving the laser signals generated by the first and second lasers and for transmitting the laser signals from the first and second lasers within a wavelength band, and first and second scanning Fabry-Perot spectrum analyzers for receiving the laser signals for determining the wavelength difference between said fiber lasers.
FIG. 1

FIG. 2