DEPARTMENT OF THE NAVY
OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217-5660

Serial No. 411,232
Filing Date 27 March 1995
Inventor William Prysner

NOTICE

The above identified patent application is available for licensing. Requests for information should be addressed to:

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
CODE 00CC3
ARLINGTON VA 22217-5660

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

ACCESSION FOR
MTIS GRAFI
DTIC TAB
Unannounced
Justification

By
Distribution
Availability Codes
Avail and/or
Special

DTIC QUALITY INSPECTED B
Navy Case No. 75688

DEVICE FOR REDUCING FLOW OF FLUID
FROM A RUPTURED VESSEL

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without payment of any royalties thereon or therefor.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

This invention relates to damage control devices for marine vessels and is directed more particularly to a device and method for reducing the flow of fluid from a ruptured ferrous hull of a marine vessel, when the rupture is located beneath the waterline.

(2) Description of the Prior Art

It is known to provide flexible patches for covering holes in vessels to prevent escape and/or entry of fluid through the hole. Many of the previous closure systems employ electromagnets used to hold oil impervious sheets against a ruptured wall of the vessel. U.S. Patent No. 635,939, issued October 31, 1899 to D. Mason discloses a canvas patch held in place by electromagnets. U.S. Patent No. 5,009,179, issued April 23, 1991 to Roscoe F. Johnson shows an oil-impervious flexible sheet held in place
along top and side edges by electromagnets; the bottom edge being
to Joseph Uri, there is presented a patch including a steel mesh
blanket and a steel sheet, the patch having electromagnetic bars
therein. Willard E. Williams, in U.S. Patent No. 5,165,356,
issued November 24, 1992, provides a patch including a rigid
plate member, a cushion layer, and a pliable sealing layer, held
in place against a ruptured wall by electromagnets. In each of
the above references, the patch is held in operative position by
electromagnets in some manner attached to the periphery of the
patch.

In U.S. Patent No. 5,038,701, issued August 13, 1991 to
Floyd A. Riddell and U.S. Patent No. 5,195,446, issued March 23,
1993 to Floyd A. Riddell there is disclosed a flexible covering
material for covering an opening in a hull of a ship. The
covering material includes four layers of material, and between
two of the layers are embedded an array of electromagnets.

In all of the above systems, a power source is required for
providing energy for activating the electromagnets.

William T. Holt, in U.S. Patent No. 5,009,180, issued
April 23, 1991, provides a patch system free of electromagnets,
but utilizing a series of ropes or cables, sealing hoses,
inflatable bladders, and the like to set a sheet in place
covering a rupture in the hull of a ship. The system requires on
deck of the stricken ship a compressor and, preferably, a winch.
Thus, though power is not required to activate electromagnets,
power is required to activate the system by running of a
compressor and, perhaps, a winch.

In some instances, there is no power on a stricken ship, and
in remote areas no power readily available to an oil tank, tank
car, or tower. Thus, there is a need for a device for covering
openings in fluid-containing vessels, which device may be
operated without electrical power. A need further exists for
such a device as may be utilized without components in addition
to the patch itself, such as cables, hoses, bladders, and the
like. A still further need exists for such a device devoid of
bulky and heavy electromagnets fixed to, or embedded in, the
device.

SUMMARY OF THE INVENTION

An object of the invention is to provide a damage control
device for reducing flow of fluid from a ruptured ferrous hull of
a marine vessel, when the rupture is located beneath the
waterline.

A further object of the invention is to provide such a
device requiring no electrical power for utilization.

A still further object of the invention is to provide such a
device having facility for use without additional components
other than the device itself.

A still further object of the invention is to provide such a
device devoid of heavy and bulky components, such as electro-
magnets in block or bar form.
With the above and other objects in view, as will hereinafter appear, a feature of the present invention is the provision of a damage control device for reducing flow of fluid from a ruptured ferrous hull of a marine vessel, the device comprising a flexible blanket including chips of permanently magnetized metal embedded in a sheet of flexible oil-impermeable material, such that the blanket, as a whole, comprises a flexible permanent magnet. Generally peripheral portions of the blanket are adapted to engage and magnetically fix to wall portions of the vessel surrounding a rupture therein, and a generally central portion of the blanket is adapted to overlie the rupture.

Strength strands are provided in the blanket, with each strand having a portion fixedly embedded in the blanket and a terminal portion extending beyond an edge of the blanket with an attachment ring secured thereto.

The above and other features of the invention, including various novel details of construction and combinations of parts, will now be more particularly described with reference to the accompanying drawings and pointed out in the claims. It will be understood that the particular device and method embodying the invention are shown by way of illustration only and not as limitations of the invention. The principles and features of this invention may be employed in various and numerous embodiments without departing from the scope of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS

Reference is made to the accompanying drawing in which is shown an illustrative embodiment of the invention, from which its novel features and advantages will be apparent.

In the drawing:

FIG. 1 is a perspective view of an illustrative blanket in use on the ruptured hull of a ship; and

FIG. 2 is a front elevational view of an illustrative blanket showing a preferred means by which the blanket may be handled in application of the blanket to the hull of a ship.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to FIG. 1, it will be seen that the illustrative damage control device comprises a flexible blanket 10. Blanket 10 comprises a flexible permanent magnet, including chips of permanently magnetized metal, such as iron-cobalt, embedded in a sheet of molded flexible oil-impermeable material, such as rubber or other elastomer material.

As shown in FIG. 1, generally peripheral portions 12 of blanket 10 are adapted to engage and magnetically fix to steel plate hull portions H of a vessel V surrounding a rupture R therein. A generally central portion 14 of blanket 10 is adapted to overlie at least a portion of the rupture R.

Referring to FIG. 2, it will be seen that blanket 10 has formed therein high-strength strands 16, preferably of "Kevlar", or similar material. "Kevlar" is a polymeric compound produced
and sold by E.I. DuPont Company. The word "Kelvar" is a trademark of that company. The strands 16 preferably include portions 18 extending beyond an edge of the blanket. Secured to free ends of strand portions 18 are rings 20, or other similar attachment means, by which the blanket may be lifted and moved into place.

In use, the blanket is positioned by helicopter, crane, divers with powered handling mechanisms, divers performing manual handling, or the like; such that a continuous strip all around peripheral portions 12 of hull H will extend over the edge of rupture R with the total area and distribution of confronting surfaces of hull H and peripheral portions providing sufficient magnetic adhesion forces to retain the blanket over rupture. The peripheral portions 12 of blanket 10 are then brought into contact with external wall portions H of vessel V, whereupon peripheral portions 12 magnetically fix to the wall portions H of vessel V. The central portion 14 of the blanket 10 thereby overlays the rupture R, as shown in FIG. 1, or overlays a portion of the rupture if the rupture is large relative to the sizes of blankets available.

In selection of a proper size of blanket for a particular rupture, it is important to select a size of blanket which not only covers as much of the rupture as possible, but which is large enough such that the peripheral portions 12 thereof provide sufficient magnetic holding power to retain the blanket over the
rupture, given the pressure exerted by fluid in the vessel seeking escape through the rupture.

There is thus provided a device and method for effectively reacting to oil cargo ruptures, and the like, to greatly diminish the flow of oil, or other fluid, from the vessel, thereby to diminish the usually severe consequences of fluid flow for extended periods of time. In use of the present invention, there is no need to electrically magnetize the blanket, and therefore no need for an electrical power source; and no separate components, such as bladders, vessel borne winches, or the like, are required to effect connection on the blanket to the ruptured surface.

It is to be understood that the present invention is by no means limited to the particular construction and method herein disclosed and shown in the drawing, for example, while a ship is illustrated as a vessel to which the device herein is applied, it will be apparent that the device may be applied by the method herein to oil and other fluid storage vessels. Further, while the invention has been described principally with respect to impeding outflow of fluids from a marine vessel carrying the fluid, the invention has applicability in situations in which it is desired to prevent inflow of fluids, as in the case of a rupture in the hull of a freighter-type ship. The device has applicability with ruptures exposing fluid to the atmosphere, as well as ruptures under the waterline.
Navy Case No. 75688

DEVICE FOR REDUCING FLOW OF FLUID
FROM A RUPTURED VESSEL

ABSTRACT OF THE DISCLOSURE

There is presented a damage control device for reducing flow of fluid from a ruptured vessel. The device comprises a flexible blanket including chips of permanently magnetized metal embedded in a molded blanket of flexible oil-impermeable elastomeric material, such that the blanket as a whole comprises a flexible permanent magnet strength strands are provided with each strand having a portion embedded in molded blanket and a terminal portion extending beyond a blanket edge. An attachment rings is secured to the terminal portion of each strand. Generally peripheral portions of the blanket are adapted to engage and magnetically fix to wall portions of the vessel surrounding a rupture therein. A generally central portion of the blanket is adapted to overlie the rupture.
FIG. 2