Serial No. 416.113

Filing Date 4 April 1995

Inventor
Stephen J. Potochnik
Jeffrey M. Calvert
Pehr E. Pehrsson
David S. Hsu

NOTICE

The above identified patent application is available for licensing. Requests for information should be addressed to:

OFFICE OF NAVAL RESEARCH
DEPARTMENT OF THE NAVY
CODE OCCC3
ARLINGTON VA 22217-5660

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited

DTIC QUALITY INSPECTED B
SELECTIVE VAPOR DEPOSITION USING FILMS

CROSS-REFERENCE TO RELATED APPLICATION

The present patent application is a continuation-in-part (CIP) of patent application of Serial No. 07/933,147 (hereinafter '147) filed on August 21, 1992 by Calvert et al., which '147 application is itself a continuation-in-part of prior application Serial No. 07/691,565 (hereinafter '565), filed by Calvert et al. on May 25, 1991, now abandoned, which '565 application is a CIP of S/N 07/182,123 filed on April 14, 1988 now issued as U.S. Patent No. 5,079,600 (hereinafter '600), which '600 patent is a continuation-in-part (CIP) of S/N 07/022,439 filed on March 6, 1987, now issued as U.S. Patent No. 5,077,085 (hereinafter '085). Further, another CIP of the '565 application of S/N 08/062,706 was filed by Calvert et al. on May 17, 1993, now issued as U.S. Patent No. 5,389,496 (hereinafter '496). All the aforementioned pending and abandoned patent applications and issued patents designated as '085, '600, '565, '147 and '496 are incorporated herein by reference in their entirety and for all purposes, respectively.

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The presently disclosed invention relates to a method of depositing materials (either selectively or non-selectively) such as metals, other conductors, semiconductors, insulators and other dielectric materials upon a variety of substrates. In a preferred
embodiment, the presently disclosed inventions relates more particularly to a method of
selectively depositing metals such as Cu, Al, Co, Ni and W, to name a few, upon
substrates such as diamond, single-crystal silicon, polycrystalline silicon, silicon nitride,
quartz, alumina, platinum, tungsten, aluminum, poly(vinylphenol), poly(ethylene), epoxy,
poly(ethersulfone) and others. The presently disclosed invention further relates to the
products formed from the selective deposition of the various aforementioned materials
such as metals upon the various aforementioned exemplary substrates.

DESCRIPTION OF THE RELATED ART

Surfaces of substrates (e.g. Si, SiO, polymers, diamond etc.) modified with surface
adherent ultra-thin film (UTF) layers of metals (e.g. Cu, Al, W etc.) are increasingly
sought for applications in microelectronic devices. For example, Jain et al., in Appl.
Phys. Lett., 61, 2662 (1992) and in J. Vac. Sci. Tech., B11, 2107 (1993), respectively,
report patterning Si wafers covered with an SiO layer wherein holes are etched through
the SiO layer down to the underlying Si layer and wherein the holes are partially filled
by W. Surface -OH groups generated upon the SiO layer via H2O washing are coated
with silanes such as ClSi(Me)3 or Cl2Si(Me)2 to diminish the subsequent deposition of
Cu. The silanes (e.g. ClSi(Me)3 or Cl2Si(Me)2) apparently passivate the SiO surface -
OH groups. Thus, wherever the silanes (e.g. ClSi(Me)3 or Cl2Si(Me)2) passivate the
surface -OH groups of the SiO substrate, Cu is less likely to deposit (i.e. on the silane
passivated regions). Conversely, Cu is more likely to deposit on the W patterned
regions which are not passivated with the silanes.

A limitation of the Jain et al. process is that the selective deposition of Cu⁰ is
limited to substrates such as SiO₂ having surface -OH groups wherein the surface -OH
groups are passivated with ClSi(Me)₃ or Cl₂Si(Me)₂, thereby, limiting the Cu⁰ deposition
to unpassivated surface -OH groups (or W coated Si regions). This limitation of the Jain
et al. approach confines or limits the deposition of Cu⁰ on substrates, such as SiO₂, that
contain reactive unpassivated surface hydroxyl groups. In other words, a substrate having
surface hydroxyl groups is subjected to subtractive passivation wherein the regions
passivated (i.e. passivated with silanes or other blocking layers such as alkanethiols or
polymers) resist subsequent deposition of metals such as Cu⁰. Thus, one cannot treat a
substrate surface to enhance or promote Cu⁰ deposition according to the Jain et al.
process. One can only treat a substrate surface to inhibit or diminish Cu⁰ deposition.
Therefore, the Jain et al. process is, thus, considered a subtractive process.

Other processes for metal deposition are reported. According to Schoer et al. in
LANGMUIR, 10, 615 (1994), a self-assembled monolayer film of octadecylmercaptan is
deposited on Au(111) to diminish the deposition of Cu⁰ on the Au surface. Thus, similar
to the Jain et al. process, the Schoer et al. process is likewise considered a subtractive
process. Neither Jain et al. nor Schoer et al. treat a substrate to enhance or promote the
deposition of exemplary materials such as Cu⁰ likened to an additive deposition process
(as compared to the subtractive deposition process).
There are several advantages to an additive deposition process over a subtractive deposition process. Additive deposition processes provide greater control over the deposition process. Other advantages of additive deposition processes include obviating the need for removal of material, avoiding the use of etchants, decreased cost and fewer or no buried layers e.g. buried W layer under Cu layer. The greater control possible with the additive deposition processes provide greater control over the structures formed and linewidths of patterns formed. By enhancing or promoting deposition (i.e. additive deposition) of materials such as metals, dielectrics and others, these materials can be deposited at lower temperatures and with greater control, with fewer processing steps providing potential cost saving, allowing deposition on thermally sensitive substrate materials and forming patterns of deposited materials with higher resolution using a variety of lithographic techniques.

SUMMARY OF THE INVENTION

Accordingly, it is an object of the present invention to treat substrate surfaces, including diamond surfaces, to promote the additive deposition of materials to form a film or an UTF of the deposited material.

It is another object of the present invention to treat substrate surfaces to promote the additive deposition of materials to form a film pattern or an UTF pattern of the deposited material wherein the linewidth of the pattern so formed is about 1nm to about 1mm.
It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of materials to form a film pattern or an UTF pattern of the
deposited material wherein the linewidth of the pattern so formed is about 10nm to
about 20μm.

It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of materials to form a film pattern or an UTF pattern of the
deposited material wherein the linewidth of the pattern so formed is about 25μm.

It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of materials to form a film pattern or an UTF pattern of the
deposited material wherein the linewidth of the pattern so formed is about 1μm or less.

It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of materials to form a film pattern or an UTF pattern of the
deposited material wherein the linewidth of the pattern so formed is about 0.1 - 0.5 μm.

It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of materials to form a film or an UTF of the deposited material
upon a substrate at a temperature lower than the temperature at which a subtractive
deposition process is carried out to form the same product.

It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of materials to form a film pattern or an UTF pattern upon the
substrate of the deposited material at a temperature lower than the temperature at which
a subtractive deposition process is carried out to form the same pattern.

 It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of one or more metals to form a film pattern or an UTF pattern,
wherein the linewidth of the pattern so formed is about 1 \(\mu \text{m} \) or less, at a temperature
lower than the temperature at which a subtractive deposition process is carried out to
form the same pattern.

 It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of metals to form a film pattern or an UTF pattern, wherein the
linewidth of the pattern so formed is about 0.1 - 0.5 \(\mu \text{m} \) or less, at a temperature lower
than the temperature at which a subtractive deposition process is carried out to form the
same pattern.

 It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of thermally sensitive materials.

 It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of one or more metals to form a film pattern or an UTF pattern
at a lower cost than that of a subtractive deposition process to form the same pattern.

 It is another object of the present invention to treat substrate surfaces to promote
the additive deposition of one or more metals using chemical vapor deposition.

 It is another object of the present invention to form film or UTF coated substrate
products according to the process of the presently claimed invention.
1 It is another object of the present invention to form patterned film or patterned
2 UTF coated substrate products resulting from the treatment of substrate surfaces to
3 promote the additive deposition of metals.
4 It is another object of the present invention to form patterned film or patterned
5 UTF coated substrate products having linewidths of about 1nm to about 1mm, the
6 products resulting from the treatment of substrate surfaces to promote the additive
7 deposition of metals.
8 It is another object of the present invention to form patterned film or patterned
9 UTF coated substrate products having linewidths of about 10nm to about 20μm, the
10 products resulting from the treatment of substrate surfaces to promote the additive
11 deposition of metals.
12 It is another object of the present invention to form patterned film or patterned
13 UTF coated substrate products having linewidths of about 25μm, the products resulting
14 from the treatment of substrate surfaces to promote the additive deposition of metals.
15 It is another object of the present invention to form patterned film or patterned
16 UTF coated substrate products having linewidths of 1.0 μm or less, the products resulting
17 from the treatment of substrate surfaces to promote the additive deposition of metals.
18 It is another object of the present invention to form patterned film or patterned
19 UTF coated substrate products having linewidths of about 0.1 - 0.5 μm, the products
20 resulting from the treatment of substrate surfaces to promote the additive deposition of
metals.

These and other objects of the present invention are accomplished by:

(1) providing a substrate having polar surface groups including -OH, -COOH, -CO, -O-, -COO- etc. or mixtures thereof;

(2) treating the surface groups of the substrate with ligating (ligating means catalyst binding e.g. adsorption, coordination binding, hydrogen bonding, and/or electrostatic binding etc.) film precursors such as exemplary silanes including silanes of the general formula RₙSiXₜₙ wherein R is a hydrocarbon moiety (the R groups may be the same or different), X is a halogen or an alkoxy moiety to from -O-Si-Rₙ moieties on the surface of the substrate and wherein n = 0, 1, 2, or 3 to form a ligating film upon the substrate;

(3) attaching the ligating film on the surface of the substrate to a catalyst; and

(4) vapor depositing a material upon the catalyst coated ligating film.

To produce patterned deposition, the following steps may be carried out between steps (2) and (4) above, in the order presented below:

(2a) immediately after step (2) above, exposing the ligating film to a pattern of actinic radiation, to form a pattern of ligating film regions having linewidths of 1nm-1mm, 10nm-20µm, 25µm or less, 1.0 µm, 0.1 - 0.5 µm, or less,
respectively;

(2b) immediately after step (2a) above, removing the lithographic mask used in step (2a);

(2c) exposing the surface of the ligating film to a catalyst to deposit the catalyst on the remaining unexposed ligating film; and

(2d) eliminating step (3) above and going directly to step (4) above.

In effect the process using a ligating film and catalyst comprises the steps of:

(I) providing a substrate having on at least a portion of its surface one or more chemical groups capable of ligating to a catalyst, said chemical groups comprising one or more moieties selected from the groups consisting of aromatic heterocycle, amino, phosphino, carboxylate and nitrile;

(II) contacting said substrate with said catalyst to ligate said catalyst to said chemical groups on said substrate; and

(III) vapor depositing said material upon said catalyst ligated to said chemical groups on said substrate.

Alternatively, with some materials, a catalyst is not necessary. Deposition of a material, such as diamond, may occur directly upon a film deposited onto the substrate surface. Accordingly, the catalyst-free process involves the following steps:

(i) providing a substrate having polar surface groups including -OH, -COOH, -CO, -O, -COO' etc. or mixtures thereof;
(ii) treating the surface groups of the substrate with film precursors such as
exemplary silanes including silanes of the general formula R_nSiX_{4-n} wherein
R is a hydrocarbon moiety (the R groups may be the same or different), X
is a halogen or an alkoxy moiety to from -$O-Si-R_n$ moieties on the surface
of the substrate and wherein $n = 0, 1, 2, \text{ or } 3$ to form a film upon the
substrate; and

(iii) vapor depositing a material upon the film.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an exemplary schematic representation of the process steps carried out
to practice the presently claimed process.

Figure 2 contains plots labelled (a), (b) and (c) wherein each is a plot of surface
atomic concentration obtained via alternating cycles of argon ion sputtering and X-ray
photoelectron spectroscopic surface analysis. Each plot (a), (b) and (c) was made from
the samples prepared according to the procedure of Example 5, infra.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Chemical vapor deposition (CVD) of materials is a powerful technique for
forming a wide variety of thin films and devices. Chemical vapor deposition has
significant advantages over traditional physical vapor deposition (PVD) techniques that
include greater control over film properties, such as composition, thickness, uniformity,
morphology, solid phase, crystal structures and orientations, electronic structure, the
capability to form conformal films on complex structures, and the potential for selective
deposition. *See Hitchman, M. L., and Jensen, K. F., Eds., Chemical Vapor Deposition*,
(San Diego: Academic Press, 1993), incorporated herein by reference in its entirety and
for all purposes; *See Vossen, J. L., and Kern, W., Eds., Thin Film Processes*, (New York:
Academic Press, 1978), incorporated herein by reference in its entirety and for all
purposes; *See Eden, J. G., Photochemical Vapor Deposition*, (New York: John Wiley &
Sons, Inc., 1992), incorporated herein by reference in its entirety and for all purposes;
See Gladfelter, W. L., Chem. Mater. 5, 1372 (1993), incorporated herein by reference in
its entirety and for all purposes; *See Hampden-Smith, M. J., and Kodas, T. T., Eds., The
Chemistry of Metals CVD*, (VCH Publishers, New York, 1994), incorporated herein by
reference in its entirety and for all purposes.

In addition, CVD offers advantages over solvent-based film coating and
electrochemical or electroless metal deposition, such as increased control over film
properties, structure, and morphology, greater purity, reduced waste of solvents and
reagents, and compatibility with other gas-phase or vacuum-based processing such as
plasma etching.

Although this patent application describes a process for enhanced and controlled
chemical vapor deposition (CVD), there are similar vapor-phase deposition processes,
including, but not limited to, plasma-assisted chemical vapor deposition (PACVD),
photochemical vapor deposition (photo-CVD), molecular beam epitaxy (MBE), and
vapor-phase epitaxy (VPE), to which the present invention may be applied to control
material film formation upon substrates.

Although electroless solution-based metallization can be carried out, the solution
based metallization is limited to those materials (e.g., Au, Pd, Sn, Ni, Co, Cu) that can be
deposited from an electroless solution. Exemplary chemical vapor deposition processes
provide much greater control and range of choices of the composition, structure, phase,
and other properties of deposited materials than does electroless deposition.

The following discussion is first directed to various materials that may be
deposited upon a substrate according to the present invention. In conjunction, the
precursors of the various materials sought to be deposited upon a substrate are also
discussed below.

A variety of exemplary materials can be unselectively and/or selectively deposited
upon exemplary substrates. For example, various metals may be plated or selectively
plated (i.e. to form a patterned plated substrate coated with a metal) onto substrates,
according to the present invention, including metals such as Co, Ni, Cu, Au, Pd, W, Al
and alloys thereof and other alloys of Ni-Fe-B identified as permalloy.

There is an exemplary interest in material deposition, wherein the material is Cu,
for forming high-conductivity, electromigration-resistant interconnects in multi-level
microelectronic devices. See Gladfelter, W. L., Chem. Mater. 5, 1372 (1993), incorporated
herein by reference in its entirety and for all purposes. See Hampden-Smith, M. J., and

High purity, exemplary copper films can be deposited from copper precursors of the general form (β-diketonate)-CuLx, where L is a Lewis base and x is zero or a positive integer, preferably, an integer indicating the number of the bases (Lx) coordinated to the exemplary CuL of the exemplary precursor. It is believed that these precursors (i.e. (β-diketonate)-CuLx) exploit the differences in the electrical conductivity or electron donating capability of solid surfaces to achieve selectivity. Without being limited by theory, it is further believed that copper deposits preferentially on conducting
and semiconducting surfaces, but not on insulators, via a disproportionation reaction:

\[2(\beta\text{-diketonate})\text{-Cu}^+\text{-L}_x\text{(g)} \rightarrow \text{Cu}^0\text{(s)} + \text{Cu}^{II}(\beta\text{-diketonate})_2\text{(g)} + 2x \text{L (g)} \]

(1)

wherein \(s \) indicates an adsorbed species and \(g \) indicates a gaseous species.

Though not fully understood, the electrically conductive surfaces apparently facilitate the electron transfer required for the disproportionation.

A variety of Cu\(^+\) precursors include precursors of the following general formulas:

(1) \((\text{hfac})\text{Cu(triborannophosphine)}\)

(2) \((\text{hfac})\text{Cu(olefin)}\)

(3) \((\text{hfac})\text{Cu(alkyne)}\)

and mixtures thereof. The above general formulas (2), (3) and (4) can be classified as

the formula given below:

\[(\text{N})\text{Cu(L)}\]

(5)

wherein \(N \) includes the following: \(N=\text{hfac}=\text{1,1,1,5,5,5-hexafluorococtafluorocylacetonate}, \)

\(N=\text{tfac}=\text{trifluorococtafluorocylacetonate}, N=\text{acac}=\text{acetylacetonate} \) or \(N=\text{mixtures thereof and} \)

wherein \(L \) includes the following: \(L=\text{trimethylphosphine (PMe}_3\text{)}, L=\text{triethylphosphine} \)

\((\text{PEt}_3\text{)}, L=\text{1,5 cyclooctadiene (1,5-COD)}, L=\text{triethylvinylsilane (TEVS)}, \)

\(L=\text{trimethylvinylsilane (TMVS)}, L=\text{2-butyn}, L=\text{2-pentyne}, \)

\(L=\text{bis(trimethylsilyl)acetylene, L=CO and mixtures thereof.} \)
Note that the structure of (hfac)CuI(tmvs) is as described below (See U.S. Patent Nos. 5,322,712; 5,144,049; 5,085,731, each patent incorporated herein by reference in its entirety and for all purposes; Note that (hfac)CuI(tmvs) is available under the name CupraSelect from Schumacher Co.):

Other suitable metal precursors which may be used with the present invention are given in Hampden-Smith, M. J., and Kodas, T. T., Eds., The Chemistry of Metals CVD, (VCH Publishers, New York, 1994), supra, at pages 175-327.

Other examples of disproportionation reactions are also given below:

\[2 \text{(acac)}-\text{CuI-}{(\text{NH}_3)_2}\text{s} \text{(g)} \rightarrow \text{Cu}^0 \text{(s)} + \text{Cu}^{II}\text{(acac)}_2 \text{(g)} + 5\text{NH}_3 \text{(g)} \] \((6) \)

\[2 \text{(hfac)}-\text{CuI-}{(\text{CO})}\text{(g)} \rightarrow \text{Cu}^0 \text{(s)} + \text{Cu}^{II}\text{(hfac)}_2 \text{(g)} + 2\text{CO} \text{(g)} \] \((7) \)

wherein (s) indicates an adsorbed species and (g) indicates a gaseous species.

Exemplary high-purity, exemplary conductive copper films can be deposited selectively at about 393-523 K using hfac-CuI-tmvs wherein hfac = hexafluoroacetylacetonate and tmvs = trimethylvinylsilane, and similar monovalent-
copper precursors of the general form (β-diketonate)-Cu^-L^x, wherein L is a Lewis base
and wherein x is zero or a positive number, preferably, an integer indicating the number
of the bases (Ls) coordinated to the exemplary Cu^+ of the exemplary precursor. See
Norman, J. A. T., Muratore, B. A., Dyer, P.N., Roberts, D. A., Hochberg, A. K., and
entirety and for all purposes. See Jain, A., Farkas, J., Chi, K. M., Hampden-Smith, M.
its entirety and for all purposes. See Jain, A., Kodas, T. T., Jairath, R., and Hampden-
entirety and for all purposes.

According to the present invention, for the selective deposition of exemplary
metals from their respective precursors such as (2), (3), (4) and/or (5), *supra*, a
deposition catalyst solution is needed for facilitating the unselective and/or selective
deposition of the exemplary metal, which deposition is suspected to occur via the
disproportionation reaction denoted as (1), (6) and/or (7), *supra*. Although Pd/Sn
catalysts have been used in electroless solution based metallization and may be
successfully used in conjunction with the present invention, such Pd/Sn catalysts require
at least "acceleration" prior to commencement of metal deposition. (See U.S. Patent No.
5,389,496 at Column 2, lines 64-70). Therefore, Sn-free Pd catalysts are preferred for use
in conjunction with the presently disclosed invention.
A variety of exemplary metallization catalysts may be employed, including tin-free catalysts, with PdIII compounds and compositions preferred for the generally superior catalytic activity those catalysts provide. A substrate is preferably treated with a solution of the metallization catalyst, for example, an aqueous solution or a solution of an organic solvent. The catalyst solution preferably comprises other materials such as ancillary ligands, salts and buffers to enhance the stability of the catalyst solution and thereby to provide suitable catalyst activity as well as convenient use and storage of the solution.

A variety of compounds may be employed as the catalyst in accordance with the present invention such as catalysts of palladium, platinum, rhodium, iridium, nickel, copper, silver, gold, and mixtures thereof, respectively. Palladium or palladium containing compounds and compositions generally provide superior catalytic activity and therefore are preferred. Particularly preferred palladium species include derivatives of palladium dichloride and Na$_2$PdCl$_4$. Other salts of PdCl$_4^{2-}$ should also be suitable.

The vapor deposition or chemical vapor deposition (CVD) metallization catalysts useful in the processes of the present invention are preferably applied to the substrate (the substrate having a ligating film on its surface, *infra*) as a solution, for example, as an aqueous solution or a solution of an organic solvent. Suitable organic solvents include dimethylformamide (DMF), toluene, tetrahydrofuran (THF) and other solvents in which the metallization catalyst is soluble at effective concentrations.

Means for contacting a substrate with a catalyst solution may vary widely and
include immersion of the substrate in a solution as well as a spray or puddle application.

The catalyst solution contact time required to provide complete metallization of the
contact area can vary with catalyst solution composition and age.

A variety of catalyst solutions have been successfully employed, with solutions
stabilized against decomposition preferred. Thus, the catalyst solution may comprise
ancillary ligands, salts, buffers and other materials to enhance catalytic activity. Though
not wishing to be bound by theory, it is believed many of the catalyst solutions useful in
the present invention change over time by oligomerization and formation of insoluble
oxo-compounds. For example, as such catalyst oligomers increase in molecular weight,
their solubilities decrease and precipitation of the catalyst can occur. Exemplary
conditions for an active oligomerized Pd catalyst is found in the '496 patent, supra.

Many substrates or substrate surfaces capable of being coated or plated, according
to the present invention, intrinsically contain chemical groups, or appropriate precursors
of chemical groups, that are able to ligate an exemplary plating catalyst. These chemical
groups are referred to as the catalyst ligating functionality or catalyst ligating group
present upon the substrate itself.

Upon encountering a substrate surface lacking a catalyst ligating group or readily
convertible precursor thereof, an intervening ligating film is attached to the surface of the
substrate via an exemplary chemical reaction. For example, substrate surface -OH
groups of an exemplary substrate are chemically reacted with an exemplary organosilane
to form a siloxy (-Si-O-) bond between the ligating film precursor (the exemplary organosilane) and the substrate surface -OH groups. The attached organosilane comprises an exemplary ligating film upon the substrate via the formation of the exemplary siloxy bond. For example, the reactive portion of the exemplary organosilane is referred to as the substrate binding group of the ligating film precursor, the organosilane. Note that a variety of organic percurors can be used to form the ligating film such as organotitanates, organothiols, organosulfides, carboxylic acids, organoaluminates etc.

That portion of the ligating film (e.g., organosilane attached to the substrate surface via siloxy bonds) which is capable of binding an exemplary catalyst is referred to as a catalyst ligating group.

Thus, an appropriate ligating film intervening between the substrate and the catalyst solution has at least two groups, the catalyst ligating group and the substrate binding group. The catalyst ligating group attaches the catalyst to the ligating film. The ligating film, in turn, is attached to the substrate via a bond formed between the substrate binding group (e.g. the Si of the organosilane) present within the ligating film precursor (e.g. the organosilane) and a substrate surface reactive group (e.g. a substrate surface -OH group) by the formation of an exemplary siloxy bond.

Sometimes, attachment of the catalyst is accomplished, for example, via adsorption, coordination binding and/or electrostatic attraction to the surface of a
substrate. However, in a preferred embodiment, attachment of the catalyst to the
surface of the substrate generally requires that the substrate have upon its surface a
catalyst coordinating functionality. Either the substrate surface inherently has a catalyst
coordination functionality upon its surface or the substrate surface is modified to contain
a catalyst coordination functionality.

For example, polyvinylpyridine film intrinsically contains such catalyst ligating
groups with the pendant pyridine serving as the catalyst ligating group. The pyridyl
group has been found to be a particularly preferred catalyst ligating group for an
exemplary palladium catalyst. Similarly, a substrate comprising aluminum oxide will bind
an exemplary palladium catalyst by the AlO and AlOH groups of the exemplary alumina.
Further, the catalyst ligating functionality need not be the sole component of the
substrate. Thus, the catalyst ligating functionality may be physically blended as one of
multiple components comprising the substrate surface to ligate to the catalyst.

A possible shortcoming of such a blending approach is that incorporation of large
quantities of a second material may impair the film-forming or other properties of the
bulk material. A potential solution to this problem is to incorporate a surfactant form of
the catalyst ligating component into the bulk material by proper choice of the relative
solubility/polarity characteristics of the catalyst ligating component and the surfactant. By
incorporating a small percentage of the surfactant into the bulk, a high surface
concentration of the catalyst ligating functionality could be produced.
Many substrates that do not inherently comprise suitable catalyst ligating groups may be readily modified to possess the necessary catalyst ligating groups. Substrate modification methods include, but are not limited to, thermolysis, reaction of the surface of the substrate with one or more chemical reagents, irradiation with photons or ions, vapor phase modification, graft polymerization, x-ray and nuclear radiation treatment or, more generally, any treatment that effects the desired conversion of the substrate to provide catalyst ligating groups upon the substrate. See J.M. Calvert et. al., Patterned Electroless AMetallization of Ligand-AModified Surfaces, Materials Research Proceedings, 260,p. 905 (1992), incorporated herein by reference in its entirety and for all purposes. See T.G. Vargo et al., Adhesive Electroless Metallization of Fluoropolymeric Substrates, Science, 262, p. 1711 (1993), incorporated herein by reference in its entirety and for all purposes.

Not all substrates inherently possess adequate substrate surface reactive groups to attach the ligating film precursors (such as the aforementioned organosilanes) to the substrate surface wherein the ligating film so formed has catalyst ligating groups upon its surface. For example, with substrates such as poly(ethylene), epoxy, poly(ethersulfone), fluoropolymers, polyimide, paralyne, polyesters, polyethers and diamond, which do not contain high concentrations of inherent substrate surface reactive groups such as surface hydroxyls, it is necessary to oxidize and/or hydrolyze the surface of these substrates wherein organosilane ligating film precursors are to be used. Oxidation and/or hydrolysis
of these and similar substrates can be accomplished in several ways including plasma
(e.g., radio frequency plasma generation, microwave plasma generation), thermal
oxidation, acid treatment, base treatment and/or other chemical treatments (e.g.
treatments with oxidizing agents such as permanganate, dichromate and/or ozone). Thus,
with any substrate that inherently possesses, or can be modified to possess, sufficient
substrate surface reactive groups such as reactive hydroxyl groups or similarly reactive
moieties, the substrate can be functionalized with a ligating film.

In some cases, such as SiO₂, which contains surface -OH groups, a film can be
directly deposited upon the SiO₂ substrate. Films of organosilanes can be formed upon
the SiO₂ surface containing surface -OH groups. In the exemplary case of diamond
vapor deposition, since diamond will deposit on carbon containing functional groups, it is
possible to deposit diamond on a film such as a film of an organosilane without the use
of a catalyst. Numerous organosilanes that contain carbon containing functional groups
(which carbon containing functional groups act as nucleation sites for diamond vapor
deposition--obviating the need to use an intervening catalyst layer) include methyl-, ethyl-,
cyclohexyl-, octadecyl-, napthyl-, anthracenyl-, biphenyl-, and adamantyl- containing
silanes. Ordered cyclic- or polycyclic hydrocarbon moieties mimic graphite edge plains,
which nucleate diamond during the CVD of diamond. The exemplary adamantyl
functionality is a polycyclic hydrocarbon analog of the diamond lattice that may nucleate
diamond growth when applied to a substrate as an adamantyl-containing silane UTF,
other UTF, or film, respectively.

Exemplary organosilanes of the general form R_xSiX_{4-x}, where R is an
organofunctional group and X is usually -Cl, -OCH$_3$, or -OC$_2$H$_5$, have been used to
deposit films (e.g. catalyst ligating films) on various substrates. For instance,
organosilanes of the general form R_xSiX_{4-x}, where R is an organofunctional group and X
is usually -Cl, -OCH$_3$, or -OC$_2$H$_5$, react with exemplary substrate surface hydroxyl groups
to form covalently bound -O-Si-R moieties wherein the R moiety contains a catalyst
ligating group (n = 0, 1, 2, or 3).

Exemplary organosilanes of this form include, but are not limited to,
octenyldimethylchlorosilane, N-(2-aminoethyl-3-aminopropyl)trimethoxysilane, m,p-
(aminooethylaminomethyl)phenethyltrimethoxysilane, 2-(trimethoxysilyl)ethyl-2-pyridine, 3-
mercaptopropyltrimethoxysilane, 2-(diphenylphosphino)ethyltriethoxysilane and N-
trimethoxysilylpropyl-N,N,N-trimethylammonium chloride.

Films (e.g. catalyst ligating films) formed from such silanes attach to the
underlying substrates via an exemplary siloxy bond and are further capable of attaching
to an exemplary catalyst via a catalyst ligating group present within the exemplary silane.
For example, 2-(trimethoxysilyl)ethyl-2-pyridine provides both catalyst ligating groups and
substrate binding groups. The alkoxy silane group can chemically bind the compound to a
substrate. For instance, the methoxy group of the trimethoxysilyl group reacts with
exemplary surface hydroxyl (silanol) functionalities of an exemplary quartz substrate,
displacing methanol to directly bond to the substrate. The thus bound pyridyl group of
the silylpyridyl molecule serves as a catalyst ligating group for chelating with the
exemplary metallization catalyst.

Additional materials and methods for the attachment (chemisorption) of ultrathin
ligating film precursor materials (such as organosilanes or organotitanates) to substrates
that either intrinsically possess, or are treated to have, polar surface groups such as
hydroxyl functionalities have been described elsewhere. See Calvert, J. M., J. Vac. Sci.

Tech. B 11, 2155 (1993), incorporated herein by reference in its entirety and for all
icorporated herein by reference in its entirety and for all purposes. See Vargo, T. G.,
herein by reference in its entirety and for all purposes. See Calvert, J. M., Pehrsson, P.
1992), p. 905, incorporated herein by reference in its entirety and for all purposes. See
Calvert, J. M., Pehrsson, P. E., and Peckerar, M., U.S. Patent Application 07/933,147,
icorporated herein by reference in its entirety and for all purposes. See Schnur, et. al.,
U.S. Patent 5,077,085, incorporated herein by reference in its entirety and for all
purposes. See Schnur, et. al., U.S. Patent 5,079,600, incorporated herein by reference in
its entirety and for all purposes. See Calvert, et. al., U.S. Patent 5,389,496, incorporated
herein by reference in its entirety and for all purposes. See Calvert, et. al., Solid State

Rather than directly modifying the substrate, the substrate may be imparted with suitable catalyst ligating groups by indirect modification of the surface of the substrate. For example, a substrate may be coated with one or more film layers, at least one layer comprising one or more suitable ligating agents. The film layer preferably adheres well to the substrate, for example, by containing a substrate functional group that will chemically and/or physically adhere to the substrate.

The catalyst ligating function (e.g. via catalyst ligating group) and the substrate adhesion (e.g. via substrate binding group) may be performed by multiple chemical groups with bond formation or other linkage between the catalyst ligating group and the catalyst, as well as, the substrate binding group and the substrate, respectively. The linkage connecting the multiple functional groups may be of variable length and chemical composition. Examples include 3-(trimethoxysilyl) propylamine and quinoline-8-sulfonic
acid chloride. The aminosilane is applied as the substrate adsorbent. The coated surface
is then reacted with quinoline-8-sulfonic acid chloride, the \(-\text{SO}_2\text{Cl}\) group coupling to the
amine group of the aminosilane to form a sulfonamide linkage, and the quinolinic group
serving as a catalyst ligating moiety.

Similarly, 3-(trimethoxysilyl) propylamine can be applied to a substrate and then
reacted with the acid chloride group of 4,4'-dicarboxyl chloride-2,2'-bipyridine to form an
amide linkage. The pyridyl moieties of this complex serve as a catalyst ligating group.

Other silyl amines can be condensed in a similar manner, for example 3-
(trimethoxysilyl) propylamine. Another sequence provides condensing the hydroxyl groups
of a chemically etched polyethylene substrate with a suitable substrate ligating film
precursor, for example, 3-(trimethoxysilyl) propylamine, which after formation of the
siloxy bond by methanol displacement, the amino group can condense with a suitable
catalyst ligating compound such as nicotinoyl chloride.

Substrates successfully treated to form catalyst ligating films (e.g. of organosilanes
such as octenyldimethylchlorosilane, N-(2-aminoethyl-3-aminopropyl)trimethoxysilane,
m,p-(aminoethylaminomethyl)phenethyltrimethoxysilane, 2-(trimethoxysilyl)ethyl-2-
pyridine, 3-mercaptopropyltrimethoxysilane, 2-(diphenylphosphino)ethyltrimethoxysilane
and N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride) include single-crystal
silicon with native and thermal oxide surfaces, polycrystalline silicon, silicon nitride,
quartz, alumina, platinum, tungsten, aluminum, poly(vinylphenol), poly(ethylene), epoxy,
polymide, polyesters, novolac, polyethers, poly(ethersulfone), fluoropolymers, and
diamond. Other suitable substrates include Ag, Au, tin oxides, indium tin oxides and zinc
oxides.

Various groups of ligating film precursors (serving as suitable catalyst ligating
groups) include amino, phosphino, pyridyl, ammonium, alkylammonium, thiol, thiolate,
sulfonate, thiocyanate, olefin, alkyne, titanium nitride, carbon nitride, silicon carbide,
aluminum nitride, graphite, diamond like carbon, amorphous carbon, polyethers,
polycrystalline diamond, single crystal diamond, bipyridyl, 2,2':6,2'-terpyridine, oxalate,
ethylene diamine, 8-hydroxyquinoline, and 1,10-phenanthroline. Organophosphines,
nitriles, carboxylates and thiois should also ligate catalysts well. For example, 3-
mercaptopropyltriethoxysilane, 2-(diphenylphosphino)ethyltriethoxysilane and
cyanomethylphenyltrimethoxysilane should serve as suitable ligating film precursors for
use in accordance with the present invention.

A catalyst ligating group comprising a radiation sensitive chromophore can provide
a convenient selective radiation patterning and metallization process where selective
photolysis, radiation ablation, or radiation induced transformation modifies the chemical
groups on the substrate or the film formed on the substrate to substantially reduce or
eliminate the catalyst ligating ability in the selected film surface areas. Subsequent
exposure to a catalyst solution and exemplary material deposition via vapor deposition
provides a positive tone image of the photomask employed during photochemical
patterning. For example, the pyridyl group of 2-(trimethoxysilyl)ethyl-2-pyridine serves as a chromophore for convenient patterning and subsequent selective exemplary metallization of the substrate surface via vapor deposition.

Analogously, a catalyst ligating film can be employed where selective photolysis transforms a catalyst non-ligating group within the film into a catalyst ligating group. For example, azoxybenzene derivatives photoisomerize from a weakly or catalytic non-ligating azoxybenzene group to the ligating 2-hydroxyazobenzene group. The exemplary chelating ability of 2-hydroxyazobenzene and 2-(2-pyridylazo)-1-napthol has been described elsewhere. See U.S. Patent No. 5,389,496. For example, polyacetoxy styrene can be irradiated with ultraviolet radiation to provide the ligating 2-hydroxyacetophenone moiety which moiety functions as a catalyst ligating group. Also, for example, a thiol silane can be converted to a sulfonate by photooxidation. See S.K. Bhatia et al., Fabrication of Surfaces Resistant to Protein Adasorption and their Application to Two Dimensional Protein Patterning, Analytical Biochemistry, 208, p. 197 (1993), incorporated herein by reference in its entirety and for all purposes.

Depending on the nature of the radiation sensitive materials employed, such transformations may be accomplished with a variety of exposure sources and imaging tools. For example, UV or visible light will be suitable for certain transformations, while other transformations may require exposure sources such as electron beam, ion-beam or x-ray treatment. Such energy sources can be provided by image tools known to those in
the art, for example, UV contact printers and projection steppers, electron beam writers,
scanning tunnelling microscopy, atomic force microscopy, near field scanning optical
microscopy, focused ion beam exposure and X-ray proximity printers. Such
transformations can be accomplished by mechanical/physical means such as stamping,
scraping and stylus writing.

For such patterning of a catalyst ligating film, the film preferably is an UTF, which
is a film defined herein to mean a film with a thickness of about 1 - 10 molecular layers
of the molecule (e.g. R₃SiX₄₋₃₋) of which the film is comprised. Such a film can be formed
through dip coating or vapor phase deposition procedures which are known in the art.

The invention will be better understood by reference to the following examples.
The following examples describe specific methods and materials for the promotion of
selective copper chemical vapor deposition on diamond and other substrates. The pro-
cess used for selective enhancement of CVD is shown schematically in Fig. 1. It is
demonstrated in the examples below that the specific steps of substrate surface oxidation
(Fig. 1, Scheme 1, step 1), ligand attachment (step 2), catalysis (step 3) and selective
chemical vapor deposition (step 4) have been accomplished. It is shown that the
uncatalyzed organosilane films does not promote Cu CVD, and appear to hinder Cu
deposition. Selective Cu deposition was also achieved on Si and SiO₂ substrates.
Selective patterned deposition of Cu (Figure 1, Scheme 2) was achieved by patterning the
ligating silane film prior to catalyst attachment and Cu CVD.
Example 1

Oxidation of single-crystal diamond substrate using O₂ plasma treatment

Synthetic high-pressure, high-temperature (HPHT) single-crystal C(100) diamond substrates (Sumitomo Electric Carbide) were cleaned by sequential ultrasonication in acetone, 1,1,1-trichloroethane, and methanol, and then cleaned sequentially in boiling aqua regia, 6:4 H₂SO₄/HNO₃, and then in 1:1:1 HF/HNO₃/Acetic acid. The water contact angle (measured using the sessile drop method and a Zisman-type Goniometer) for the solvent- and acid-cleaned diamond surface was approximately 60°, indicative of a partially oxidized diamond surface. The diamond substrates were then inserted into an Astex 1.5 kW microwave plasma reactor and subjected to a 600 W microwave plasma using 10 Torr and 400 sccm of H₂ at 1073 K for between 20 s and 120 min. The diamond substrates were highly hydrophobic after H₂-plasma treatment, and gave water contact angles of 85-90°. Such high contact angles are indicative of an H-terminated diamond surface. The diamond substrates were then inserted into a Branson Model IPC plasma etcher and subjected to an RF plasma using 1 torr and 250 sccm of O₂ for 2 to 4 min at 200 W. Diamond surfaces after O₂-plasma oxidation were highly wettable by water, and gave contact angles of (20±10)°. X-ray photoelectron spectroscopy (XPS, Surface Science Laboratories, SSX-100) of oxidized diamond shows development of a feature on the high binding energy side of the C1s peak that was absent on the unoxidized diamond.

The binding energy and intensity of this feature are consistent with a surface layer of
oxygen bonded to the diamond surface. The contact angle and XPS measurements
demonstrate that the O\textsubscript{2} plasma treatment is very effective at converting the initial
diamond surface into a polar, highly wettable surface. This observation is consistent with
the formation of carbonyl or hydroxyl groups at the diamond surface, such as carbonyl,
alcohol, lactone or carboxylic acid moieties, which have been identified on oxidized
diamond using high-resolution electron energy loss spectroscopy (HREELS). See
Pehrsson et al., Proceedings of the 2nd NIRIM International Symposium on Advanced
Materials (ISAM '95) Tsukuba, Japan, March 6-10, 1995 (Y. Bando, M. Kamo, H.

Example 2

Functionalization of an oxidized diamond surface with

\[N-(2\text{-aminoethyl})-3\text{-aminopropyltrimethoxysilane} = \text{(UTF-EDA or EDA)} \]

This example demonstrates that surface of a diamond substrate produced by O\textsubscript{2}-
plasma etching provides the necessary functional groups for the attachment of an organo-
silane UTF from aqueous solution.

An O\textsubscript{2}-plasma-oxidized diamond was prepared as described in Example 1, using
an RF power of 200W for 4 min. The diamond was then treated with a 1% (v/v)
aqueous solution of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (Huls America,
Piscataway, NJ), UTF-EDA, 0.001 M in acetic acid, at room temperature. The diamond
was removed from the solution and rinsed twice in filtered, deionized (DI) water. The
diamond was then baked for 5 min. at 393 K on the surface of a hotplate. XPS analysis of the UTF-EDA modified surface shows signals for Si and N, both constituents of the UTF layer that are not present on the unmodified diamond surface.

Example 3

Functionalization of an oxidized diamond surface with UTF-PEDA

This example illustrates the generality of the procedure for modification of oxidized diamond surfaces with chemisorbed films.

A plasma oxidized diamond film was prepared as described in Example 1. The substrate was then treated with a 1% (v/v) solution of m,p-(aminoethylaminomethyl)-phenethyltrimethoxysilane (Huls America), UTF-PEDA, in 95:4 (v:v) methanol:water with 0.001 M acetic acid at room temperature for 20 min. The diamond substrate was removed from the solution, rinsed twice in fresh methanol, and was baked for 5 min. at 393 K on the surface of a hotplate. XPS analysis of the UTF-PEDA modified surface shows signals for Si and N, both constituents of the UTF layer that are not present on the unmodified diamond surface.

Example 4

Selective copper chemical vapor deposition on functionalized diamond surfaces at 444 K

This example demonstrates that the UTF process can be used to selectively produce adhesive, conductive copper deposits at low temperature (e.g. less than 450K) on an insulating diamond substrate.
Three separate diamond substrates similar to those described in Example 2 were
prepared in the following manner: Substrates 4.1, 4.2, and 4.3, were subjected to a H₂-
plasma for 60 s, as described in Example 1. Substrates 4.2 and 4.3 were then subjected
to an RF O₂-plasma, as described in Example 1, and coated with UTF-EDA, as
described in Example 2. Substrate 4.3 was then exposed to an aqueous palladium-based
catalyst solution (designated Ac3; the exact composition and preparation method for the
Ac3 solution is given in Dressick, W. J., Dulcey, C. S., Georger, J. H., Calabrese, G. S.,
reference in its entirety and for all purposes, in which Ac3 is designated as solution IV,
Method B) for 120 min, rinsed with DI water, and dried in a stream of filtered N₂ at
room temperature. All three substrates were then mounted in the center of a 0.010-mm
thick, 1x1-cm² silicon wafer using a Ag-based colloidal adhesive.

The Si wafer with the attached substrates was then mounted in a copper chemical
vapor deposition chamber on a Pt foil that was heated resistively. The cool-wall, low-
pressure CVD chamber (See Hsu, D.S.Y., Tenth micrometer trench fabrication by
aperture narrowing of 0.6 µm starting mask structures using chemical-beam deposition
incorporated herein by reference in its entirety and for all purposes; See Hsu, D. S. Y.,
(1992), incorporated herein by reference in its entirety and for all purposes; See Hsu, D.
S. Y., and Gray, H. F., *Appl. Phys. Lett.* 63, 159 (1993), incorporated herein by reference in its entirety and for all purposes; See U.S. Patent No. 5,110,760-- incorporated herein by reference in its entirety and for all purposes) was pumped with a 15-cm, liquid-nitrogen-trapped diffusion pump (base pressure = 4x10^{-6} Pa). Sample temperature was monitored with a Pt-Pt(10% Rh) thermocouple spot welded to the Pt foil. A 12-mm glass doser tube was used to direct the flow of gases onto the sample during Cu deposition. The metallorganic copper precursor hexafluoroacetylacetonatocopper-trimethylvinylsilane (CupraSelect, Schumacher Co.), hfac-Cu-tmvs, was purified with several freeze/pump/thaw cycles and then warmed to approximately 320 K. Immediately prior to Cu deposition, the sample was heated in vacuum to 444 K in about 10 min. With the doser pointed away from the sample, H_{2} was flowed through the doser at approximately 1 sccm and 4x10^{-3} Pa. The sample temperature and H_{2} pressure were stabilized in approximately 10 min, and then the precursor was metered into the H_{2} stream until the total chamber pressure increased to 8x10^{-3} Pa. The doser tube was then rotated to a position 3 mm in front of and normal to the substrate. After 24 min, the precursor flow was stopped and the sample temperature was maintained in H_{2} flow for approximately 5 min. The sample was then cooled at approximately 10 K/min to 350 K and maintained at this temperature for 30 min to allow any unreacted precursor to desorb. Then the H_{2} flow and sample heating were turned off. After the sample had cooled to near room temperature, the chamber was vented to atmospheric pressure with nitrogen, and the
samples were removed.

Preferential chemical vapor deposition of copper on substrate 4.3 was demonstrated with XPS and scanning electron microscopy (SEM, Hitachi) images of the three substrates. SEM showed formation of a continuous copper film on substrate 4.3. Only isolated particles were detected on substrates 4.1 and 4.2. By estimating particle density on each substrate from SEM images, substrate 4.3 contained 1,000-10,000 times the copper particle density of substrates 4.1 or 4.2. The film on substrate 4.3 was 58±15 nm thick, as measured with profilometry (Trench Alphastep Co.). A surface resistivity test on substrate 4.3 using a four-point probe method yielded a bulk resistivity of 10.3 μΩ-cm for the Cu film. Though this resistivity is higher than that for bulk copper (1.67 μΩ-cm—See Weast, Ed., *Handbook of Chemistry and Physics*, 65th ed., (CRC Press, Boca Raton, FL, 1984), p. F-120, incorporated herein by reference in its entirety and for all purposes), the value compares well with those reported by other practitioners of copper CVD. See Cohen, S. L., Liehr, M., and Kasi, S., *Appl Phys. Lett.* 60, 1585 (1992), incorporated herein by reference in its entirety and for all purposes; See Gross, M. E., and Donnelly, V. M., in *Advanced Metallization for ULSI Applications*, edited by V. V. S. Rana, R. V. Joshi, and I. Ohdomari, (Materials Research Society, Pittsburgh, 1992), p. 375, incorporated herein by reference in its entirety and for all purposes. An ASTM-tape peel adhesion test and a 3M Scotch tape adhesion test on this copper film yielded no detectable removal of copper.
Example 5

Selective copper CVD on functionalized Si substrates at 447 K

This example demonstrates that the modification and catalysis process for enhancing selective chemical vapor deposition is applicable to Si and SiO₂ in addition to diamond substrates, that the UTF-OTS film can reduce copper deposition on Si, and that the enhancement in copper deposition due to the modification techniques described here is dramatic, as evidenced by the composition depth profiles.

Four Si pieces (approximately 2x3x0.1-mm³) that were cleaved from a 2-inch diameter Si-native oxide wafer, and one SiO₂ piece, were cleaned with sequential ultrasonic agitation in toluene and methanol, immersed for 30 min in 1:1 HCl/CH₃OH, rinsed in filtered, deionized (DI) H₂O, immersed for 30 min in H₂SO₄, rinsed with DI H₂O, and then immersed for 5 min in DI H₂O at 353-363 K. One Si piece (5.1) was removed from the hot DI H₂O, dried in a stream of filtered N₂, and received no further treatments.

Two Si pieces (5.2 and 5.4) and the SiO₂ piece were coated with the UTF-EDA organosilane film as described in Example 2. One Si piece (5.4) and the SiO₂ piece were then immersed in the Ac₃ catalyst solution for 120 min, rinsed in DI water, and dried in a filtered stream of nitrogen. Another Si piece (5.3) was immersed in a 1% (v/v) solution of octadecyltrichlorosilane (Huls America), UTF-OTS, in anhydrous toluene for 7 min at 295 K under a dry argon atmosphere. The UTF-OTS film has a long straight-chain alkyl functionality and is similar to octadecylmercaptan, which can form ultrathin films on Au
and Ag surfaces. See Ulman, A., An Introduction to Ultrathin Organic Films, (Academic Press, New York, 1991). Moazed, K. L., Zeidler, J. R., and Taylor, M. J., J. Appl. Phys. 68, 2246 (1990), incorporated herein by reference in its entirety and for all purposes. Octadecylmercaptan films have been used to exclude copper deposition from a gold surface. See Schoer, J. K., Ross, C. B., Crooks, R. M., Corbitt, T. S., and Hampden-Smith, M. J., Langmuir 10, 615 (1994), incorporated herein by reference in its entirety and for all purposes. Octadecylmercaptan, however, can not be applied directly to Si surfaces. The four Si pieces and the SiO₂ piece were then mounted in the copper CVD chamber and copper deposition was performed as described in Example 4 at a substrate temperature of 447 K.

After copper CVD, sample surfaces were analyzed with SEM, and sputter depth profiles were obtained using XPS and Ar⁺ ion sputtering (Surface Science Laboratories, Inc., SSX-100) for samples 5.1, 5.3, and 5.4. A Cu film was visible with the unassisted eye on Si piece 5.4 and the SiO₂ piece, and SEM revealed that these surface consisted of continuous copper films. Copper films were not evident in SEM images of samples 5.1, 5.2, and 5.3. Figure 2 shows composition depth profiles of samples 5.1, 5.3, and 5.4 in plots labelled (a), (b) and (c), respectively, obtained using alternating cycles of Ar⁺ ion sputtering and XPS surface analysis. Figures 2, plot (a) shows that less than 11 atomic % Cu deposited on the Si native oxide surface, and that most of the Cu was quickly removed from the surface with 50 s of sputtering. Figure 2, plot (b) shows that the
OTS-coated Si piece contained approximately 4 atomic% Cu, and that most of the Cu was quickly removed from the surface with less than 50 s of sputtering. In contrast, the surface of Si sample 5.4 (Figure 2, plot (c)) contained a thick Cu film, such that Si was not detected by XPS after copper CVD, Si was still not detected after 35 s of sputtering, and Cu was the dominant element during the first 200 s of sputtering. Since the sputtering rate for Cu was estimated to be between 0.1 and 0.2 nm/s, the Cu film on sample 5.4 was approximately 25-50 nm thick.

Example 6

Selective copper CVD on functionalized diamond and Si substrates at 424 K

This example shows that the process of this invention can be successfully applied for selective Cu CVD at temperatures at least as low as 424 K and for times at least as long as 45 min.

A C(100) diamond substrate was cleaned and treated in a H₂-plasma as described in Example 1 for 60 min. A second C(100) sample was processed as described in Example 4 for sample 4.3. That is, a diamond sample was oxidized, coated with an EDA film, and treated with the Ac3 catalyst solution for 120 min. Two Si pieces with native oxide surfaces were cleaned as described in Example 5; one of these pieces was then processed using the same techniques as those described in Example 5 for sample 5.4.
This same Si piece was coated with the EDA film and treated with the Ac3 catalyst solution for 120 min. These four samples were then mounted in the CVD chamber and Cu CVD was performed as described in Example 4, except that the substrate temperature was maintained at 424 K and the deposition was performed for 45 min.

After copper CVD, the samples were removed from the chamber and analyzed with SEM and XPS. Copper-colored coatings were visible to the unassisted eye on the Si and diamond samples that were treated with EDA and Ac3, and SEM images showed uniform granular films on these surfaces. The Cu film thickness was measured to be approximately 60 nm thick by profilometry. XPS showed that the films on these surfaces were primarily composed of Cu. In contrast, copper films were not visible and only isolated particles were detected with SEM on the H2-plasma treated diamond and the clean Si native oxide surface.

Example 7

Selective copper CVD on functionalized diamond, Si, and SiO2 substrates at 463 K

This example shows that the process of this invention can be successfully applied in Cu CVD at temperatures at least as high as 463 K.

Two diamond and two Si pieces were prepared as described in Example 6, except that the diamond and Si samples that were treated with the Ac3 solution were immersed for 180 min. In addition, a SiO2 piece was also coated with EDA and treated with the Ac3 catalyst solution for 180 min. We expect there are no significant differences
between surfaces immersed in the Ac3 solution for 120 min and those immersed for 180 min. These five samples were mounted in the CVD chamber and Cu CVD was performed as described in Example 4 at a substrate temperature of 463 K for 12 min.

After copper CVD, the samples were removed from the chamber and analyzed with XPS and SEM. As in example 6, SEM showed distinct granular films on the C(100), Si and SiO₂ surfaces that were treated with EDA and Ac3 prior to Cu CVD. Composition depth profiles acquired using the method described in Example 5 showed that most of the Cu present on the hydrogenated C(100) and Si native oxide surfaces was sputtered from the surface in less than 30 s. In contrast, copper was the dominant component detected by XPS during the first 100 sec of sputtering on each of the three surface treated with EDA and Ac3. Thus, treatment of C(100), Si, and SiO₂ with EDA and the Ac3 catalyst promoted Cu deposition.

Example 8

Patterned CVD metallization of a UTF-PEDA functionalized diamond surface

This example demonstrates that lithographic techniques can be used to define areas of selectively-enhanced copper deposition during copper CVD and generate micron-sized copper features on an insulating substrate.

A diamond substrate was treated with UTF-PEDA as described in Example 3. The diamond substrate was placed in mechanical contact with a chrome-on-quartz lithographic mask that had arrays of line-and-space test structures with features to 1-μm linewidth.
The film was then exposed through the mask to 1.1 J/cm² of 193-nm radiation from a ArF (Cymer Model CX2) excimer laser. The exposed film was treated with Ac3 catalyst for 110 min, rinsed with DI water and dried in a stream of filtered nitrogen. The diamond substrate was then mounted in the copper CVD chamber and copper deposition was performed as described in Example 4. Optical micrographs and SEM images showed copper lines deposited with minimum feature sizes of 1 μm (the smallest features on the mask) in a positive-tone image.

Example 9

Selective copper CVD on functionalized diamond using alternate Pd-containing catalyst

This example shows that alternate Pd-containing catalyst formulations are active for enhancing copper CVD in the process of this invention.

Three C(100) diamond substrates were cleaned and treated in a H₂-plasma for 20 min as described in Example 1. One of these samples (sample 8.1) received no further treatment prior to Cu CVD. Two C(100) samples were oxidized and coated with an EDA film, as described in Example 2. One of these samples (sample 8.2) was treated with the Ac3 catalyst solution for 120 min as described in Example 4 for sample 4.3. One of these samples (sample 8.3) was treated with a catalyst solution designated AcJ2

43
for 4 min, after which the sample was rinsed two times with DI H₂O and dried in a
stream of filtered N₂. The AcJ2 catalyst solution was made in three stages. First a stock
solution was made by diluting 0.90 gm Na₂PdCl₄ with enough 0.03 wt% aqueous HCl
solution to generate 100 gm of solution. Then, a working solution was made by mixing
9.89 gm of the stock solution with 23.24 gm DI H₂O and 64.44 gm 0.005 wt% aqueous
NaOH. This working solution was allowed to ripen for 2 hours and then 2.43 gm 0.3
wt% aqueous HCl was added to stabilize the working solution. The final AcJ2 catalyst
solution was formed by mixing 3 parts of the working solution with 1 part 1.0 M aqueous
NaCl, and filtering this mixture through a 0.2 micron PTFE filter (Gelman acrodisc CR).
The three diamond substrates were then mounted in the copper CVD chamber
and copper deposition was performed for 24 min at 444 K as described in Example 4.
SEM images of samples 8.1, 8.2, and 8.3 revealed that continuous granular Cu films
deposited on both of the Pd catalyst treated samples (8.2 and 8.3), but that only isolated
Cu particles deposited on sample 8.1. The Cu films the formed on samples 8.2 and 8.3
appeared to be essentially identical in the SEM images.
Example 10

Selective W CVD on functionalized diamond using a Pd-containing catalyst

This prophetic example displays how a dielectric surface modified with a Pd-containing catalyst is used in the process of this invention to selectively promote W CVD.

Clean three C(100) diamond substrates and treat them in a H₂-plasma for 20 min as described in Example 1. Provide no additional treatment to one of these samples (sample 10.1) prior to W CVD. Oxidize one C(100) sample (sample 10.2) and coat it with an EDA film, as described in Example 2. Treat one sample (sample 10.3) with UTF-PEDA, as described in Example 3. Pattern the UTF-PEDA film on sample 10.3, as described in Example 8. Treat samples 10.2 and 10.3 with the Ac3 catalyst, as described in example 4, or with the AcJ2 catalyst, as described in example 9, and then rinse these samples with DI water and dry them in a stream of filtered nitrogen.

Mount the three diamond substrates in a CVD chamber as described in Example 4. If necessary, modify the pumping capabilities of the CVD chamber to allow gas flow rates on the order of 100 sccm and chamber pressures on the order of 100 mTorr prior to mounting the samples. Attach a bulb containing high-purity liquid WF₆ to the chamber to allow metering of the vapor above the WF₆ liquid into the chamber via gas introduction lines and a sample doser, as described in Example 4. If necessary, cool the WF₆ bulb to reduce the vapor pressure above the liquid to allow easier control of the WF₆ flowrate into the chamber. If necessary, attach mass-flow controllers to the H₂ and WF₆ gas supply lines, and/or a variable-position valve on the exit of the reactor to allow control of the gas inlet.
flowrates and the total pressure in the chamber.

Prior to heating the sample, flow high-purity H₂ at approximately 50 sccm throught the doser and into the chamber, as described in example 4. Stabilize the chamber pressure at approximately 10 mTorr. Heat the sample to approximately 600 K in flowing hydrogen in approximately 20 min. The Pd-containing catalysts described will become substantially reduced to Pd metal by after exposure to H₂ at 50 sccm, 10 mTorr, at 600 K, and the reduced Pd will act as a catalyst to effect facile reduction of WF₆ to W on the Pd-catalysed film-coated diamond surfaces of samples 10.2 and 10.3. To begin W deposition, meter WF₆ vapor into the H₂ stream at approximately 5 sccm. Maintain the sample temperature at about 600 K for about 10 minutes in the flowing H₂/WF₆ gas mixture. Then, stop the WF₆ flow. Cool the sample in flowing H₂ as described in Example 4, and when the sample is cool, remove it from the chamber.

It is expected that sample 10.1 is not active for W deposition from WF₆ under the conditions outlined above, and this surface is expected to have only isolated particles or islands of W on the surface. In contrast, sample 10.2 is expected to contain a significant amount of W. Sample 10.3 is expected to possess lines of W, similar to the lines of Cu described in example 8.

Example 11

Enhanced diamond CVD on a film-coated silicon substrate

This prophetic example describes how the process of this invention can be
used to effect enhanced CVD of diamond.

Clean two Si-native oxide wafer pieces with toluene, methanol, HCl/methanol, sulfuric acid, and DI water as described in example 5. Coat one of these Si pieces with UTF-adamantyl by immersing the Si piece in a 1% (v/v) solution of adamantylethyltrichlorosilane (Huls America) in toluene with 0.001 M acetic acid at room temperature under an inert He or Ar atmosphere for 20 min. The adamantyl functionality of the UTF-adamantyl provides a diamond CVD nucleation site with similar structure to the diamond lattice. Perform diamond CVD on both the UTF-adamantyl-coated and the uncoated Si pieces by placing each into a standard filament-assisted diamond CVD reactor. Perform diamond CVD using 1% CH₄ in H₂ at total pressure of approximately 10 Torr and substrate temperature of approximately 900 K for approximately 60 min. After diamond CVD, the sample treated with UTF-adamantylsilane is expected to display enhanced diamond nucleation relative to the uncoated Si piece.
The present invention is directed to the selective and non-selective vapor deposition of materials upon substrates. Vapor deposition is accomplished by providing a substrate having one or more chemical groups on its surface, the chemical groups being capable of bonding to a deposition catalyst, contacting a deposition catalyst to the chemical groups of the substrate and vapor depositing a material upon the catalyst via vapor deposition. The vapor deposition may also be selective vapor deposition.