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CONEHERTIAL

NOTATION

A An lnertia coefficient defined by Equation [52]

a Radlus of a circular plate

B An inertis coefficient defined by Equation [3&8]

¢ Speed of sound in a liquid

E Energy delivered to the plate

E, Total energy transmitted across unit area in a shock wave

e Napierian base, 2.718 .

F, Effective force on the plate, Equation [31a]

h Thickness of the plate

I f}dt cr impulse per unit area

M Effective mass of the plate, Equation [30]

M, Effective mass for action of a baffle, Equation [34b]

M, Effective mass of 1liguid following the plate in non-compressive motion,
Equation [3%6]

m Mass per unit area of the plate

N Dynamic response factor or load factor, Equation [89]

p Pressure; especially, pressure at the surface of the liquid

p, Pressure in an incident pressure wave, in open water

P, Maximum value of p,
P, Excess of pressure above p, in the 1iquid

p, Total hydrostatic pressure, including atmospheric pressure, on the face
of the plate

p, Total hydrostatic pressure, including atmospheric pressure, on the back
of the plate

p, Net force per unit area on the plate due to stresses

¢ Equals a/p or 27T,/nT,, Equation [91]

R Distance from center of s detonated charge

r Distance along a circular plate measured from its center

s Distance between two elements of area

T; Diffraction time or average time for a sound wave to travel from the edge
to the center

T« Compliance time or time for an element or a structure to acquire maximum
velocity

T, Damping time of a plane plate acted on by plane waves, equal to m/pc

T, Swing time or time for a plate or other structure to swing out to a
maximum deflection

t Time

U Velocity of propagation of a cavitation edge

v Velocity

v, Velocity of the center
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Vo

Note: =

v W—i

Maximum value of v,
Maximum value of v
Equal to pc/am

Deflection of the plate normal to its initial plane; z refers in
analytical work to an element, but in deflection formulas to the
center, where 1t replaces z,

Displacement of a plane baffle

Value of z at the center

Value of z due to static pressure

Central z at the elastic limit

Normal velocity of a 1liquid surface

Maximum of z at the center, before unloading

Value of z, calculated with disregard of the elastic range
Normal velocity of a point on the plate

A constant in the formula for an exponentlal pressur:z wave, p, = p_e
27 times frequency

Density of a liquid

Density of material composing the plate

Yield stress

Net force per unit area on the plate due to stresses in it and to
hydrostatic pressure on its two faces

Effective force due to ¢, Equation [31b]

In all cases, the word “"diaphragm" may be substituted for the word
plate.




DIGEST#*

The aim of the underwater explosion research program, at least as
far as the David Taylor Model Basin is concerned, is to provide the ship de-
signer with a means of preditting the effects of underwater explosions on
given structures, and with a basis for designing new structures to better
resist given explosions.

The problem thus presented 1s one of considerable difficulty, es-
peclally for contact explosions. Even in the case of a shock wave from a
distant explosion, and when the ship structure is-idealized in simple form,
complications arise because the motion of the structure reacts back upon the
water and thereby modifies the pressure field., The treatment of this effect
involves the solution of problems in the diffraction of waves. Further com-
plications may arise from the occurrence of cavitation. Only one case is
easily treated analytically; this is the case of a plane plate or diaphragm
of Infinite lateral extent.

This report makes use of some of the methods .hitherto developed by
S. Butterworth, G.I. Taylor, and H.W. Hilliar in England, and by J.G. Kirk-
wood, R.W. Goranson, A.N. Gleyzal, W.P. Roop, and others in this country,
including the author. It adds to them further analytical results and concep-
tions which are useful in considering t:g/éation of shock waves. The formu-
las are used to discuss some of the expérimental data now available on plate
dlaphragms.

To put the matter somewhat differently, it 1s believed that enough
i3 now known of the fundamental phenomena accompanying an underwater exploe-
sion to warrant a more accurate analytical treatment than has been possible
in the past, taking into account details of the various processes involved.

In this treatment the target 1s idealized, as has been done for
much of the recent experimental work conducted under the general supervision
of the Bureau of Ships, in the form of a plate or diaphragm initially plane,
backed by air and subjected to a non-contact explosion., However, the resem-
blance of this idealized target to a panel of plating in the side of a ship
has been kept in mind throughout, to render the results as useful as possible
in ship design procedure,.

In the consideration of the effect of an explosion shock wave im-
pinging on a plate, involving 1. characteristics of the wave and relief of

* This digest is a condensaticn of the text of the report, containing a description of all essential
features and giving the principal results. It is prepared and included for the benefit of those who
cannot spare the time to read the whole report.
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Figure 11 - Illustration of the Significance
of Time Pactors for a Diaphragm

Ty is the time constant of a shock wave,
Ty 18 the diffraction time,

Ty 13 the compliance time,

T, is the swing time, and

¢ is the speed of sound in water.

the pressure due to motion of the plate away from the explosion, 2. diffrac-
tion of the wave from beyond the edges of the plate, and 3. cavitation ef-
fects in the water, at or near the surface of the plate, 1t is found that the
relative magnitudes of four characteristic times play a determining role.
These times are:

1. The time comstant or approximate time of duration of the shock wave
T,; this is equal to 1/a for an exponential wave characterized by the expres-

sion p = pae =

2. The compliance time T, of the structure, defined as the time re- '
quired for the shock wave to set the structure in motion at maximum velocity;

3. The diffraction time T,, or the time required for a shock wave to
travel from the center of the structure to the edge, moving at the speed of
sound in water;

4. The swing time T, of the structure, or the time required for it to
undergo maximum deflection and come to rest.

The significance of these four times in a typical case 1s shown in

igure 11,
When the diffraction time and the swing time are both great com-

pared with the duration of the pressure load, the conception of conveyance by

waves 18 valid for both energy and momentum. This occurs in thin diaphragms

mounted in a larger and heavier plate and attacked by charges of small size. "
When the time constant of the shock wave is much greater than the

diffraction time, the pressures become readjusted with such relative rapidity

over the face of the target that local effects due to the compressibility of
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the water are largely ironed out and the sction on the target becomes essen-
tially the same as it would be if the water were incompressitle. In fact,
there 18 a continual tendency for the effects of a pressure wave to undergo
changes in the direction of non-compressive action.

Cavitation due to inertia, as on the back of the propeller blade
of a ship, is a familiar phenomenon in the non-compressive motion of water.
Similarly, a target plate, together with the water in contact with it, may
be accelerated so rapidly that the water farther away is unable to share
fully in the motion. The water becomes expanded, the process of expansion
progresses to the point where tension develops in the water, and cavitation -
results. The water and plate behave much like a spring loaded with a mass.
If the spring is compressed and
then released, the mass over-
shoots 1ts position of equilib-
rium. A picture of what appears
to be cavitation due to elastic
overshoot is shown in Figure 13,

A necessary condition
for the occurrence of cavitation
appears to be that the compliance
time of the structure, T,, shall
be less than its diffraction time,
T,. If this is not the case, wa-
ter flows in from the outlying

Figure 13 - Photograph Showing Cavitation

regions and equalizes the pres- Bubbles Produced by & Shock Wave
sures. in Water near a Lucite Window
Although analytical ' The gas globe produced by the explosion

1s 7isible st the left.
results for the general conditions 8T * ¢

discussed in Parts 1 and 2 of the

" report are found difficult to obtain, it i1s possible to develop exact analyt-

ical formulas for one three-dimensional case in which waves fall upon the
initially-plane face of a target of effectively infinite lateral extent.

The expression for the pressure is obtained by superposing upon the
doubled pressure caused by reflection from a rigid target a correction to al-
low for motion of the surface. This operation 1s carried through for a plate
or diaphragm, either mounted in a support that approximates a rigid baffle or
without a baffle. From the latter it is found that the release of pressure
arourd the edge of the plate has the effect of diminishing or even eliminat-
ing the doubling of the incident pressure due to reflection.

Por mathematical convenience it 1s assumed that the motion of every
point on a diaphragm stays in a ratio fixed for that point to the motion of
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20 the center. This excludes the
LJf e — sort of propagation effect that
6 0 B causes progressive plastic ac-
gf'“‘@'h) tion, moving from the rim toward
14 ‘l; the center, for which good evi-
12 - _— dence exists, but it does not,
% 0 Piston as most simpler treatments do,
a - ] . /( assume rotational symmetry of
osf Pommed;:7&~\\\ 4 deflection.
06 %f"'ﬁi IS, The advantage og this
04 Lt N assumption lies in the fact that
it leads to the inference that
02 vwhen acceleration does not vary
too rapidly the pressure load on

0~ Of 0Z 03 04 05 06 07 08 03 10
() the diaphragm may be calculated

Figure 19 - Distribution of Velcclties in by flow theory alone. Even if
Three Types of Proportional Motion, the rather artificial condition

for a Circular Diaphragm
ds/dt is the velocity perpendicular to the initial plane 1s not satisfied, 1t may be sup-

st a distance r from the center of the diaphragm whose posed that the calculation based.

radius is a. The velocity is shown in each case on an

arbitrary scale. upon 1t provides an approxima-
tion to the truth.

In Figure 19 are shown the radlal distributions of velocity for
three simple types of such motion. One of them could occur initially on the
surface of the water exposed in a hole.

The principle of reduction of the effects to those which would be
caused by flow pressures alone, without reference to the shock-wave action,
finds another application in the case of a suddenly applied steady pressure.
This last assumption permits calculation of the acceleration and the velocity
of the center point of a proportionally-constrained diaphragm as a function
of time. The results are exhibited in Figure 20 and are compared with the
approximation furnished by considering flow action alone., The case of im-
pulsive loading is also treated with similar results.

On pages 38 to 43 inclusive, consideration is’ given to cavitation
at a plate or diaphragm and its effects upon the target. 1In particular,
there appears to be a relation between the formation and the closing of a
cavity, such as shown in Figure 22, and the characteristic deflection of a
thin diaphragm. This is more or less spherical for a static or a slowly ap-
plied load, with cavitation absent, and conical for a suddenly applied load,
when cavitation 1s probably present.

In Part 4, beginning on page 43, the swing time T, is calculated
for a few typical diaphragms met with in tests or in service. Pollowing
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Figure 20 - Curves for a Disphragm under Uniform Pressure Suddenly Applied

The diaphragm is constrained to move paraboloidally; s, is the defleetion of its center, ¢ is the
time, and T; is the diffraction time, equal to the radius of the diaphragm divided by the speed
of sound. The curves represent actual values of acceleration and velocity; the lines represent
the non-compressive values. The plot is drawmn for a particular case, as explained in the text,
and is only approximate.

Figure 22 - Illustration of the J/ a
Edge of a Cavitated Area /
In the left-hend figure the edge is advancing at vt

speed U over the face of the diaphrags. In the

;’ right-band figure it is receding; at the edge, /
the tangent to the liquid mufsce makes an angle /
¢ with the tangent to the diaphragm, snd, as the v

edge passes, each point of the liquid surface
changes its normal velocity from #; to the
norsal velocity &, ol the plate.

NN\

this, on pages 44 to 54, deflection formulas are developed for a number of
cases in which one type of exponential wave 1is assumed.

Pinally, a summary 1s made of the results of the dynamical enalysis
in their application to the estimation of damage, and particularly to the
solution of the problem as to the particular feature of the shock wave upon

o
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which damage to a diaphragm depends. 1Is it the maximum pressure, the impulse,
or the energy? A related problem is the law according to which the damage
varies with size of charge and with distance.

The results of this and other analyses indicate clearly that no
simple and general solutions to these problems are to be expected, but that
a few simple rules can be given for certain special cases,

1. For relatively small} structures, such as Modugno gages, and for
relatively large charges in excess of 50 a® pounds,* say 10 pounds or more
for gages of this size, the mazimum pressure should be the chief factor in
determining damage. In these cases the time of action of the preasure, T,
greatly exceeds both the swing time T, and the diffraction time T,.

2. The impulse should determine damage when (a) cavitation does not
occur, and (b) the time of action of the pressure T, is much less than the
swing time of the structure T,. For a diaphragm of radius @ inches, this
should hold for a charge of a®/100 pounds* or less.

3. The energy carried by the wave does not appear in any simple dam-
age formula obtained from the present dynamical analysis.

The ratlo of energy absorbed by the diaphragm to that cortained in
the incident wave is not fixed and may exceed unity. Nevertheless it is con-
cluded that the observed rough proportionality of the deflections of many
diap.ragms or similar structures to W¥R, or at least to the square root of
the energy in the incident wave, and the approximate equality of the plastic
work to the incident energy, stand in fair harmony with analytical expecta-
tions.

Part 5 gives a numerical comparison of the theory with results of
observation in Reference {20) for Modugno gages and in Reference (22) for
21-inch steel diaphragms. It is found that to account for observed data
taken with the Modugno.gage 1t 1s necessary to suppose the plastic stress in
the diaphragm to be about 55 per cent higher than in static tests. On the
21-inch diaphragms the results depend on the assumptions about cavitation.
It 1s concluded that éavitation must occur and that a large part of the en-
ergy of plastic deformation of the diaphragm must reach it after closure of
the cavitation, though it cannot be determined whether the cavities form
first in the water or at the surface of the diaphragnm.

* o 15 the radiug of the oiroulsr diapiraga in inches.
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THE EFFECT OF A PRESSURE WAVE ON A PLATE OR DIAPHRAGM

ABSTRACT

A systematic study of the phenomena attending the impact of a pres-
sure wave upon a plate, usually a shock wave, 1sintroduced by a discussion
of the commonest case, followed by the treatment of a number of special top-
lcs: the various characteristic times that are involved; cavitation at the
interface; the transition to non-compressive action; the effect of a baffle;
formulas for the swing time and the deflection of a diaphragm; the factors
determining damage; and the departure from Hooke's law in water.

The formulas are applied with fair success to some test data from
experiments conducted by the Bureau of Ships end the David Taylor Model Basin.

Most of the mathematical treatment i1s set down in an appendix to
the report.

INTRODUCTION

In ship design it would be a great advantage 1f effects of under-
water explosions on the structure could be calculated analytically. However,
the problem thus presented is one of considerable difficulty, especlally for
contact explosions. Even in the case of the shock wave from a distant explo-
sion, and when the structure is i1dealized in simple form, complications arise
because the motion of the structure reacts back upon the water and thereby
modifies the pressure field. The treatment of this effect involves the solu-
tion of problems in the diffraction of waves. PFurther complications may
arise from the occurrence of cavitation. Only one case 1s easily treated
analytically; this 1s the case of a plane plate or diaphragm of infinite lat-
eral extent.

The problem of a diaphragm loaded by a shock wave has been treated
several times by more or less approximate methods (1) (2) (3) (4).* 1In his
second report on the subject, Kirkwood gave a general treatment in which ade-
quate allowance was made for diffraction (5) (6) (7) (8), and in a later re-
port the effect of cavitation was discussed (9).

It 1s the purpose of this report to collect the material that has
been assembled at the David Taylor Model Basin for attacking problems of this
kind and to consider its application to a few of the avallable data. The
material to be presented consists in part of analytical formulas and in part
of conceptions which are useful in thinking about the action of shock waves.

* Numbers in parentheses indicate references on page 62 of this report.
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The target will usually be idealized in the form of a plate or diaphragm,
initially plane, backed by air at a pressure equal to the hydrostatic pres-
sure. Only non-coniact explosions are considered in this report.

In view of the complexity of the phenomena, the analytical results
will first be described in general terms for the case that is most common in
practice. Some of the ideas developed in this discussion will be made the
basis for the classification of other cases that may arise. After a few re-
marks on the role of the Bernoulli effect, the analytical methods will then
be described. This will be followed by the discussion of other cases and a
more detalled treatment of certain phases of the damaging process. The clos-
ing sections of the report will give some formulas for the deflection of a
dlaphragm, a discussion of the features of the pressure wave that determine
damage, and an application of the formulas to some of the available data.

Many of the appropriate analytical methods for dealing with these
problems have already been published in other reports, a number of which are
1isted in pages 62 to 6U4, but for convenlence a rather complete and syste-
matic mathematical treatment is included as an éppendix to this report.

PART 1. DESCRIPTION OF A COMMON CASE PRESENTED FOR ORIENTATION
THE WAVES OF PRESSURE PRODUCED BY A NON-CONTACT UNDERWATEk EXPLOSION

when a charge is detonated under water, it produces effects upon
structures submerged in the water only by producing pressures in the water.
The distribution of this pressure will be influenced by the associated motion
of the water - indeed, it is transmitted by such motion - and motion of the
structure itself will in turn modify the pressure in the water. A complete
description of the action by the water on the structure can be given, how-
ever, in terms of the pressures acting upon the surfaces of that structure.

In the primary pulse of pressure produced by the detonation, the
pressure rises almost instantly to a high value and then decreases. The rate
of decrease diminishes, however, so that the time graph of the pressure pulse
has a iong "tail." This 1s 1llustrated in Pigure 1, which has reference to a
300-pound charge of TNT 50 feet away, and in Figure 2, which 18 reproduced
from an oscillogram given by a pressure gage at a distance of 17 inches from
a charge of 1 ounce of tetryl.

‘The high-pressure part, sometimes called the A-phase or the shock
wave, is of such short duration that it takes the form of a distinet wave of
pressure traveling through the water at finite speed. In the tail or B-phase,
on the other hand, the relative rate of change of pressure is much siower,
and the pressure in the water soon comes to stand in a definite relation to
the simultaneous motion of the expanding gas globe. The appearance of wave
propagation thus disappears in this phase, and the pressure and the motion
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Figure 1 - Approximate Shock-Wave Figure 2 - 0Oscillogram Showing the
Pressure in the Water at 50 Feet Pressure in the Water at 17 Inches
from 300 Pounds of TNT from a Charge of 1 Ounce of Tetryl

The ordinate represents the pressure in open water The pressure rises almost instantaneously to
as 1t would be recorded by a gage so small as to cause a peak value of 3400 pounds per square inch.
no appreciable modification of the pressure field.

come to be related almost in the way in which they would be related if the
water were incompressible. Any effects that may be produced by the tail of
the pressure wave constitute those effects which are sometimes ascribed, not
to the pressure wave, but to the expansion of the gas globe.

During subsequent recompressions of the gas globe, secondery pulses
of pressure are emitted. The character of these is not yet certain. The
theory of an oscillating spherical gas globe indicates that the time graph of
the pressure in the secondary pulses should be roughly symmetrical about the
point of peak pressure, without any shock front, and should be weaker and
much broader than the initial shock wave. See Reference (10).

PRIMARY SHOCK WAVE AND AN AIR-BACKED PLATE:
A TYPICAL SEQUENCE OF EVENTS

The analytical results will now be described for the case of a
shock wave falling upon one of the plates of a ship's shell, or for a corre-
sponding test on model scale. The wave will be assumed to fall normally upon
the plate, and both wave and plate will be assumed to be sensibly plane. The
action can be divided into two distinct phases, which will be discussed in

order.

Primary Shock Phase

In the cases considered here, the time required for an elastic wave
to traverse the thickness of the plate 1s 80 short that it may be neglected;
the plate can be treated, therefore, as a two-dimensional structure with a
certain mass m per unit area.

Before the beginning of the explosive action, the elastic stresses
in the plate will be in equilibrium with the difference between the hydro-
static pressure in front of the plate and the pressure on the back face.
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When the shock wave arrives, there-
fore, each element of the plate will
start moving as if 1t were part of
— an infinite plate acted upon by a
plane wave of infinite lateral ex-
tent, as is suggested by Figure 3,
and for a short time the simple the-

Figure 3 - Illustration of a Plane Wave ory of the one-dimensional case will
Incident Normally upon a Plane Plate b 1icabl
of Infinite Lateral Extent e applicable.

», 18 the incident wave pressure, m is the mass per : At first the increment of

unit area of the plate, and s is the displacement of pressure p, due to the incident wave
the plate. The pressure p on the plate is the dif-

ference batween the incident pressure, doubled by 18 doubled by reflection; then, as
reflection, and a relief term proportional to the the plate accelerates, a relief ef-

velocity s of the plate.
fect occurs and the pressure rapidly
fells,

Let it be assumed that hydrostatic pressure on the face of the
plate is balanced by an equal pressure on its back surface. Then the approx-
imate equation of motion for each element of the plate during the initial
phase is

p = 2p; -pct

/
A
’/
/
’
/
/
/
’
/
’
/
7
7
4

d’

mm—Zp..—pc-d— [1]

4
dt
where z 18 the displacement of the element in a direction perpendicular to
the face of the plate, p 18 the density of water in dynamical units, ¢ the
speed of sound in it, and their product 1s the specific impedance of the wa-
ter. The incident pressure p; 1s a function of the time t. See Equation
[107]) in the Appendix, in which ¢ 18 here equal to 0. The right-hand member
of Equation [1] represents the load pressure on the plate; the term in dz/dt
represents the relief effect due to the motlion of the plate.

The A-phase of the primary pulse can be represented approximately
by

P" - p-‘-.‘

(2}

where p_, and a are constants and the time t is measured from the instant of
onset of the wave. If p;, varies in this manner and the plate starts with z
0, dz/dt = 0 at time ¢t = 0, it 1s found from Equation [1] that

fr= 52 - o)

(3]

8o that the load pressure on the plate is
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Pigure 4 - Parsmeters Relating to the Incidence
of an Exponential Wave on & Plate

d?s 2mp, —at _ pc -2t
"‘W pc—am( as +m‘ .) . (4]
where ¢ 18 the Napierian base; see TMB Report 480 (10), page 25.

From this equation it is found that the load pressure vanishes at
the time

-7 =l Iz opc
t=Tu= 21 ™ um (5a, b]
where 1ln denotes the natural logarithm. At this time the incident pressure
as given by Equation [2], which would be the actual pressure in the water if
the plate were not present, has decreased to

=
P = paz'" [6)

and the velocity of the plate has attained its maximum value of magnitude

- T
v',‘-Zf:zl_' (7

See TMB Report 489 (11), page 7.

In Figure Y there are shown plots of aT,or Inz/(z - 1), and of
the factor zT-¢ or pev,/2p,, as functions of z.

The parameter z defined by Equation [Sb] can be interpreted as the
ratio of two time constants, as follows:
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z-%. T,,--:—, T,-ﬁ- [8a, b, ¢])
Here T, 18 the time constant of the incident wave. T, 18 called by Kirkwood
the damping time of the plate; if the plate, in contact with the water, 1s
given an impulsive velocity and then left to itself, its velocity decreases
in the ratio 1/¢ = 1/2.718 in the time T,, provided no forces act other than
those called into existence by the motion of the plate against the weter. T,
may be visualized as the time required for a sound wave to traverse a thick-
ness of water having the same mass as the plate.

The time T, might be defined more generally, for any type of pres-
sure wave, as the time required for the plate to attain its maximum forward
velocity. It may be called the compliance time for the plate under the ac-
tion of the wave.

In the case of the exponential wave, if T, =T,, z =1 and T,=T, =
T,. Thus the compliance time is the same as the damping time for a wave of
equal time constant. If T,* T,, the compliance time T, lies between the
damping time T, and the time constant of the wave T,. Thus for a very light
plate, T, < T, < T,; in this case the positive action of the wave on the
plate ceases while the wave is still strong. If T, 1s much smaller than T,
so that ¢« 18 much larger than unity, the maximum velocity v, approaches 2p_/pc
or twice the particle velocity in the incident wave. For a relatively heavy
plate, on the other hand, T, > T, > T,. As the plate is made stil) heavier,
both T, and T, increase without 1limit.

As an example, for the shock wave at 50 feet from 300 pounds of TNT
exploded in sea water, p_ and a are of the order of 2100 pounds per square
inch and 1300 second™', respectively. Thus T, = 1/1300 second. The values
of the compliance time T, for such a wave falling on steel plates of several
thicknesses are shown in Table 1, together with the values of z and of the
damping time T, of the plates agalnst sea water.

TABLE 1
Thickness T, T. —al 1
of plate z ¢ T g TS
inches milliseconds | milliseconds
10 0.6 1.29 0.96 0.28
3 2.0 0.39 0.53 0.50
1 6.0 0.129 0.28 0.70
0.3 20 0.039 0.121 0.85
0.1 60 0.0129 0.052 0.93
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Figure 5 - Curves Illustrating the Incidence of a Shock Wave
on a Plate when Cavitation Does Not Occur
The curves are drawn for the wave from 300 pounds of TNT falling upon sn air-backed 1-inch steel
plate 50 feet away., T, is the compliance time, at which the plate has acquired maximm
velocity; T, is the time constant of the wave or 1/a in the formula, p; = g ¢ %%

In the last column of Table 1 is shown the value of ¢ “Tm, or the
ratio of the incident pressure at the time ¢t = T, to the maximum incident
pressure.

In many model tests conditions occur that are comparable in terms
of similitude to the wave from 300 pounds falling on a 1-inch plate. Curves
for this case, with the plate at 50 feet from the charge, as calculated from
the one-dimensional theory, are shown in Figure 5.

The use of the one-dimensional formulas implies the tacit assump-
tion that during the time 7', diffraction effects may be neglected. This is
Justified provided the plate is sufficlently large in lateral dimensions.
Consideration of this condition leads to the introduction of a third charac-
teristic time, which may be called the diffraction time, T,. This can be de-
fined with sufficient precision for practicel purposes as the time required
for a sound wave in the water to travel from the center of the plate to the
edge. Thus for a circular plate of radius ¢, T, = a/c, where ¢ is the speed
of sound in water.

Diffraction can be regarded as a process acting to equalize the
pressure laterslly, or in directions perpendicular to the direction of prop-
agation of a wave. Because of this process, a wave that has passed through
an opening in a screen spreads laterally, contrary to the laws of the recti-
linear propagation of waves. Similarly, when a wave of pressure falls on a



CONFIDENTIAL 8

diaphragm mounted in a heavy ring, be-
cause the forward motion of the dia-

P'“.i."":m phragm relieves the pressure over the
diaphragm, a process of equalization of
| _—I pressure in the water sets in and acts
_Direction of | Low _|T} to lower the pressure in front of the
Incident Pressure | __
Pressure Wove ring and to raise it in front of the
L diaphragm, as illustrated in Figure 6.
High Since, however, effects of
Pressure

moderate magnitude are propagated
through water only at the speed of
sound, the equalization requires time

Figure 6 - Diagram to Illustrate for its completion. Thus, during an

Diffraction of a Pressure Wave

By moving forward, the diaphragm relisves the interval much shorter than the diffrac-
sressure, and equalisation of the pressurs by tion time, after a shock wave has
diffraction then occurs in the direction of

the arrows E. struck a plate, lateral equalization

of pressure between the water in front
of the plate and that beyond its edge, or even between different parts of the
plate, will not have had time to progress very far. During this short time
each part of the plate will respond to the incident wave more or less inde-
peiidently, according to the laws that hold for the one-dimensional action of
shock waves on plates.

In the example just described, if the plate 1s 10 feet across, the
diffraction time T, is one millisecond. This exceeds.the compliance time T,
by a good margin for plates up to a thickness of 1 or 2 inches, as is evident
from Table 1, so that the one-dimensional formulas should give good results.
On a plate 10 inches thick, however, diffraction from the edge would produce
a large effect.

It has been assumed in the foregoing discussion that appreciable
stress forces are not called into play by the small displacement of the plate
that occurs during the time T,. This is usually true in practical cases. In
the example Just described, for instance, the maximum velocity acquired by a
1-inch plate is, from Equation [7],

V=2 %l%g 5.5-7!7- 510 in/sec

Even in a millisecond, therefore.'the plate will have become displaced by
less than half of its thickness. Stress forces, if appreciable, would have
the effect of reducing the maximum velocity.

: Phenomena in the second phase of the action, now to be discussed,
w1ll depend upon whether cavitation does or does not occur.
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No Cavitation: The Tension Phase //,

If the water remains in contact 7
with the plate, as in Pigure 7, tension ////
develops in it, and this tension tends to /;///
arrest the motion of the plate. /

In the one-dimensional case, Choroe water”| air
the plate is thus brought to rest in the ;j:
end, and its total displacement i1s Just ///
twice the displacement produced in free /// /
water by the passage of the incident wave; ’C/;
see TMB Report U8B0 (10), page 25. This féf;

case 1s 1llustrated in Figure 5. If the
plate 1s limited in extent, however, Figure 1 - Schematic Tllustration

forming part of a larger structure of without Cavitation

some sort, the influence of diffraction

will usually be such that the plate retains part of the velocity that it asc-
quired during the primary shock phase. If the shock wave is of very brief
duration, the plate may come almost to rest and then be accelerated again as
the diffracted pressure is propagated in from the edge.

The analysis indicates that the residual velocity left in the plate
should be of the order of the velocity that would be calculated by non-
compressive theory with allowance for loading of the Qlate by the water; this
18 verified in a special case in the Appendix. If there is open water beyond
the edge of the plate, the calculation should be made for a pressure equal to
the incident pressure; in this case, although the pressure is doubled at
first by reflection, the doubling quickly fades away as diffracted waves ar-
rive from beyond the edge of the plate. If the plate is mounted in a large
rigid baffle, however, the doubling persists and the non-compressive calcula-
tion should be made with twice the incident pressure.

The plate will then continue moving until it 1is arrested by forces
due to other parts of the structure. During the process of arrest, the ki-
netic energy in the plate and in the adjacent water becomes converted into
other forms, perhaps partly or wholly into plastic work. The time required
for the final arrest of the plate constitutes a fourth characteristic time,
which may be called the swimg time of the plate, denoted by T,. Here the
swing time under water-loading is involved. In the case of ships or compara-
ble models the swing time is usually many times longer than the duration of
the A-phase of the pressure wave. '

_ Some formulas that may be used in making rough estimates of swing
times will be found as Formulas [65] to [68] on pages 43 and U4,
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Cavitation at the Plate:
The Free-Flight Phase

It has repeatediy been ob-
served that cavitation occurs near the
interface between water and a solid,
when tension develops in the water be-
hind a reflected shock wave. See, for
example, Figure 13. If cavitation
were to occur at the interface and
there only, as in Figure 8, Jjust as
the increment of pressure due to the
wave sank to zero, the plate would

Figure § - Schematic Illustration of leave the water at the time T, with
Deflection of a Plate with Cavitation

.2
3

Water

——— oy o

-
—

Only at the Plate the velocity v, given by Equation [7];
The broken curve represents the front of the see Figure 5. In reality, cavitation
reflected shock wave. cannot occur until the pressure sinks

at least to the vapor pressure of the
liquid, and it may not begin until a lower pressure 18 reached. Hence in
practice a short phase of negative acceleratioh would intervene and the plate
would leave the water, with a velocity somewhat less than v,; for example, at
the time 7' in Figure 5. Many initial velocities agreeing with this deduc-
tion from theory have been observed at the Taylor Model Basin. A streak pho-
tograph 1llustrating the sudden acquisition of velocity by a plate is repro-
duced in Figure 9.

Diophragm

1 1 i J

0 0.5 |
Time in milliseconds

Spots

Pigure 9 - A Streak Photograph Showing Impulsive Acceleration
of a Diaphragm by a Shock Wave

The streaks were mede by light from 5 spots, one on the center of the diaphragm, two others half way
to the sdge, and two on the supporting rim. The line of view was at 30 degrees to the plane of the
diaplraga. The streaks were made from left to right. The sudden beud terminating the strajight portion
of each streak indicates am impulsive aoquisition of velocity by the diaphragm.
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The plate will then swing away from the water; see Figure 8. It
may swing freely until it i1s arrested by the combined action of the elastic
or plastic stresses in the plate and of any difference in pressure that may
exist between its two sides. The kinetic energy to be absorbed in this pro-
cess will be only that of the plate itself; and the swing time will be that
of the plate without water-loading.

The motion of the water surface during this time must also be con-
sldered. According to the results of analysis, the velocity of the surface
should decrease, but it should not entirely disappear, because of diffraction
ef'fects; see the discussion in the Appendix. Furthermore, if a considerable
part of the shock wave arrives after the departure of the plate, this will
cause further acceleration of the water. It 1s possible, therefore, that the
plate may be overtaken by spray projected from the water surface, and it will
certainly be overtaken eventually by the water surface itself; the motion of
the plate may thus be prolonged, with a corresponding increase in the plastic
work (3).

If the plate is held at its edges, the outer parts of the plate
must be Jerked to rest by the support almost immediately, while the central
part continues moving. Such motion has been observed in 10-inch diaphragms
at the Taylor Model Basin. Cavitation occurring over the outer parts of the
diaphragm must, therefore, be short-lived; here the water must overtake the
plate almost immediately.

As an alternative to tha ,/ 7/\
simple process just described, the / /
cavitation might begin in the wa- / /

ter itself, in the form of bubbles,
80 that for a time there would con-
tinue to be a layer of unbroken wa-
ter next to the plate, as in Figure
10a. Or, as a special caase, it
might begin at the plate and pro-
ceed at once to spread out into the \
water, as in Figure 10b. This pos- \ \\
8ibility has been explored in gen-

Figure 10a - With Bulk Cav- Figwe 10b - With Bulk

eral terms (12), and 1ts practical itation st Some Distance in  Cavitation Extending
application has been discussed in Front of the Flate Outward from the Flate
T™B Report 511 (13) and independ-

Figure 10 - Illustration of Deflection
ently by Kirkwood (9). of a Plate

If the cavitation process The broken curve represents the front of the
18 of this character, the motion of reflected shock wave. :
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the diaphragm will be influenced continually by the presence of water in con-

tact with it. Analytical treatment is easy 1n the one-dimensional case, pro-

vided the artificial assumption i1s made that cavitation occars at a fixed and

known breaking-pressure; but the three-dimensional case presents considerable (t)
difficulty. For this reason, only cavitation at the face of the plate will

be dealt with in the present report. The final deflection of the plate may

not be greatly influenced by the exact mode in which cavitation occurs.

PART 2. THE VARIOUS TYPES OF ACTION BY A SHOCK WAVE
THE FOUR CHARACTERISTIC TIMES
In the foregoing discussion of a typical sequence of events, the
relative magnitudes of four characteristic times have played a determining
role. These times may be listed together as follows:

1. The time constant or approximate time of duration of the shock wave,
T,; this 1s equal to 1/a for an exponential wave characterized by the expres-

sion p = pmc-aﬂ

2. The compliance time T, of the structure, or the time required for
the shock wave to set the structure in motion at maximum velocity;

3. The diffraction time T,, or the time required for a wave to travel
from the center of the structure to its edge;

4. The swing time T, of the structure, or the time required for it to
undergo maximum deflection and come to rest.

An attempt to picture the significance of these four times in a typical case
is made in Figure 11.

. cT\l d
a dt
:
a Diophrogm
| |
Tw Tm Ts
Time Time
Pigure 11 - Illustration of the Signiflcance (;
of Time Factors for a Diaphragm

Ty 18 the time constant of a shock wave,
T4 1s the diffraction time,

T 18 the compliance time,

T, is the swing time, and

¢ 1s the speed of sound in water.

B 3 A28
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In the case of a complicated structure such as the side of 2 ship,
several different diffraction times and swing times may be distinguished, ac-
cording to the dinmensions of the part of the structure that is under consid-
eration. Thus there will be a diffraction time and a swing time for the
motion of the segment of a plate betweeﬁ two adjacent stiffeners, and longer
times for the motion of thé stiffaned plate as restrained by bulkheads or
belt frames.

The characteristic times are useful in classifying the various
cases that may arise, There are two simple cases which are particularly use-
ful to bear in mind as a background in considering more complicated situa-
tions. These two cases will be discussed in some detail.

THE CASE OF LOCAL ACTION
The typical situation contemplated in the preceding discussion was
distinguished by the condition that

T, «T, T,<«T, [9a, b]

where tne symbol « means "is much less than." 1In other words, the compliance
time 1s several times shorter than either the diffraction time or the swing
time. The dilaphragm acquires maximum velocity and cavitation sets in before
diffraction from the edge has had time to influence the motion appreciably,
and also before the stresses in the diaphi'agm have produced appreciable ef-
fects. The action in such cases is essentially a local one, since, in large
measure, each element of the target 1s set in motion by the wave independient-
ly of other elements.

This case can occur only provided the time constant of the wave,
T,, 18 not too long. It is sufficient, for example, if T, « T, and T« T,,
that 1s, i1f the action of the wave 18 completed in a time much shorter than
either the diffraction time or the swing time.

An especlally important feature of the case of local action is that
in this case the conception of conveyance by waves 1s valid for both energy
ané momentum. Any part of the target can receive at mos. -1y so much energy
as is brought up to that part by the incident wave; and part ¢. this incident
energy will usually be reflected back into the water. The momentum brougzht
up to each part of the target, also, must be either taken up by the target or
reflected. Since momentum 1s a vector quantity, however, the laws of its re-
flection are more complicated than are those for the reflection of energy;
the momentum delivered to the target may be greater than that brought up by
the incident wave, up to a maximum of twice as much if the target 1s rigid.
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NON-COMPRESSIVE ACTION ON A TARGET
At the opposite extreme from local action lies the case of approxi-
mately non-ccmpressive action.* The condition for this is that no great
change shall ~~cur in the incident pressure during an interval comparable
with the diffraction time, that is, that '

T, >» T,

where the symbol > means "is much greater than." When this condition holds,
the pressures become readjusted by diffraction with such relative rapidity
over the face of the target that local effects due to compressibility of the
water are largely ironed out and the action on the target becomes essentially
the same as it would be if the water were incompressible. Viewed in the
large, the pressure field results from a compressional wave propagated up to
the target, but its local effects are about the same as those due to an equal
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Figure 12 « Illustration of
a Hilllar Pressure Gage

The steel piston A is projected up-
wards by the proessure due to the
shock wave, thereby hammering the
copper cylinder C against the top
ol the gage. This dlagram is copied
from Figure 34 in Reference’ (14).

pressure field at the target resulting from or-
dinary hydraulic action,

An important feature of non-compressive
action, and one that distinguishes it sharply
from the typicdal local action of waves, 1s that
the energy given to the target may greatly ex-
ceed the energy that wouid fall upon it accord-
ing to the laws of wave propagation. In non-
compressive action energy is propagated through
moving water by the pressure just as it is in a
hydraulic press.

An excellent example 1s presented by a
Hilliar pressure gage (14) subjected to the
shock wave from a charge of several hundred
pounds. The face of the gage, H-H in Figure
12, 1s perhaps U inches across, so that the
diffraction timec T, may be 1/30 millisecond,
whereas the time constant of the wave is of the
order of a millisecond. Thus non-compressive
theory should give a good account of the effect
of a shock wave on a Hillliar gage. The energy
acquired by the piston of the gage may greatly
exceed that which 1s propagated in the shock
wave across an area equal to that of the face
of the piston. The motion of the piston sets

] * this is action conditioned by flow, as of an incompressible fluid.

s . am
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up a local flow in the adjacent water which, in combination with the pressure,
acts like a funnel to collect energy from a broad area of the incident wave.
The non-compressive case also possesses a still wider significance.
There exists a continual tendency for the effects of any pressure wave to
undergo changes in the direction of non-compressive action. Any sudden im-

. pulse of pressure produces an increment of motion in the structure according

to the laws of local action; but within a time of the order of the diffrac-
tion time, diffracted waves act so as to convert this motion at least roughly
into the motion that would have been produced by the same pressure impulse
acting in incompressible water, except, of course, as the motion may have
been further altered by forces arising within the structure. This drift to-
ward the non-compressive type of motion has already been mentioned in the
discussion of the tension phase on page 9.

A variety of other cases can be imagined, characterized by various
relations among the four time constants. 1In considering such cases, the fol-
lowing general rules, already 1llustrated in the discussion, wlll often en-
able a step to be taken toward a solution:

1. During an initial interval much shorter than the diffraction time
T,, the formulas pertaining to plane waves will be applicable. In special
cases, when T,« T,, this interval may cover the whole of the action on the
target.

2. During an initisl interval much shorter than the swing time T,, the
elements of the target will be accelerated independently.

3. For a plate or diaphragm, the equation of motion will be approxi-
mately as given in Equation {1] during an initial interval that 1s much
shorter than either the diffraction time T, or the swing time T,.

CONDITIONS UNDER WHICH CAVITATION MAY OCCUR
In the consideration of cavitation 1t may be conducive to clarity
if a distinction 1s made between cavitation due to elastice overshoot and cav-
itation due to fluid inertia.
Cavitation due to inertia is a familiar phenomenon in the non-
compressive motion of water. On the back of a propeller blade, for example,

- cavitation occurs because the inertia of the water prevents it from following

the blade.

Cavitation between a shock wave and a plate, as discussed in a pre-
vious section, arises in a different manner and is closely associated with
the elasticity of the water. The plate, together with the water in contact
with it, 18 accelerated so rapidly that tbe water farther away 1s unable to
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share fully in the motion. The
water thus becomes expanded and
its energy of compression is
converted into the kinetic ener-
gy of the plate; the process of
expansion progresses to the
point where tension begins to
develop in the water, and cavi-
tation results. The water and
plate behave much like a spring

3 - Ph loaded with a mass. If the

Figure 13 - Photograph Showing Cavitation

Bubbles Produced by a Shock Wave spring 1s compressed and then
in Water near s Lucite Window released, the motion overshoots

The 85 Elohe Eroduosd W the Srplosice the position of equilibrium, and
the initial state of compression
thereby comes to be replaced momentarily by one of tension. A picture of
what appears to be cavitation due to elastic overshoot, in front of a lucite
window struck by the shock wave from a small charge, 18 shown in Figure 13.
Under ordinary circumstances, a necessary condition for the occur-
rence of cavitation due to elastic overshoot appears to be that the compli-
ance time of the structure, or time required for 1t to attain a maximum
velocity under the action of the wave, shall be less than the diffraction
time:

T, < T,

If this condition 18 not satisficd, inflow of water from regions beyond the
edge of the structure is likely to equalize the pressures and so to prevent
the occurrence of tension in the water.

The occurrence of cavitation should be the same on the usual model
scale as on full scale, at least 1f the hydrostatic pressure is the same in
the two cases, For, if all linear dimensions including those of the charge
are altered in a given ratio, all characteristic times will be changed in the
same ratio; in Equation [5a, b], for example, 1/a and m will h» -° 24 in
the ratio of the linear dimensions and z is unchanged. Thus the ratio of I',
to T, 1s not altered by the change of scale.

Large hydrostatic pressure, however, may act to prevent the occur-
rence of cavitation. The pressure due to the incident wave, as modified by
reflection and the motion of the target, is superposed upcn the hydrostatic
pressure p,, and, if p, is sufficlently great, the resultant pressure may
never sink to the pressure at which cavitation occurs.

4
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Since it 1s the excess of pressure above p, that accelerates the
plate, the total pressure in the water at the plate will be
P=p,+ mﬁfr
dt

In the case of the exponential wave represented by Equation [2], md%/dt® is
given by Equation [4]. 1In this case, by equating dp/dt to zero, ‘he minimum
value of p 1s found to occur at the time ¢t = 2T,, where T, is given by Eque-
tion [5a], and to have the magnitude

1+ 2z

rmln-'-po_zpmzl“‘ [10]

Thus, if cavitation occurs when the pressure sinks to & certain breaking-
pressure p,, which cannot exceed the vapor pressure and may be negative, then
cavitation can occur only if p_, < p, or

1+
l1-2z

2p,.2 > po— P,

Here it can be shown that the factor 2acll"_:'f has a maximum value of
2/e2 = 0.27 at z = 1 and decreases toward zero as z + 0 or z + o,

The maximum depths at which cavitation can occur, as calculated
from this formula, come out too large to be of interest. The shock wave from
300 pounds of TNT, for example, falling on an air-backed steel plate 1 inch
thick at a distance of 50 feet, could cause cavitation at zero pressure down
to a depth of 700 feet below the surface.

Both in the action of shock waves on ships and in comparable model
tests the necessary conditions for the occurrence of cavitation due to elastic
overshoot at a pressure not far from zero appear to be met, and observations
on the initial veloclties of diaphragms at the Taylor Model Basin indicate
that it does occur.

For a Hilliar gage, on the other hand, the compliance time, or the
time in which the piston would attain maximum velocity if 1t were not stopped
by anything, is much longer than the diffraction time. Thus cavitation is
not to be expected on the face of the piston.

A more detailed discussion of the phenomena accompanying cavitation
near a plate or diaphragm will be given later in this report, on pages 38
to 42,

THE BERNOULLI PRESSURE AND THE DEVIATION FROM HOOKE'S LAW
At this point it may be worth while to digress slightly for a mo-
ment and consider one or two minor mattersz. The question 1s often asked,
whether the expression for the pressure caused by the impuact of a plane wave
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upon a rigid wall ought not to include a term of magnitude pvZ or pv¥2. The
answer furnished by analysis is in the negative.

Even the exact theory of Rlemann for the propagation of plane waves
of finite amplitude leads to no direct contribution from the particle veloc-
ity v to the pressure on a rigid wall. The pressure should be a 1ittle more
than twice the incident pressure, but the excess is due entirely to depar-
tures from Hooke's law of elasticity; see the Appendix. It can be said that
the entire increase in pressure arises from the arrest of the particle mo-
tion by the wall. No further increase corresponding to pv2 should, therefore,
be expected. . -

As an example, when water is compressed adiabatically from zero
pressure and a temperature of 20 degrees Centigrade, its pressure, up to
10,000 pounds per square inch, 1s approximetely given by the formula

p = 309000 s (1 + 75%’@-) 1b/in? (1)

where s 1s the fractional compression or the decrease in volume divided by
the original volume; see the Appendix, Squation [184]. The term p/75000 rep-
resents the departure from Hooke's law. Because of this term, the pressure
on a rigid wall due to the incldence of a wave of pressure of magnitude p,
pounds per square inch is raised from 2p; to

2p.. (1 +W0’16—66) [12]

See the Appendix, Equation (185]). Por an incident wave having a pressure of
5000 pounds per square inch, the increase 1s 3 per cent,

In the reflection of spherical waves, also, the usual linear theory
leads to the conclusion that the pressure against a rigid wall is simply
doubled; the afterflow velocity*® gives rise to no additional term in the
pressure,

The familiar Bernoulll term in the pressure formula thus puts in
its appearance only when (a) the pressure field is two- or three-dimensional,
and (b) terms of the second order in the velocity are included. A small pi-
tot tube, for example, turned with its mouth toward the oncoming wave, will
register a pressure equal to p + pv’/z where p 1s the pressure and v is the
particle veloclity caused by the wave in unbroken water, whereas with 1ts
mouth turned at right angles to the direction of propagation it registers
just the pressure p. The motion around the tube is three-dimensional; and

the increase in pressure is of order vl Similarly, the pressure at the

* See TMB Report 480 (10), page 39.
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front stagnation point, or point of zero velocity, on any small rigid ob-
stacle in the path of the waves should be p + pv%/z; likewise, the pressure
on the piston of a Hilliar gage (14) should be approximately p - pv:72, where
v, 1s the velocity of the piston.

The Bernoulll effect as represented by the term pv? in such expres-
sions will thus in some cases play a part in modifying the pressure field in
front of a target. Analysis furnishes no reason, however, to expect addi-
tional effects on the target from a "kinetic wave" following the shock wave.
The pressure field in the water constitutes the mechanism by which the water
is set moving outward and then presently arrested; the pressure field 1is
physically inseparable from the motion, and its effects on the target include
all effects that might be ascribed to the action of the moving water.

At any fixed distance from the center of the explosion, the pres-
sure in open water should fall continually as the gas globe expands, and it
appears from analytical results that the same should be true of the pressure
on the target. Thus no upward surge of pressure is to be expected "as the
moving water reaches the target"; the idea of a water projectile propelled

by the gas globe and subsequently impinging upon the target is inappropriate
and misleading.

PART 3. THEORY OF A PLANE TARGET

The discussion has been kept in general terms up to this point, and
few exact formulas have been given. General analytical results are difficult
to obtain, and numerical integration has scarcely seemed worth while hitherto
because of incomplete knowledge of the relevant fundamental data.

There is one three-dimensional case, however, in which exact ana-
lytical formulas are readily written down. This iIs the case in which every-
thing of interest happens in the neighborhood of a plane surface, which may
be supposed to extend laterally to infinity. This case will now be taken up
for discussion in some detail. For generality, the fluid present will not be
restricted to water.

PRESSURE ON AN INFINITE PLANE

When waves fall upon the initially plane face of a target of effec-
tively infinite lateral cxtent, an expression 1s easlly obtained for the re-
sulting pressure at any point on the face. The waves may be plane, spherical
or of any other type. It must be assumed, however, that they are of suffi-
ciently small amplitude so that the ordinary linear theory of acoustics is
applicable, and that the displacement of the water or other {luid at points
on the plane is small. The first condition should be sufficiently well satis-
fied at pressures up to 10,000 pounds per square inch in water.
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The expression for the pressure can be constructed by using the
principle of superposition.

The waves are first imagined to be reflected from the surface of
the target as if it were rigld. This gives a resultant wave field in which,
at the su;face, the incldent pressure 1s doubled, while the particle velocity
has no component normal to the surface.

A correction is then added to allow for the motion of the surface.
This correction i1s obtained by assuming the existence on the surfuce of a
sultable distribution of simple point sources emitting waves of pressure.
Because the surface 1s plane, each of these waves affects the normal compo-
nent of the particle velocity only at the element that emits the wave. For
this reason the strength of the point sources is easily adjusted so as to
satisfy the necessary boundary ccndition, which is that the surface and the
adjacent fluid must have a common component of velocity normal to the sur-
face. It 1s found that the pressure emitted by each element of the surface
must be proportional to its normal component of acceleration.

The contributions made by the emitted waves to the pressure at any
given point in the fluid will be retarded in time because of the time re-
quired for the waves to travel from their point of origin. The following ex-
pression is obtained for the pressure at any point Q on the surface at time

p=2p - = [Li ,d5 +p, (13]

where p, is the tetal hydrostatic pressure, including atmospheric pressure,

p; 1s the incident pressure at the point Q and at the time ¢,

p 1s the density of the fluid,

¢ 1s the speed of sound in the fluid,

dS 18 an element of area on the face of the target,

t 1s the component of displacement of dS in a direction perpendicular
tc the initial position of the target, measured positively away from
the fluid, and

s 1s the distance of dS from Q.

Z denotes d’z/dtz, and the subscript t - s/c means that each element
dS 1s to be multiplied by the value of its acceleration % not at the
time ¢ but at the time t - s/c.

The integration extends over the entire face. See the Appendix, Equation
[100], .and Figure 14,

The factor 2 in Equation [13] may be regarded as a reflection ef-
fect arising from the mere presence of the target. The term containing the
integral represents a rellef of pressure, as explained by Butterworth (1), or

™
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an emission of negative pressure caused
by acceleration of the face of the tar-
get. Positive pressure 1s emitted, how-

ever, by any element at which z 18 nega- 4 —:
tive. The release or emission effect is
propagated from one point to another in j>/'
the fluid at the speed of sound.
The surface on which the pres-
sure is calculated has been supposed to P
be the surface of a solid body. Nothing )
would be altered, however, if the sur- g;gu;:eliy'ogizg:a¥ngiég:g:ag}ng
face were, wholly or in part, merely a - Wave of Pressure upon a Nearly
geometrical plane drawn in the fluid; in Plane Moving Surface
Equation [13] z will then be merely the  [0° Frosswre »; dus to incident waves causes

a net pressure p on the surface; s denotes
displacement of the fluld itself perpen- the distance of an element of area dS from a

dicular to the surface. Thls extension ',";:‘;‘o‘} ::':::::7; :t which the displace-
of the interpretation will be useful
later.

" The theory of the rellef pressure as described here constitutes the
mathematical theory, for a plane surface, of the process of diffraction or
equalization of pressure which was described in general terms on page 7.

[

MOTION OF AN INITIALLY PLANE PLATE OR DIAPHRAGM
OF UNLIMITED LATERAL EXTENT

So long as the plate or diaphragm remains approximately plane, its
equation of motion can now be written in the form

2
m%{--p,+¢ . [14)

where m 1s its mass per unit area, z is its displacement at any point perpen-
dicular to the plane occupied initially by its face, p, 18 the total incre-
meat of pressure caused, directly or indirectly, by incident waves, and

é=p,— P, + 7P, {15]

where p, is the total hydrostatic pressure, p, is the pressure on the back of
the plate and p, 1s the net force per unit area in the direction of z due to
stresses in the plate. Motion parallel to the initial piane is assumed to be
negligible so far as inertial effects are concerned. Herem, z, p, and ¢ may
all vary over the plate. Inserting the value of p_ =~ p - p, from Equation
(V3]
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dts _ _ P [(d’s 4as
mag T2t é znf(u’),_% . (6]
. It is readily shown that, if the plate remains accurately plane,
this equation reduces to the familiar one-dimensional equation; see the
Appendix. The relief term, or the term containing the integral in Equation
{16], becomes the last or damping term in Equation [1]. Of, if plane waves
are incident at an angle 6, and if ¢ = 0, so that the elements of the plate
move independently, Equation [16] becomes, as shown by Taylor (4),
d?s ¢
g A R (7]
The general equation is thus seen to be consistent with others that can be
obtained more simply. The case of spher-
ical waves has been considered by Fox

— (15).

PLATE OR DIAPHRAGM OF FINITE EXTENT
SURROUNDED BY A PLANE BAFFLE

0N In tests, a plate of diaphragm
is commonly mounted in a support that ap-

/}}/’ P proximates a rigid baffle; such a mount-

° ing constitutes a first approximation to
—-2, the mounting of a plate in the side of a

ship. In some cases it may be necessary

Figure 15 - Diagram Illustrating to a;low for motion of the support.

Incidence of a Wave on a Plate If only part of the structure

Mounted in a Movable Baffle Just considered consists of a movable

m:’t:"::’:;’d::;fz; ;:':;d plate or diaphragm, while the remainder
point of the plate is s. forms a fixed plane baffle, the integral

in Equations [13]) or [16] need be ex-
tended only over the movable part. Or, more generally, as is 1llustrated in
Pigure 15, if the baffle is itself movable as a whole but remains plane, the
equation for the motion of any point of the plate can be put into the form,

dls ds P (1 d’s dls
mw-2?‘+¢—pc7‘1—2" ;{.‘?—(j‘—‘-! —Tt-!‘)‘-sds (18]

where g, is the displacement of the baffle, all quantities are tsken at time
t except the values of the integrand, and the integral extends only over the
plate; see the Appendix, Equation [109].

Comparison of the last equation with Equation [16] shows that the
principal effect of motion of the baffle is to relieve the load pressure on
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the diaphragm to the extent of pe¢ times the velocity of the baffle, or to ine
crease the pressure to this extent if the baffle is moving toward the side of
incidence. The factor pe 1s the same as the ratio cf the pressure to the
particle velocity in a plane wave, or about 70 bounds per square inch for
each foot per second of veloclty. If the velocity of the baffle is variable,
however, the release effect is modified by the presence of the term in
d?z,/dt?.

Other useful forms of the equation are possible. In the case of a
circular plate of radius a, for example, with everything symmetrical about
the axis of the circle, Equation [16] as applied to the central element of
the plate can be written in the alternative form

mz =2p. + ¢ — pc[ib(t - —ré‘-) - i.(t— ch)] - p‘L‘af"‘_E dr [(19]

Here the first three terms réfer to quantities at the center and at time ¢,
and in the integral s has been replaced by r, the distance from the center of
the plate; also, because of the symmetry, it is possiltle to write dS = 2nrdr.
The part of the release integral that contains d2z,/dt? has been transformed
as in Equation [105] of the Appendix. Por generality, it has been assumed
here that only the part cf the baffle lyling between r = r, and r = r, is mov-
able, while the remainder is at rest; z,(t) is the velocity of the movable
part at time t.

If the entire baffle is movable, the equation becomes

m'z'-2p,-+¢—pci,(t-%)-—pj:'z"_gdr [20]

FINITE PLATE OR DIAPHRAGM WITH NO BAFFLE

Por a plate or diaphragm forming one side of an air-filled box, an
approximate equation of motion may be obtained from the last equation by the
following argument. Equation [16] should hold even if part of the "plate" is
reduced to a mere imaginary plane drawn through the fluid; see Figure 16.
Then, in the integral, at elements dS located on the imaginary plane, d*z/dt?
refers to the acceleration of the fluid. These values of d2z/dt? are not
known accurately because the pressure in the fluild is modified in an unknown
manner by the presence of the plate. For an approximate result, however, we
may resort to the assumption that is commonly employed with success in phe-
nomena of optical diffraction.

Let 1t be assumed that the disturbance 1q the fluid beyond the edge
of the plate is the same as it would be if the plate were not there. Then,
if the incident wave 1s plane and falls normally on the plate, d’z/dtz is
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Y uniform over the plane beyond the edge, as it
/// /;Mor / S/ would be if a plane baffle were present, hence
S s P p 'Equation [18]) can be used in place of Equation
" //, P (16). Here dz,/dt is now merely the particle ve-
. Air / locity in the incident wave or p‘/pc, so that the
-/2;/:/ / term containing this velocity becomes -p,. Thus

~ Equation [18] becomes, for the motion of any ele-
Diophragm /<> ment of the plate,
/ / / //

Figure 16 - An Air-Backed
Diaphragm Forming One
Side of a Box

The pressure due to incident waves imatel
is p;. The broken lines represent approximately,
a continuation of the plane of the

d’s £ _ 1 8py s
mar TPt (dt pe at),_%a (21]

or, i1f the incident wave varles slowly enough,

diaphrage into the water. d2z p [(d%z ds
carmrt oG, T @

In the speclal case of axial symmetry, sgain, a simpler alternative
equation is useful. If the plate is a circle of radius a and if everything
is symmetrical about its axis, then similar changes in Equation [109] of the
Appendix give, for the motion of the central element only, the approximate
equation

mEd =2 - pt- )+ e- pf(d—;z) dr [23)

in which d2z/dt® on the left and p;(t) and ¢ refer to time t, while p,(t- a/c)
is the value of p; at time t - a/c, r denotes distance from the center of the
plate, and dS has been replaced by 2wrdr.

Thus the diffractive release of press@re around the edge of the
plate has the effect of diminishing or even eliminating the doubling of the
incident pressure that results from reflqction.

If the plate 1s mounted in a supporting ring with a plane face,
this ring can be treated in the equations as if 1t formed part of the plate.

MOTION OF THE FREE SURFACE OF A LIQUID
Equation [16) can be applied also to the motion of the free surface
of a 1iquid. This can be done by setting m = 0, replacing ¢ by p, - p, where
P, 18 the hydrostatic pressure at the level of the surface and p is the ex-
ternal pressure on the surface itself, and interpreting z as the displacement
of the surface. Atmosphe%ic pressure is included here in p,, which may dif-
fer from p because of an accelerating pressure-gradient in the liquid.
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The resulting equation can be written in the form

f( ) -2P¢+Po_? [24)

In this form the equation holds, indeed, quite generally, for any liquid sur-
face that 1s nearly plane and effectively unlimited in lateral extent, even
when the surface is partly or wholly in contact with a solid body. See Ap-
pendix, Equation [103]. The equation fixes the acceleration of the surface
at each point in terms of prevlous accelerations at all points and the vari-
ous pressures.

Furthermore, with similar changes, Equation {18] can be applied to
the moticn of the liquid surface as exposed in & hole in a movable plane baf-
fle 1ying on the surface. )

It may be noted that the liquid surface does not exhibit the same
kind of resilience that is characteristic of ordinary elastic bodies. Thus a
rubber ball dropped onto the flcor bounces back. If the surface of a liquid
similarly impinges upon a rigid obstacle, however, there is no rebound. Dur=-
ing the impact the surface undergoes momentary negative accelerations of
large magnitude, and Equation [24] shows that these accelerations must be ac-
companied by a positive pressure acting on the surface, and also, therefore,
on the obstacle. However, on the assumption that only a limited part ol the
surface was in motion, the integral in Equation [24] ultimately fades out
without changing sign, and the corresponding part of p must, therefore, do
the same. Since negative values of p do not occur, there is no tendency for
the 1iquid surface to leave the obstacle.

Elastic rebound such as that of the rubber ball is exhibited only
by bodies, 80lid or liquid, whose dimension perpendicular to the surface of
contact is effectively finite.

IMPULSE PER UNIT AREA DUE TO THE WAVES
Before consldering solutions of the equations of motion, the fol-
lowing interesting conclusion concerning the impulse may be noted.
Suppose that the plate, after having been at rest until a certain
instant, moves in any manner and then comes permanently to rest again. If
it is surrounded by a baffle that also moves, let the baffle likewise come
to rest. Let I denote the total impulse per unit area caused by the incident
waves or fb,dt, where p_ 1s the excess of pressure above hydrostatic pressure
and the integral extends over all time. Then, for a plate in a wide plane
baffle, it turns out that

I=2[pdt (25)
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where p, 1s the incident excess of pressure above hydrostatic pressure, or, -
if there is no baffle, approximately )

) I=[pat [26]

Here j}‘dt represents the incident impulse per unit area.
To obtain this result, it i1s only necessary to multiply the equa-
tion of motion of the plate hy d¢ and integrate. From Equation [14]

I=[p,dt -f(m:—:; - ¢) at

When the value of d%z/dt? 1s substituted here from the equation of motion,
the double integral in dt and dS vanishes, as 1s seen at once upon inverting
the order of integration. For example

Jeef G, % - [0 f‘s[(u._]

since every point on the plate begins and eventually ends in a state of rest.
Thus, from Equation [16] or (18], I = q[p‘dt, as stated. Or, if Equation
[21] is used, since j]ap‘/at)dt =Ap, =0, I= ]b‘dt. at least approximately,
in the absence of a baffle.

Similar treatment of Equation [24] gives for the surface of the
liquid, whether free or not,

[-p)dt = 2[p,at (27]
for the total impulse in excess of hydrostatic pressure due to external
forces, on unit area of the surface, provided the surface is at rest except
during a certaln finite interval of time.

The effect of the relief pressure, and hence the effect of diffrac-
tion, thus vanishes in the end if the motion of the surface is limited in
time.

It must be assumed also, however, that the motion 18 such as to
make phe integrals containing dS converge.

THE PROPORTIONALLY CONSTRAINED PLATE OR DIAPHRAGM

Equations [16], [18], and [21] to [2U4] are of the integrodifferen-
tial type, and they are difficult to solve because g£ 18 a function both of
the time and of position on the plate. For this reason interest attaches to
the solutions of the following artificially simplified problem, which can be
handled more readily.

Let it be assumed that all parts of the plate execute proportional
motions. Then z can be written in the form
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g = 2,(t) f(z,y) [28)

where g, 18 the deflection of a certain point on
the plate, which may be thought of as its center,
and is a function of the time . alone, while
Sf(z,y) 18 a shape factor represented by a fixed
function of the cartesian coordinates z,y specify- %
ing position on the plate; see Pigure 17. The
natural small oscillations of a plate are actual
examples of proportional motion.

After introducing this assumption into *
Equation [16], the equation can be reduced to an Figure 17 - Illustration
ordinary integrodifferential equation in z and t  ©°f apgggggtigngiaggg;: of
by integrating over the plate. The most useful The deflection s is st every point
result is obtained if the equation 1s multiplied proporticnal to the displacement
through by f(z,y) before integrating, namely; ®c of & choeen base poist or center.

M%—:;‘ - ZF‘+¢-?cr—ff(z,y)de(:—z:{-)‘_‘f(z’,y')if—, [29}

where
M= [m[ftz,9)] ds (301
F,=[p.f(z,948, & =[¢f(z,9)dS [31a, b]

In the first integral s 1s the distance between the elements of area dS and
dS’, which could be replaced by dzdy and dz'dy’, respectively. It must be
assumed that f(z,y) vanishes fast enough toward infinity to make the inte-
grals converge.

The quantity M rspresents an effective mass of the plate, while F;
and @ represent effective forces; the last term in Equation [29] represents
an effective force due to release of pressure by the motion. The center of
the plate moves as would a mass M under a force equal to the right-hand mem-
ber of Equation [29]. Furthermore, the kinetic energy of the plate is actu-
ally equal to M{ds,/dt)2/2; see Equation [115] in the Appendix.

The proportional motion of the plate may be supposed to be guaran-
teed through thé action of suitable internal constraints which do no work on
the whole, so that the energy balance 1s not affected. These constraints
contribute nothing to #, as is shown in the Appendix.

Equation [29] is applicable either to an infinite plate or to a
plate mounted in an infinite fixed plane baffle; in the latter 2ase the
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integrals extend only over the plate. .The equation should also hold roughly
when there is no baffle at all provided 2F; is replaced by F;.

If the baffle is movable, it 1s more convenient to replace Equation
(28] by

z =12, +12,(t) f(z,y) : (32]

where z, 1s the displacement of the baffle. Thus g, refers, as before, to
the relative displacement between plate and baffle. If this expression for 2z
is introduced into Equation [18], and if the equation is then multiplied
through by f(z,y) and integrated over the plate, the result is

a? d d?
MG =2F+9-peB Rt - M, TH
_ L d’s + oy 88
2 "f f(s.v)as;‘[. Sﬁ)c-tﬂ"” - (33]
where
B=[f(z,)dS, M,=[mf(z,y)dS (34a, b)

Here R represents an equivalent area of the plate and M, an equivalent mass,
both defined with respect to interaction with the baffle.

Comparison of Equations [33] and [29)] shows that the relative mo-
tion of plate and baffle is affected by the motion of the baffle in the same
way as if, with the baffle fixed, the effective driving force 2F; + & were
replaced by

dz d%
- =k

Thus forward velocity of the baffle effectively decreases the load pressure.
If the motion of the baffle is accelerated, the relative acceleration of the
plate is further decreased in proportion to the acceleration of the baffle.

The absolute motion of the plate is then the sum of its relative
motion and the motion of the baffle.

A more convenient form of the integral in Equations {29] and [33]
is given in Equation [116] of the Appendix.

Unfortunately, the actual motions of plates or diaphragms under the
action of shock waves probably show little resemblance to any type of pro-
portional motion. This 1s brought out clearly by many observations which
have been made at the Taylor Model Basin; these will be described in other
reports. The study of proportional motion must find its justification in its
mathematical simplicity and in the hope that certain of its features as

)
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revealed by analysis will find their counterpart in the behavior of actual
structures.

The Non-Compressive Case

For a proportionally constrained plate, in a rigid plene baffle, a
definite treatuent can be given of the non-compressive case that was dis-
cussed previously in general terms. In the Appendix, Equations [126] and
[127], the following statement is praved:

At any time when the acceleration has been sensibly uniform, at
least during the immediately preceding interval of length D/¢, where D is the
maximum diameter of the plate, Equation [29] reduces temporarily to the ordi-
nary differential equation,

d’z
(M + M) GF = 2F; + ¢ [35]
where
M, = £ [fads[rey) [36]

Here M; may be regarded as the effective mass of the liquid that *
is foliowing the plate; it represents the same loading of the plate by the
liquid that would occur if the liquid were incompressible., The kinetic en-
ergy of the liguid that follows the plate is M,(ds,/dt)2/2; see the Appendix.
Thus, when the acceleration varies sufficiently slowly, the release effect
produces the loading by the 1liquid as calculated from non-compressive theory.

An analogous result for an unconstrained plate is difficult to ob-
tain, but it may be inferred that even in this case there will be some degree
of approach to the motion as calculated for incompressible liquid whenever
the acceleration of the plate satisfies the condition just stated. A rough
estimate of the accelerations to be expected in such cases can probably be
made by assuming some plausible type of proportional constraint and using
Equations [35) and [36].

Some Simple Types of Proportional Constraint
Several forms of proportionally constrained motion were, in effect,
treated by Butterworth (1). His formulas do not contain the factor 2 that
arises from the reflection of the wave, and the retardation in time 1s omitted
after a brief mention of it; hence his results are in reality those that would
be produced in incompressible water by a pulse of pressure having the same
form as the incldent wave.
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If the plate moves like a piston, the shape factor in Equation [28)
becomes f(s,y) = 1. If the plate is circular and of radius a, it is found,
as in Equation [128b] in the Appendix, that

M, =3 pa? (371

Furthermore, if m or p,, respectively, is uniform over the plate, it is ob-
vious from Equations [30], [31a], and [34a, b] that

M = rmal F, = na’p‘. [38a, b]
M,=M, B = nd® {392, b]

Piston-1ike motion involves, however, a discontinuity at the edge.
A simple type in which there is no discontinuity is the paraboloidal
form,

f(z.ﬂ) =1- f;v t ‘e(l- f;) [uoan b]

where r denotes distance from the center and r = a represents the fixed rim.
A spherical shape is scarcely different so long as the curvature remains
small. In this case, as in Equation [128a] of the Appendix,

M, = 0.818 pa? (]

and if m or p,, respectively, is uniform, Equations {30}, {31a] and [34a, b]
give

M= %m’. - F; = -% czp.- {42a, b]
My=3u, B=1ana (43a, b

see Appendix, Equations [120] and [121].

Approximately spherical or paraboloidal shapes are produced by
static pressure, but under explosive loading more pointed shapes appear to be
commoner; see Figure 18,

The results just cited suggest that in general the formula

M =08E M [44)

ruuro 18 Typical Profiles of a Diaphragm Deflected by a Non-Contact
Underwater Explosion (Left) or by Static Pressure (Right)
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may be a good approximation; for the paraboloidal motion, 0.8 is replaced by
0.78, and for the piston motion, by 0.84,
A third type of some intereat 1is

: - -1
e = (- e mn o) e )

for which, as in Equation [132] of the Appendix,
M, = ntpa’ [46)
and, if p; is uniform, Equation [31a] gives
e 2 -*
r
F; = 21rp,-! (1 - ?) rdr = 2malp, [u7]
This form of f(z,y) represents the distribution of velocities with which, ac-

cording to non-compressive theory, liquid should begin to issue from a c¢ircu-
lar hole because of a sudden

application of pressure; see 2':’L
the Appendix, and Reference 1,
(1). Here the liquid surface ',L .Fm et
is assumed to be plane initial- 'vl 5"'“("5)1(
ly. The average velocity 1s 14
2ds./dt. As the motion con- 12
tinues, however, second-order “, Piston /
effects become appreciable and @« B ot "'
the usuesl vena contracta de- 08 Poroboloid \ /
velops; at the edge it will 06 g .15 S ]
begin forming immediately. 04 1t (
The distribution of
velocity over the plate is il oz
lustrated for the three types 0 0 0Z 03 04 05, Q6 07 08 05 10
of motion in PFigure 19. °
In all three cases Figure 19 - Distribution of Velocities in

a rigid baffle beyond the plate e o e Circutas Diaphragn "

or hole has been assumed. If . da/ds is the velocity perpsndicular to the initial plane

the plate merely forms one side at a distance r from the center of the diaphraga whoee
radius 1s a. The velocity is shown in each case on an
of an air-filled caisson or box, srbitrary scale.

the estimation of M, 1s more

difficult. Prom the consideration of a solvable case in the Appendix it ap-
pears that the absence of a baffle might reduce M, for the paraboloidal dia-
phragm by a factor of about 2, snd for a diaphragm moving 1ike a piston by a

factor nearer 3.
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It may be noted that for the circular piston and for the parabo-
loidal form thu integrodifferential equation can be replaced without great
error by a more easiiy handled difference-differential equation; for example,
Equation [29) 1s replaced by

4t d o2F; + &
T T [48)

or Equation [33] by

dle dz, dz, d?z
Mgt + kg +ocBgt + Mt
.+ O .
- b[z, -2, .q= .z_i_‘l‘_{_. : [49]

Here s, .y denotes the value of z, at time t ~ T, where T is a retardation
time of the order of the diffraction time T,, while all other quantities re-
fer to time t. If thinning of the diaphragm is neglected, k and b are con-
_ stants; see Equation [125] in the Appendix.

An equation rather similar to Equation [48] but containing an in-
tegral was used by Kirkwood in developing a theory of damage in the absence
of cavitation (6) (7) (8). His equation was obtained for the central ele-
ment of the diaphragm on the assumption of a paraboloidal form, without the
provision of any mechanism for the maintenance of this form. 1In the theory
as developed in the present report, the form is assumed to be maintained by
suitable constraints and an equation of motion for the entire diaphragm is
obtained. The results in practical cases differ little, however, and it is
doubtful whether either type of theory represents the motion of an actual
diaphragm very closely.

THE REDUCTION PRINCIPLE .

It has already been noted that und~r suitable circumstances suf-
ficiently accurate results can be obtained from non-compressive theory, in
which the comprésaibility of the liguid is ignored. This is in reality a
special case of a more general principle. The action of a wave tends con-
tinually to change into or reduce to the type of action that is characteris-
tic of incompressible liquid. For convenience, this principle is called in
this report the reduction principle.

Consider, for example, a flat-topped wave form in which the pres-
sure rises discontinuously to a value p, and then remains at this value for
a considerable time., The discontinuous wave front 1s propagated past an obe
stacle in strictly rectilinear fashion, leaving a perfect shadow behind the
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obstacle. After the front has passed, however, lateral equalization of’
pressure sets in and produces the phenomena known collectively as diffrac-
tion. Pressure bullds up in the shadow; and all modifications of the prese
sure field that may have been caused by reflection in front of the obstacle
fade out. The final result is a uniform pressure of magnitude p, all around
the obstacle, such as would be inferred from the ordinary hydrostatic, non-
compressive theory. The time required fbr approximate equalization of the
pressure is roughly equal to the diffraction time for the obstacle, or to
its radius divided by the speed of sound in the liquid.

Any sudden increment of pressure, positive or negative, behaves in
a similar manner. At first, its effects exhibit the characteristics of wave
action; then the effect changes in continuous fashion until it reduces to the
effect that 'would have been produced in incompressible liquid by the same in-
crement of pressure.

' Purthermore, any pressure wave can be regarded as a succession of
small increments. Thus the usual conclusion 1s reached that waves much
shorter than the diameter of an obstacle will behave in a manner strongly
resembling rectilinear propagation, whereas waves that are much longer will
act more nearly like a static pressure. The non-compressive case previously
noted 1s one in which changes of pressure occur 3o slowly that reduction is
practically complete all of the time.

The reduction principle is difficult to formulate mathempatically in
the general case, but an exact expression of it 1s easily obtained for a
proportionally conmstrained plate. In this case the chief content of the
principle, as deduced in the Appendix, is the following. Suppose that the
plate has been at rest for a time exceeding D/c where D is its greatest di-
ameter. Suppose also that thinning of the plate may be neglected, so that M
and M, may be treated as constants. Then, during any subsequent interval of:
time equal to D/e, both acceleration and velocity take on at least once the
non-compressive values as calculated for the time t at the end of that in-
terval, namely, from Equation [35],

d’s, oF,+¢ 45, _ J2F,+®at
atr T MIM,’ dt M TN,

L3

{50a, b]

Here M, is the mass dué to loading by the liquid as given by Equation (361,
F, and the derivatives of z, stand for values at time ¢, and./f}dt‘extends
from the beginning of the action up to that time.

From this statement it is fairly clear, after a 1little reflection,
that, if 2F, + ® 1s constant, d%z./dt? must oscillate about the non-
compressive value as given by Equation [50a] and gradually settle down
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to this value; whereas, if 2F; + @ continually increases with the time,
d’s./dt’ must exceed the non-éompreaaive value, while if 2F; + é decreases,
ds,/dt® must be somewhat smaller than the non-compressive value. Analogous
statements hold for ds,/dt.

IMPULSIVE EFFECTS
The following two special cases are of interest, partly because of
the 1ight they throw upon the gqualitative aspects cf the action.

Steedy Pressure Suddenly Applied

After a plate or dlaphragm has been at rest and free from wave ac-
tion for a long time, let s wave of constant pressure suddenly begin to fall
upon it. During the quiescent period, ¢ = 0 in Equation [16) in order to
keep d2z/dt® = 0, and for a short time thereafter ¢ will be small. In the
nelghborhood of sny point of the plate, furthermore, the incident wave will
approximate to a plane wave incident at a certain angle. For a short time
after 1ts arrival, therefore, the equation appropriate to plane waves, Equa-
tion [17], can be usnd. Each element will begin moving according to this
equation independently of all others, and every element will execute the same
motion, but with a certain displacement in time if the incidence is oblique.

The plane-wave equation will hold until waves of relief pressure
arrive, coming from elements of the plate whose motion differs in other ways
than merely by a time difference due to oblique incidence. Thereafter the
action becomes more complicated and Equation [16) must be useA. In many
practical cases, however, the action of a shock wave is almost entirely com-
pleted before the simplesr Equation [17] begins to fail noticeably.

If the plate 18 proportionally constrained, further light can be
thrown upon its later motion. In this case, for a plate mounted in a rigid
baffle, if @ = 0, Equation [29] becomes initially

M-'i—?f--zF—pcAﬂ‘ (51]
where.
A=[[fiy) ds [52]

and represents an effective area; see the Appendix, Equations [140] and [141].
This 1s the analog for the plate as a whole of Equation [17] for the individ-
ual elements. If the mass per unit area m 1s uniform, A = M/m, where M 1is

.. _the effective mass as defined in Equation [30]. If the plate also moves pa-

, r*nboloidllly. as r-pm-ntod by Equations [40a, b), A = mra?/3, or a third of
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»

As the elapsed time approaches the diffraction time, Equation [51]
fails and the complete Equation [29) must be used. As soon as the time con-
slderably exceeds the diffraction time, however, a simple description of the
motion again becomes possible. The motion then approximates rapidly to the
motion that would have occurred if the water had been incompressible. This
conclusion may be inferred with sufficient cogenéy from the reduction princi-
ple just described.

From this principle, and, in particular, from Equation [50a], it
is sufficiently clear that the acceleration of the plate will take on the
non-compressive value as stated in Equation [35) within a time less than D/e,
and will oscillate thereafter about this value with a rapidly diminishing am-
plitude of oscillation. The initial acceleration, which 1is Zlﬁ/llfrom Equa-
tion [51], is relatively high because the effective mass is at first that of
the diaphragm alone, but as the loading by the liquid takes effect the accel-
eration decreases toward the non-compressive value. Because of the high ini.
tial acceleration, however, the velocity remains permanently somewhat in
excess of the non-compressive velocity.

The transition from one type of motion to the other 1s easily fol-
lowed in detall if the accurate integrodifferential equa%ion is replaced by
the approximately equivalent difference-differential equation, Equation [48].
This equation 1s readily solved in simple cases, provided thinning of the dia-
phragm 18 neglected, so that k and b are constants.

In the case under discussion, z, = 0 and 2, = O up to a certain in-
stant, which may be taken as t = 0, and thereafter # = 0 and Zi}/hlis equal
to a constant. An example of the results obtained from Equation [48] for
this case 18 shown in Figure 20. The curves represent the central accelera-
tion z. and velocity £z, of the dlaphragm as functions of the time t; the non-
compressive values as given by Equations [50a] and [50b] are shown by straight
lines. The unit of time is taken to be the diffraction time, or T, = a/c,
where ¢ 18 the speed of sound in the adjacent liquid and ¢ is the radius of
the diaphragm, assumed circular; and the incident pressure is assumed to have
such a value that the initial acceleration, 2F;/M, 1s unity. With a constant
incident pressure of different magnitude, all ordinates would be changed in
proportion to the pressure. The figure refers to the special case in which
pa/m = 12.5 and hence M, = 9.7 M; then k= 13.4 and b = 9.34,

The figure would be applicable, for example, to a 10-inch steel
diaphragm of thickness 0.05 inch, acted on by a steep~fronted wave in which
the pressure behind the front is uniformly 1700 pounds per square inch. Then
s, 18 in inches, and the unit of time is T, = 5/59 = 0.085 millisecond.

The figure confirms the statements just made as to the approach to
non-compressive values, which is very rapid in the case represented. The
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Figure 20 - Curved for a Diaphragm under Uniform Pressure Suddenly Applied

The diaphrags is constrained to move parsboloidally; s, is the deflection of its center, ¢ is the
time, and T, is the diffraction time, equal to the radius of the diaphragm divided by the speed
of sound. The curves represent actual values of acceleration and velocity; the lines represent
the non-compressive values. The plot is drawn for a particular case, as explained in the text,

and is only approximate.

figure would not be greatly changed if the more correct integrodifferential
equation were employed, instead of the approximate difference-differential
equation. : :

Impulsive Pressure

The second speclal case that 1s of particular interest is the fol-
lowing. After the plate hus been at rest for a time exceeding D/c, let it be
given by impulsive action a velocity z, = v, and then left to itself, with
F; = ® = 0. In this case it is evident, by integration of Equation [48) dur-
ing the time of impulsive action, that

v=S8 = 2 (p 4

whereas according to the reduction principle the velocity ds,/dt will ap-
proximate within the diffraction time to the non-compressive value as given
by Equation [50b] or




31 CONFIDENTIAL

1.0r 0.28
0.9
/

0.8 // / .20

L 4 LA A

0.6 e @ 0.18
91 o5 L 1; . z
“- \ / /(ﬂ.'o.OOSZO

04 // .10

ANDES

02 4 .08

\\ g
0.t %#

- 0
0 02 04 086 08 IC t 112 1.4 16 18 20 o2

Figure 27 - Curves for a Diaphragm Loaded Impulsively
For further explanation, see the text and the note under Figure 20.

M

¥+M (53]

T M +M, W+ it =
Thus the initial velocity soon becomes reduced in the ratio M/(M + M,) as the
loading by the liquid comes into play.

The corresponding curves for the velocity de./dt and for z, as ob-
tained from the approximate difCerence-differential equation, for v, = 1 and
pa/m= 12.5, are shown in Figure 21; the horizontal line represents vy. The
curves and lines happen to be exact copies of those in Figure 20. The rapid
approach to the non-compressive velocity 1is again evident.

Solutions for either of these two simple cases could be utilized to
construct by addition the general solution of Equation [48], provided @ is
known as well as F;,. The case first discussed corresponds to Heaviside's
unit function.

MOTION OF A PLATE OR DIAPHRAGM CONSTRAINED ONLY AT THE EDGE
The accurate treatment of a plate that is not constrained as to
shape presents a very difficult problem even on the hydrodynamic side, apart
fror all the difficulties that arise from the varying elastic and plastic
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behavior of the material of the plate. All complications due to the material
of the piate have been hidden in the present treatment under the symbol ¢ or
® and no detailed consideration of them will be attempted in this report.

In the absence of exact solutions, semiquantitative results of some
utility may be obtained by assuming a convenlent or plausible type of propor-
tional constraint and applying the corresponding results of analysis, A
principle equivalent to the reduction principle may be expected to hold, al-
though, as has been stated, it is not easy to prove or even to formulate in
the general case. The velocltles generated by a short impulse of pressure,
for example, should be relatively large at first, but they should decrease,
within a time less than the diffraction time, approximately to the velocities
that would have been generated if the water had been incompressible.

CAVITATION AT A PLATE OR UTAPHRAGM

The analysis is readily c¢xtended to cover the occurrence of cavita-
tion at the interface between a 1iquid and a plate or diaphragm that remains
approximately plane, provided suffi-
ciently simple assumptions are made
concerning the laws of cavitation. Let
it be assumed that cavitation sets in
vherever the pressure at the interface
sinks below a fixed breaking-pressure
P,,» and let all complications due to
surface tension or to the projection of
spray from the free surface of the lig-
uid be ignored. The cavitated region
will thus be assumed to have a sharp

bounding edge on the diaphragm, as il-

Figgggezgf'aIéiggggzgéoxrgg the lustrated in Figure 22. The results

In the left-hand figure the edge is advancing at obtained on these assumptions will be

speed U over the face of the diaphrags. In the described here, with reference for fur-
ight-hand f: it is reced t the
:u: tangent &"Z.'. 1;qum mt::o“l:bc an ::.1’. ther details to the Appendix; .hey

:d::thwm:“ un::; ::1: ::am; “::d.. :f::: should find at least qualitative appli-
changes ua’ normal velocity from 4; to the cation to actual cavitation at an in-
normal velocity iy of the plate. terface, unaccompanied by cavitation in
the midst of the 1liquid.
In practical cases the cavitation should usually begin, if at all,
during the initial phase of the motion, and at a central point where the in-
cldence of the waves 18 nearly normal. For this phase, therefore, the formu-

las for the free plate should hold approximately, as discussed on page 4.
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There remain then, for discussion, the process by which the region of cavita-
tion spreads over the plate, the subsequent motion of the free liquid surface,
and the final process by which the cavitation is destroyed.

After cavitation has begun, the edge of the cavitated region will
advance over the plate for a time as a breasking-edge, enlarging the area of
cavitation; then it will halt and eventually return as a closing-edge; see
Figure 22. It must begin its advance from the initial point at infinite
speed; and it may happen that the cesvitation spreads instantaneously over a
finite area. Similarly the cavitation may disappear simultaneously over a
certain area, in which case the closing-edge may be supﬁosed to move at an
infinite speed. In other cases the edge will move at a finite speed.

The process at the edge turns out to be distinctly different ac-
cording as U, the velocity of its propagation in a direction perpendicular
to itself, is less or greater than ¢, the speed of sound in the liquid.

If U<'¢, 1t appears that no discontinuities of pressure or par-
ticle velocity can occur at the edge of the cavitated region, and U is mere-
ly the velocity with which the liguid next to the edge 1s streaming over the
plate. This velocity, in turn, is determined Jjointly by the incident wave
and by all of the diffracted waves emitted by various parts of the plate,
and no simple statement in regard to its value can be made.

If U2 ¢, on the other hand, the propagation of the edge is essen-
tially a local phenomenon, snd mathematical treatment is easy; For effects
can be propagated through the liquid only at the speed ¢, and no such ef-
fects coming from points behind the moving edge can overtake it; thus its
behavior must be determined solely by conditions just ahead of it, and these
in turn cannot be affected by the approach of the edge. For the same reason,
the snalytical results are not limited now to small displacements of the
plate. Impulsive effects also become possible.

For 8 breaking-edge moving in this manner,

U= -3 (54)

where 8p/d8t is the rate of change of the pressure in the 1iquid ahead of the
edge, as determined by the incident pressure wave and the motion of the plate,
and 8p/8n 1s the gradient of this pressure over the plate in a direction nor-
mal to the edge; see Equation [147] in the Appendix. Here, necessarily,
op/bt < 0. Thus the edge of the cavitated area will advance toward the un-
broken side at the speed U2 ¢ provided - 8p/8t 2 ¢ 8p/m.
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As the edge advances, the particle velocity of the liquid in a di-
rection normal to the plate changes impulsively by

ai = 3';51'-(1 - ;')f [55)

where p, is the pressure in the cavitated region, assumed uniform; see Equa-
tion [149]) in the Appendix. Or, if U is infinite, as in the instantaneous
occurrence of cavitation over a finite area,

D, —P

— (561

. Ai -
as in one-dimensional motion. If P, =p,, orif U= ¢, 43 = 0. Otherwise
43 S 0, since the 1iquid cannot penetrate the plate; this agrees with the
fact that p, S p,.

The analogous formula for a closing-edge is

v=Ze (571
where £, and z, are normal velocities of 1iguid surface and plate just ahead
of the edge in the cavitated area, and ¢ is the angle at which the edge meets
the plate; see Equation [152] in the Appeqdix. and Figure 22. Thus U2 ¢ on-
ly if ¢, - i, 2 ctan 6. As an exceptional case, it appears that the 1liquid
surface might roll onto the surface like a rug be:lrig rolled onto the floor,
with ¢, = #, and 0 = 0 at the edge of contact. If 2, > z,, the pressure in
the 1iquid adjacent to the plate rises impulsively, as the edge passes, from
P. to p. + 4p where .

89 = pe(i - iy)(1 - 2r) * (58)

or, if U=, as where closure of cavitation occurs simultaneously over a
certain ares,

8p = pe(i, - i,) (59

See Equation [151) in the Appendix. Equation [59] is familiar in one-
dimensional water-hammer theory.

Before and after the passage of the edge, sach element of the 11q-
uid surface will follow one of the differential equations already written
_down. In the cavitated region this will be Equation [2U] or

5’37[(%3);_%? = 2p; + P~ P, [60]
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in which p, represents the actual pressure p on the surface. At the same
time, elements in contact with the plate will be moving according to some
other equation such as Equation [16]. The symbol (d’z[dtz).._% in any equa-
tion may be taken to ref'er always to the acceleration of an element of the
1iquid surface, whether free or in contact with the plate.

The Impulse )

It 1s notewbrthy that the total impulse on any point of the plate
should not be affected by the occurrence of cavitation. For the pressure on
the plate is always the same as that on the 1iquid surface, according to the
assumptions that have been made. Hence, from Equation [24], the total im-
pulse per unit area on the plate due to the waves, up to.a time at which the
plate has come to rest and all effects of diffraction have ceased, is

I-f(p—p,)dt-zfp‘dt [61]

where p; 1s the pressure in the incident wave. The integral of the left-hand
member of Equation [24] with respect to the time vanishes in the end, since
ds/dt begins and ends at zero. The intervention of cavitation has no effect
upon Equation {61].

A Proportionally Constrained Plate
The problem becomes much simplified and can be treated completely

if the very arbitrary mathematicsl assumption is made that both plate and
liquid surface move proportionally and in the same manner, so that their dis-
placements are both represented by equations of the type of Equation [28] but
with different values of z.(t) during the cavitation phase. Cavitation then
appears and disappears simultaneously at all points of the plate. Successive
phases of such motion are illustrated in Figure 23.

/]
7/
Pigure 23 - Illustration of Cavitation 7
According to the Assumption of g
Proportional Constraint ////
The left-hand figure shows the initialiy flat dia- 7
phragm; in the middle, cavitation has occurred, but
both diapiraga and liquid surface are assumed to be A
deformed in the same proporticnel mamner; right, the s
cavitation has dissppeared simultaneocusly over the //
entire disphragns.
%
7
/
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With this assumption, the tendency for the motion to approximate
ultimately to the non-compressive type can be formulated mathematlically. At
the instant of cavitgtion, an impulsive decrease may occur in the velocity of
the liquid surface, but this is not of much significance. For it may be in-
ferred from the reduction principle as developed in the Appendix that, within
a time of the order of the diffraction time T, after the onset of cavitation
at a certain time t,, the velocity of the center of the liquid surface will
approximate to the value

o . .

Here F; and M, are given by Equations [31a] and [36], respectively;

o, = [[ (s = P f (z¥) dzdy [63]

where p, is the total hydrostatic pressure in the liguid at the level of the
point z, y on the cavitated surface, p, 1s the pressure in the cavity, and
the integral extends over the entire surface of the liquid under the plate;
and, finally, 2z, stands for the velocity of the combined plate-liquld surface
at a time that precedes the onset of cavitation by an interval of the order
of the diffraction time; see Equation [158] in the Appendix.

The value of z. glven by Equation [62] differs from the value given
by non-compressive theory only in that the initial veloeity z. is not taken
at the instant of cavitation. 1If cavitation occurs very soon after the ar-
rival of the pressure wave, z. is practically the same g&s the value of z,
Just before the arrival of the wave.

Similarly, after closure of the cavitation at a time t,, the veloc-
ity of the combined liquid-plate surface soon becomes

M . 1

t

i, i+ TR A M+_M¢f‘,(”‘ +@)dt  [6u)
where M, ¢ and F; are as in Equation [29], ., 18 the velocity of the plate
Just before impact, and z,, 18 the velocity of the 1liquid surface at a time
that precedes t, by an interval of the order of the diffraction time. See
the Appendix, Equations [161] and [162], where an explicit expression for i;
is given.

This 1s again nearly the non-compressive result. The last term in
Equation [64] represents the change in velocity of the liquid-loaded plate
that is caused by the applied forces. If i;, were replaced by the veloclty

of the liquid surface at the moment of impact, the first two terms would

-
M+ M,
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represent the resultant velocity as given by the usual formula for an inelas-
tic impact between masses M and M,.

If the liquid surface i1s not constrained in shépe, as in reality it
is not, expressions comparable to these are hard tc obtain., It sppears, hows
ever, that at least the order of magnitude of the effects to be expected may
be ascertained in a given case by assuming a reasonable form of proportional
constraint for both plate and 1iquid surface and employing Equations [62] and
[64]. The equations will hold so long as no further short-1ived pressure
waves arrive to cause temporary departures from the non-compressive motion.

In using the equations it may be possible to fix the value of z.
or z,, only within certain limits, but this may be sufficient for practical
purposes.

PART 4. DAMAGE TO A DIAPHRAGM
A FEW SWING TIMES

It is often desired to estimate the swing time of a plate or dia-
phragm. A rough estimate can be based upon the formula for the following
special case; see the Appendix, Equation [173].

Consider a circular diaphragm of radius a and uniform thickness,
held rigidly at the edge, and thin enough so that bending resistance can be
neglected. Assume that the elastic range is negligible, that the yield
stress has the constant value o, that the diaphragm, initially flat, remains
symmetrical and paraboloidal in form during its motion, and that thinning may
be neglected. Then the swing time, or time for the diaphragm to swing free-
1y through a short distance from the flat position and come to rest at 1its
maximum deflection, if there is gas at equal pressure on both sides, is

T, = o V2 [65)

o

where p, 1s the density of the material. If the density, is 0.283 pounds per
cubic inch, as for steel, so that in dynamical units p, = 0.283/386, if o =
80,000 pounds per square inch, which may be a reasonable nominal estimate for
mild steel under high strain rate, and if a is in inches and T, in milli-
seconds,

T

< 1L4e . 5 061a [66)
o

If the diaphragm jis mounted in a rigid baffle with liquid of den-
sity p, on one side, the hydrostatic pressure in the liquid being the same
as the pressure of the gas on the opposite face, then the swing time is in-
creased, as a result of loading by the liquid, to
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T, = 5’% ‘/—:1(1 +.0.78 f %) [67]

where h 18 the thickness of the diaphragm. For the same steel and for water
this becomes )

T, = 0.061a Y1 + 0.100% milliseconds [68)

provided a and h are expressed in the same unit. If there is liquid on both
sides of the diaphragm and of the baffle, having a density p, on one side and
p, on the other, p, is to be replaced in Equation [67] by py + Py

If the diaphragm is mounted in one side of a gas-filled box only
slightly larger in diameter, the coefficient 0.78 in Equation [67] is changed
to something 1ike 0.4, and 0.100 in Equation [68] to roughly 0.05.

The effect of the elastic range is discussed in the Appendix.

DEFLECTION FPORMULAS FOR A DIAPHRAGM

From a survey of the preceding analytical results it appears that
only limited progress has been made as yet toward an exact treatment of the
Lydrodynamical side of the problem that is presented by the impact of a shock
wave upon a diaphragm. The situation is somewhat better as regards the be-
havior of the dlaphragm 1itself, although even here complexities and uncer-
tainties are encountered because of work hardening, increase of stress at
high strain rate and thinning of the diaphragm. It is not the purpose of
this report to attempt an accurate theory of the plastic deformation of a
diaphragm. Simplified assumptions as to its behavior will be adopted in
order to obtain a few approximate formulas possessing a limited usefulness.

Let the yleld stiess ¢ be constant. For steel this 1s more nearly
true at high strain rates than at low rates. Let both the elastic range and
the thinning be neglected. Actually, the thinning may extend to 1/3 or even
2/5, but its effect is at least in the opposite direction to that of work
hardening. With these assumptions the fundamental equation for plastic de-
flection can be written in the simple form,

E = ghaA [69]

where E is the net energy delivered to the diaphragm, k is its thickness and
-AA 1s 1ts increase in area due to plastic flow. -
For a circular diaphragm deflected into a spherical form, AA = mz?®
in terms of the central deflection z; this formula is almost correct also for
the paraboloidal form. For a circular cone,®* 4AA = nzﬁ/z. Profiles for these

* Shapes between spherical and conical are often produced by underwater explosion; they are nearly
hypsrboloidal, as illustrated in Figure 24. Certain observations indicate that in the course of the
damaging process nearly conical shapes may ocour momentarily.
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Sphere
Parabolod

shapes are compared in Figure
24, Por a rectangle w, and w,
on a side, deflected into the

shape characteristic of mem- y &
brane vibration in the lowest Figure 24 - Curves Illustrating Four Types
mode, so that the deflection of Diametrical Profiles for a Diaphragm

LEJN 4]
at any point is 2z sinwl smw2

AA-(I;-)%-O-.-W‘,;: z?

for small z. Thus for circle, cone and rectangle, respectively, for small z,
1 1 w w
E = nohz?, E= g mohs?, E= Enzah(-w—: + w—:)zz [70a, b, c]

For a square or w, = w,, E is n/4 times as great as for a circle at the same
central deflection.

A correction for the elastic range 1s easily made, if required,
provided it is assumed that the elastic constants are unaltered by plastic
flow and provided reslistance to bending may be neglected. During deformation
up to the elastic limit the area will increase by a definite amount 4A,.
Since the stresses are at each instant proportional to the increase 1n area
up to that instant, the average stress will be ¢/2 and the energy absorbed
up to the elastic limit will be :

E, = 3 ha4,

or half what it would be if the stress were constant. Thus, if E denotes the
total energy absorbed by the diaphragm, initially flat, up to a maximum in-
crease of area AA,,

E = $0haA, + oh (84, - 44,)
If AA is the residual increase in area after removal of the load, 44 =
4A, - AA,. Hence

E = oh(aA. - %AA,) = oh (44 + %AA,) (1)

In general, the increase in area is proportional to the square of
the central deflection, for siall deflections. Hence, if the central deflec-
tion 1s z, to the elastic 1imit, z, to the maximum under full load and z for
the permanent set, from Equation [71]

PLA zl2 - %z,’, 2l = 2% 4 3! [72a, b)
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where z, 1s the deflection calcu-
\ Incident Pressure lated from E with neglect of the
) elastic range, that is, from E =
°"3!Z§7.?:2,'..°' oMAA, where AA, corresponds to z,,

or by putting z = z, in Equation

{70a, b, ¢]. It is assumed here

Te > Ty that the same shape occurs at all
deflections mentioned.

In a few specilal cases,

1 1

Te Time Ts formulas for the deflection pro-
1
Figure 25 - Illustration of Case 1, duced in a diaphragm by a shock
Relatively Long Swing Time wave can now be obtained by bring-
The swing time of the diaplragm, T,, is much longer ing forward suitable formulas for
than either the time con: tant Ty of the incidemt E

pressure wave or the diffraction time 7.

CASE 1: Relatively long Swing Time, No Cavitation; i.e., T,» T, and T,>» T,,
or the swing time of the diaphragm several times longer than either the dif-
fraction time or the time constant of the wave, as illustrated in Figure 25.
These conditions as to the times are usually satisfled in practical test as-
semblies because.of the thinness of the dilaphragms.

Let the diaphragm be mounted i1n a fixed plane baffle. Then, if it
is assumed to be proportionally constrained in its motion, in the sense de-
fined on page 26, its center will acquire a velocity

2(F, dt

Vem —M-+—M—‘ [73]

This equation results from integration of Equation [35] in case T, «T,, 8o
that non-compressive theory holds; otherwise it follows from the reduction
principle as expressed in Equation [50b]. It is only necessary that stresses
in the structure have little effect on the diaphragm until the hydrodynamic
action is completed.

The combined kinetic energy of dlaphragm and water will then be
converted into plastic work, so that

2
. \ 2|Ii‘,-dzl

M+ M,
For a circular diaphragm of radius a deflected paraboloidally,

7 M, - 0.813 pa®

F, = ﬂa’%‘-- M= np,h
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in terms of the incident pressure p;, thickness h, density of diaphragm ma-
terial p, and of water p; see Equations [U2b], (42a), and [UU4]. Hence, from
Equation [72a}, for a small central set deflection z,

12 = gl — -12-2,2 [(75]

where z, is the deflection at the elastic 1limit and 2z, is found from Equa-

tions [70a) and [74] to be
‘/ﬂl + M,
Z), ™ Vm 2moh [76]

or

0= & (fnae)( L 1+o.7;6;"- %)% (771
d

If the incident wave is of exponential form, so that p, = p_ e fp..dt may
be replaced by p,/a.

Equation [77] implies a variation of z as fp,.dt and hence roughly
as W§’R, where W is the weight of the charge and R 1s the distance from the
charge to the diaphragm. This latter statement 1s based on similitude com-
bined with the assumption that p varies simply as 1/R for a given charge.

According to similitude, the same pressures occur at distances and
at times proportional to W*; hence, if f{R', t') denotes the pressure as a
function of the distance R’ and of the elapsed time t’' since detonation for
a unit charge or W= 1, the pressure due to any other charge at distance R
and time t is

R t
A
* (Wi W})
Hence
R _t V(B o gy
pidt = |f(=5 , —q)dt = WS |f{—=, t')dt
v = [o(By ) e = WA (2 . ¢)
where t’ = t/W*. But the value of fp‘.dt for W= 1 is a function of R’ given
by '
LR = [f(R, ¢ at’
Thus at a distance from any charge

1= frae = why (2 (78]

Roughly, I, (R') = Wt’R’ and hence I Wi’R. Actually, asccording to
theoretical estimates partlally confirmed by obs2rvation, the maximum pressure
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should vary more rapidly than as 1/R. Furthermore, the duration of the pres-
sure wave at a given point should increase somewhat with an increase in R;
for an exponentlal wave this 1s represented by a slow decrease in a. These
two changes have opposite effects upon I, but the first should predominate.
Thus I,(R’) should vary somewhat more rapidly than as 1/R’.

A further complication arises in practical cases from the spherical
form of the wave. This further decreases the deflection somewhat; and the
decrease should be greater at small distances. Work hardening and increased
strain-rate effects in the diaphragm will also have the effect of decreasing
the larger deflections as compared with the smaller,.

The final result seems to be that Equation [77] implies a varia-
tion of z as W*F(WR) where F(W;’R) equals I,(R/W*) multiplied by a factor
to correct for sphericity and other minor factors; and F(W¥R) might vary
. either more rapidly or lels§ rapidly than as W#’R. The variation of z might
happen to be nearly as W /R"™ where n is a constant elther a little greater
or a little less than unity.

Other cases in which cavitation does not oceur may be treated by
integrating one of the other equations of motion. Kirkwood solved his equa-
tion for the paraboloidal diaphragm, which was mentioned in connection with
Equation [48], with the help of Fourier Analysis; the results may be found in
his reports, References (6) (7) and (8).

CASE 2: Prompt and Lasting Cavitation at the Diaphragm Only; Ta<XT,, T.< T,,
or the compliance time is much less than either the diffraction time or the
swing time, as illustrated in Figure 26. It is assumed here that cavitation
sets in so quickly that the diaphragm
acquires maximum velocity before the
pressure field has been appreciably

Displacement of modified by diffraction, and also be-

Oigphragm fore the diaphragm has moved far

2 enough to call appreciable stress
T K Tq forces into play. It 1s also assumed

that no further deflection is pro-
Cavitation - duced when the cavitation disappears.
]
Tm Ts These conditions as to times are com-

1i
¢ " monly satisfied in test assemblies;
Pigure 26 - Illustration of Case 2,
Prompt and Lasting Cavitation if cavitatlion occurs at all, it
at the Diaphragm should usually occur relatively early

At the compliance time Ty, the diaphragm has in the damaging process.

reached maximum velocity; cavitation is tien Under the conditions stated
assumed to occur aud iu last at least until ’

the diaphragm has completed its outward swing. all parts of the diaphragm will be
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projJected with a common velocity v,, and the entire diaphragm will acquire
kinetic energy of magnitude

1

E = 3 hp, Avg (79]

where A 18 its area. This energy will then be converted intoc elastic and
plastic work, and 1if thé relation between this work and the deflection is
known, the defiection can be calculated.

Equation [72a], with z, calculated from [70a] and [79], thus gives,
for a circular diaphragm of radius a, deflected into a spherical shape,

22 = 2? — % tl, 2, = ave ‘/-25’{'; [80a, b)

For a shock wave of exponential form, p; = p  e~®%, the maximum ve-
locity 1s given by Equation {7], and

oPn /20 T '
e i [81]

ll -
where z = pc/apdh, in which p 18 the density of water in dynamical units and
¢ the speed of sound in it.

If the diaphragm is deformed into a more pointed shape, as commonly
happens, z will be somewhat greater; for a conical form, z;, would be greater
in the ratio ¥2. On the other hand, the actual maximum velocity will prob-
ably be somewhat less than v, as given by Equation [7], because cavitation
will probably not occur until the pressure has sunk more or less below the
hydrostatic value; z will be correspondingly reduced.

These equations predict nearly the same variation of z with dis-
tance R from the charge as was inferred for Case 1, but, for ordinary thin
diaphragms, a somewhat slowcr variation with charge weight W. The difference
arises from a decreased influence of the duration of the wave. Th}s in-
fluence is represented, for an exponential wave, by the factor zT-# in Equa-
tion [81]. Since z = pc/am, z increases in proportion to 1/a and hence in
the same ratio as does the factor fb‘dt in Equation [77]; but in practical
cases z lies between some such limits as 2 to 10, and a glance at Figure 4
on page 5 shows that in this range z'Té?'increaaes much less rapidly than
does z,

The deflection z and the projection velocity v, may vary, there-
fore, in this case, either a 1ittle more rapidly or a little less rapidly
than as 1/R; they should vary more rapidly than aslVi. but not so rapidly
as W‘. Both z, and v_ might happen to be nearly proportional to Wi.
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CASE 2a2: Same as Case 2 with Reloading after Cavitation at the Diaphragnm;
Figure 27. After the occurrence of cavitation the remainder of the shock
wave should act on the water surface and accelerate it toward the diaphragnm,
unless the shock wave 18 so short
that its duration does not exceed the

Oisplacement of compliance time T,. The effect on
Diaphrogm the water should be especially strong
2 near the edge of the diaphragm; and

here, also, the motion of the dia-
phragm 1s soon checked by the support.
At the edge, therefore, the cavita-

Cavitotion ———o

L

o T, tion must begin to disappear immedi-
‘me ately, and i1t should then disappear
Figure 27 - Illustration of Case 2a, <
Cavitation at the Diaphragm progressively toward the center. The
with Reloading boundary of the cavitated area may

This differs from Figure 26 in that the cavitatim move at supersonic velocity and will
closes "'1‘_‘ .z:a:h’n;:::: :i:::‘_;h’ daphrag®  tven be accompanied by an impulsive
increment of pressure.

Such an action is hard to
fcllow analytically. The only easy case is the rather different 1deal one in
which both diaphragm and water surface are assumed to move in the same pro-
portional manner, as on page 41. Then the cavitation closes impulsively on
all parts of the diaphragm at once.

If the duration of the cavitation is considerably longer than the
diffraction time, Equation [62] gives for the velocity acquired by the center
of the water surface while free

»

- i
z, X, J;- F,dt

where T, is the time of the beginning of cavitation; this time is assumed to
follow the arrival of the wave so closely that 2.’ in Equation [62] can be
dropped, and @, is assumed to be equal to zero.

When the water subsequently overtakes the diaphragm, an impulsive
equalization of their velocities will occur, resulting in a partial reflec-
tion of the kinetic energy back into the water. If the dilaphragm has already
been brought to rest by the action of internal stresses, their common veloc-
ity soon after the impact of the water should be M,#,/(M+ M,), according to
the first term on the right in Equation [6Y4], and their combined kinetic en-
ergy should then be
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. 2[)'7 i'.-dz]z

—(M+M)(M+M - M"'+M‘ [82]

This energy represents a fraction M/(M + M,) of the energy of the moving wa-
ter, whose total magnitude is

2
2|[ F.adt
'%'Aﬂ il - "Ij;;;"“‘l" [83)
[}

The fraction M,/(M+ M,) «ill, however, be close to unity in practical cases;
and if the diaphragm is moving at the time of impact, 1L will take on a still
larger fraction of the kinetic energy of the water.

The kinetic energy of water and diapnragm will then be converted
into additional plastic work. The total work should thus be at least as
large as

2
) 2” F,.dtl
E = 5 hp, Avi + —0

M+ M,

Inserting again the values for the paraboloidal circular diaphragm and v,
from Equation [7], noting that, if p, = p.e"'

. o 2 1
=4 2 —at = T8 Pm T-:
J'.", F,dt 2 7a L‘p'c dt 7a %

by Equation [5a], and equating the walue found for E to nahzﬁ it is found
that Equation [81] 1is replaced by

1
2 — 2
R SRVETVNE S (R O U (84)
b 1+0776 2 2
Py b
for an incident wave of exponentisl ferm. In these formulas it might be more
nearly correct to omit M, or the 1 in the denominator under z? in the last

equation.

Comparison of Equation [84] with Equation [81] shows that the re-
loading increases the deflection in the ratilo
z? %
14--— _
(1+ % 5% )
1+M%%h
Since z increases with 1/a, or with the duration of the wave, it appears from
the considerations advanced in the discussion of Case 1 that the deflectlon
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should probably be more nearly proportional to 1/R in this case than in
either of the other two cases, but should increase with W more rapidly than
in Case 2.

The applicability of Equation [84] in actual cases is doubtful,
however, because of the artificlal assumption that has been made as to the
motion of the water. If closure of the cavitation in reality progresses
from the edge inward, it is possible that support of the water by the outer
part of the diaphragm may greatly decrease the development of kinetic energy
in the water. Furthermore, a fixed baffle has been assumed. If there 1s no
baffle, or if 1t ylelds, the kinetic energy acquired by the water and the re-
sulting increase in the plastic work will be less,

CASE 3: Negligible Diffraction Time T, but Wave Not Short; T, << T, and
T,<< T,. Under these circumstances non-compressive theory can be used. If
also T, < T,, or the time constant of the wave 1s much less than the swing
time, the situation 1s that of Case 1. Otherwise the action of the wave
overlaps on that of the stress forces, and the motion of the diaphragm is
more complicated.

For a proportionally moving diaphragm mounted in a large plane
fixed baffle, quantitative results are easily obtained. According to the
simple assumptions that were made 1n the beginning, the net stress-force re-
sisting its motion will be proportional to its deflection; hence it is pos-
sible to write @ = - kz_  where k is a constant. Then Equation [35] becomes

2
M + M,)‘i—:!‘ + kz, = 2F, (85)

which is of the same form as for a forced harmonic oscillator. For the ex-
ponential wave or p; = p_ e ®', F, can be written F, = F,e ™' where F,18 a
constant. The appropriate solution of Equation (85], when z, = z, = 0 at

t = 0, 1s then

2F,
(M + M) (a®+ p*

“”VMfM, [87)

The final deflection 2z, will be the first maximum value of z; to
find it requires the solution of a transcendental equation. It may conven-
lently be expressed in terms of the deflection under a static load of magni-
tude F}, that is, under a static pressure equal to the maximum incident

o
u

z, )(e‘°'+ sinut —-anut) [86]

where
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pressure p,. The corresponding static deflection, obtained from Equation
[85] with 2F; replaced by F, is '

z |_\n.]

_h -
co k
From Equations [86] and [87]

2., = 2Nz, [89]

where the dynamic response factor or load factor N is the first maximum value
of

2
u —at . O . -
—!——“ jrapy (c + u sin ut couut)

Or, N is the first maximum value for z > 0 of
—qs

1 .
Tf:;?(d + gsinz — cosz)

which 1s the solution for y =dy/dz = 0 at =z = 0 of the type equation
dz
Gty [90]

A plot of N is given in Figure 28; the abscissa represents ¢ from O
to 1, then 1/q from ¢ = 1 to ¢ = o, In the present connection,

o _2a, _2 T
=g = n=C Bt

where T, = 1/a and represents the time constant of the wave, while T, = w/2u
and represents the swing time or the time required for a maximum deflection
when the diaphragm is started moving from its flat position and then left to
itself.

The greatest possible value or z., for a wave of positive pressure
is 4¢2,,; this 1s attained when the pressure remains sensibly constant during
the entire swing time. The factor 4 arises from a doubling by reflection of
the incident wave, and a second doubling by dynamical overshoot.®

If no baffle is present, so that even the diffraction time for the
entire target 1s small as compared with the time constant of the wave, the
factor 2 1s to be omitted from Equations [85]) and {86], and Equation [89]
becomes

‘Cﬂ - 2Nz¢0 [92]

In this case, for a very long wave, only the doubling by dynamical overshoot
remains.

* gee also Reference (25).
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29,
N
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Figure 28 - Plot of the Dynamic Response Pactor or Load Factor N
for a Harmonic System under Exponential Forcing

N represents the ratio of the maximum deflection of a harmonic system of natural frequency », when
acted on by a suddenly applied force F, ¢«~™, to its static detflection under a steady force F,. Here
t 18 the time and @ and F, are constants. The plot serves also for a proportionally constrained dia-
phraga whose swing time is T,, when acted on by sn exponential prossure wave of time constant T, = 1/a;
that is, the incident pressure is p; = p, ¢ *'where t is the time and p, and a are constants.

For the circular diaphragm already considered, z., can be calcu-
lated either from formulas already given for M, M,, F,, and T,, or directly.
Por a pressure equal to p,, F, = na’n‘/Z by Equation [42b]. The curvature
of the diaphragm is given nearly enough by the approximate formula for a

.. sphere, 2z./a? for small z,; hence the stress force per unit area normal to
the plane of the dlaphragm 1s ¢ = - Yohz./a?, on the assumption of equal hy-
drostatic presasures on the front and back. Thus by Equations [31b] and [4Ob],

¢ = - i%’;i‘-f.(l* f:-) 2rdr = — 2n0hz,
, °

and k = 2ok, Hence, for small 2z

= ok [93)

If the accurate formula for the curvature 1is used, or C --;f%?;:;
a quadratic equation must be solved for z,.

) Detailed formulas have been given here for only one type of wave,
the 1dealized shock wave of exponential form., The waves emitted during re-
compression of the gas globe can be approximated roughly by superposing seve-
eral exponential terms, but simple final formulas are not obtainable; see
Reference (16).
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THE FACTORS DETERMINING DAMAGE

The question is often asked, upon what feature of the shock wave
does the damage to a plate or diaphragm depend? Is it the maximum pressure,
the impulse or the energy? A related question is the law according to which
damage varies with size of charge and with distance.

The results of this and other analyses indicate clearly that no
simple and general answers to these questions are to be expected, but that in
special cases a few approximate rules can be given.

1. Mazimum pressure should be the chief factor determining damage to
relatively small structures, namely, whenever the time of action of the pres-
sure greatly exceeds both the swing time and the diffraction time for the
structure, or T,» T,, T, >» T,. The rapidity with which the pressure is ap-
plied, however, will also be of significance.

For a diaphragm of radius a inches, this condition should hold at
least for shock waves from charges in excess of 50 a® pounds. This estimate
is based on T, = 1/a = (WV}OO)*/l}OO and 7, < 0.1a x 10~3 from Equation [68].
The condition should be satisfied for Modugno gages in the presence of
charges of 10 pounds or over.

If the diffraction time is also much less than the swing time, so
that T > T >» T‘, non-compressive theory can be used, as on page 52. 1If,
furthermore, the application of pressure is gradual, the action is essential-
ly a static one and the damage corresponds in the static manner to the maxi-
mum pressure. On the other hand, if the pressure 1s applied rapidly, the
damage will be increased in proportion to an appropriate dynamic response
factor or "load factor." If the application is effectively instantaneous as
in loading by a shock wave, and 1f the resistance varies linearly with deflec-
tion, as 1s more or less true for a plate or diaphragm in the plastic range,
the deflection should be almost twice the static value.

Since the pressure due either to shock waves or to gas globe oscil-
lations, except near the globe, varies roughly as the cube root of the charge
and inversely as the distance, the resulting deflection of a plate should
vary in the same way, under the conditions assumed, except that at great dis-
tances a large correction for the elas*ic range will be required; for the
pressure p required to give a diaphragm of radius e¢ and negligible thickness
a small deflection z is proportional to z; see Equation [8] in TMB Report
490 (17). Thus the maximum deflection will be approximately, bn’t/r, where b
is a constant, and, from Equation [72a],

2 $ 2,2
: = .b_r.'}'_-,.z,.b‘:’ 1-——1”’,;, . [94]

where z, 1s the deflection at the elastic limit.
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The pressure to be used in calculating the deflection will be the
maximum pressure in the incident wave when the dimensions of the entire tar-
get are small as compared with the length of the wave in the water, or twice
the maximum pressure if the dlaphragm 1s surrounded by a large rigid baffle.

2. The hnpulacj}dt should determine damage when {(a) cavitation does
not occur and (b) the time of action 6f the pressure is much less than the
swing time of the structure, or T, <K T,. For a diaphragm of radius a inches
this should hold for a charge of a®/100 pounds or less.

This case is exemplified by Case 1 as previously described, and in
particular in Equation [77]. In Case 1 the diffraction time was also assumed
to be relatively short; but the statement just made concerning the impulse
should hold independently of the diffraction time. For the lnfluence of dif-
fraction 1s confined to the relief pressure, as represented by the integral
in Equation [16], and the relief pressure in turn is determined by the motion
of the diaphragm itself. Thus the whole motion depends upon the initlal ve-
locities given to the structure by the incident wave; and since the wave, by
assumption, acts only during a small part of the swing time of the structure,
the initial velocities produced by it are proportional to the impulse, inde-
pendently of the maximum pressure or the duration of the wave.

The variation with W and R should be'as described for Case 1 in the
last section. To a first approximation, the set deflection z should be given
by

{

. =B—‘%- [95)

where B 'is almost constant for a given structure, provided the elastic range
can be neglected.

This case will probably not arise often, however, because of the
common intervention of cavitation.

3. The energy carried by the wave, f}zdt/bc, does not appear in any
simple damage formula obtained from the present dynamical analysis. The
energy should be significant whenever circumstances are such that little re-
flection of the wave occurs; but such cases are not easy to define precisely.
More generally, the energy wlll be the significant quantity 1f, for any rea-
son, the plastic work stands in a fixed ratio to the energy brought up by the
wave. Since the incident energy varles in proportion to the charge weight W
and roughly as 1/R2, the deflection, which 1is nearly proportional to the
square root of the plastic work, will then vary as W¥R, or

}
s =c i 96
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where C is a nearly constant coefficient, so long as elastic effects can be
neglected. The factorlvi in this expression represents a variation interme-
¢iate between theWi for the pressure and thelV§ for the impulse, or a varia-
tion as the square root of the product of maximum pressure and impulse.

Observations generally show a varlation of the deflection more or
less as in Equation [96]. The plastic work commonly differs, in fact, by
less than a factor of 2 from the energy brought up by the wave. A discussion
of the data 1s contained in TMB Report 492 (18).

From the analytical standpoint, howewver, correlation of damage with
the energy in the wave appears to be somewhat of an accident, contingent upon
the range of magnitude of various factors as they occur in practice, rather
than a direct consequence of the conservation of energy. There exists no
general necessity for the plastic work done on a structure to equal the ener-
gy that 1s directly incident upon it according to the laws of the rectilinear
propagation of waves., Part of the incident energy may be reflected; or, on
the other hand, if the motion approximates to the hon-compressive type, it is
possible for the energy absorbed by the structure greatly to exceed that
which is brought up by the wave.

In TMB Report 489 (11) it was inferred, nevertheless, from the ex-
ample of the free plate, that damage to a dlaphragm should probably correlate
better with the incident energy than with the incident momentum. The argu-
ment is substantlally that by which it was concluded in Case 2 that the set
deflection z might vary about asiV*. Or, it might be that the more rapid
variation introduced by reloading, as in Case 2a, would assist in bringing
about rough proportionality of z tolVi.

The analytical formulas indicate, furthermore, that in most tests
on diaphragms the plastic work should not differ greatly from actual equal-
ity with the energy that 1s brought up to the dlaphragm bty the incident wave.
For an exponential wave, Equation [2), and a circular diaphragm of radius a,
this energy will be

2 2,2
: mwa
Ew=ﬂazf%ﬁc—-dt =2_07’;.ﬂ. [97]

Thus the ratio of the energy absorbed py the diaphragm, estimated as nahzﬁ
to that brought up by the incident wave will be, for three cases treated in
the last section, from Equation [77], [81], or [84], respectively.

E 3z
{1} non-compressive: -— =
Ee 14077622
Py h
E | X 1
(2) 1lasting cavitation:zf-z hgl-e
»
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E 14z 3 22
(2a) cavitation and reloading: = UglT=2 1 + =

v 4 L o
1+ 0.776 >

h

In tests on steel diaphragms p/p, = 1/7.83, while a/h 1s of the order of 100

and z lies between 5 and 10. For such values, in the absence of cavitation,

E somewhat exceeds E,. In the case of cavitation without reloading, the fac-
tor :n:*':'tf ranges from 1/11 to 1/17, so that E is only a third or a quarter of

E_; the reloading by the water will then probably increase E to something be-
tween E,/2 and 2E,. In some cases it may happen that E = E,,.

Thus, although exact formulas are not easy to obtain, it can at
least be said that the observed rough proportionality of the deflections of
many diaphragms or similar structures to W%R, or at least to the square root
of the energy in the incident wave, and the approximate equality of the plas-
tic work to the incident energy, stand in fair harmony with analytical expec-
tations.

To sum up, the analytical results suggest that the major factor
controlling damage

1. should be the maximum pressure for relatively smal) structures,
whose swing time and diffraction time are both small as compared with the
time constant of the incident wave;

2. should be the incident impulse when the swing time of the target
is much greater than the time of action of the pressure, provided cavitation
does not occur;

3. may be something nearly proportional or even equal to the incident
energy in some intermediate cases, or when cavitation occurs.

PART 5. ANALYSIS OF A FEW DATA ON DIAPHRAGMS

The application of the preceding formulas to recent observations
made at the Taylor Model Basin will be discussed in the report on those ob-
servations. Two other sets of test data, reported by the Bureau of Ships,
will be discussed here.

MODUGNO GAGES
The data published by the Bureau of Ships on Modugno gages (19) are
in partial agreement with the theoretical expectations set forth here.
The diameter of the gages was 1 inch for the diaphragm itself and
2.€ inches overall. Thus the diffraction time T, would be 0.008 millisecond
for the diaphragm or 1.3/59 = 0.022 millisecond for the entire gage.
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The time constant T, of the shock wave would be perhaps 0.06 milli-
second for a charge of 0.2 pound and more than 0.1 millisecond for charges of
a pound or larger. '

Thus, at least for the larger charges, T, is relatively small, and
Case 3 as describec .on page 52 1s present. Compressibility of the water can
be neglected; cavitation should not occur. Furthermore, there should be no
appreclable increase in the pressure by reflection, except during the first
few microseconds.

Tre swing time of the diaphragm with water loading may be estimated
from Equation [67] as

7 2057 [0.000832 (1 . 0.39 )]*
17 35000 8.89 &

Here 8.89 is the specific gravity of copper and 0.000832 its density in inch
dynamical units, and the yield stress has been taken as 35,000. According to
this formula T, varies from 0.078 for a thickness h =.0.03 inch to 0.060 mil-
lisecond for h = 0.1 inch. This 1s of the same order as the duration of the

wave. Hence some increase of deflection by dynamical overshoot is to be
expected.

For charges of 1 to 300 pounds of TNT, the static pressure P re-
quired to produce the same deflectlion as does the explosion was found experi-
mentally to vary nearly as R™"' where R 1s the distance in feet from the
charge to the gage; see Figure 18 in Reference (19). The exponent 1.14 might
arise chiefly from the variation with distance of the pressure due to a
charge of TNT. A variation with distance of this order was found at Woods
Hole for tetryl (20). Similitude would then imply a general variation of P
as (W;’R)”“ or as WP*YR1. uhereas the data indicate a variation more
nearly as Wo%Rr?!

The more rapid increase with W may be partly the result of in-
creased dynamical overshoot. For 1 pound, ¢ = 2T,/(nT,) = 2 x 0.07/(0.117n) =
0.40, roughly, at which, in Figure 28, N = 1.22. For 200 pounds, ¢ =
2 x 0.07/(0.647) = 0.07, at which N= 1,80. Thus Equation [92] implies an
increase in the deflection due to increased overshoot, as the charge 1s in-
creased from 1 pound to 200 pounds in the ratio 1.80/1.22, or in the ratio
W%’  0On the assumption that deflection and equivalent static pressure are
nearly proportional to each other, therefore, the total variation of the
equivalent static pressure would be about as W *%% = w048 unich 15 not
too different from the observed WO,

In absolute magnitude, however, the equivalent static pressures are
considerably below the estimated peak pressures in the explosion wave. For
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example, the wave from 1 pound of TNT at 7.5 feet, corresponding to that from
300 pounds at 50 feet, should have a peak pressure of about 2100 pounds per
square inch, but it produces only the same deflection as a static pressure of
1650 pounds. The occurrence of dynamical overshoot should make the wave
equivalent perhaps to 2100 x 1.22 = 2560 pounds. An increase of 55 per cent
in the yleld stress of the copper diaphragm above the static value, due to
high strain rate, would remove the discrepancy, but such an increase seems
excesslive.

Other features of the data cannot be interpreted with certainty.

21-INCH DIAPHRAGMS

Data pertaining to tests on 21-inch steel diaphragms have recently
been reported by Lt. Comdr. R.W. Goranson, USNR, for the Bureau of Ships (22}.
The diaphragms were securely fastened to the equivalent of a heavy steel ring
1 foot wide mounted on the front of a heavy caisson and were attacked by
charges of 1 pound of TNT. Perhaps the ring can be regarded as roughly
equlivalent to an inflnite baffle.

In Table 2 there are shown, for seven shots, the kind of steel, the
thickness h, the distance R of the charge, the average dynamic yleld stress ¢
as estimated in the original report, the observed final set deflections z,
and several computed values of z.

TABLE 2

21-Inch Steel Diaphragms of Speciai Treatment Steel, High Tensile Steel,
Medium Steel and Furniture Steel

K(i)?d A R o 24508 zcalc: Zrree | Eme cav, t, £ :“
2 o eet per
Steel inches|feet|1b/in inches inches|inches| inches|inches second

STS [0.125 | ¥ |125000 1.22 1.13 0 1.46 | 0.82 83
HTS {0.125 | 3 85000 2.0U 2.00 { 0.77 | 2.52 | 0.67 1
MS |0.125 | 3 | 85000 2.00 2.00 | 0.77 | 2.52 | 9.67 ] 1

FS [0.109 |2.5 | 45000 |  §:30 | 3.69 | 1.50 | 4.52 | 0.u9 | 136

FS |0.063 [4.5 | 45000 2.70 2.89 | 0.88 | 3.36 | o.49 | 83
PS |0.032 {10.0| 45000 1.35 1.92 | 0.33 | 2.14 | 0.49 3]
MS [0.125 [1.75| 65000 | 3.95 (avg)| 4.01 | 1.74 | 4.97 { 0.59 190

A is the thickness, ¢ the assumed average dynamic yield stress, R is the distance to the charge.

Sobs. 18 the observed central set deflection, s, the calculated value at the elastic limit; for
other vaiues of s and for v,,, see the text.
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A fair approximate estimate of the high-pressure part of the shock
wave at a distance of R feet from 1 pound of TNT, according to measurements
by Hilliar (14) or with plezoelectric gages (22) seems to be

p = 15}200 e—8700¢ lb/ina

The time constant of the wave 1s thus about T, = 0.115 millisecond. This 1s
comparable with the diffraction time for the diaphragm or T, = 10.5/59 = 0.18
millisecond, but it is much less than the swing time, which 1is given by Equa-
tion [66] as 0.64 millisecond. The swing time will be longer if water load-
ing is included.

Thus, if cavitation does not ogeur, Case 1 as described on page U6
of the present repor:. 1s present. Deflections calculated on this assumption,
from Equation {77], are shown in Table 2 as z,,,,  They are decidedly
larger* than the observed values. The discrepancy is piobably great enough
to outwelgh possible sources of error in the necessarily simplified mode of
calculation that is cmployed here. It may be concluded, therefore, that the
diaphragms were protected in some way, probably by the occurrence of cavi-
tation.

The pressure on the diaphragm should sink very quickly from its
initial peak value. The velue of z in Equation [5b] is 5.7/(8700 x 0.000733A)
or 0.89/h, where h 1s the thickness of the diaphragm in inches. Hence, for
h = 0.125 inch, z = 7.1, and the compliance time, at which the pressure has
become hydrostatic and the diaphragm is moving at maximum velocity, is, from
Equation [5a), T, = In 7.1/(8700 x 6.1) second = 0.037 millisecond. This is
a small fraction of the swing time. For thinner diaphragms T, will be even
less. The pressure will then become negative, and cavitation is to be ex-
pected.

On the assumption that cavitatlon occurs at the surface of the dla-
phragm as soon as the pressure on it sinks below the hydrostatic value, the
maximum velocity of the diaphragm is v, as given by Equation [7). Velocities
calculated from this equation, with p_ = 15600/R, pec = 5.7, z = 0.89/h, are
given as a matter of interest as v, in Table 2. If no further energy is de-
1ivered to the diaphragm by the water, and if it takes on a nearly spherical
shape, its central net deflection z will be given approximately by Equatlons
[80a] and [81]. Values calculated from these equations, using & = 10.5
inches and the values of ¢ given in the table, are shown in Table 2 as z,. ..
They are much smaller than the observed values. Even smaller calculated

* In the original report (21) much smaller calculated valuss are given owing to the use oI’ a different
nethod of calculation. The method employed in this report is belisved to bs preferable.
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values of z, and also smaller values of v,, are obtained 1f cavitation is
assumed to set in st a pressure below hydrostatic pressure.

Hence, as was pointed out in the original report (21), an addi-
tional source of energy must be found. The water will in fact, overtake the
diaphragm and may do additional plastic work upon it. According to the ana-
lytical results, the water should acquire considerable velocity even 1if the
incildent wave has entirely ceased; but, actually, at t = T, = 0.037 willi-
second, the incident pressure has decreased only to a fraction ¢ 100 X 37 x 1076
or 0.73 of its *=itial value. An attempt to allow for the additional plastic
work was made in Equation [84], and values of z calculated from this equation
and [80a] are shown in Table 2 as z These values are in good agreement
with the observed deflections.

The assumptions underlying Equation [84] are certainly wide of the
mark in certain details, but it may be that in their broad outlines these as-
sumptions reproduce roughly the process that actually occurred. If this is
so, about three-fourths of the plastic energy was delivered to the diaphragms
by the water as 1t impinged upon them after closure of the cavitation.

The final result will presumably not be very different if cavita-
tion occurs first in the water, or if, beginning at the diaphragm, it then
spreads back Into the water.

cale.*
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MATHEMATICAL APPENDIX

WAVES INCIDENT UPON THE INFINITE PLANE FACE OF A TARGET

The only case of wave reflection that can be handled easily is the
incidence of waves upon a plane reflecting surface of infinite lateral extent.
The waves may be of any type and incident at any angle, but it must be assumed
that they are weak enough to make the linear theory of wave propagation appli-
cable. Purthermore, if movement of the surface occurs, its displacement must
be small. The surface will be called a target, but it may be wholly or in
part merely the free surface of the water, The case thus characterized will
be under discussion except as otherwise stated.

- Under these conditions, an expression for the pressure fieid in the
fluld in front of the target can be buil! up by the method of superposition.
Let p, denote the pressure that 1s added tc the hydrostatic pressure p, at
any point in the fluld by the incident wave or waves; that is, p, + p;, is the
pressure that would exist there if the target were replaced by fluid. Let a
set of reflected waves be added such as would occur if the target were rigid.
These waves are simply the mirror image of the incident waves in the face of
the target; together with the incident waves, they give a pressure field in
which, at ‘'any point on the target, the exccss of pressure is 2p,, while the
component of the particle velocity perpendicular to the face is zero.

The target and the fluid must, however, have the same normal compo-
nent of velocity. This may be secured by addinz further waves such as would
be emitted by a suitable distribution of point sources located on the face of
the target. In the waves emitted by a point source, the pressure p and the
particle velocity v at a distance s from the element may be written

O L R T T

where t i3 the time, p 1s the density of the fluid, ¢ is the speed of sound
in it, and where f(t - s/c) stands for some function of the variable t - s/c,
and f' for the derivative of this function. The fluid emitted by
the source will be that which crosses a small hemisphere drawn
about the source as a center; see Figure 29. The volume V, emit-
ted per second will be, therefore, 2nszv,. Or, since the first
term in Equation [98) becomes negligible in comparison with the
second as s + 0, -

V, = lim[2ma? o1y f(t - 2)] = 2

If there are N sources per unit area, the volume emit-
ted per second from an element 4S of the surface will be NV,4S. Figure 29
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In the resultant motion of the fluid as a whole, this volume is carried out-
ward from the surface by the normal component of the resultant particle ve-
locity v,. Hence

v, 65 = NV, 4§ = 2—"’y-f(z)as
The velocity v,, however, must be the same as the normal component of veloc-
ity of the target. Hence, if z is a coordinate of position for the element
4S, measured perpendicularly to the initial plane and, for convenlence, in
the direction away from the fluid,
-—0% o ;
" dt

The proper particle velocity will exist, therefore, at the target if f(t) 1is
such a function that

v

Z"Nf(t)-v = — 3

Then

PR - P .
fe) = f(t) ke
‘where 7 = 22z/dt%; and .
’ - 8 - — __L .
f(t C) 27N “¢-%
where % -2 denotes the value that the acceleration z# has, not at time t, but
at the earlier time t - s/c.
The pressure at a distance s from the element 8S, due tc all sources
on it, 1s, therefore, by [98]

Nas s .,
NoS)p, = 2= f e - 2)m — 2=

and at any point on the face of the target the pressure due to all sources is

po=— [, sds [99]

where s denotes distance from the point to the element dS. Here p, refers to
a particular point on the target and to time t, z ‘-,_18 the value of 7 at dS
but at a time ¢t - s/¢, and the integration extends over the face of the
target.

The pressure at any point on the target due to all causes is then

P-2P,~+P.+Po'2pi+1’o‘Ee;f'i"ig-.‘gds (100)

Here even p, may vary from one point of the target to another.
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THE MOTION OF A PLATE, DIAPHRAGM OR LIQUID SURFACE

Suppose that, in the case just considered, the target consists of a
plate or dlaphragm, initially plane. Then its equation of motion will be

mi=p+ ¢ —p, [101]
where m is its mass per unit area, and ¢ stands for the difference between

the hydrostatic pressure p, on the front face and the pressure pg on the back
face, plus the net force per unit area due to stresses, if any. Or, by [100],

. ' 1.,
mz-2p‘.+¢—?p;f;-z,_%ds (102]

The displacement 1s assumed here to remain small enough so that its component
parallel to the initial plane can be ignored. Equation [102] is an integro-
differential equation for z, which is a function both of time and of position
on the plate.

The "target" may actually consist wholly or in part of the free
surface of the 1liquid, for nothing in the calculation of the pressure rests
upon the assumption of a solid target. At any point where the surface is
free, or, for that matter, at any other point as well, z will represent the
normal displacement of the liquid surface.®™

At a point on the free surface, [100) may conveniently be written

p 1.
E—f;z,_%ds-2p..+po—-p [103]

where p is the external pressure on the surface. The integral extends as
usual over the entire plane. This equation, when needed, can be formed from
[102] by setting m = 0 and ¢ = p, - p. Here p, includes atmospheric pressure
and may differ from p because of an accelerational pressure gradient in the
liquid. At any point where the surface of the liquid is in contact with a
plate or diaphragm, [102] will continue to hold.

THE CASE OF PLANE WAVES

If the plate remalns accurately plane, and if p, is uniform over it,
then Z 1s also uniform and hence 1s a function of t only. Thus in the inte-
gral in [102] the quantity % (-4 is a function of t and s only. Hence in

this integral dS may be replaced by 2msds, representing a ring-shaped element
of area on the plane, and

[Li,_sas = 2nfi, 4 ds

Now a dot over z,_. 1s equivalent to differentiation with respect to the
argument t - s/c, so that
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'2'1_1-—“'—_"7&‘_‘%--0‘4—2 'c" [10""]

where z,_. 1s the velocity at time t - s/c.

¢

Hence, if the integration 1s restricted to a ring-shaped area be-
tween 8 = s, and s = s,,

l=.z ‘

f”l-%%ﬁ"z’”’fd "‘d’-_z’m""l
1= Y ) “

= 2mea(t - &) — (e - )] [105)

[

whereas if the integration covers the entire plane, and if the plate started
from rest so that z{- «) = 0,

i, 245 = 2meito) [106)

Thus [102]) becomes
mZ + pci =2p, + ¢ [107]

where all quantities refer to time t. This 1s an obvious generalization of
the one-dimensional equation; see Equations [10) and {11] on pages 24 and 26
of TMB Report 480 (10).

Equation [107] has reference to plane waves at
normal incidence. It was pointed out by Taylor (4) that
‘the case of plane waves incide't at any angle 6 can eas-
11y be treated provided it is assumed that ¢ = 0, so that
the elements of the diaphragm move independently.

Let y denote distance measured along the dia-
phragm in the plane of incidence. In Figure 30 there 1is
shown an incident wave QQ'Q", at all points of which the
incident pressure has the same value. If Q strikes the
origin for y at time ¢, Q' will not strike the diaphragm

Figure 30 until a time jLélﬂJ& later, where ¢ 18 the speed of sound
in the liquid. Thus if p,(t) denotes the incident pres-
sure at y = 0, ts value elsewhere on the diaphragm is p‘(t - ng%ﬂJ{).

It 1s a natural surmise now, to be verified in the sequel, that the
displacement z will also be a function of the same argument or z(t - iLE%ILﬁJ
Then all elements execute the same motion but in different phase; and

,(clT-f( &+ ysiné nnO)df
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Introducing polars s, ¥ on the diaphragm so that y = 8 cosy and
dS = sdsdy, changing from s to 8' = s + s cosy sin 6, so that ds’ =
(1 + sin @ cosv¥)ds. and proceeding as in obtaining [105],

.. dS r.. s’ ds’ dy 2me .
f’z-% s I'Jz(t c) 1 + siné cos ¥ = cosé 2(t)

provided z(- =) = 0. Hence [102] becomes, as a generalization of [107],

.o, PCZT
mi+ —o =2p+¢ (108]

This equation 1s also obtained easily from a simple consideration of the pro-
cess of reflection.

EFFECT OF AN INFINITE BAFFLE

Let part of the target consist of a plane baffle extending later-
ally to an infinite distance from the edge of the plate.

If the baffle is fixed in position, its only effect upon [102] is
that the range of 1integration for the integral need be extended only over the
face of the plate, since elsewhere z = 0.

If the baffle is movable, let z, denote its displacement. Then
over the baffle z, is uniform and is a functlon only of the time t or zb(t).
Let the integral in [102] be divided as follows:

[di gas = [3afe- das+ [z -5t - ) as
plate
in which the first integral on the right is arbitrarily extended over the
plate as well as over the baffie, and the error thus introduced is compen-
sated for by the second term in the second integral, which extends only over
the plate. The first integral on the right can then be transformed as in
[105), since %, (¢t - s/c) 18 a function only of ¢t - s/c, giving

Lift - 4)ds = 2me 1)

in terms of the velocity z, of the baffle at time t. Hence [102] may be

written

]

mi = 2p, + ¢ — pei, — 22 [ 23 -%]  as [109]
plate ¢

where all quantities except # - Z, in the integrand are taken at time ¢t.
Another form for a special case is given in Equation [19] or [20].
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PLATE OR DIAPHRAGM PROPORTIONALLY CONSTRAINED AND MOUNTED
IN AN INFINITE PLANE BAFFLE

Let it be assumed that in the displacement of the plate from 1ts
initial plane position all elements move in filxed proportion, so that it is
possible to write

z=2(t) f(z,y) [110]

where z, 18 a function of the time whereas f(z,y) 1s a fixed function of po-
sition on the initial plane; z, may represent the displacement of some point
on the plate, such as the center, at which then f(z,y) = 1. Let the baffle
be immovable.

Then [102] becomes, with ¢S replaced by dz'dy’,

mz (t) f(x,y) =2p, + ¢ — 2—‘;—[]—:— 'z'c(t - %) Sz y)dz dy’

Here z,, in contrast with z in [102], 18 a function of time alone, and

Z.(t - 8/c) denotes the value of d2z,/dt? at a time t - s/c. By multiplying
through by f(z,y) and integrating again over the whole area of the plate, a
convenlent ordinary integrodifferential equation is obtained for z,:

v = _ P fl.“ I AWTIRE vy
Mi =2F + ¢ —2”fff(z,y)dzdyfj : z,(t c)f\z,y)dz dy’ [111)
where

M=ffm[f(z,y)]2dzdy (112]

F. =ffpif(z.y)dzdy, [} =ff¢f("y) dzdy [1133’ b]
Since, from [110],
z = i’c f(:c,y) [11;4]

the kinetic energy of the plate ls
K = ffl 'zd d = l <2 ( 2 1 . 2
, midzdy zchfm[fz,y)]dzdy=-2-Mz, [115]

A more useful form for the integral in [111] is obtained if z'y’ are
replaced by polars s, 9, with origin at the movable point z,y, but with the
axis in a fixed direction, soc that dz'dy’ is replaced by sdfds. Here s and 6
may be defined by the equations

' —2 =39c080, y —y = ssinb

see Figure 31. Then, after changing the order of integration, [111] can be
written
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ME:'”’.-"”‘sz’,(t--g-) n(s)ds [116]

where D is the maximum diameter of the plate and

n{s) = % dofff(z'.y')f(x.y)dzdy [17]

in which f(z',y) 1s to be understood as expressed in terms of z, y, s, 4. If
8 18 too large, the integral in z and y will vanish for certain values of 6;
and the entire integral vanishes for
s> D.

Moiion of the elements par-
allel to the initial plane of the
plate 18 ignored here, as usual. An
equation containing correcticns for
motion of the baffle is obtained on
page 28 of the text as Equation [33].

The proportional shape may
be supposed to be maintained by suit-
able internal constraint forces which
on the whole do no work in any dis-
placement of the plate. These forces
are in addition to those due to
stresses; they might be supplied, Figure 31
for example, by a suitable linkwork
mounted on the diaphragm.

If ¢’ denotes the net force on unit area due to the constraints, the
element of work done by them is dW's= f(¢'dz)dS =0, or, if 2=z, + 2 f(z,¥)
as in [32], to allow for motion of the baffle,

AW’ = dz,[¢"dS + dz,[¢"f(z,y)dS =0

But f¢’dS 1s the total force due to the constraints and must vanish. Hence
J’o'f(z,y)ds = 0. The vanishing of this integral prevents ¢ ' from contributirg
to @.

As a special case, If a circular diaphragm of radius a 1s assumed
to remain symmetric about its axis but to become paraboloidal in form, and
if z, 1s taken to represent the displacement of the center, then

.2
flz,y) =1-— P’ {118])

where r denotes distance from the center, and it is found that, whereas n(s) =
0 for s & 2a, for 08 s < 2a
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n(a)-%az[(2—3R2) “R (R+ ‘R® - 4R“)W] (119]
where R = s/a. Furthermore, from [112], if m is uniform over the plate,
M"'%ma2 [120]

and, if the incident pressure p; is also uniform, from (113a],

F; -%wa"’p‘- [121)

+

Or, 1if the diaphragm moves like a piston, except for a negligible
ring at the edge, f(z,y) = 1 and

n(s)-az(Zcos"% —-g-“-—R’) [122]

2

M= gma‘, F= nazp,- [123a, b]

The curves for n{s) corresponding to these two formulas do not vary
much from straight lines of the form

n(s) = mz(A'—B'g) [124]

If the constants A’ and B’ are determined so as to give correct values to the

two integrals
' a a
fn(s)dc, Isn(s)da

then, for paraboloidal constraint, A' = 0.357, B’ = 0.246; for the piston-
like constraint, A’ = 0.961, B’ = 0.544, The curves for n/ma? and the ccr-
responding lines are shown in Figure 32,

If an expression for n of the form of [124] 1is substituted in [116],
the integral can be evaluated. For the upper 1imit, however, 2a must be re-
placed by s = A'a/B’, at which n as given by [124] vanishes. A dot over
z.(t - 8/c) 18 equivalent to differentiation with respect to the argument
(¢t - 8/c), hence, at fixed t, in analogy with [104],

el 9= -2 - - del-

Hence, integrating by parts,

J%EA'~B'%)ic(t - %) ds = [-—c(A’—B'%)gc(t -~ %EB,'c(t _ %)”%”

= cA'z(t) + %23'[:,(: - %:%) - zc(c)]
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Figure 32 - Plot to Represent the Function »n

For a piston » 1is defined in Equation [122); for a paraboloidal diaphragm, in Equation [119).
The radius of the diaphragm is e, and the distance from ite center is R. The curves represent
w/wel; the straight lines represent linear approximations having the same area under them as
the curves and also the same moment about the axis, R = 0,

If this expression multiplied by ma® is substituted for the integral in [116],
and also

ngcazA' -k neczaB' - Aa -T
M ! M ' B'c
Equation [116) becomes the difference-differential equation

200 + ki) - bz (0 - 20 - 1) = 2Lt 2 [125]

This equation is more easily handled than the more accurate integrodifferen-
tial equation; in simple cases it can be solved completely.

THE NON-COMPRESSIVE CASE WITH PROPORTIONAL CONSTRAINT

Let ¥, change 8o slowly with time that it changes only by a negli-
gible amount during a time D/c. Then in Equation (111] or [116] %, can be
treated as independent of s and can be taken out from under the integral sign,
with the result that

(M+M)i, =2F +9 [126)

M, = E";fff(z.v)dzdyff-:- fzy)dz'dy' = P["(')d' [h27)

in which s denotes the distance between the elements dzdy and dz'dy’.
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For a clrcular diaphragm of radius &, substitution of [119] or
[122] for » in [127] and evaluation of the integral gives, for the paraboloi-
dal and the piston-like motions, respectively,

M, = 0.813 pa’, M, = %pa’ [128a, b]

A third type of motion that is of some interest is described by

- -4
e = (Ofy) = 2,01 -5) * for r<a [129]

The integral in [102] becomes in this case, when % varies slowly enough with
the time,

[+ gas =i f21-~ f;)‘ias [130)

Now this last integral represents the electrical potential at any
point of a disk due to a density of charge on it equal to (1 - r’/a’)‘f; and
it 1s a known theorem in electrostatics that a surface density varying in
this manner produces a constant potential over the disk. The constant value
of the integral is easily found by evaluating it for a point at the center,
where s = r and dS may be replaced by 2srdr. 30 that

[Hi-1 )ds 6{(1-—-,) 2rdr = n'a !

With the use of this result, the integral for M, in [127] 18 easily
evaluated, thus:

M, = °(1 - %;)_%21" dr[(l - Iy) 2mar

. a(l__"‘z)- dr = wlpal
wpa[ QY rdr =npa [132)

Furthermore, substicution from [130] and [131] for the integral in
[103] gives

T .
gPoz. = 2p,+p, —p (133]

This result will hold for the water surface exposed in a circular opening of
radius a in a plate lying against the water, when, with the exposed surface
initially plane and stationary, a comperatively steady'presaure equal to

2p, + p, 18 generated in the water back of the hole while the pressure on the
exposed surface 18 p. Then [129) represents the displacement of the water
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surface provided z, 1s such a function of the time that Z, has the value
given by [133].

The electrostatic analogy can be utilized in all cases to show that
Al,if/? represents the kinetic energy in the water. This may also be shown
from [126]) as follows. Let the mass of the diaphragm be negligible, so that
M can be set equal to 0 and stress forces can be neglected in #, and let F,; =
0. Then Equation [126), multiplied through by z,, can be written, using
(113b],

M i i, = [[62, flz,y) dzdy

Here ¢ 1s now the difference between hydrostatic pressure and the pressure on
the back face of the plate, and %, f(z,y) 1s the velocity; hence the integral
represents the rate at which the net pressure 1s doing work. .This must equal
the rate at which the kinetic energy of the water 1s increasing; and the left-
hand member of the equation is in fact equal to

f(3mil)

Up to this point it has been assumed that the dlaphragm is sur-
rounded by a fixed plane baffle of infinite extent. If there i1s no baffle,
and the diaphragm forms one side of an air-filled box, the determination of
M, 1s much more difficult. In order to estimate the order of magnitude of
the difference, the value of M, was calculated for a sphere whose surface
over one hemisphere moves radlally outward while the other hemisphere re-
mains at rest. The motion of potential flow 1s easily written out for this
case in terms of spherical harmonics; summation of the resulting series gives
M = 0.832mpa® where a 1s the radius of the sphere and p the density of the
surrounding fluid. Had the fluid been confined by a plane baffle continuing
the plane of the base of the expanding hemisphere, M, would have been 2mpal,
Thus removal of the baffle decreases M, in the ratio 0.416. It 1s a plaus-
ible surmise that the decrease in M, would be somewhat less for a paraboloil-
dal diaphragm and somewhat more for a piston.

THE REDUCTION PRINCIPLE, IN THE CASE OF PROPORTIONAL CONSTRAINT

Suppose agalin that only part of the target 1s movable, the rest
constituting an infinite rigid baffle; as before, let the maximum diameter of
the movable plate be D. Let M and M, be constants. Then the following state-
ments are true:

1. Within any time interval of length D/c, at least once

d’z,  (2F, + @),

at? = MW, [134)
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where a subscript f means that values are to be taken at the end of the in-
terval, while d®z,/dt* 1s the acceleration at some unknown instant during the
interval. Alternatively, d?z,/dt® may merely change discontinuously from a
value on one s8ide of that stated to a value on the other side.

2. Within any time interval of length D/c¢, at least at one instant t

D t
£ (t) =2(t) + ﬁ{pl[i,(z, -1)- ic(t,)]n(s)da +((2F‘. +¢)dt} [135)

¢

or

t
J
. e, 1
ZOLRXNE s !(zi} + @)dt [136]
1
where t, 18 the time at the end of the interval and t, 18 any chosen time not
later than its beginning, while t,’ 18 some unknown instant lying between

t, -D/c and ¢t,. Thus

t,-—-%z <t <t <t<ty,
and t, and ¢, are arbitrary except that

-4 > D

To prove the first of these statements, multiply [116]) through by
M((M+M,):

(M +M)M,M3it) = MM +M,)[2F,. +0 - pf‘z‘,(t -4 n(s)da] [137]

Now, if Q 18 any quantity independent of s, by [127]

D
M,Q -pjo n(s)ds [138]

By applying this transformation to Z,(t), F;, and &, it is easily seen that
[137] can be written

p f {M[(M +M)i (6) ~ 2F, ~ 8] + M,[(M + M)7 [t - £) - 2F, ~ o]} n(s)ds = 0
1]

Now 1f the second expression 1n brackets does not vanish for any value of s
in the range of integration, and nowhere jumps from positive to negative or
vice versa, then it has everywhere the same sign, and the same sign as the
first bracket, which is its own value for s = 0; the entire integrand has,
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therefore, the same sign throughout, and the integral cannot vanish. Hence
for at least one value s’ between 0 and D the second bracket must either van-
ish or change sign discontinuously. At the corresponding time, ¢t - s'/e, %,
or z,(t - 8'/c) has the value stated in [13U].

To prove [135], Equation [116] 1s first integrated with respect to
the time from t, to t,:

M5t - 20,) = fl(zi'+¢)dz-pb[[ = ) =it~ &) o)

Multiplying by M,(M+ M,) and applying [138] to all terms except

D
p!ic(t, - -g-) n(s)ds

there results

f{ [(M+M,)z(t,) Mz(z)—j(zr+o)dz—p6[( __.)d.]

0

¢ .
M [+ MYz (e, — &) - Mafe) - ﬂzi; + ¢)dt

t

_ pfic(t, - %—) n(s‘)da']} n{s)ds = 0

and by reasoning as before and then using [127], Equation [135] is obtained.
To convert thiis cguation into [136], note that, since n 1is positive and z,(t)
is continuous, there exists a value s” between 0 and D such that

o [filn-4)- 1) s = 1, = £) - st i

= M[ (1, - ) - i4t))]

by [127). The terms containing t, in [135] can thus be written

2(t) + Fi!jil_, [2.(t, - )i ()]

This expression lies between z (t,) and % (¢, - s'/c); 1t is, therefore, the
value of #,(t, - 8/c) at some other value s’ between O and s”, or the value
of #,(t) at some time t,’ between t, - D/c and t,.
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Comparison with [126] and with the result of integrating this equa-
tion from ¢, to t,, respectively, shows that the values of 7, and z, given by
[134) and [135] or [136) are equal to the values obtained from non-compressive
theory except for the initial correction due to the first integral in [135]
or the substitution of t," for ¢, in [136].

INITIAL MOTICN OF A PROPORTIONALLY CONSTRAINED PLATE

After a proportionally constrained plate has been either at rest or
moving uniformly for a time greater than D/c, let a wave of pressure p; sud-
denly begin to fall upon it, at time t = 0. Then, in [111], Z (¢t - s/c) will
at first differ from zero only for small s, for which f(z',y’') may be replaced
by f(z,y) and taken out from under the integral sign. The integration with
respect to dz'dy’ or dS’' can then be carried out in analogy with [106]:

Jife - )95 wzmei [139]
provided z,(- ) = 0. Thus [111], becomes, approximately, for a short time,
Mi .+ pcAz =2F + ¢ [140]
where
a=[[[fay)]dzdy (141]

EPFECT OF FLUID ON BOTH SIDES CF THE PLATE

If there is fluid of appreciable density behind the plate as well
as in front of it, a release pressure will be developed on both sides. That.
in front will be, from [99],

Py (1.
Pa = 7 on ‘;z‘_#ds
where p, is the density of the fluid in front and c, is the speed of sound in

this fluid. The release pressure behind the plate will be similarly,

Py [1..
p.2= on :l'__cgz, dsS [1'42]

where p, and ¢, refer to the fluild behind the plate. The reversal of sign
here arises from the fact that in obtaining the formula for the release pres-
sure 7 was assumed to be measured positively away from the fluid, whereas
here the positive direction for Z is taken always toward the back side of the
plate. The total pressure on the back face 1s then

Py = Pt Py,
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where p,, is the hydrostatic pressure on that face.

Thie second release pressure p,, 1s automatically allowed for in the
quantities ¢ and @ as originally defined. Hence, if desired, all of the pre-
ceding formulas, Equations [100] to [141], will still hold provided p and ¢
in those formulas are replaced by p, and ¢,.

As an alternative, ¢ may be defined as

$=8,-po= 8~ 2[5, . as [143)

where ¢, denotes the difference between hydrostatic pressure on thé front and
on the back, plus the net force on the plate per unit area due to stresses.
Then by [113b] and the transformation leading to [116]

Tt %fjﬂx’y)““ﬂ% EC(t - %)f(z',y')dz'dy'

D
-0 - szEc(t —;8;) n(s)ds [144)
where
¢, = [¢,f(z,9)dS [145)

If this is done, it 1s readily seen that, besides the substitution
of ¢, for ¢ in all equations, every term containing an integral with Z (-4 Or
z(t - 8/¢) in the integrand 1s replaced by the sum of two similar terms with
p and ¢ changed to p, and ¢, or to p, and ¢,, respectively; furthermore, in
such equations for M, as [127], [128a, b] and [132], p is replaced by p, + p,,
and where the acoustic impedance pe¢ occurs, as in [107], [108], [109], and
(140], 1t is replaced by the sum of the two impedances, p,c¢, + p,c,.

In particular, for a uniform plane plate between two fluids, with
plane waves incident normally upon it on one side, [107] becomes

mi+(pyc, + pycr)i =2p, + ¢, [146]

CAVITATION AT A PLATE OR DIAPHRAGM

The analytical theory of cavitation at the interface between a
plate and a2 liquid will be developed here on the two assumptions that cavita-
tion occurs whenever the pressure sinks to a fixed breskinge-pressure P,, and
that the pressure in the cavitated region has a definite value p,, not less
than p,. The assumptions hitherto made concerning the plate will be retained.

On these assumptions, cavitation will begin in an area on the plate
in which the pressure i1s decreasing and at a point at which a local minimum
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of pressure occurs. Since in the neighborhood of such a point the pressure
differs only by a quantity of the second order, cavitation will then at once
occur at neighboring points as well. Thus the edge of the cavitated region,
advancing over the plate as a breaking-edge, will move at first at infinite
speed. Eventually it will halt and return toward the cavitated area as a
closing-edge, leaving the liquid behind it in contact with the plate.

Let U denote the speed of propagation of the edge in a direction
perpendicular to itself, and let ¢ denote the speed of sound in the liquid.

If Ug ¢, the phenomena at the edge are essentially local in char-
acter and the analytical treatment is easy. For effects can be propagated
through the 1liquid oniy at speed c¢; hence no effects propagated from points
behind the edge can overtake it, so that its behavior is determined entirely
by conditions ahead of it, and these conditions, in turn, are entirely unin-
fluenced by the approach of the edge.

Consider, first, a breaking-edge. Let dn denote the perpendicular
distance from the edge to a point P ahead of 1it,.

Then the pressure, which 18 p, at the edge, 1is

op .
P, +—a-50n

at P, where 8p/dn denotes the gradient of the pressure P in a direction per-
pendicular to the edge. The pressure at P will sink to p,, and the edge will,
therefore, move up to P, in a time

where 8p/8t 1s the time derivative of the pressure in the 1iquid jJust ahead
of the edge. Hence

op '
d ot
on

Thus U & ¢ only if -8p/dt & cdp/om.

As the edge passes P, the pressure on the liquid surface, previous-
ly p,, becomes p,. If p, > p,, the sudden increase in the value of p in [103]
requires a compensating negative increment of the integral in that equation.
This increment can arise only from high momentary accelerations of the liquid
surface. Hence, as the edge passes P, there occurs an impulsive change in
the velocity of the liquid surface perpendicular to the plate. This change
is easily calculated.
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The high values of the acceleration associated with the passage of
the edge travel along with it. Hence, if xz 1s the coordinate of any point on
the plate measured from P perpendicularly to the edge and in its direction of

~ motion, and if % ,(t) is the special, high acceleration due to the edge at P
at a certain time t, the simultaneous value of this acceleration at any other
point will be the same as the value that was at P at the earlier time t - z/U,
or #,(¢t - z/U). Thus the total contribution of the edge to the integral in
[103] can be written

Af'z',_.ﬁ' 'z',(:-—’——i)ﬁ

?L c 8 ¢c Ul s

»

ﬁ Just after the edge has passed P, the integrand in the last integral 1is eas=~
. ily seen to differ from zero only for elements dS lying near a small ellipse
~§_ surrounding P. -

2§, Let polars r, 6 be introduced such that s = r, z = r cos 6. Then
A dS = 2wrdrd6 and the last equation becomes

%

Af'z‘,_%{ﬁ-faofil(t-?'—’—“gﬁ)dr

- (¢ d.( r_rcosd
[do‘[l+-l§]-coso drz‘(t ¢ U

< ]
1+ers0 U

where Az is the jump in the velocity z at the edge taken in the direction of
decreasing r.
Thus, according to (103],

- c(Ai)z-‘*“ig;— = 2xc (éi)(i - __a‘__)

5% [27rc(Az')(l - %5)_%] =—4p= —(p,— p,) [148]
sim - 2oy o g

Or, since according to [101] the pressure just before the edge arrived was
connected with conditions in the plate by the equation

p=p,=mt —¢+p,

2
Ai-—-plc-(l—%;)%(pe-m'i+¢—po) [150)
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For a closing-edge, the same calculation applies except that here
Az 1s fixed by conditions in the cavitated region ahead of the advancing edge,
and the impulsive change Ap in the pressure at the surface of the liquid is
to be found. As ciosing occurs, the velocity of the liquid surface suddenly
changes from some value z, to the velocity z, of the plate. The liquid sur-
face behaves like a plate of zero mass, hence it alone changes velocity in
the impact. Hence, from the first part of [148],

2,-1
Ap-pc(l-'-[c?g) (4, - 2,) [151)

If z, exceeds z, ahead of the edge, the liquid surface will usually
meet the plate at a finite angle 6. Then in time dt the edge will advance a
distance Udt over the plate of such magnitude that Udt tan ¢ = (i, - z,)dt.
Hence for a closing-edge of the type under consideration

Z,—2

T (152]
and an edge can advance as a closing-edge moving at speed U2 ¢ only if
z, - i, 2 ¢ tan 6. Exceptionally, it might happen momentarily that ¢ = 0
and z, = z,.

If conditions are not such as to cause the edge of the cavitated
area to travel at a speed equali to or greater than ¢, it seems clear that the
edge will usually stand still, except as 1t may be carried 1long by flow of
the liquid parallel to the plate. For, propagation of pressure waves from or
to the free surface of the liquid should prevent the occurrence of large dif-
ferences of pressure in the liquid near the edge. Hence, if p, < p,, pres-
sures 80 low as p, cannot occur at the edge, and further cavitation cannot
occur. Impulsive changes of velocity are likewise impossible; if such im-
pulsive action begins, but the edge moves at a speed less than ¢, the im-
pulsive pressure developed will produce such a redistribution of velocities
in the 1iquid as to equalize z, and z_  on the cavitated side of the edge. As
an exceptional case, the liquid surface might perhaps roll onto the plate
like a rug being laid down on a floor.

Otherwise, under the assumed conditions, the eage will move only as
it is carried along by the liquid in its particle motion. In a‘striet linear
theory, therefore, in which all particle velocities are assumed to be negli-
gibly small, the edge of the cavitated area must stand still except when it
can move at least at the speed of sound.

CAVITATION WITH DOUBLE PROPORTIONAL CONSTRAINT
Something more can be inferred, including useful relations with
non-compressive theory, if the surface of the liquid is arbitrarily assumed
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to move under the same type of proportional constraint as the plate. Let
the plate be mounted in a fixed plane baffle. Then the reduction principle
stated on page 75 can be utilized by the following trick.

’ While the liquid is in contact with the plate, [116] holds; this
equation can be writtep

0-2F‘+¢—M"z'c—pf'z',(t—%)n(c)da : [153]

: When free, the surface is equivalent to a plate containing neither mass nor
h stress forces; its equation can be formed from [153] by putting M= 0 and
¢ = ¢, where

o, = f{(p, — ) f(z;)dzay [154]

* and represents the effect of the difference between the hydrostatic pressure
p, and the pressure p, on the surface. The equation for the surface when
free is thus

0=2F +¢, — pfie(t - %) n(s)ds [155]

Finally, to avoid discontinuous change, the pressure on the surface may be

supposed to change rapidly but éontinuously from the pressure exerted on 1t
by the plate just before cavitation to the value p.. During this transition
process the equation for motion of the surface of the 1liquid may be written

W e e

T3

oo

0=2F, +¢ — p[’z’,(t - -:—) n(s)ds (1561

where @' changes rapidly from & - Mz  to @,; here Z, stands for the accelera-
tion just before the transition begins.

During the transition, high accelerations may occur, with the re-
sult that the velocity z,, of the liquid surface changes by 4z , where, in
analogy with [150] when U =,

S G
Az, 2cn(®) (MZ, - ¢ + @) (157)

1ne reduction principle on page 75, which was based on {116], can
now be applied by noting that {153], [156], and |155) can be'regarded as suc-
gessive forms of [116] in which the constant M is first replaced by 0, and
2F, + ¢ 13 then replaced by an appropriate expression. In [136], 1et t, be
taken as the instant at which the transition to cavitation begins. Then, in
the integral in [136], during the transition 2F, + ¢ 1s replaced by 2F, + ¢’,




VUNFIUENTIAL 8u

as in [156], but the resulting contrivution to the integral 1s negligible be-
cause ol’' the extreme shortness of the time interval. Hence, the integral may
be written simply as

o
[(2F, + #) at

‘ev

from (155], where t,, 1s the time at which cavitation occurs.

Hence, putting M= 0 in [136], it may be concluded that, after the
onset of cavitation, within any time interval of length D/c¢ the velocity of
the surface of the liquid will take on at least once the value

t
B, = (L) + -;Tﬂzi' +9)dt [158]
it

Here ¢, 15 the time at the end of the chosen interval and z,{t,,) 1s the com-
mon velocity of liquid surface and plate at some instant that precedes the
onset of cavitation by an interval less than D/c¢. A specific expression for
z,(t., ) can be obtained by using [135] instead of [136]. From this expres-
sion 1t 1s easily seen that, if cavitation follows the incidence of a pres-
sure wave within an interval much less than D/¢, then g,(t, ) 1s approximately
equal to the velocity of the plate just prior to the incidence of the wave.
It will be noted that the value of ic, given by [158] represents
the value of ic, at time ¢, as calculated from non-compressive theory, ex-
cept for the substitution of £,(t_.,) for z (¢, ) as the initial velocity.
For the non-compressive value can be obtained by integrating the analog of
(126] for a free surface or

M i, =2F +9, (159]

In [158] the initial impulsive change of velocity has disappeared.

During the reverse process that occurs when the cavitation closes,
the velocity of the liquld surface changes impulsively from some value £, to
the velocity ie’ which the plate happens.to have at that instant. Thereafter
[153] holds again; but in this equation some of those values of £,(t - s/c)
that have reference.to times before the closure of the cavitation are now
values of the acceleration of the free liquid surface.

During a time after the closure that is short relatively to the
uiffraction time, [153] can be written approximately as

Mi =2F + 9+ peAlz, - z) - pjkz',(t = Yntods [160]
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«

where s, is such a value of s that ¢ -al/c represents the time at which clos-
ure occurred and 4 1s given by [141]. Here #,, 1s a constant, and the part
of the integral for 0 < s < :} has been transformed into the term containing
A in the same way in which the similar term in [140]) was obtained.

The reduction principle can again be invoked in order to obtain an
expression for the final value of z,, the common velocity of liquid and plate.
If, in [136], t, is taken at the beginning of the transition process, the
transition itself again contributes nothing appreciable to the integral in
[136], which becomes here, from [153] used as a form of [116],

¢ $

ﬂzr‘ +0 - Mi)dt = M[i(t,) — i (t)] + ff(zi;. + 9)dt

n n
where t,, 1s the instant just after the completion of the transition. In the
last integral t,, becomes replaced, as the time of transition is shortened to
zero, by the time ¢, or t, at which the cavitation disappears; but £ (¢, )
becomes £ (¢t ) or the velocity of the plate, not that of the 1iquid or
i:l ( tcl )‘ ‘

Hence it follows from [136), with the M in that equation replaced
by 0, that, after the closure of cavitation at time ¢, at some instant with-
in any interval of length D/c the common velocity of 1iquid surface and plate
takes on momentarily the value

. 1 . . . Vi
i, = W[M, z,(t,) + Mz (t,) + J'(ZF'. + 0)¢t] (161)

‘cl
where i,,(t,,) is the velocity of the plate at the instant t,,, whereas
i,(t),) 1s the velocity of the liquld surface at an instant ¢t , that pre-
cedes ¢, by less than D/¢ and usually by less than the diffraction time, T,.
Here An [136] t, has been replaced by ¢, and £ (¢;) by #,(¢,). Actually,
the value of 2z, that is obtained from [136) in the manner described is some-
what different; if it 1s denoted by i,, its relation to #,, as defined by
[161], can be written in the form

w4 ﬁ-‘-[i‘(t,) -]

hence, since M/(M+ M) < 1, z_ lies between % and £ (t,), and, since the
velocity eventually traverses the entire range from £ to £ (t,), the value

i, occurs also. The explicit expression for £, (¢, ), obtained by using [135)
instead of [136], 1is

B (1)) = i,(t,) + 3,"7 f [ic,(t,, -4- e,,(:c,ﬂ n(s)ds (162]



CONFIDENTIAL 86

The value of Z, glven by [161] represents the velocity as calcu-
lated for the time t, from non-compressive theory, except that in the equali-
zation of velocities by impact as represented by the first two terms on the
right the velocity of the liquid surface is taken, not at the time of impact
t.., but at a somewhat earlier time ¢..

So far nothing has been caid as to fluid back of the plate. If the
plate, or plate and baffle, lie between fluids in which the density and speed
of sound are, respectively, p,, ¢,, anc¢ p,, ¢,, then all of the results in
this section will hold gocd provided p and ¢ are replaced by p, and ¢,, with
the understanding that ¢ or ¢ includes an allowance for the release pressure
in the second fluld. More explicit formulas can be obtalned by substituting
for ¢ or ¢ (but not ¢,) from [143] or [144],

SOME SWING TIMES

Suppose that a plate, mounted in a fixed plane baffle and con-
strained to move proportionally, 1s free from incident pressure, and that the
motion is slow enough so that the water or whatever liquid is in contact with
its faces can be treated as incompressible. FPFurthermore, let the motion bhe
small enough so that its component parallel to the plane of the diaphragm can
be ignored. Then [126] becomes

M+M)i =¢ (163]
This can be integrated after multiplication by z,dt:

(M+M)Z 2 dt = 2 dt = ¢dz,

whence
SM+Myi2 = [ode, [164]

From a knowledge of z_  as a function of z_, the swing time can be found as

T, = [at 'J’(%)qd% = [ dz, (165]

taken between the limits z, = 0 and the first value of z, at which %z, = 0.

The most important case is that of a circular diaphragm of radius a
and uniform thickness k, consirained to move in symmetrical paraboloidal form
or according tc [118). PFor the small motions considered here, the difference
between a paraboloid and a sphere can also be ignored; the diaphragm can be
assumed, therefcre, to behave as a spherical membrane under uniform tension.
Elementary theory then gives, as in the deduction of [93], for the contribu-
tion of the stresses to 9,
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o, = —2nohe, [166]

If the hydrostatic pressures on the two sides of the diaphragm are equal,
$=0, 1in [164].

If the diaphragm, flat initially, remains within the elastic range,
it 'is readily shown that

E 2}
—_— 1
=T 3 (167}

approximately, where E is’'Young's modulus and u 1s Poisson's ratio; see TMB
Report 490, Equations [11], [17]. In this case, after evaluation of the in-
tegral with & = ¢, as given in [166]), Equation [164] gives

;2 m 1 nEh
c  M+M, 201 -p)a’

(28— 2 [168]

where z ., 18 the value of z, at which z, = 0. The swing time then involves
the integral

Som 1
d .
J‘ 2 _ LJ’ dz r - 1.311 (169]
J ;:3.— zcl temg V1 —2 Zom
The values of M and M, may also be inserted from [120] and [128a], in which

m= p,h and p = p, in terms of the density p, of the dlaphragm and the den-
sity p, of the adjacent liquid, or

.

M = Tp.ha®, M, =0.813pa’ . [1708, b)
With these values. [165) and [168) give for the elastic swing time

T = 1'—2.a—2-‘/1—££(p‘+0.776 %p,) (ini

Thus in the elastic range the swing time varies with the amplitude z, . . If
the initial velocity z,, 1s known, the amplitude z_, can be found by setting
2, = £, and z, = 0 in [168] and solving for z,.

As an alternative, 1f the dlaphragm stretches plastically under a
constant yleld stress o and if the initial elastic range of the motion can be
neglected, from [164] and [166]

.2 _ﬂah(g

z, -M+M, zm—zf) 172)

and the integral that is needed is

LS E]
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Then

T, = 3 a‘/%(pd +0.716 2 p) (173
Inclusion of both the elastic and the plastic ranges leads to very
complicated formulas. The error is not large, however, if the plas;ic formu-
la [173] 1s used for all motions that extend into the plastic range. The er-
ror is greatest when the maximum displacement z,, just attains the elastic
1imit z,,, which 1s found by substituting z,, for z, in [167) and interpret-

ing ¢ as the yleld stress:
2 —
,“-,,V__IEL! [174]

When z., = 2z, the correct elastic formula, [171], gives

T, = 0.76a‘/—i—(pd + 01163 p)) [175)

whereas the plastic formula [173] would change the coefficient from 0.76 to

0.64. ' .
Swing times for a similar diaphragm not loaded by liquid on either

side and with equal pressures on the two faces can be obtained by setting

p, = 01n [171] and (173]. Or, 1f there 1is liquid on both sides of the dia-

phragm, with densities p, and Py On the two sides, respectively, p, 18 to be

replaced by p, + p, for the reason explained on page 79.

SECOND-ORDER EFFECTS IN REFLECTION

In linear or first-order acoustic theory, when sither plane or
spherical waves fall upon a rigid wall, the boundary condition can be satis-
fied by assuming reflected waves which are the mirror image in the surface of
the incident waves. Thus even the afterflow part®* of the particle velocity
in a spherical wave has equal and opposite components perpendicular to the
surface in the two waves, so that the resultant component in this direction
vanishes. The pressure on the surface due to the waves 1is exactly doubled
by reflection. )

The case of large amplitudes can easlly be investigated, for plane
waves at normal incldence, by the method of Riemann, which 1s explained in
Section 282 of Lamb's "Hydrodynamics" (23). It can be imagined that, in the
medium carrying the waves, values of the quantity Q = 4 + PyC,® are propa-
gated forward without change, while values of S = H = pycov are at the same

* For the terminology, see TMB Report 480, page 39 (10).
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time propagated backward, where

u -pocoﬁ/gngpﬂ [176)

in terms of the pressure p and the density p of the fluld; g, 1s the density

and ¢, the speed of sound for the undisturbed fluid, v 1s the particle veloc-
ity, and dp/dp 1s to be taken along an appropriate adiabatic. The velocities
of propagation of @ and S differ somewhat trom c¢,, but that 1s of no present

interest. Thus in the medium there exists a continuous array of values of @

which are advancing toward the reflecting surface, and ancther array of vai-

ues of S which are moving backward. The local values of p and v at any point
are related to Q and S by the equations

p=3@+S), pyeyy= 2@~ [177a, b)

As the incident wave advances, it meets zero values of S coming
from the undisturbed region ahead; hence in this wave, by [177a, bl, & = PyCoV.
Similarly, in the reflected wave, as soon as it becomes distinct from the in-
cldent wave, Q = 0 and u = - p,¢c,v. Thus, if subscripts ¢ and r denote values
in the separate incident and reflected waves, respectively,

H; ™= PoCo¥; ™ %in He ™ = PyCyv, ™ '%‘Sr (1788, b]

At the reflecting surface, v = 0; hence by [177b]
S =Q
which means that the arriving values of @ are continually being converted in-
to equal values of S, which are then propagated backward. Consequently, at
corresponding points on the reflected and incident waves S, = Q,, and, by
[178a, b]), u, = u,, and also, since u and p vary together,

pr -pl'

This 18 the usual law of reflection.
At the wall itself, however,

p=l@+s) =0 =0 =2, (179}

where Q, 1s the arriving value of Q and g, is the value of u at the corre-
sponding point in the incident wave. This equatioh represents the appropri-
ate generalization of the law that holds at the wall for infinitesimal waves,
namely, p = 2p,.

Now if the fluld oheyed Hocke'!s law, the pressure p would be
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p=- po+ pocozsy 8 = VV— 4 [1803, b]
0

where V 1s the volume of unit mass and p,, V, denote values when p = p;
s represents the strain and Poc,. the elasticity, since ¢, = (elasticity/
density)2. More generally, p can be written as a series in powers of s:

p = p,+ Pgcols + bys® + - - [181)

Since V= 1/p, V, = 1/p,
P ° dp  p? dp
8 1 ’ da P 2, ds po dp

Lence from [176)

g o= combr(%)%da - com[(pocoz + 2bys - - 0t s

or, after expanding in powers of s and integrating,

u=- pocoze + —;—bzsz- ..

Subtraction of [181] from this equation gives
ﬂ'P"’Po“—;'bz’z

Thus, if Hooke's law holds so that b, ani all higher coefficients
vanish, as in [180a), 4 = p - p,, and [179] gives for the pressure on the
wall due to waves of any amplitude, p ~ p, = Z(p‘ - po), as for small waves.

If only terms through s® are to be kept, s? may conveniently be re-
placed by its value a8 found from the first three terms of {181]; then, as
far as terms in s? ,

by
pH=p—p,— W(P—po) [182)

At the wall, [179) then gives, with [182],

.

b by
"Z?O%T(P o)’ = 2(p; — pp) = PRF .(p, po)?

or, since in the small quadratic term it is sufficiently accurate to write
PP = 2(})' “ po),

- - 2(p. — __b_2_ - 2
P po p" po) + 2.4 (P, po) [183]
Py €y
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In dealing with water it is convenient to choose p, = 0. The adia-
batic for water that passes through a pressure of one atmosphere and a tem-
perature of 20 degrees centigrade 18 given by Penney and Dasgupta (24) as
v(p + 3)% 138 = 1,666, where v is in cubic centimeters per gram and the unit
for p 1s 10° kilograms per square centimeter. With the help of the binomial
expansion and Equation [181] 1t is easily found that the equivalent series in
s, when p 1s in pounds per square inch, 1is

p = 3090008 (1 + 4,128 + 23.6s% - )
or, approximately, if s is replaced by p/309000 in the s? term,

p = 309000 s (1 + 75%56) pounds per square inch [184]

Comparison with [181], in which p, 1s now 0, shows that Po‘f".3°9'°°°’ by =
B.12pgcl = 1.273 x 10°.

Hence [183] for the pressure on the wall may be written, for water,
when the incident pressure p; 18 in pounds per square inch, if p, = 0,

p=2p 1+ 15:500) [185)
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