UNCLASSIFIED

AD NUMBER

ADB812162

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to DoD only; Administrative/Operational Use; 17 Dec 1998. Other requests shall be referred through Defense Technical Information Center, DTIC-BRR, 8725 John J. Kingman Rd., Ft. Belvoir, VA 22060-6218.

AUTHORITY

19990305 - A/1 from E/4, Feb 24, 1999. Auth’ty: Mr J.A. Morrow, Hq AFMC/PAX, WPAFB, OH 45433

THIS PAGE IS UNCLASSIFIED
<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATI016603</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASSIFICATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>FROM</td>
</tr>
<tr>
<td>confidential</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WADC Reclassification List no. 9 dtd 20 Dec 1956</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
The following National Advisory Committee for Aeronautics Reports have been "Declassified" per authority of WADC Reclassification List No. 9 dated 20 December 1956.

Date: 11 January 1957 Signed: Richard E. Reedy

Office Security Advisor

Reproduced by

Document Service Center
Armed Services Technical Information Agency
Knott Building, Dayton, 2, Ohio

"NOTICE: When Government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto."

UNCLASSIFIED
The detailed procedures, proposed by the laboratory (initial pressure tunnel) staff, differed from that of the contractor in the following respects:

(a) Inasmuch as the contractor now agrees to reference (11) with the recommendations of reference (12), the direct control for the air system is important; no tests of structural-test article configurations will be made, except those by the necessary to provide information for determining the method of connecting the unloading tendons of the aft area.

(b) Detailed tests of the aeroelastic system will be made as only one of the three configuration has an aeroelastic treatment.

(c) The operational and calibration, as presented (Part IV) in the attachment, is incomplete. Since much of the work is in the developmental stage, permission will be given to the contractors to present, as the probability of the tests of this paper, the system for the detailed investigation of the configuration. In addition, if the contractor is to continue the operability investigation, it is suggested that the detailed portion of the operability system will be included in the attached text.

John A. Anderson, Jr.
acting Deputy Commissioner
CONFIDENTIAL

1. How are other metal tube outlets

2. How are metal tube outlets attached

3. What are the reasons for such designs

4. How are metal tube outlets rated for:

5. How are metal tube outlets tested for safety

6. What are the steps to take in case of

7. What are the precautions to take when using

8. How are metal tube outlets manufactured

9. What are the standards for metal tube outlets

10. How are metal tube outlets inspected

11. What are the regulations for metal tube outlets

12. How are metal tube outlets labeled

13. What are the symbols used on metal tube outlets

14. How are metal tube outlets recycled

15. What are the disposal methods for metal tube outlets

16. How are metal tube outlets handled

17. What are the important factors to consider when choosing metal tube outlets

18. How are metal tube outlets classified

19. What are the different types of metal tube outlets

20. How are metal tube outlets used in various applications

CONFIDENTIAL
The text on the page appears to be a list of items or tasks, possibly related to an experimental or technical project. The text is not clearly legible due to the quality of the image. Here is a transcription attempt:

Table of Contents

1. Scale effects and stall studies (matches and motion pictures)
2. Finage effectiveness
3. Finage effectiveness and hinge moments
4. Tab-effectiveness and hinge moments
5. Finage effectiveness and hinge moments

Detailed Test Program

1. Scale Effect and Stall Studies
 - Single Slotted flap 20°
 - Single slotted flap 20°, 60°
 - Double Slotted flap 20°
 - Double slotted flap 20°, 60°

2. Single Slotted flap 20°, 60°
3. Double Slotted flap 20°, 60°, 120°
4. Double Slotted flap 20°, 60°, 120°, 180°
5. Double Slotted flap 20°, 60°, 120°, 180°, plus lever
6. Double Slotted flap 20°, 60°, 120°, 180°, plus lever, plus lever

This appears to be a technical document or report, possibly from an engineering or scientific field. The content seems to focus on aerodynamic testing and the effects of various configurations on flaps and fins. The descriptions of the tests suggest a comprehensive approach to understanding the behavior of slotted flaps under different conditions.
III. Allotment and Task Effectiveness, and Limits (1st List, 1st Limit) (cont.)

<table>
<thead>
<tr>
<th>C. Avionics tailing edge allowance on loads</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Small trailing edge break</td>
</tr>
<tr>
<td>(a) dike closed</td>
</tr>
<tr>
<td>(1) Single sheeted flaps 6°</td>
</tr>
<tr>
<td>(b) dike open</td>
</tr>
<tr>
<td>(1) Single sheeted flaps 16°</td>
</tr>
<tr>
<td>2. Large trailing edge break</td>
</tr>
<tr>
<td>(a) dike closed</td>
</tr>
<tr>
<td>(1) Single sheeted flaps 6°</td>
</tr>
<tr>
<td>(b) dike open</td>
</tr>
<tr>
<td>(1) Single sheeted flaps 16°</td>
</tr>
</tbody>
</table>

IV. Section 7: Double Panel and Similar Aircraft Plan

1. Flaps 0-12°

 Complete range of motions and possible abnormal situations

2. Flaps 0-90°

 Complete range of motions and possible abnormal situations

3. Flaps 0-120°

 Complete range of motions and possible abnormal situations

4. Flaps 0-180°

 Complete range of motions and possible abnormal situations
The following National Advisory Committee for Aeronautics Reports have been "Declassified" per authority of WADC Reclassification List No. 9 dated 20 December 1956.

Date: 11 January 1957
Signed: Richard L. Reed
Office Security Advisor

"NOTICE: When Government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto."

UNCLASSIFIED
A discussion is presented on a test program for the XB-36 bomber including scale effect and stall studies, flap effectiveness and the servo tab method of aileron control. These parts of the program were agreed to be satisfactory. A possible revision of the balancing tab study was considered, but limited to a study of the effect of tab bulges in eliminating the undesirable aileron floating tendency. In connection with spoiler tests the desirability of placing all spoiler segments on the same shaft was stressed.