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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1171

ON SUBSCONIC COMPRESSIBLE FLOWS BY A METHOD OF CORRESPONDENCE
II — APPLICATION OF METHODS TO STUDIES OF FLOW WITH CIRCULATION
ABOUT A CIRCULAR CYT.INDER

By Shepard Bartnoff and Abe Gelbart
SUMMARY

A generel method for studying the flow of a compressible fluld
around a closed body has been discussed previously in part I of this
report., In the present paper application is made to the gpecif'ic cacge
in which the linearized equation of state is used. For a given incom—
pressible flow around a gpecific profile, a corresponding compressible
flow 1g found. The flow at infinity remsins unchanged. Detailsd stud-
ies are made of the flow with circulastion around a unit circle, and
velocity distributions are found for a wide range of Mach number and
angle of attack. Comparisons are made with other methods.

INTRODUCTION

+ The present report is the continuation of a previous report by
Gelbart (referemce 1) in which a general method for studying the flow
of a compressible fluild around a closed body is discussed. The method
is based on finding compressible flows that correspond to given incom-
presslible flows.

Since the compressible complex potential in the general case 1s
not an analytic function, the ordinary theory of analytic functions of
a complex variable ls not applicabls. However, in the hodograph plane
(where the variables are the velocity magnitude and the direction of the
flow) the complex potential is & function of the type studied by Bers . :
and Gelbart (references 2 and 3) and termed by them "sigma-monozenic."

In the present report, the condition under which the differential
equations of a compressible flow in the hodograph plane become Cauchy—
Riemann equations is used. This occurs when the linearized equation of
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state is used (¥ = =1). The complex potential in the hodogreph variables
is then an analytic function and the theory of functions of a complex
variable is applicable. The linearized squation of stats is used
throughout in this report.

Emphasis is placed on thé compressible flow with circulaticn around
a unit circle. The correspondence function is chosen so as to yield
this flow to a very close approximation even for fairly high free-stream
Mach numbers. The distortion of ‘the bcdy is very slight, dput, as is to
be expected, increases for very high free-stream Mach numbers. The Ire—
sulting body shapes are studied for the entire range of possible free--
stream Mach number, which for subsonic flowse is from O to 1. Resulting
body shapes are also studied for different angles of attack. Finally,
velocity distributions are computed around the slightly distorted unit
circle for different free—stream Mach numbers and for different angles
of attack.

Some comparisons are made with the results of Tsien and Bers.
Bers! and Tseien's formulas turm out to be speclal cases of the main for—
mula derived in this report. One adventage ©f the present method is
that it yields flows with circulation about nonsymmetric closed profiles.

This work was sponsored by and conducted with thé‘finﬁnéidl-assist—'
ance of the National Advisory Committee for Aeronautics. This report
was submitted in July 1945,

GENERAL FLOW THECRY

Several of the more commonly used equations governing the behavior of
fluids will be mentioned here without proof. These are relations involv—
ing the quantities: velocity gq, pressure p, demsity o, ratio of the
specific heat at constant pressure to the specific heat at constant volume
7, &and the velocity of-sound a. Subscripts of zero (i.e., Dor Pos ao)

refer to values of the respective quantities at a stagnation point {q = 0).

The first fundamental relation is Bernoulli!s equation, which may be
written in differential form .

qdq+%dp=0 (1)

Another fundamental relation is the isentropic relation (adiabatic
equation of state)
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y
» =% (5)

The velocity of sound is gilven by

dp _ 7p
2
8 I e A
dp o -
Hence
} Po
2
a = ——
o 14 o

The units of dsnsity and veloclty will be so chosen that

Po = 1

&g 1

The quantities p and q will btien be dinsusicnless.

The foliowlng relations are eesslly derived.

a2 =1-% (r~1

p=[1—%(7—1) cf]'f-'f

(1
p=potl—§ (y — 1)
The Mach number M 1s defined by

M= =
a

The symbols M__ and g, refer to the velues of these respective

quantities in the free stream.

1

v
qz:]yl

(2)

(3)

) |

(5)

_(6)

(7)

(8)

(9)
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The velocity potential ¢ and the etreem function  for en incom-
pressible flow satiefy the differential equations,

¢x = ‘b’y
¢y = '"‘J"x

(10)

the subecripte x and y denocting partial diffserentiation with respect
to these variables. These equatlions are the Cauchy-Riemenn equations, so
that

L

Q=7+ 1y (1)

is an analytic function of the complex varisble 2 = x + iy.

If instead of using the independent variasbles x and 'y in the
physical plane, the in?ependent variables q and €@ in the hodograph
plane arc used, where ¢ 1s the magnitude of the velocity and 6 1is
ites direction angle, the differential equations become

Po = a Vg
(12)
¢q_ = = %‘l’e
By making the change of variable
q
A
q = 4
1=/ 3 (13
q.OO
the system (12) tecomes
¢e "WE
(14)
¢q = - WQ

which are again the Cauchy-Riemann equations. Thus, in the hodograph
plane the incompressible complex poventlal is an snalytic function of
the complex variable w =6 + 1§,
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The physical and hodograph varisbles for an incompressible flow are
connscted by the relation,

dz = e~1¥ a3 (15)

The analogous differential equations for a compressible flow in the
physical plane are

¢x = ‘i‘\l’y i -
. (16)
1
¢y == Y q’x
and in the hedograph plane are
for ¥ ()
17
¢q_ = - s Mz "pe
PQ .

System (16) is nonlinear, and no systemabic mathematical treatment for
such equations exists. However, methcds for a systematic treatment of
the solutions of equations (17) have been developed in reference 1.

The equation anslogous to equation (15) for a compressible flow is
e -
ax = o— <d¢ + 1 aw) - (18)
Equations (17) may be symmetrized by the changs of variable

q- ’ .
a=/@aq N (29)
!.qrm . -

Note that q = O,
o

Equations (17) then become
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—— 2 -
to =5 vy
o A,

(20)

If NEE = constant, equations (20) reduce to the Cauchy-Riemann
P 2
equations. When '\é::——M_—_ = constant, the constant cen be evaluated by

P
choosing q = O. Here M, = [M(q)] g=o = 0 and

L Po

2 .
1 - M 1 (21)
g=o =

This implies that 7y = ~1. For when M is replaced by q/a, it
follows from eguation (21) that

a2 — g2 —a%2 = 0 (22}

Then, by differentiation,
da 2 2 dp _
eayq(l-‘D)—Eq—Q& DE-O (23)

From reletion (6),

da
2a a3 (7 _1)q

and from relations (7) and (6),

[}

1
de Y Sl 2) =1 —*
dq 'q'<1' g 9 7

tl
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Substitution of these values into equation (23) gives

[—(r =1) —2][(1 = )a =0
[1{r--1) —2] =0
vy =1 (2k)

With this value of 7, +the equation of state (2) becomes

p=py o (25)

and since the density is proportional to the inverse of the volume, the
volume becomes a linear function of the pressure. This linearized equa—
tion of state will be used throughout the remsinder of this paper.

It shouid be émphasized that no actual gas satisfies the pressure-—
density relatiouship described by ‘equation (2%). For actual gases, 7
lies between 1 and 1.6, having a value of 1.4 for air. The simplifica--
tion resuiting when ¥ = -1, and ths fact that the theory of analytic
functions of a gomplex veriable then becomes applicable, led Chaplygin
and later von Karman, Tsien, and others to study the properties of such
a fictitious gas (references 4 to 11).

Von Kérman (refersnce 7), however, showed that using the
valus 7 = -1 1is egquivalent to replacing the curve of pressurs agalnst
reciprocal density in the adiabatic case by a tangent line to that curve.
A% end near the polnt of tangency, the fictitious gas approximates the
behavior of the actusl gas. The study of the behavior of the fictitious
gas is Justified by the insight such a study glves into the solution of
the actual prchlem for subsonic flows.

When 7 = -1, equations (6) tc (8) becomse

a® = 1 + g2 (26)
1
0 = e - (27)

Joe
P=p,/1+¢q? _(28)
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and it fellows directly that
M

G = e
J1 - M2

Equations (20) reducs tc the Cauchy--Riemann equations,
¢e ’”l’a:
¢a'_ =

Thus, Q=@ + 1y is en analytic function of w = 6 + i,

From equetiona. (19}, (21), and (27) it follows that

G e
- - MR
=[L—-dq‘n ——_—.ﬁ_—.
. q_ .qw

a1 + g%

= -- log (l-..."’.b/.i.ﬂ%) '

= log
<,L+«/l+q

where

Hence,

From this equation,

3 [
1%,

Also, from equations (33) and (27),

(29)

(30)

(31)

(32)

(33)

(34)
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Ji+g2 1
q pa
=X 1 oo
el g

and by use of equation (34),

+ o B o (35)

pq 2e 2K

Upon substituting the valuss of %— and -g'—q_ from equations (34) and

(35) into equation (18), it follows that '

dz

SESERIRO

_elerx _ed g -
-2 [eﬁ (aff + 1ah) ~ = (ag mw)]

=3 o'(e + 10) (a8 + 1a9) — ¢ o' (e ~ 1T) (af — 1a))

- K iw A Tw
26 aqQ 2Ke aq

S IO Y

Since Q = ¢ + iV is an analytic function of the complex variable
w =0+ if, the mapping

and

a
2 = f(g)
W= -1 log-——%—g——-— S (37)
KEZ G(¢)

defines a complex potential G({) of a compressible flow in the (—
plane, where fF(f{) and G({) are enalytic functions of the complex
varieble {. The region of regularity of f£({) and G({) will be
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dealt with later. The function £({) will be called the correspondence
runctlon. -

From equation (37), with primes denoting differentiation with re—
gpect-to ¢,

v _ 2 £t
o7t = 2 G,% (38)
and .
-—iw KG §

After substitution of equations (38} end (39) into egquation (36), it
followsg that

o]
]

2] Tew g [ ew

K /[ 2 4 1 K [Gi(t)
E‘/Ef-(ﬁ) d-g""'é‘k"d/ 2'[—"'(;(5])‘—

=f(§)—%/7ﬂ'%—‘((§2d.§ (1‘0)

If G({) represents the flow around a given closed body in the [—
plane, equation (40) will map that flow into the z-plsne. The corxe-
spondence function £(f{) will be chosen in such a way that ths flow in
the z-plane will be essentially around the same profile as in the {~
plane.

go that

The compressible~flow velocity In the =z—plene may de determined
frem equation (37). For, .

oIV e-—i(e+i’é) _Eat(t)
2 £7(¢t)

o 1o ea = % Gr(t) (k1)

By taking absolute values,
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|

-k

and making use of equation (33),

it follows that

2
q = £2(0) (k2)
4..' at (¢) 2 .

Ha

Stagnaticn points occur when ¢ = O. Thus, the stagnation points
are loceted where

or(t) = o (3)

It is desirable that the correspondence should not alter the flow at

infinity. At infinity, 6 =0 and e% = 1, An examination of equation
(41) shows that the condition for the flow to remain unchanged at infinity

is
gl-j:;noo gg;(é )5 e : (k)

Since G!'(f{) 1s regular and different from zeroc at infinity and if

t
¢ l_:ln>1m %—28 is to exist and be different from zero, the most general
form that f£*{f{) ocan have is

lo]

£ (¢) = z bo %, b # O (45)
. n=0 ' L —me
where
t = ret? (46)

Then
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(=)
b
f(§)=b~l+b°§+bllog§—?—%‘&t}ﬁ (47)
o=
Also
lim f?(g} = b
{ —>o
and from equation (ki)
1im K : }
bo = M2 Ear(r) (48)

Thus, the condition of the flow at Infinity in genersl predeteraines the
value of Dg.

It is desirable to obtain the intogrard in the right—hand side of

1
equation (40) as & power series iz - .

Set

1
£e(E) g‘ J_uﬁ
ks L

2 -
- B L (49)
r‘f:o ¢

Then

[~18
g

1a(
oo o

' = EE‘ }; An-.p Br ?;

n=0 =0
n
)

EXQ )

i
o

Equating coefflclents of like powers of (

N

e fH
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l=boB° ~1

0 = by Bo + bo B

0 = bz B + by By + bo Ba | (50)
J

. . . » . . [ . . L] . .

These equations yield the iteration formlas

_ 1
B, = by
N (51)
Bn=—7(by Bo + byy Ba + « « » + b2 By o + Dy Bpy)
o}
where n >0, or
bo 0 o 0 o2 o o o o 13}
ba bo 0 0 «.«. 0 0 ©0 O O
be by Po 0 .+«.. 0 ©0 ©0 0 O
bs b b1 Yo ... O 0 0 0 O
= -—L—— . . . . . . . . . . [ ] . . . . . .
Bn n+1 (52)
L

bna bPna Pn4 bps ¢+ b2 by Bo O O
Py Png Ppas Ppw o+ - Bs Pz by B O
bv P2 Png Pns .. Pa bz Py by O

Then set
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-%%ag=-~ (6" (£)] (Z B ) ot

n=o
2]
=Cy { +Colog + Z s (53)
n= g
Bquation (40) then becomes
N 2 1
= by + g + by logf - Sﬁ —ﬁ
A=t
+Coy t +0Cologf + Y Onrx (54)

n=4g

ix —iA

When { 1is replaced by re and E by re ~°, equation (54) becomss

z = by + by re™ + by log T + by(iX)

( bn+1 by —:mx>+ Coy v * 4 ¢y log

+ Co("i)v) <+ Y Cn %ﬂ em | (55)

n=1

If a closed contour in the {-plane 1s t0 be mapped by equation (55)
into & closed contour in the z-—plane,

1 -0 =0 (56)

This predetermines the value of Dby.
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Set

N =5b. +by logr+Co logr (5T)

Under the condition of equation (56)

0
b .
Z=N+borei>"—<y —n"—'l-:-i'-em>

Z, T n
n=1
m s

+ C—y re_ﬂ' + Z Cn I—Jil- s (58)
n=i

THE FLOW AROUND A CIRCLE

The example of a compressible flow that will be treated herse in
detail 1s the flow with circulation around a civrcle. This example has
been chosen because of its fundsmental importance.

In determining the corvespondence that will give the compressible
flow around a mnit circle, the complex potential funoiion chosen is that

of an incompressible flow with circulation around a circle of radius R
in the {-plare, namely,

o) = q (¢t + &) -L1og (59)

where I' is the circulation. Stegnation points occur where G'( g) =0
(equation (13)).

ety = q - L1_fac (60)

If t = Re'™,
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—1A ~1BA
G'Bq_m—g%e --qme_
= q —E;cosk—r--]:sink-—q cos'&k+1qmain2h
©  2x R 2n R )

- B I . ( L1 )
qm(l cos 2\) aﬂRainx-*i g, sin 2\ 2,\:Rcosh

1 £y . 1
1n>~<2 sin).—-L—>+icosk2 eu.nk—-n-—>
. e 21 R Cl ox R

=eil(2q sin)\.-——r-g'-
o 2n R

Hence

el R

1G] = 2g_ sin A -

(Y
RH

Let there be stagnation points at A = a, A = 180° - a. Then,

2q sina.——r—l-l‘-=0

&9 2 R

L. ' 61
o aqusinc. (61)

Thus, flxing the circulation fixes the stagnation pointas and hence
the angle of attack.

Equation (48) is used to fix the velocity at infinity. Since

lim  GH(Y) =g (62)
{— = ®
bo = Ko

-H/1v e+ 1) (63)
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The equation of a unit circle is ¢{ = el*, 1 equation (58). is to
approximate such a circle, the sum of the coefficients of the e~"—terms
should equal 1 and the coefficieats of the other texrms should approximnte
zero. Ths first step in achieving this end is to set the coefficients of

all the e'm—terms, n> 2, equal to zero; that is,

bp=0, n»2 (6L)

-+

The correspondénce function f({) then reduces to

F(¢) = Dby + Do ¢ + by log t — by % . (65)

and

f'(§)=bo+b1§‘~+b2-3-‘§ - (66)

Also, equation {58) beocomes
z=N+b°Rei)“-§%e'

ix

e}
4+ C—y Re ~™" + Cy % et 4 Sﬂ Cn f{]-h ginh (67)

The sum of the 'coeffiqients of the eix—tex'ms may be made equa.i to l '
by fixing R so that . .

b°R+Cl%{*=l ' - (88)

Also the e—ix—term may be eliminated entirely by fixing by 80 that

bs’ L .
_.§?.+C_lR=:O (69)
Then equation (67) becomes .
o
z =N+ \ cp &t (70)
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In this eguation N 1s a translation constant that does not affect
the ghape of the body. The Cp coefficlents are shown to be small and

thexofore the resulting body shape is esmentlally e circles.

It will be sbown later that all the odd Cpn coefficients are real
and the even Cp coefficients are pure imaginary. Therefore

z =x + iy

c G ' "
=cos7«.———2-sin2h+03 cos 3n — % gin U\ + C, coB Sh + . . ..

1 1
+ i{sin)\.+%aco:s M + G, sin 3% + 38 cos Y + G, sin 5M

+...}+N (1)

where the constant N 1is chosen tc make the absolute value of- z when
A = 90° equal to the ebsolute valus of z when A = 270°,

N=Cz—C4+Cq ~Cp+ ... (72)

and N i1is pure imaginary. The resulting body is symmetric with respect
to the y-exis.

After the circulation is fixed to give a desired angle of attack by
equation (61), expresesion (59) for the complex potential G({) reduces to

G(g) = qm (g -‘.‘.i 2R sinlq.t, Z_Log l—gl + B;) (73)
and
. e
G‘(§)=qm(l--iasina—-§f—2-) (74)
Then .
2 3 4
[e*<z>Ja=Al—m2§1—A3§—§+mzfa—ml?z (75)

where
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Ay = q:
A2 = )-qu_; B'Ln o7 (76)
A =g 2 (b sif a + 2)
and
Cm = — %: A]_EO
Co = — % (AJ.EJ. — 1AZBoR)
oy oy S 2

Cy = in (AyBz — 1AZB3R — A BoR™)

Cz = 1 = ~— (3 - 1A7B-R — A,B1R® + 1ABF)

(';3 = ™ 333 (A134 - iAZB;;R — ASBER + iAgBlR + A]_BQR ) (77)

: 6 = i (aFe— B - AR + 1B + MBE')
Gn=,+an(Aan+l R—ABn_lR +iAan,2R3+Aan_3R)

Also, since bp = 0, n > 2, the relations for Bp eas given in
equations (51) to (53) become :

1
Bo—%-;

By

1
- 'E'O' (b J.BQ)

By .= — ‘513 {bzB, + b1B1)
(78)

o
]

1
3™~ By (bzBy + b1B2)

td
B
]

1
~ % (bzBp-z + DaBp), n> 1
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In determinant form,

b6 0O 0 . 00 O O 0 0 1
by, b O 6 0 0 0 O 0 O
bz by bo 00 0 0 0O 0 O

L 0 0 b . OO0 O 0 0 0 O©
Bn = -1 . -+ . . . . . . . (79)
b0
0O 0 o© . O by by bo- 0O O O
0 0 © 0 0 bz by bg O O
0O 0 o0 0 0 O 1By by by O
0o 0 o 0O 0 0 0 bp by O

AMlso Bn 1is given by the summation

B .
S’l.- (__l)n+r (n __ r):_.- bln 2T bzr

Bn - 1 D41 (80)
— t R
oo rt(n - 2r)! bo
Thus, the first few B ~terms are ) B
5 .k )
° 7 by
b
By = — -2 ? (&)
k)
o]
B by ® bo
aF ey
b® by Y

The first two Cp—terms as given by equations (76) and (77) are
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C--j_ = - ']E' Al 3%0-
) (82)

CO = é;,—o-l:. + 1 'ﬂé
4y 2 bb, 3

Equation (69) is now used to determine ba:

—B'g-l'C——lR':O

A R®
= (83)

Equation (56) is used to determine by:
bl - Co = 0

bl — éﬁ; — i 523 = O
4p 2 kb,

Ub®by — A3by = 1AzbgR

The quantity b; must be pure imaginary. Therefore,
il = '-.bl
li-bozbl -+ Albl = i.A.gboR

Azb R (84)
2
b

(o]

bl’:i
+Al
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If in like manner equation (68) is used to evaluate R, the result—
ing complicated expression may be reduced to

R = L (85)
1~-M2 gin% o

It is interesting to note that all odd 3Bp-terms and all even Op~
terms are pure imaginary, whereas all even Bp—terms and all odd Op—
terms are real; also, that when o = 09, cormesponding to a zerc angle of

b-
attack, R= b, by =0, and b  + ;22 = 1,

Equation (42) is used to detvrmine the velocity on the body corre—
sponding to any value of A. The velocity is limited by the restriction

a

G () (86)
£1(¢)
When equation (61) is substituted into equation (60},
1 R’®
ar (L) = qw(l- 21 R Eina,--——2—>
: ¢ ¢
= q_m<l ~ 21 sin @ 6+ 6—-21).)
=qw[l-—251nmsm7\.-—coe 2\
4+ 1(—2 sin o cos A + Bin 2A) ] (87)
Equation (66) can also be rewritten
by —1A . bs —21)\
f*(§)=bo+-§ke +§§e
b b
=b0+-—'}~ein>v+~—gcos 2h
iR R®
+i<9-’-— cos M ~ 22 gin o\ (88)
iR R2
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The maximum velue of g—:%%;— occurs when » = 90°.

of A, Gr(t) = 2qm(l -sin o) and fi(f) = bo + %—%—g. Hence, by

For this value

restriction (86),

29, (1 — sin a) <

2 (89)
[ b .
bo + 2"}' re- ~§ ' )
iR R
By substitubing £rom equations (83) and /8L)
Asb A
q_oo(l—-sin a} < b, + Ol - (90)

bo™ + Ay ¥Do L
By substituting from equations (63} and (75)

17/ 2
4, (1 ~sina)< -2—6,1+q_°=+ l)

22 sin al/T ¥ a2+ 1) ® '
+ o “.' =] -+ (91)

T 3 vvalh

(e ) v @ 2ff1ed, 1)

1+ g2
1~ gin a< o q°°2 sin o
Qo 1+ a7, ;
and using equation (29),

M o<l+M (L+M)sina (92)

Hence, for a zero angle of attack, M wmay very between O and 1.

For a given M_, however, equaticn (92) limits the permissible angle ‘of
attagk.
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COMPARISON WITH TSIEN METHOD

The equation derived by Tsien, refereuce 5, in the notation of the
present paper, is

z = g-%/P[G*(Q]a af (93)

Thus it is seen that Telen's eguavion is a specia.l cage of that used in
the present report whers

£(¢) =¢

Tsien's equation alters ihe velocity of the flow et infinity, or the freo—
stream velocity, but this is relatively unimportent since the amount of
the change 1s readily deotermined. However, since Tsien's equation hes no
by term, 1t cannot be used to study flows with circulatian. In Tsien's
equation I* is therefore zero and G is

&(t) =a_(¢ + —-—) (94)
Then,
¢t =g (1-F)
e (£)1° = a2 (1 _Ee;;f+ ?z
and
emgmjal T-REL BT
RotM - in qamRe_ﬂ';— = qi rRet* & -—lJ—‘é- quRehl

In order to have Tsien's equation give as nﬁarly circuler a body as possi—-
ble, let-

R->q2R=1 (95)
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Then,

- _1 2o -IN 1 2 5 isA
zZ =9 hq_mRe +12q°°Re

= <l-i-q§3>cos>.+-ij—'2—-qiR cos 3x

+ 1 [(l + %; qiR) sin A + —%‘2- g® R sin 3)~..| (96)

Syracuse University,
Syracuse, New York, July 1, 1945.
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TABIE T.— CONSTANTS OF THE TRANSFORMATION FUNCTION FOR VARIOUS MAOE NUMBERS [0 = —209)]
0.1 0.2’ 0.3 0.k 0.5 0.6
9 0.10050% 0.20%124 0.314486 0.436136 0.577351 0.750000
L 1.002521 1010309 1.02k0k 1.0U5546 .1.077352 1.125000
by -1(0.003}450) ~(0.01n73). -1(0.033399) | -1(0.063618) -1(0.109575) -1 (o.1so7s<;)
by -0.002538 - .010623 025864 051706 .035270 172420
;1 1.003695 1.015055 1.0350l1 1.065488 1.109807 1.174459
Cy -1(0.0017) -1(0.0069) -1(0.0157) ~1(0.0283) -1(0.0U58) -1(0.0722)
3 0.0008 0.0037 0.0078 0.0137 0.0212 0.0308
o 1(0.0003) 1(0.0002) 1(0.0005) ° ~-1(0.0031) ~1(0,0067)
Cs ~0,0001 0.0007 0.0016
Og -1(0,0002) 1(0.0006)
¢, ~0.0007
X -1(0.0017) -1(0,0072) -1(0.0159) -1(0.02288) ~-1(0.0429) -1(0.0655)
e s AP T o
N 0° -10-0 1 ~20°

Qo 0.314486  j0,31L486 0.314486

b, 1,024 1,024 1.02414%

by 0.0000 14 (0,01682%) |-4(0.033399)

by -0.025322 {0.025460 -0.025864

R 1.0241k%  |1,026931 1'.03501u

C, 0.0000 £(0.0080) -4(0.0157) N

G 0.0069 10,0078 0.0078

0y 0.0000  11(0.0002) 1{0.0002) o

% 0.0001  [0.0001

X 0.0000 Ja(o.ocﬂs) 4(0.0159)




TABIE IT1.— CONSTANTE CF THE
VARIOUS ANGIES OF ATTACK [My = 0.7)

TION FUNCTION POR

o 00 _50 1 _lgo
Lom 0.980196 0.98019%6 0.980196
b, 1.200140 1,2001%0 1.200140
b, 0.0000 ~1(0.0720%1) -1{0.145138)
b, -0.288269 -0.290%27 -0.296980
B 1,200140 1,20u624 1.218138
€, 0,0000 -1(0.0249) ~1(0,0496)
Gy 0.0556 0.0548 0.0523 |
| ©.0000 ~1(0,0041) ~1(0.0080)
% 0.0056 0.0053 0,006
% | o0.0000 ~1(0.0007) ~1(0.,0013)
& 0.0007 0,0006 0.000Y%

, o'.oooo ~1(0,0001) ~1(0,0002}
Gy 0.0001
¥ 0,0000 -1(0,0214) -£0.00427)

TABIX IV.— nium_ ogoz-_ FROM CIBCIE
A x 4 r 18} arg x
-900 0,0000 -0.9992 0.9992 -90.0°
~15° 0.257% | -0.9656 | ©0.9993 | -75.1°
60° | oMgrr | -o.e868 | 0.99%5 | -60.10
~l50 0,704 | -0,7080 | 0.99%0 | -U5.1°
~30° 0.8645 ~0.5017 0.9995 -30,1°
-15° 0.9%5 | -0.2%610 | 10002 | -15.1°
® 1,0008 p.ooh 110002 | - 0,20
1° | 0.9 | o.62 | 1,0007 1%,8°
30° 0.8675 0.%982 1,0004 29.9°
Y50 0.7082 0.7060 | 1.0000 5,00
60° 0.5007 0.8652 | 0.9996 59.9°
75° 0.2591 0.9651 | 0.9993 75.0°
%° 0.0000 0.9992 | 0.9392 90.0°

L
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o T %ﬁﬁmmpm TABIE VI.— VELOCTTY DISTRIBUTION O PROFIIE [Mgo= 0.3; w = 0°]

A 2 7 12| arg = A x ¥ iz | arg % 2 M
<909 | 0.0000 | —0.99%3 | 0.9%3 | ~90.0° -90° | 0,0000 { -0.9952 | 0.9932 | ~90.0° | 0.6595 | 0.5505
-75° | o.252% | ~0.9643 | 0.9968 | ~75.3° =150 0.2540 | ~0,9610 0. 99% -75.2° | o.6241 | 0,549

. — —e - 1 e S ——
-60° | o lujoo. -0.8599 .993u ~60, 6° ~50° 0.4922 | -0.8659 0. 9965 ~60,3° | 0.5646 | 0.%916
-1-&5_"“ 0.6976 -o.7_1—7; | 10005 -U5,8° —-_11*;°" _ -_0.7021“ 0,719 | 0.9% | 4589 0.4557 o.iﬂ‘lﬁ
=300 | 0.8603 | ~0.5146 | 10024 |-30,9° ~30° 0.8659 | -0.5070 1,003k - =30.3° | 0,3183 | 0.3033
~150 0.9653 -0.274% 1,0035 .:15_90 ~15° "0.9708 | -0.2638 1,0060 -15.8° { 0,1633 0.1612
S 0° |} 10037 | ~0.0238 | 1,003 |- o0.8° 0° 1.0070 | ~0.0000 1,0070 0.0° | 0.0000 | 0.0000

15° | 0.9717 0.248% | 1,0029 1%,3° 150 0.9708 | 0,2638 1,0060° | . 15.8° | 0,633 | 0.1612

30° | 0.87Y7 0,4928 i.m13 29,50 30° 0.8653 | 0.5070 1,003H4 30.3° | 0.3183 | 0.3033
45° | oqud | o022 | 0,996 | Mg 450 | ooz | o.mg | 0.9 | MO | olssT | ok

6° | om0 | o2 | ol | 59.8° 600 | ohgm2 | o.e859 nm 60.3° | 0,566 | ook

75° | 0.2600 0.9%23 | 0.99%% .90 75° 0.4 | 0,910 0.89%%0 5.2° | o.62%1 | 0.529%

90° o.oooo. 0.9963 | 0.9963 90,0° 90° 0.0000 | 0.9932 0.9932 90,0° | 0.,6595 | 0.5505
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SABIX VIT.~ VELOCI?Y DISTRIFUTION OF FRFIIS [Neo= 0.3; a = ~107]

T4 VILI.- VELOCTT! DISTRIBUTION OF PEFIIE [Mg= 0.3; @ = ~20]

A x 4 1% arg s g M
=900 0,0000 7-07.9925 B ?.992? ~90.0° 0.5192 0. k608
~75° o.zl§67 -0,961k 0.9925 «75.60 0.4g72 0.'4’15|2
60° | o5 | -0.2596 | 0.99%60 | -60.8° 04331 | 0.397%
450 | o0.6935 | -0.72€2 | 0,9998 | -46.1° 0.33%6 | 0.3156
-300 0.8588 | -0.5196 1,037 | -31.2° 0,2031 0.1390
~15° 0.%72 | -v.2792 1,0067 ~16.1° 0.0539 0.0538
o° 10079 | -0.0160 | 1,00 —0.-90' 0,109% | 0.1087
150 0.9756 0.2496 1.0070 14,3° 0.,2773 o.a:m
309 8.873¢ ook 1,000 29,5 g,ik17 ¥ oMol
Y50 0.70% | 0,708 1.0001 Iy 50 0.5913 0,5080
60° | 04990 | o.8622 | 0,992 59.9° 0.7072 | o.5TM%
™ | o572 | 0.959% | o0,9953 '75.o° 0.7926 0.6212
90° | o0.0000 | 0.393 [0,93853 90,0° o.520k | o0.63k

A x T TR g m
-g0e | 0.0000 | -0,9922 | 0.,9922 | -90,0¢ | 0.3976 | 0,36%
-5 | o.52 | -0.96% ] 09933 | -75.70 | o3t | 0.359
oo 1ok} ooE7L )} 00996 | -M3e F o7 ) 0.302h
50 | 0.6859 f ~0.7287 | 1.0007 | 46,70 | o228 | .26
30> | o.852% | -0.5317 | .00% { -3Lg [ 0.09%6 | o.0%62
=15 | 0,937 =0.2937 1,0075 -17.0° | o0.0510 | 0.0509

o | L0078 | -0.031k | 1.0083 -1,8° | o0.2173 | o0.2129

15 | 0.9791 0.234%9 | 1.,0069 13.5¢ | otod5 | 0.3750

300 | 0.B79% 0.18379 | 1.0037 eg.g0 | o572k | o.hoeg

b5e | 0.7a73 0.6%5 | 0.9998 Bize | 0,7393 | 0.5%5

6oe | 0.5060 0.8579 | 0.9%0 59.5¢ | 0.8785 | 0.6600

T5e 0,261k 0, 9552 0.9932 .70 0.9711;. 0,696

9% 10,0000 0,992 | 0.9922 90,0c | 10081 | o,7085

ok
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Off OF FROF' FRON CIRCLE

TABIE X.~ VELOCTTY DISTRIBUTTON OF PROFIIE [M = 0.5; a = ~20°]

TABIE IX.~ D
ium- 0.3 a = —20°

- . -+ —
A x v LK | arg & A x y 12 ) arg g q M
~90° 0.000 | -0.9862 0.9862 | ~-90,0° -90° | 0,0000 | ~0.97% | 0.97% -90.0° | 0.7670 )} 0.6086
~T5e 0.23M | -0,9602 0,988k =16.3¢ -75° | o.224 -0.9559 0.9818 ~76.80 0.6578 | 0.5495
<00 | o613 | 08810 | 0.9%5 | -Gade ) | goo | odz6s | -o.8eM0 | 0.0861 | -63.70 | o.5%L | o7z
Hpe | 086 | -0z | 1,005 | MEIC | | uge | o5y | -o.76M | 0.998d | oo | 0.377L | 0.3529

-30° | 0, 0. 1.0100 ~35,40 0,16 0.1

~300 . 0.8U20 | ~045569 1.00% ~33.5¢ = 8229 5856 % [ 650
~159 0.9618 | -0.3214 1,011 ~18.5¢ ~-159 | 0.9%53 ~0,3587 1,0°04 ~20.6° 0,0919 | 0.0925
0o 1.0136 | ~0.0566 1.0152 ~ 3.20 0 | 21,0219 ~0,0920 1.0260 - 5410 0.4089 | 0.3785
150 0.93%% 0.215% 10126 12,30 15e | 1,0069 0,1903 1.0247 10,7° 0,8025- | 0.6259
300 0.8902 0.4703 21,0068 27.80 300 0.9077 0.‘4576 1,0165 26,80 1.2953 0.7916
50 0.7258 0.6876 0,9998 43,50 Ise | o0.7372 0.6819 10042 42,go 1.8824 | 0.8831
60% 0,511 | 0,85i2 0.5329 59.4° 60° | 0.5162 0.8468 0.9917 FB.60 | 2.5278 | 0.9299
75e 0.2636 | o0.%52 0,580 5 75 | 0,264 0,963 0.9827 ey 3.0256 | 0.5
aqo Q.0000 QJ_L“@Z 0,Q862 90.0° fnn A NAAA n e n or0K ne 2 oanz o 4
Lo d pr oo VAN Vel (72 VeIl DI TV ey e gV Y20 8 o]
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SRIR Dﬁ%ﬁ.oﬁ S oy TR ICTIOE TABXE XI1,- VELOCTIY DISTRIBUTION OF FRSTIE [Mgy= 0.7 o = 0°]

A x ¥ 151 arg % | A x ¥ X arg s q M
=900 0.0000 =0.9715 | 0.97115 -30.0° -90° 0,0000 | -0,94g% 0.949% | =90.0° 2.7%56 | 0.9429
<15° | 0.2095 0,501 | 0.9729 { -T7.6° | 1 y50 | o0.2843 | -0.9281 0.9564 | ~76.4o 2,6081 | 0,9337
~600 | 0.1129 -0,8838 | 09801 | ~65.1° 600 | o5 | -0,8618 0.9711 | -62.6¢ 2.,2270 | 0.9121
=h5e | 0.6109 -0.7865 | 0.9959 | -52.2° | | .4 | o664k | -0.7h20 0.9%0 | -lig2e 1,6867 | o0.8602
~30° | 0.7997 -0.6302 | 1,0282 | -3g,2° =300 | 0.8606 | -0.5579 1,025 | -33.00 1,0016 | 0,737k
-1K0 0.9470 ~0.4122 | 1.0328 ~33 .50 ~150 1,0063 | -0.3043 1,0513 ~16,80 0.5127 | o.w562

e 1.0317 -0.1432 1,006 | -7.9° 0° 1,0620 |  0.0000 1.0620 0.0° | 0,0000 | 0.0000

150 | 1.0296 0.1506 | 1,006 8.30 15° | 1.0063 | 0.3043 1.0513 16,80 0.5127 | o.s62

30 | 0.9335 0.4338 | 2.029% 24,90 300 | 0,8606 | 05578 1.0256 |  33.0° 1.096 | 0,737

5o | 0.7565 0.6701 | 10106 | Y15 Y50 | 0.664 | 0. | o.9%0 | Uus.2e | 1.6%67 | 0.8602

6 | 0.5263 0.8392 | 0.9906 57.9° 6oe | o475 | 0.8618 .S711 62,60 2,2270 | 0.9121

75° | 0.2689 0.9385 | 0.9763 | TH.0° 750 | o.2243 | o0.9281 0,954 76.40 2,6081 | 0.9337 |

e | 0.0000 0.9715 | 0.9735 | 0o %0 | o000 | oguh | g, | s.e | 27us6 | o.gues

et
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TABYE XITY.— P oog’m' FROM CIHCIE TABIE XIV,— VEIOOTTY DISTRIBUTTON O PROFIIE [M_= 0.7; a = -10°]
A x 151 arg = A x y bel arg = q M
‘-900 0.0000 | -0.9499 [ 0.9%g9 ~90,0° -90° 0,0000 | -0.%19 | 0.9519 ]| -90.0° | 1,497 | o0.8286
~T5°0 0.2151 | ~0.9306 0.9551 | ~77.0° ~15¢ { 0.2069 | -0.9338 | 0.9565 | -77.5° 1243 | o.z18h
~600 0.4301 [ ~0.8693 0.9699 | ~63.7° 6o c.';ll‘m 0O | Oo.97c2 | B4 7e | L,2355 | O I3
50 0.6%09 | -0.7591 0.9935 | -U9.80 ~450 | o.6188 | -0.7v5% | 0.9921 | -51be | o.9W4% | 0.6866
-30°0 0.8358 | -0.5882 1,0220 ~35.10 ~3o° 0.8119 ~0,6165 1,015 | -37.2° 0.5784 | 0,5007
~150 0.9897 | ~0.3482 1.0491 | ~19.he0 -15¢ | 0.9708 | -0.3902 | 1.0463 | -21.9° | o0.155¢ | 0.1539

0° 1.0607 | ~0.0512 10619 | - 2,80 ! 0° | 105713 | 0,018 | 1.0622 | -5.50 | o0.3%80 | 0.32867
150 1.0227 | 0,2582 1,0586 14,20 150 | 12,0373 0.2110 | 1,055 | 11,5¢ | 21,0393 | 0.7206
300 0.8860 | 0.5262 1,0300 30.7¢ 30 | 0.9115 0.4923 1,0360 28,40 2,140 | 0.90k0
b5e | 0.6853 | 073 | 0.9998 | M6.Ae e | o715k | o.056 |.2.0088 | Wbe | 37732 | 0.9666
60° 0.4663 | 0,854 0.9732 61,40 60° | o.hg6% o.8%472 | 0,9769 | 60,10 | 6.0137 | 0.98%
e 0.23%1 | 0.9270 0.9562 75.80 75° | 0.2y 0.9266 | 0.958% | 75.2° | 8.2639 | 0.9928
500 0.0000 | 0.9%99 0.9499 90,00 90° { 0.0000 0.9519 | 0,919 | 90,0 | 9.7921 | 0.9948
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NACA TN No. 1171

TABLE XV.— DISTORTION OF PROFILE FROM CIRCLE BY TSIEN'S METHOD [Hm- 0.7]

Y

A x y 13 arg x \
-90° 0.0000 -1,1541 1,154 =90,00
~750 0.1445 ~1,1347 1,1439 -82,7°
~60° 0.3075 -1,0661 1.1097 ~73.9°
=450 0.4892 -0,9250 1,0464 -62,10
-300 0.6659 -0.6926 0.9608 -4, 10
~150 0.7971 ~0,3731 0.8801 -25,1°
oo 0.8459 0.0000 0.8459 0.0°
150 0.7971 0.3731 0.8801 25.1°
30° 0.6659 0.6926 0.9608 k6,10
U450 0.k4892 0.9250 1,046k 62,10
600 0.3075 1,0661 1.1097 73.9°
75° 0.1445 1,1347 1,1439 g2,7°
90° 0.0000 1,151 1.1541 90.0°

T
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Figs. 5,8
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