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TECHNICAL NOTE NO. 1304

WIND-TUNNEL INVESTIGATION OF THE BOUNDARY LAYER AND

WAKE AND TEEIR RELATION TO AIRFOTL ‘CHARACTERISTICS ~
NACA 65y-012 ATRFOIL WITH A TRUE CONTOUR
FLAP AND A BEVELED-TRATLING-EDGE FLAP

By Robert A. Mbndelsohn
SUMMARY

Two—dimensional flow teste were conducted in the 2%-—by 6~foot

tost section of the Langley stability tunnel on an NACA 651—012 air—

foll with a true contour flap and & beveled-trailing-edge flap to

determine 1lift, drag, hinge moment, boundary laeyer, end wake charac—

teristics. Lift and hinge-moment data are presented for variocus

» angles of attack and flap angles, and a limlted amount of dreg and
pressure—~distribution data is given. Measured velocity and static~
pressure profiles at various positions on the airfoil end behind the
trailing edge are presented. Theoretical boundaryhiayer parameters,
camputed from measured pressure distributions, are compsred with the
values determined from velocity profiles. )

Measurements indicated that the stetic—ressure gradient through
& boundary leyer mey be large in regions where the airfoil hus a
small radius of curvature and that a statlic-pressure rise exists at
the vertical position of minimwm weke velocity for a region Just
behind the trailing edge.. .

The theoretical and measured boundery-layer perameters were in
good egreement except near the trailing edge. Methods for fore
accurately predlcting the boundsry layer in this region appear to be
necessary before satisfactory estimations of hinpe mdéments from
calculated boundary layers may be made. There is also a possibility
that estimates of profile drag based on the boundary-lsyér thickness
at the trailing edge may be considerably in error becauss of failurs

» of the theory to predict accurately the boundery layer at the
tralling edge and because of fallurs to take into account the
vertical static-pressure gradient of the weke.
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INTRODUCTION

Beceuse flsp hinge moments are critically affected by boundary-
layer conditione, it would be desirable to have reliasble estimates
of boundary-layer paremeters before an attempt is made to determine
their effect on hinge moments. The present investigation was made
to obtain data on the boundary-layer characteristice in order to
check the results ageinst values computed- from theory. In addition
to determinatlions of boundary-layer velocity end static-pressure
profiles, measurements wers made of lift, profile. drag, hinge moment,
and pressure distribution. For comparison with test data, theoretical
boundary-laysr parameters sre given for the same conditions as those
used in several of the tests, measured pressure distributions being
used for the calculations, For one model configuration, the theoretical
vertical statio-pressure gradient was also estimated,

SYMBQLS

The coefficlents and symbols used are 8sfined as follows:

N airfoll section 1lift coefficient (1/qc) ¥
og airfoll section drag coefficient (d4/qc) —
Ch flap section-hinge-moment coefficient (h/qc#2)
P pressure coefliclent at wing surface (-I-’—:a-?-‘?)

. - P - Dy
P pressure coefficlent in alr stream ~——E-—
P preosgsure coefficient at edge of boundary layer or wakse

( LR )
q

2 gection 1lift per unlt span
d sectlion drag per unit span
h flep section hinge moment, positive when tending to defleoct _ -

flap downward

c chord of airfoil -
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8%/c

8/c

6/c

chord of flap behind hings

free-stream dynaemic pressure (-Z— U02>

static pressure at esirfoll surfacs

statlc pressure in alr strean

gtatlc pressure at edge of boundary layer or wake
free-stream static pressure ' e, o
local veloclty

velocity Just outside boundery layer or wake

free-gtream veloclty

denslity of air

distance from alrfoil leading edge along chord 1ine

distance above alrfoll surface or distance above projected
chord line of flap when %— >1.0 :

dlstance ebove surface to edge of boundery layer

angle of attack

tralling—-edge angle

flap deflection, positive downward 5'
nondimensional displacement thickness l - ——)d(
c
nondimensional momentum thickness E’J: - (%) I)
0

alternate definition of nondimensional momentum
St

8 1 UQ 2 n
thickness o -2-(-6.) {2t - P") cl(%—)
0

Id
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H boundary—-layer—shape parameter ( )

B elternate definition of boundery-lsyer—sheape parameter (8
Subscripts:

U uncorrected value

1 valve at survey station

t tab

m one~half difference between upper— and lower-surface value

acl
c?’a' = ""‘"‘")

(@)
(@)
(),
e () |

The subscripte outside the parenthesis denote the variables
held constant when the partlal derivatives are taken.

APPARATUS AND MODELS

A L-foot—chord airfoil model of NACA 657-012 contour was
mounted in the 2l by 6~foot test section of the Langley stability

tunnel as shown in figure 1. The airfoll completely gpanned the test
gsection end was sealed at the walls except for a gap of 1/16 inch on
each slde of the flap to allow fresdom for hinge-moment measurements.
The airfoil was made of laminated mahogany finished with paint and
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gsanded to an eserodynamic smoothness. Fitted 1n the upper surface
only were a series of static pressure orifices. Two flaps were

used with this airfoil; one having the original contour (§ = 6°)

is referred to as the basic flap, and one having flat sides with

a 250 bevel is referred to as the mcdified flap. (See fig: 2.)

Both flaps had fabric seals. The flaps were connected by means of a
shaft to a hings-moment balance which was rotated for cheanges in
flap deflection. Chmnges in angle of attack were accomplished by
rotation of end disks in which the model was fitted.

Boundary-layer velocity and static—pressure profiles were
measured by means of "mice" consisting of a number of total-pressure
and static—-pressure tubes. of 0.040-inch outsids-diameter hypcdermic
tubing. Three sizes of total—pressure mice were used, each conelsting
of six totel-pressure tubes flattened to have an opening of 0.006 inch
and each having the tubes spaced to survey a definite range above
the sirfoil surface. A static—ypressure "mouse" cansisting of six
static-pressure tubes, spaced to measure the slatic-pressure profile
from the surface to & point 2 inches above the surface, was used.

Fach of the tubes was calibrated againet a tube for which the
characterigtics were known.

Wake profiles were measured with the mice mounted on an arm
fastened to the flap as illustrated in figure 1(a). In order to
reduce interference as much as possible, all rubber leads were
brought straight back to & streamline strut mounted vertically
behind the airfoil. ' ' - _

Boundary-leyer transitlion was obtained at the desired location
by means of transition strips glued to both the upper and lower
airfoil surfaces. The strips werse made of "Scotch" cellulose tape

having, fixed to onse side, a %-—inch band of sawdust which had been'
filtered through a i%w-inch mesh screen.

Lift was moassured by means of an integrating mancmeter connected
to static orifices in the floor and celling of the tunnel.

TESTS

For ths boundary—-layer, wake, and static—preséure teosts, the
Langley stebility tunnel was run at a dynamic pressure of 24,9 pounds

per square foot which, for standard sea—level conditions, corresponded '

to a veloclty of epproximately 99 miles per hour end to a Reynolds
number of approximately 3.68 x 106. Hinge-moment, 1lift, and drag tests
were run at & higher dynamic pressure (39.7 pounds per square foot)

in order to increase the forces so that greater accuracy could be
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obtained. This dynamic pressure corresponds to & velocity of 6
approximately 125 miles per hour and to & Reynolds number of 4.64 x 10

The followlng table presents a summary of the tests made and
the model configurations used:

. - B Location of

Type of tests (deg) (deg) trensition
Boundary layer 0 0 ) Nose
Do- v - 0 0 | 0.50¢
DO- == > - = . +6 ) Free
DO~ -m e ~m 0 3] Nose
Force Range Range Free

Because a symmetrical alrfoll was used, messurements were made
on only the upper surface, end the tests at a negaltlve angle of atteck
or flap deflection were used as the equivalent of lower-suriace
messuremsnts for positive angles of attack and flap angles.

In order to obtain velocitles through the boundary layer as
gccurately as possible, stetic—pressure profile surveys were made
in order thet the static pressure corresponding to the actual position
of the total-pressure tube ghove the airfoll surface could be used
in the calculations. The total and static pressures in the boundery
layer were measured relative to the total pressure in the free stream.
The positions of the tubsa above the surface were measursd by means
of a microscope which read to the nearest 0.001 inch. A tube~height
correction was then applied for the effective center location as
glven in reference 1.

TUNNEL CORRECTIONS -

Tunnel. corrections were applied to only the angle-of-attack,
hinge-moment, lift, and drag data. No corrections wore applied to
the pressure—distribution or boundary-layer data. Because the modsl
chord was large compared with the tunnel height, it was found
necessary to apply a correction to ‘the angle of attack for Lift
ceuged by flap deflection. Thus, the hinge-moment and 1ift data,
presented against flap deflection, are derived from cross plots and
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are given without test-point symbols. The eguations used in
‘correcting the data are: '

@ = 1.0915 oy + 0.0068 & {1)
¢y = 0.8885 cyy (2)
cg = 0.8 cay . . (3)
Cp = Cpy * 0.0181 o (s

RESULTS AND DISCUSSION

In the discussion that follows, the alrfoil with the true—
contour (@ = 69} flap will be referred to as the basic-~flap model
and the same airfoil with a beveled (@ = 25°) flap will be referred
to as the modified—flap medel.

Pregsure distridbutions.— Before pressure-~distributicn tests

were mede, a boundary-layer survey revealed thet transition occurred
behind the theoreticel minimm-pressure point for oy = 0°, & = OO,

This transition location was attributed to the low Reynclds number of the
tests and to the low turbulence level of the tumnel. Since for the
boundary-layer celculations that wers to be made, it was necessary

to know the position of tramsition, roughness strips were used

to cause transition at a desired location for most of +ths. teet
configurations.

Pressure distributions are given in figure 3 for seversel
angle—of-attack and flap configurations. The pressurs distribution
for o = 0% & = 09, basic—Flep model, transition at 0.50c, B
(f1g. 3(2)) shows good agresement with & theoretical curve compubted =~
by & method similar to that of references 2. The theoretical pressures
are somewhat lowsr near the leading edge and somewhat higher
behind 0.60c than the test values. A distortion in the measured
pressure distribution is caused by the flap gap. Movement of ths _
transition tape to the leading edge had little effect on the pressure
distribution for this model configuration. '

A comparison of the pressure distributions for the basic-flap
and modified~flap models indicates that, for all configurations
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teated, the modified—Flap model had a more negative static-prsssure
gradient from the hinge lins to the bevel than the basic-~flap model;
behind the bevel, however, the static-pressure gradient was less
negative. .

Boundary-~layer and weke profiles.— Static-pressure profiles

for various positions slong the airfoll and behind the trailling
edge are presented in figures 4 to 13. The assumpbion of a constant
static pressure througk a boundary layer, used in most boundary-
leyer calculations, is shown to be closely approached except in
regions where small radli of curvature exist, such as are found

&t 0.937c on the modified flap. (See fig. 9(k).)

With the assumption that, for smell distances above ths alrfoil,
the streamlines are concentric arcs and that changes in statle
pressure will be & function of the centrifugsl force of alr
particles treversing & curved path, computations of the varlation
of static pressure with distance sbove the alrfoll surface wers
made. Since this computation determined only the changs In statle
presgure sbove the surface, the increments were subtracted from the
velues determined by the surface orifices, send these values are
shown plotted in figure 4. For most poeitions the computed static—
pressure gradients above the surface were almost the same ag the
measured gradlents. Above the surface the measured pressures faired
into the values determined from surface orifices except in reglons
where there existed a surface discontinulty or & high curvature.

Veloclty profiles for various positions along the airfoil and
behind the trailing edge. &re presented in figures 14 to 33. The
velocity profiles et 0.02lc for the conditions with transition tape
at the leading edge. (fige. 15, 18, 19, 25, z8, and 29} s:ow
that the tape.has a marked effect on the local profile share. The
distortion is soon damped out, howsver, and a normal turbulent
profile develops. Laminar separation ls not indicsted.

Just ehead of the flap gap for oy = 09, 8 = —69, with trensition
a8t the leading edge, the velocity close to the surface begins to
decroase, then to increase again as the gap is passed. (See figs. 18
and 28.) Because of the negative pressure gradient, no separation
hag teken place and the boundary layer becomes more stable as 1t
progresses rearwerd. For oy = 0%, & = 60, however, although no
geparation ig shown at the flap gap, the boundary layer becomes
less stable as the trailing edge is approached because of the
positive static-pressure gradient. On. the modifised flup, for all
conflgurations except = 09, & = 60, the boundary layer behind
the gap bocomes more stable until the bevel 1s reoached becausge of
the favorable static-pressure gradient. Beyond the bevel, the
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positive. static-pressurs gradient causes an approach to separstion,
The veloclty profiles of the mcdifisd flap show a greater tendency
toward separation than those of the tasic flap, but in no case is .~~~
separation indiceated.

: For oy = 6° 8 =0° end for oy = 09, & = 6° (figs. 22, 23,

32, and 33) the velocity profiles bshind the trailing edge show the

rapid rise and spreading o the wake reglon as the disbance 1s ..
incresssed. Just behind the airfoil there ie & rapid increase 1n the
minimum velocity in the wake, and the profile gradually auproachﬁs a
symmetrical shape, R L. o

The velocity profiles in the wake of both airfoils, for the ,
angle of atiack and Plap-deflection configurations (figs. 22, 23, -
- 32, and 33) indicate that, for positive angles of attack =nd flap
angles, the velocity at the edge of the boundury layer of the upper
surface was slightly higher than the velocity at the edge of the . |
boundary layer of the lower surface. Similar résults heve been
reported in reference 3 and do not necessarily indlcate.that infinite
velocit*es occur arcund the treiling edge since the velocity profiles
at the trailing edge show that the surface velocity is probebly
zero. Becauge of the difference in veloclty between -the upper and -
lower surface at the tralling edge, the wake curvature is believed
* to be affected. This curvaturs msy be illustratsd by figurs 34 :
which is a plot of vertical vosition of minimum velocity in the ,
wake againet chordwise posltion' x/c. Thé figure shows the rapid
change in wake-center direction occurring close to the trailing
edge. For both angle of attack and flap—deflection configurstions,
the weke center is ‘shown to rise above & plane formed by the traillng
edge and exteniingln the direction of the free stremm .

Figure 35 is a plot of the static pressures at the vertical .
position of minimum velocity in the weke against chordwise poeition x/c.
A static-pressure rise 1s indicated immediately behind the trailing
edge for both the basic and modified flap. This rise was cbserved
in the tests of reference 3 and for the zero~1ift condition wes
attributed to "curvature of the .streamlines which contract as they
flow past the trailing edge." In a nonviscous fluid the maximum
contraction of the streemlines flcwing from the sirfoll would
occur at the trailing edge, but in a viscous fluid, because of the
sudden reduction in skin Pri¢tion as the air pagses the airfoil,
‘the maximum cortraction 6f the streemlines occurs somowhat behind
the trailing edge. Although -this contraction of the. streamlines
behind the tralling edge would be associsted with a pressuré drop
in accordance with Bernoullits theorem, account must bs taken of
the fact thet the air is changing direction rapidly, snd requires
a rise in pressure to balance the centrifugsl forces. When the
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airfoil is producing 1lift, the difference in velocity between the
upper end lower surface at the edge of the boundery lasyer of the
region behind the trailing edge apparently influences the wake
cuwrvature, and, conseguently, causes a change. in pressure rise as
indicated by figures 34 and 35.  The greater pressure rise from the
modified flap than from the basic flep mey bs caused by the more
rapld change of direction of the stresmlines behind the treiling
edge.

Boundsry-layer persmsters.- Figures 36 end 37 show a comparison
between measured and theoretical boundary-layer parsmeters for both
the basic and modified NACA 65,-012 flap models, The boundary-layer
perameters were computed from the measured—velocity profiles by the
mothod glven in the appendix. By using the measured pressure
distributions, the theoretical results were obtained by a modification
of the method of reference 4.for conditlons with transition at the
leading odge and by the method of refersnce 5 for other transition
locations. The modification consisted in solving an integratéd form
of the equations of Gruschwitz and von Keman by an iteration process
which accounted for the chordwlise varietion of skin friction. The
following table summarizes the configurations presented and indicates
the method used in calculating the boundary-layer perameters:

Condition Assumed Reference for
Flap )
i) transition locatlion | computation method
(deg) | (deg)
Basic -6 0 0.80¢c 5
Modified -6 0 0.938¢ 5
Both 6 0 Nose L b
Both 0 -6 Nose L
Both 0 6 Nose L
Both 0 0 Nose i
Both : o O 0.50¢c 5

In the theoretlcal calculatione the assumption was made that the
nondimensional momentum thickness 6/c 1s cohtinuous through
‘the transition point, the value of H changes suddenly from a
laminar to a turbulent value, and the nondimensional displacement
thickness 8%/c 1s discontinuous through the tremsition point.



NACA TN No. 130% il

For most of the model conditions, the computed velues of 5%/c
and 9/c compare well with measured velues forwerd of x/¢ = 0.80,
the position of the flep gap, Behind the 0.80c position, several
of the model configurations show large veristions from theory. For
the basic~flap model at ay = 09 & = 60 (fig. 36) with transition at
the nose, the calculaeted values of the boundary-layer thickness are
consideraebly smaller than the measured values behind the hinge.
From the velocity profiles and the rapid increase in the value of H,
it may be seen that separation is being approached., The boundery-
layer parameters of the modified-flap model for the same sirfoll
configuration compare very well with theory until the bevel is reached,
at which location the tests indlcate separation tendencles. Although
a very high value of H is reached (2.35), final separation is not
shown by the velocity profiles at the trailing edge (fig. 33).
Since referesnce 5 predicts separation when H reaches a value between
1.8 and 2.6, the possibility exista that the mouse tubes near the
surface, which measure an averege flow, will not alwaye indicate when
separation has taken place. The theoretical boundary leyer on the
lower surface for the same configuration compares well with the
measured values except over the region between the hinge line and the
bevel. For this region, tests Indicate a thinner boundary leyer
then theory. :

In generel, e comparison of meesured and theoretical boundery-
layer paremeters indicates that for sudden changes 1in pressure
gredient or alrfoil profile, large errors in compubted boundery-~layer
characteristice are possible.

For both flaps, the assumed laminar value of H {equals 2.15
from reference 6) was not reached but, in general, the assumed
turbulent velue of H (equals 1.4 from reference 5) was reached,
Although there is considerable scatter of the test points, in s
favorable pressure gradient and for a turbulent boundary layer, the
vaéu§70§ H eppears to remain essentially constant. (See figs, 36
an .

From the measurements et oy = 0°, 8 = 0°, transition at 0.50c,
the value of H doss not appear to' changs suddenly through the
transition point even when transition is induced by a roughness
strip. The change from laminar to turbulent profile seems to start
some dlstance ashead of the tape and to become fully developed as the
tape is reached. No moasurements were made at the transition poeltion
because of the presence of the tape end measurements ahead and :
behind were too limited to get a guantitative indication of the
transition range.

In order to get an indicetion of what is happening to the
boundary leyer beyond the trailing edge, the assumption was mede
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thet the peaek of the wake velocity-profile curves defined a line

where the upper— and lower-surface boundery layers Joined.

Basged

cn this assumption, a positive angle of attack or flap-deflection
configuration on elther bagic or modified-flap model indicated an
increase in the boundery-layer perameters for the lower—surface
This result 1ls caused by a mixing
action in which the lower energy air from the upper surface mingies
with the alr from the lower surface,which tends to make the walke

wake behind the trailing edge.

patterns symmetrical.

Because of this mixing action, no real dividing

line exists between the upper— and lower-surface weke and defining
& streamline in the weke region becomes difficult.

Profile drag.— Although the profile—drag coefficient should be
unlque for a given configuretion regardless of the Ztation at which
a wake profile is measured, computations indicated that, if the wake-
profile measuring plane was close to the trailing edge, various
values could be vbtained, depending upon the assumptions made in

deriving the profile-dreg equations.

A summary of the computation

methods used, the assumptions 1nvolved, and the profile-drag

squation follows:

e e

Method Assumptions

yo—

Eguation

=

1 .|Linear variation of H
with logg (Uo/U);
no static—pressure
gradient in wake
(reference 8)

2 |Linear veriation of EH
with legs (Uo/U)
static-pressure
gradient 1n wake
(Developed from
reference 3.)

3 |Nonlinear variation of
H with logs (Ug/U)
static~pressure
gradient in weke
(Developed from
reference 8.)

4 [Melville Jones wake
mothod (reference T)

cq

ca

a

Ca

Hy+5

_201/u) 2
%),

Hi+5

=?f;(y_)2
. C U°’1

i3
Fy42 lo (UO)dE
= ( (e)
c ] 5 e
=2 2ol (u) +pt] (&
Us Vo ( )

LBt
N

The resulfé cbtained by the various

methods are shown in table I.
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In reference 8 a lineer relation between log, Uo/U and H,
baged on a very limited amount of test date (three test points), is
used to relate the profile drag to the boundary layer and local
velocity nesr the trailing edge. This equation is

El+5

=08
cg = 2 (UM. (5)

Figure 38 presents a plot of tke relation logg %% against H

for both ths basic- and medified—flep model for various model
configurations. Shown in the figure 1s a llne representing a linear
relation of the functlon from the treiling edge to infinity,

assumed 3in reference 8 to obtain equation (5). The present data
indlcete nonlinesrity of the curves, especially in the region

close to the trailing edge (high values of H). This nonlinearity
in the trailing-edge region 1s believed to be a function of the
pressure rise previougly described. Since equation (5), which 1s
used in calculating profile drag of en sirfoll by estimsting the
boundary layer at the trailing edge from thecretlical considerations,

sssumes & linear reletion between loge gﬂ end H, further tests

of flow characteristics existing in this reglon arpear to be
desirable,

Taebhle I presents the estimated rrofile-dreg coefflcients of
the basic-and modified-flap model for several mocdel configurstions
calculated from wake—velocity profiles at several positions
behind the trailing edge. The drage calculated by equation (5)
show lerge varietions with distance from the traelling edge because
of static~preassure gredients in the wake. This difficulty was
pointed out in reference 8, and an alternate definition of the
nondimensional momentum thickness 6/c end shape paresmeter H
was given in appendix IXI of reference 8 which accounted for the
stetic~pressure gradient. Thus,

- ey
-1y oo ®
0
F=3/0 (7)
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Table I shows that application of these alternate definitions
congidersbly reduces the variation of computed drag coefflcient
with distance of wake measurement from the trailing edge.

In view of the nonlinearity of the relation between logeg?

and H es pointed out previously, drag coefficlents were calculated
by use of the measured veriation of the velocity function from
the following relation:

B .
. 5 B2 J1 " loge(Uo)dﬁ
cg = 2—3=(-—t1- (e -0 v (8)
c Uo

Also, drag coefficients were computed by the Melville Jones!

method (reference 7). Though considerable variation of drag
coefficient with distance from the trailing edge is still present,
because of the inasccuracies in the method of measuring wake patierns
in two varts, no grest increase in accuracy appsars to be obtained .
by the use of equation (8). A comparison of the drag ccefficients
calculated by the alternate definition of the boundary-layer
parameters with those computed by the Melville Jones! method indicates
thet, for engle of attack and aileron—deflection configurations, the
drag will be overestimated for measurements near the trailing edge.
Some of this verlation may be caused by the difficnlity in dstermining
accurately the velozity at the edge of the boundary layer.

This investigaetion indicates that for profile-drag determinetions,
meesurements very close to the body should be avoided and that, in
using equations which relate the profile drag to the messured boundary—
layer or wake characteristics nsar the trailing edge, the static—
pressure gradient should be taken into account. In addition, a
theoretical calculetion of profile drag which involves an estimation
of the boundery-layer thickness at the trailing edgé could be
congiderably in error because of the failure to teke the vertical
gtatic-pressure gradlent into account and because of the possibility,
as discusgsed in the section on boundary—leyer paremeters, that
theory will fail to predict accurately +he boundary” layer at the
tirailing edge.

Force and hinge-moment data,~ force and hinge-moment data for
the begic-flap model and the modified-flep model are presented in
figures 39 to 41 for the free-transition condition. A summary of
hinge—moment end lift parameters measured from these data are as
follows:
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Flap Ch& Chs CZ o CZ 5

Basic | ~0.0047 | -0.0111{ 0.1071{ O.

Modified o081 ~.00%7} .093( .O44

With free transition, the minimum profile dresg of both the
basic— and the modifisd—Llap model is the same since itransition
occurs at the same position for both flaps. With chaenge in 1lift
coefficient, however, the mocdified—flap mocdel has the greater
profile drag.

The basic~flap model has a considerebly higher lift-curve
slope than the modified—flap mecdel because of the large difference
in treiling-edge angle. This trailing-edgs-—angle effect on the _
model characteristics may be ccnsidered to be caused by local changes
in effective msan--line camber brought about by the fact that the
boundary layer over the upper surface 1s different from that over
the lower surface. Figure 42,which is a plot of the effective-mean
line 8%,/c eageinst position x/c, indicates that the modified flap
hes a greater effective—camber chenge near the trailing edge than the
basic flap. This effective—camber change causes the bevel to act
as & balancing tad for smsll chenges in sngle of attack or Plap
deflection; thus,e reduction le obtained in the variations in 1ift
and in hinge moment with angle of attack or with flap deflectiom.
(See figs. 39 to 41.) At large positive flap deflections, however,
separation of the boundary layer occurs ahead of the bevel on the
upper surface, and on the lower surface the boundary layer is
very thin. The balencing effect of the upper-surface bevel is
consequently lost end the balancing effect of the lower--surface
bevel acts like & trim tab,as shown by the fact thet tleglcpe of- the
hinge-moment curve of the modified flap approaches that of the
basic flap. The hinge-moment curves for both the basic and modified
flap fail to pass through the origin because of inaccuracies in
construction of the models. After tests were completed the basic—
contour flap was found to have a slight upward curvaeture near the
trailing edge and the modified flep was found to have 0.8° upward
deflection of the bevel center line.

On the assumption that &% /c (see fig. 42) defined changes in
mean-line shape whilch would cause experimental hinge moments to
differ from those computed by thin-eirfoll theory, hinge moments
were estimated from figure 42 by use of an extension of reference 9.
These calculations indicated that a considerable improvement in
boundary-layer theory will be necessary before satisfactory
estimations of flap characteristics will be possible, since depertures
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of flep characteristics from perfect-fluld theory are primerily
canged by the boundary layer. Not only imst the megnitude of

the boundary-layer paramsters be accurately predicted, bubt the
rates of change in the megnitude of these boundary-layer parameters
elong the surface must also bs accurately predicted because the
flap hinge-moment cheracteristics are dependent on these rates of
change.

CONCLUDING REMARKS

Measuremsnta obtained from two-dimenaional tests of the
NACA 651012 airfoil indicated that the static-pressure gradient
through the boundery leyer mey be large in regions where the airfoil
has a small radius of curvature, end a static—pressure rise at the
vertical position of minimum weke veloclty for anmme section Just
behind the trailing edge 18 shown to exist. For iIncrease In angle
of attack and flap deflecticn, the pressure rise behind the trailing
edge was shown to inorease.

Geod agreement between msasured boundary-layer characteristics
and thoss calculated from measgured pregsure distributlons wes
obtained for positions ahead of the flap hinge. Behind the flap
hinge the agreement between mesasured boundary-layer characteristics
- and those calculated from msasured pressure distributions was not
80 goold. DBecause the discrepancy between measured and calculated
boundary-layer paremeters ls greatest in the region neer the
trailing edge where the effect on hinge moments. 1s the greatest,
methods for more accurately predicting the boundary layer in this
reglon eppear Lo be necessary before satlsfactory estimatlions of
hinge moments from calculated boundary layers may bs made.

In the equetions which relate the profile drag to the measured
boundary-layer or wake charascteristics near the trailing edge the
static~pressure gradient should be taken into account.

A thecretical calculation of profile drag, which involves &n
egtimation of the boundary-layer thickness at the trailing edge,
could be considerably in error because of failure of the theory in
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accurately predicting the boundary layer at the trailing edge and
because of the fallure to take the vertical statlic—pressure gradient

into account.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Asronautics
Lengley Field, Va., Jamuery 15, 1947
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APPENDIX

SUGGESTED MRTHOD OF DETERMINING BOUNDARY-LAYER
PARAMETERS FROM VELOCITY PROFILES BY
THE USE OF A MECHANICAL INTEGRATOR

A grephical method of determining boundary—layer parameters
directly from measured-veloclty profiles is presented, This method
wves found convenient because of the great amount of labor that may
be saved in determining both &%/c and 8&/c from ome plot. Since
the method involves teking the difference betwsen a moment and an
aree as determined by a mechanicul integrator, a large—scale plob
should be used to obtain satisfactory accuracy. A typlcael boundary-
layer profiie is 1llustrated in the following sketch;

i\u (K, 5 '/G) - U/U
N> °
ufUs N ™ .
\ \
v/e -

The method necessitates finding the shaded area shown in the
sketch, and its moment with respect to the axis y/c. Inasmuch as

18
C
o* _
-l (-3 @
0
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and K = lL, then
Uo

where A 1s the shaded srea of figure. Also, since

£ jf ERUIEY

s | g2 ( |
<-(gF @)
8 _ Yo % d_(l
c K2 K c
0
St

Now, if the moment of the shaded area is taken about the

Ieyd

M= ?<K-I-}1;) —K:—e@a) d(%)

0

y/c axis,

19
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where M 1s moment of shaded area or

&5
< 2
C D u
£ - (%)
. U
we | =2k o
0
Therefore, by substitution: -
g-.aM_ A
¢ K? X
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TABLE I

SECTION DRAG COEFFICIENTS CALCULATED BY VARIOUS METHODS®

Station Basic=flap model, Sq Modified«flap model, e
x/c 1 2 3 L 1 2 3 | L
@y = 005 & = 0°] Transition at 0.50¢c

1.000 | 0.0065 | 0.0057 | 0.0058 | 0.0060 | 0,0086 | 0,0062 | 0.0065 | 0.006
1.013 .0062 .005% 005, 0057 | +00 0067 | .00 +006
1,025 «0062 | .005 0005 00059 | 0074 | o008l ]| .0065 | 0067
1.050 «005 0056 | L0056 | .005 .00 Z 20063 | ,0063 | .006L
1,100 »005 008l | o005L | 005 2006 .0062 | .0062 | .006L

a; = 09, 8 = 09, Transitlon at leading edge

1,000 | 0,0104} 0,0098 | 0.0098 | 0,0097 {©.0124 | 0,0100 | 0.0102 | 0.0098
1,013 .01121 40103} .0103 | .0099 | .0l22f .0101| .0102]| ,.OlO1l
1.025 ,0107| .,0102} L0161 | .00%9 | .0115{ ,0103} .O103 | .0O100
1.050 ,0101| .0098 | .0098 } .0097 { 0101 | .009 .0095 { .0100
1,100 00971 +0096| .0095 | .0092 | .0096 | o003 .0093 | .o09L

ay = 0°; & = 69, Transition at leading edge

1.000 | 0.0121 | 0,0118 | 0,0118 |0.011} }0.0138 | 0.0130 | 0,0133 | 0.0118
1,013 ,0125 | L0122 | ,0122 | .Ol1 J0133 | ,0123 | 0125 | .O115

1,025 .0126 - 012% . 01214. + 011 +0129 <0122 «0122 .0113
1,050 011 «011 <0117 «0113 «0120 «0117 20117 «0105
1,100 .01 0116 0112 .0110 | .0098 | .0097| .0097| .O101

oy = 6°, 8 = 00, Transition free
1.000 0.0119 | 0,011 0,011§ | 0,0111 |0,01%2 | 0,012 0.0126 | 0.0111

1,013 0111 .01 0107 010 0122 «0l 0116 0107

1.025 <0113 0112 0111 .01 «0122 011! 0116 +0109

1,050 0111 0110 0110 <0106 .0102 «01 «0106 «0101

1,100 «0102 «+0101 +0101 2010, 010 «0103 0103 .0105
Method 1: ¢4 = 291 (}é) 2 (reference 8)

d C U 1
H1+5
291 -

Method 2: cg = (:;) (developed from reference 8)

Method 3: c¢g (developed from reference 8)

c

Hy -
351.(1 H1+2( #g.o loge(Uo/U)dE

Method 4: Jones’ method (reference T)

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
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(a) Rear view,

Figure 1.- View of the NACA 651-012 airfoil model showing method of

mounting mice. Basic-flap contour.
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(a) Airfoil contour.

Figure 2.- Dimensions and pressure-orifice locations for the
NACA 65, ~012 airfoil.



Fig. 2b NACA TN No. 1304
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(b) Flap contour. . . i}

Figure 2.- Concluded.
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Figure 10.- Wake static-presgure profiles for the
NACA 65,0123t a =0°, 6=0°, with

transition strips at 0.50c. Modified~flap contour.
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NACA TN No. 1804 Figs. 12,13
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Figure 14.- Velocity profiles for the NACA 65,-012 airfoil at &; = 0°, &= 0°, with
transition strips at 0.50c. Basic-flap contour,
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Figure 15.- Velocity profiles for the NACA 65,-012 airfoil at a; = 0°, 8 = 0°, with
transition sirips at the leading edge. Basic-fiap coniour.
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Figure 16.- Velocity profiles for the NACA 85,-012 airfoil at a; = -6°, 6 = 0°, with
free transition. Basic-flap contour.
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Figure 18.~ Velocity profiles for the NACA 65,-012 airfoil at ai; = 0°, 8= -6°, with
transition strips at the leading edge. Basic-~flap contour.
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transition strips at the leading edge. Basic-flap contour.
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Figs. 20,21 NACA TN No. 1304
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Figure 20.- Wake velocity profiles for the NACA 651-012 airfoil at
ayg = 0°, 8= 0°, with transition strips at 0.50c. Basic-flap
contour,
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Figure 21.~ Wake velocity profiles for the NACA 651-012 airfoil at
Gy = 0o° , 0= 0° , With transition strips at the leading edge. Basic-
flap contour. _ _.



NACA TN No. 1304 Figs. 22,23
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Figure 22.- Wake velocity profiles for the NACA 651-012 airfoil at
aU = 6° , &= 0° , with free transition. Basic-flap contour.
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Figure 23.- Wake velocity profiles for the NACA 651-012 airfoil at
ag = 0° y & = 8° , With transition strips at the leading edge.
Basic-flap contour.
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transition strips at the leading edge. Modified-flap contour.
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Figure 27.- Velocity profiles for the NACA 66,012 airfoil at a; = 6%, & =07, with
Modified-flap contour.

free transition.
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Figs. 30,31 NACA TN No. 1304
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Figure 30.- Wake velocity profiles for the NACA 651-012 airfoil at
ag = 0° , &= OO, with transition strips at 0.50c. Modified-flap
contour.
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Figure 31,- Wake velocity profiles for the NACA 65012 airfoil at

Upy = O°, 6 = 0°, with transition strips at the leading edge.
Modified-flap contour.
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Figure 32.- Wake velocity profiles for the NACA 651-012 air_foil at
oy = 8%, 8 = 0°, with free transition. Modified-flap contour.

T
T ~J J ?
: e SRR =
\&%\\ﬁ\ BN < <
_ U\ﬁ’\\o\ A ~] |z
o < K
2 N s
4 KT ol N—7525
- T — /0% ¢
N F (L2
yal -
2 /7' o]
NATIONAL
CORTTE o8 AORATICS
=0/6 -0/ =008 =004 004 008 O/2 06 020 024 028 .032

Ye

Figure 33.- Wake velocity profiles for the NACA 651-012 ajirfoil at
oy = 0%, 6 = 6°, with transition strips at the leading edge,
Modified~flap contour.



\

au. = 60, 6 = 00
 — { (No transition strips) — |
.016 . SV, U= Q
{Pransition stripe at nose)
\ ]
\ L~
° 012 . "/ “‘L/r
Cl arkd
3 Free—atream direction ]
d 1
Lt
o
£
2 = - 5
=]
g /% ay = 6% 8 = 0°
-E . s = / (No transition strips) ]
3 / Baglc QD 6= 60
_..,L_/ - L]
y (Trensition strips
R - . al nose) {
1,00 1,02 1,04 1.06 1,08 1.10
x/e

NATIONAL ADVISORY
COMMITYEE FOR AERONAUTICS

Figure 34.- Vertical position of mihimum wake velocity for the
NACA 651-012 airfoil. Basic- and modified-flap contours.

78 314

FOET "ON NI VOVN




NACA TN No. 1304

A

—No transi

o

oCy=6", § =Q°
tion strips
Cy=0,8 =6
—Jransition strips at nose

SN
"

s |

oCy=0", & =0

—/ransition strips at nose

\
N _Xy=0>,6=0"

Transition Strips at 0 .5t

Static -pressure coefficient, P

NATIONAL ADVISORY
COMMITTEE FOR AEROMAUTICS

L0  [0e

104 106 108

x/c

(a) Basic’

11O

k oCy=6", 5 =0"
=No transition strips
oCy=0", 6§ =6°
_Transition strips at nosé

=

oCy=0",8 =0

—7ransition strips at nose

! \T\
rd

AL y=0, 6=0

/1]
//
o
AN

L Transition strips_ gt Q.50

Static-pressure coefficient , P
F

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

L00  L0&

104 106 LO8

x/c

(b) Modified.

11O

Fig. 35

Figure 36.~ Static pressure at the position of minimum velocity in

the wake of the NACA mmu...on airfoil,

contours.

Basic- and modified-flap



20 ¥ 005 _
S |~
u.% g ] +
6 & o b
. e oy
25 - _
12 MMSmT ay=0", § =0°
H 2% [ Tromifion strips af Q.50¢—5S 7oL
8 Swooe ereept ar moled Nu [ansifror
£ 2 11 g
3% ——Theoreticol ¢
4 § 5001 2
m w gl
. 35 52 [
0 ¥ P 6 .8 Q0 i2
%o
20 005,
o
g 7t
a /
/6 %%§
n . IIIHV H \J
2 m ol Crl g
\.N m m%-w RQ“ h- “d \.K .\ﬂ ﬂv _
H ST Transifion strps of hosey ﬁ\
L ]
8 B 002 4~ e
g m — Thearels 4,
b~ ' \\Mﬂ\\
.M WATIONAL ANVBODY
o 5 Q CONNTTIE R ATRORISTICE
2 4 I 8 0 2

20

L6

e

20

6

{2

2 005 |
13
el
Cﬂw/ et
> A304 ~ r
a2
Q
.m m.g.w Yy= i WUO _
.m s Mo Fronsition Strips
TR0z amm
1 .
5 8 oor —— Theortral e 4
g3 ;
(NI t
3 ks ¢
' 2 & & 8 1]
X M
010 \h
g 774
95§ nldp ¥
TR el LA L
L] m had =1 ﬁl‘ = U
@3 Cy=6 ] &=0] / M
X 3 No fransition .%&E a N\
£ S04 |
S A7 RV
m m \\.
39 Lm.h .
ia Z 4l
g9 = =176
S5 =7 NATINAL ABYIIORY
0 COMMTTE! POk ASRONINTICE
2 & b 8 0 L2
*c

Figure 38.- Comparison of theoretical and measured boundary-layer parameters for
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NACA TN No. 1304 Fig. 36 conc.
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