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TECHNICAL MOTE WO. 1379

WIND-TUIMNVL THVECSTICATION OF THE EFFECT OF POWIR AND FIAPS
ON THZ STAVIC LATZRAL STABILITY AND CCNTROL CHARACTURISTICS
OF A STHGLE-TICINE HIGH-WING AINTLANE MODEL
By John Re Uagerman

SUMAARY

An investigotion was conducted. to dotermine the effect of power
ani of full-span alottod flaca on the static lateral stability and
control characteristics of a single-ongire hizheving airplano with
tail on and tail off. The modol comuinations investigated includsd
three yower conditicns - narely, propeller ofif, yroveller winimilling,
and power on - tosted with tlap nontral, single slotted flap, and
double slotted flan.

The epplication cf powor with the flap moutral wes fourd to make
no aporociable chengo in tho offective dihodrnl, to increase the
directional ctability at low 1ift coofficiorta, and to reduco the
rudder effectivercss (rate of changs cf angle ¢f yow with rudder
dofle:tion). DNeflection of the single slotted flup cecreasod the
offective dihed-al, incrovansed the dirvectional st-bility, and increased
the -uddor effactivenuna. Dollection of the doudble slottod flap with
power ca dacroasod the effective Gihedrnl, incroasel tho directicnnl
atability, and decresged tho rudder effuctivoness. Tho additicn of
tha tail surfaces :ncronned tho offective dihedrel eni the directional
stability.

In compering the high=wing and low-wing 1odelo, 4ho high-wing
rmedcl was fownd to hnve grenter effoctive dihodral and groatur rudler
elfectiveners than the low-wing modol; howover, the fin ecfoctivensos
on the hich-wing rcdel was icmd to be tho smllar,.

IITRODUCTICN

The dsvelopient and use of aigher-powerad ongines cn airplanes
have introduced rxvncunced and important offacts upon the otability
and control cheroactoristics ol tho airplans. largd slipstreau offocts
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and incraased wing loadings hava been observad as & rosult of increased
ongina power.

In view of tha aforementicned davelomments and problems rasulting
therefram, a comprohensive iuvactization wea undertaken at tha
Lanpley 7= by 10-foot tunnal to datermine tha effacte of power, full-
opan eingle slotted and doudla slottad fleps, end verticel position
of tha wing on the atabilit; and control characteristics of a model
of a typicel single-engine cirplane. The resulte of tha longitudinal-
stability and lateral-stability invastiagntione of tho model as a low-
wing airplane modsl ara prasented in rafareicas 1 end 2, raspactivaly.
The reaulta of tha longitudinsl-stability invastigation of tha model
ea a high-wing nirplane ars prasentad in reference 3. Tha prasent
pepor daals <ith tha investigation of the lataral stability and con-
trol charactoristica of tha model aa a high~ving airplane model. In
addition, the affect of wing position on latarcl stability charactar-
istics is included in this repoart.

COZFFICIENTS AD SYMBOL3

Tha reaults of the testo ara presented in tho form of standard
FACA coelficients cf fcrcea and mozients. Rolling-mowent, yawing-
monent, and pitching-moment coefficients era givan about tho center-
of=gravity locatien (20.7 percent MJA.C.) which is shown in figure 1.
The data are referred to the atability axes, w:iich are a eystem of axas
heving thair cri;in at the center of gravity ard in vhich tha Z-axie
ia in tho plene of syTmutry end perpendicular to tha relativa wind,
the X-axle io ir tha plane of mymmetry and perpendicular to the
Z-axis, and the Y-axis ic perpandicular to the plana of eymmetry.
The poaitive diractions of tha stability axca, of anrular displaca-
nenta of the airplans and control ewrfsoces, end of hiinge moments are
shown in figure 2.

Tha coefficients and symbola arn dofined as follows:

1t ccafficiant (Z/48)

loagitudinel-force coefficient (X/qS)
latorsl-Torca coafficieat (Y/qS)
rclling-moment coefficiaut (L/gSb)

Pitchinzs-moment coefficiant (H/gSc’)
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yaving-moment coofficient (%/qSb)

rvdder hinge-moment coefficient (Ig._/qlh.'é'rz)

effoctive Lhymat confficient based on wving area ('.I‘.‘erf,'qs)

torque coefficient (Q/9V2D3)

propeller edvance-dlemeter ratin

Propuialve efficiency ('.I‘.‘artV/ZmQ)

1ift

longitulinal force

lateral feorceo

rolling moment

vitecking moment

yawin; moment

Lingo uomont, pownd-feet

propeller ef foctive thrust, pounds

propoller toique, pound-foet

free-gtreen dynam!- Pressurs, pownds per cquare foot (pvele)
ving area (9.kk gq £t on model)

viag mees eercdmamic chord (MheCe) (1036 7t on model)

rudder root-mean-sgusre chord ack el hings liae (0.353 £¢
on :wiol

ving spen, unless otherwise defined (7456 £t on model)

rudfer epan aleny hinge line (1.50C £t on model)

2ixr velocity, feet Per second
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propeller dismeter (2.00 ft on model)

propeller speed, revolutions per eccond

mase density of elr, slugs per cudic foot

engle of ettack of fusslage center line, dogroes
enile of yaw, dsgrees

control-surfece deflection with raspact to chord line,
desreen

B propeller blade englo et C.75 radivs (25° or model)

r off effectiva d'hedrel. dogreros

Sudbscripte:
[] ellexror
e elevator

rudder

denotec pertial dsrivatives of e coefficient with respect
. \c
tc engle of yew [for exauple, Cl' ™ —l
)
A J

MODEL AND ATTARATUS

The tents wore unde ia the lLan;ley 7- ty 10-foot tunnel which

18 Cescrided in refeveaces & and 5. The modol mo e %-scolo nodel

of & fighter-trpe eirplane enl ia shown ia fiswe 1. The wing was
fitted with e LC-percent-chord doudble slotted flep shich covered

93 percent of tho even and vaa derined from deta in reference 6.
For the flep-neutrcl tests the flrpa were retiscied en? the gaps
totween the flape were feired to the eirfoil contour with modeling
cley. The roer flap of the druble-elotteA-flep confizuration, vhich
rerregented tho flap for e sin;lo-elotted-flap configuretion, had e
25.66~percent choxrd and vos maintelaed at a sstting of 30°. The
froat flap wves retracted ond Jsired to the eirfo'l contour with
modeling clay. For the double-slotted-flap testa, the recr flap
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wae eet et 30° relative to the front flap vhich in turn wme eet
at 30° relative to the wing. With fleps deflected, there was sbout

;—?-inch clearerce betweon the end of the flap and the fuselage. No

lending gear vae used for theee teste.

A detailed drawing of the tail essexmbly ie shown in figure 3.
Durinz the prelinminary etegee of the investigation e conventional
rorizontel teil cixfece wae found to be inadequate in providing
longitudinal trim vhen the doible slotted flap wae deflected. As o
reeult, an inverted Clark Y eirfoil section equipped with & fizod
loading-edre slot wee used. When the model was teeted with flap
neutrel and with the single slotted flap deflected, the tail slot
woe sealed; with the double slotted flap dof'lecged, the slot wae

open. The verticel tail (ﬂg. 3) wvas offset l-;'- to the left to help

counterect tho eeymmetry ir. yewing moment due to elipetream rotetion.

Power for the 2-foot-diameter, three-blade, right-hand, metal
propeller ueed wne cbtained from e 56-harsepower sater-cooled induc-
tion motor mounted in the fuselage nose. Propeller espeed was measured
by mesne of en electric tachometer which wae eccvrate to within
0.2 percent. The dimensional charecteristice of the propeller are
given in ficvre b,

Rucder hinge momente were meemuwed by moens of en electric
strein page mouated in the fin.

TESTS AND RESULTS

Test Conditione

The teets vere made ot dynamic presswrsse of 12.53 poundn per
square oot Tor power-on tests withi the double slotted flap deflected
end 16.37 pounds per equare foot for ell other teats. Theee dynamic
pregsewres corresvond to sirspeeds of ebout T0 and 80 miles per hour,
reepoctively. The test Rejrolds musbers were sbout 875,000
and 1,000,000 besed cn tho wing mean eerodynamic chord of 1.36 feet.

Corrections
All power-on dnta have been carrected for tare effecte coeused

b the model eupnort strut. The power-off dzta, hevever, have not
been coirected for tere effecte because they have been found to be
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ralativaly exmall and erratic on aimilar models, espacially when the
{lapa ara deflacted. Jet-boundary corrsctions heve been epplied te
tha angles cf attack, longitudinal-force coefficients, and tail-on
pitching-mcment coefficienta. The corrsctions wera computed ap
follown:

fa = 5T.38, -g- cr

8 2
ALy = 'bv'c-cla

60, = -57.3 (.ﬂf_

vy

Jet-boundar; corraction fector st wing (0.1125)

total Jat-boundary corraction factor at tail (varias
between 0.200 and 0.210)

rodel ving area (9.hh aq ft)
tunnel cross-sactional area (69.59 sq ft)

change in pitching-mament coefficiont per degrea changoe in
etabilizor petting ca daterminad in teste

ratio of affective 4 namic pressura over the hurizontal
tail to Treo-strean drmanmic prossure

Teot Procadure

Propaller celibrations were mede by measuring the lomgitudinal
forca for a rance of propalier spoad with tho model at zero yav,
zero angle of attack, flerpa neutrel, and tail removed. The offec-
tiva thrust coefficient wma then computed from the relation

Tc' L CI * Cw
(prcpeller cpareting) “(propeller removed)
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The motor torquo wea elso meapured and the propeller efficiency
computed. The reeulte of tho propollar celibration ere showr in
figure 5. Figuro 6 illustretes tha reladion botween T.' end Cp,
viiich is rewresentative of e typical constant-speed propoller. For
aimplicity, a etreisht line varietion of T,' with Cp wao used.
The propeller spoed roquired to simulate thie thrunt ocondition waa
deternined from fizurea 5 end 6. The epproximete emount of engino
Loroopowuir ropresented 18 given in figuro 7 for various model ecalee
end wing loed!n;n. Tente were clso made with the propeller off,
propeller windmilling, ané conetant T.'. The value of T,' for

the teete with the propeller windmilling vae ebout =0.005.

At eech eagle of etteck for power-on yew teets the propeller
epeed wae hald constant throughcut tho yaw 1ange. Since the 1ift
end thrust coefficlente vary with yew vhon the propeller epeed end
engle of attack ere held constant, the thrust coefficlent ie etrictly
corract only et zero yev.

Latoral-atability derivetivea were obteined fram pltch teets
et englee of yaw of +5° {heroinafter terued slcpe teete) by semuming
e etranight-line variation betweer thsee pointa. Tho teste vero made
vith the propeller off, propeller windmilling, constant power, end
conetant T,'.

Oving to er error in part of the inveetigation of the doublo-
alotted-flap conficuration, eame of the data are onitted.
Presentetion of Reeulte

An outline of the figuree presenting the reeulta of inveeti-
gation 1e given ee follows:

Figare

Effect of power on Cy , G, ,
Flap nout>al « « « o « &» .‘. P
Sinrle slotted flap deflected
Double elotted flep ceflected

Incremente in C; ., Cn,, end reeulting from:
v Ty v

Pewer (conatant power ninus propeller windmilling)
Flap deflecticn + « o « ¢ o ¢ o o s s s ¢ s ¢ ¢ o
Toll eurfOCOT « ¢ ¢ s » s o = s 6 ¢ s ¢ s 8 8 & =
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Aorodynamic charecteristica in yaw:
Flapneutral « « o ¢ o o o o o o o
‘Single elotted flap deflected . o
Double alotted flap deflected . .

Rudder control cherccterietics:
Flap usutral « « ¢ o o s o o o
Single alctted {lap deflected
Double alotted flap deflected

DISCUSSICH

The folloving discussion ia concerned with tho teil ¢n the
model except where otherwiase noted.

Effoctive-Dihndrel Derivative (Cl*)

The variation of C;v vith Cp (figs. & to 10) ie generally

amooth for ell power conditions ond flap configuwretions. In general,
tha ysw tests 2groe with the alope teets os 1o indiceted by tho
large eymbols on fisurce 8 to 10. (The largo aymbols repreeent
elope velues teken ot zero yaw from the yaw teste.)

Effoct of pover.- The incremente in Cy v dve to power (constant

pover minus propeller windrilling) are shown in fimwe 1ll. Applica-
tion of power reeulted in no epprecleble change of effective dihedrel
for the flap-neutral case but decreased the effective dihedrel with
the aingle elntted ond doubls slotted flap dasflected (C; v = 0.0002

ie epprox. equivzlent to 1 of effective dihedrel). Thia decreaee
in C; v vith flaps deflectsl ia cauced by the latc_ral ehift of the

alipotroen ‘over the trailing ving as the sirplano ic sideallpped.
The latoral cdentcr "of pressure of the added 1:ift duo to power moves
outboard end creates e rolling moment sbout the center of gravity.

The redusction in effective dihedrsl cavsed br power (complete
madel) renced ‘from 0.5° to -0.5° throughout tho lift renge for the
Tlap-nectral corfiguretion, from <0.5° to =3° far the sinzle-slotted-
flep configurstion, and from -5.5° to =139 for the dcuble=-slotted-
flap ccnfiguration.
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Effect of flap deflection.- The effect of deflecting the eingle
slotted flap on the effective dlhedral ie shown in figzwre 12. Inasmuch
68 the double-slotted-flap confipwration was not invoetizated at a
low enough lift coefficient to meke & é¢irect camparieon with tho flap-
noutral confizwratliorn, o cumparison of the increments of Cy v betveen

eingle-slotted-flap em\ double-slotted-flap deflectione ere preeented
in fimwe 12 to chow the offect of the double slotted flap.
L]

Deflecting the eingle slotted flap resulted in a decrease in
offective dihedral with both powor off and power on; however,
deflecting tie double slotted flap (in corparison with the single
slotted flap) resultod in‘an increase of effective diliedrel with
power off end in a decrease with power on. The increase in effective
dihedral with powver off ie thought to be caused by wisteady flow*
conditidha resulting fram tho deflection of the dounble elotted flap.

Effoct of tail pnfaces.- The effect of tho tail ewfacee on
the effective dlhedrel is ehown in figure 13. The offective dihodiral
wee increseed with the eddition of the'tail swrfecee for ell condi-
tiong teeted - tha increaece being elightly larjer vith power on then
with power off.

It has been praviously eotabliehal that the rolling moment
contributed by the vertical tail in dependent upon the dletance fiom
the X-exie to tuo center of preseure of the verticel tail. For a
ziven lift coefficient the.flap-noutral configwratica (high engle of
ettack), therefcre, wuld produco the smlleet poeltive increment
in cz* ;3 enmd t‘xo doudle-elotted-flep configration (low engle of attack),

would produco the groutost peeitive incremont in Cz.v. This trond io

ohown to occur for tho flap-neutrol and single-slotted-flap configu-
retions. Boceuse no double-elotted-flap tall-off data ere &vellallo,
insrements in cl' reculting from tho edditicn of the tall ewrfecos

for this flap confiruration ere not preeentec.

Iffect of wing position.~ The high-wing model hze lees goamstric
dihedrnl (1.9%) than the low-wing model (5.0°) (roference 2). A com-
perieon of the reeults in roferonce 2 end thoso prcee:tel horein,
Lowcrer, indicatea that the high-ving model hea greeter offoctive
dihedral when pover le eprlicd and when flaps ere deflected than the
lov=ving model. An explanaticn of the greater eflectiva dihedral of
the wing in the high poeition ie given ia refecence 7.
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Directional-Stebilit; Derivative (Cn*)

Iffect of power.- The effects of power on cn' are presantod

ir. figure 11. With the tail off, pewer produccd a dostabilizing
effect fer the flap-neutral and eingle-slotied-flap configuratiens,
with ths deatebilizing effsct increasing with increesing lift coef-
ficisnt. VWith the tail on, the rssultent effsct dne te power was
faversble for all flap cenfigurations with ths excsptien of the
flap-neutrel cerfiguratier whick hed a slight destabilizing pover
effsct at low 1lift coefficienta. The eontribution of power to c,,'

(corplete model) varied threuwghout the lift rangoe from abont 0.0001
to =0.0002 for the flap-neutral corfiguretion, «0.0001 to -0.0011
for the single-sletted-flap configuration, sxnd -0.0017 to =-0.0004
for the dcuble-elotted-flap conficuration.

The eddition ef the windmilling propeller decreased the direc-
tional stability fer ell flap configuraticns with tail off end tail
on, except fer the double-sletted-flap confipwration with tail on
vhere the directional atability was incrcesed. (See figs. B to 10.)

Effect of flap deflection.- Deflection ef the single slotted
flap produced e deatabilizing effsct on the directional stabdility
with tail eff abeve a lift coefficient ef 0.8. (See fig. 12(e).)
With teil en, the directicnsl atabllity was increased with both
power off and pover on. (See fig. 12(b).) The contribution of &C

produced by the single-slotted-flep deflection (ccmplete model)
varies from =0.00027 te 0.00003 with the windmilling propeller and
from <0.00036 te =0.00039 far the conatant-power ccnditien. The
date presented ere generally in epreement with the theory that flap
dofloc;.:lon increecnes the directionsl stability. (See referencea b
and 9.

Deflecting the deuble elotted flap had a fevoreble effect on
the directional atebility for all tail-on conditions. (Ses fig. 12(b).)

Effoct of tail surfeces.- The addition of the tail awrfacea
increncsed the directional atability in ell casea inveatigated.
(8oe figm. 12(e) and 13(b).) The increments ceniributed by the teil
increared with increscod flep defllection and else increased with
incrosaed pover.

The offect of tail configwation en thc ecrodynemic charsctor-
istica in yew (from 40° te -L0°) ia premented In figures 14 te 16.
The directionel atability 18 loss in ell caaes vhen the rudder is
free then when held fixed. Ko rudder lock occurred for any of the




JACA T do. 1379

configurations teated. Rudder lock is determinsd by the revarsal
of tha yawing-moment curve only when the revarsal pessae through
gero yaving moment. Tha decreesed alopo of tho yswing-moment curvas
at about i18° yew in figuras 1i(b) and 15(b) end et 189 yaw in
figure 16(b), as well as tha reversel of the yawing-moment curve at
about -18° in figura 16(b), 1a probably duo to varticel tail atall.

Iffsct of ving position.- A study of teble I in refarence 2 and
table I in the pressnt paper shows that raising tha wving from e low-
ving position to e high-wing position greetly reduced tha fin sffec-
tivancaa (Mn' due to te:ll)- (Sea refarsnce 9.) Tha sffact of

wing-fuselaze interferance cn fin affactiverass hes besn shown (refor-
enca 8) to be unfevorable for high-wing deaigns. For a high-ving
airplane the verticsl tail is mainly in a regicn of dastabilizing
aidewnsh. A mora deteiled explenstion of this unfevarablo intar-
fersnce iz found in reforence 9.

Directional Control and Trim

Effoct of power on rudder-control and hinge-moment character-
Agtics.- A sumrmary of same of the principal rudder-control end hinge-
momont perareters obtained from the rasults of the yaw tosts (figs. 17
to 19) is givsn in tebls I.

o

Ths epplicetion of power docressed tha rudder effoctivencea -a-

with the flop noutral ead srith the doubla slotted flap ceflacted;
hovever, with the eingla slotted flep deflectsd the rudder efface
tiveneas w»s incrseaed. The deafloction of tha singla alotted flap
(povor on) increased the rudder effactivensas, vhoreas deflaction of
the doubla slotted flap (compared with tha flep-noutrel configuration)
docreased the rudler ofleciivoness.

For tha flep-noutrel confimuration only msmall changea occurred
in the hinge-moment perametera Cp = end ".lbr with power. Tha

hrl
thrust coefficient is low for thie condition (lovr CL); tharefore,
pover affacta would clso bs axpected to ba low. For tho aingle-
slctted-flap end double-alottod-flep confipwrations, tho epplication
of pover greatly increased tho valueea of the hinre-roment parametera.
This effact 1a agpecially noticeabla on values of Chr' for the

doubla-alotted-flap configuration.

Effect of pover on trim.- A factor of prime impertence to tha
Pilot ia tho trim change with power. The ¢ashed curve for Cy = 0

g LR A A
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on the yowing-momont curvos (figs. 17 to 19) indicatos points on the
Cp-cwrve at which tho latersl force is zero. The polint at vhich the

curve for Cy = O intorsecte the C,-axis gives the rudier deflec-

tion and yew engle neceesery to maintain etraight flight with zoro
bank. Tho chengee in rulder deflection reguired to trim with the

winga level when power is epplied end the correeponding changee in
yav sngle ero ee follows:

o oy Bririm Nyprim
(deg) ; (cog)

Flap

Neutral 1. =1.%
Single slottad 9. 3 2
Dnublo elottod 9. 25

The foregoing date ehow that tho trim changes ceusod by power areo
small; thus, good camtrol ir indicatod.

Effoct of winz position.- Higher veluon of .bdbbr were

obteined with the high-wing modol than with the low-wing model
(reference 2). Thie difforcnco in explained by tho fect that
. whercee ?cn {aar i3 noarly tho seme for both hiigh-wing and low-wing

models, the low-wing model has graater stability (C‘V) due probebly
to fevorablo eide-wash cheracteristice at tho teil.

Rudder defloctiara required to trim the high-wing design ere
omll; thus, good control ie indicated. The results for the low-
wing deeign, hovever, indicato relatively larie dofloctions to
maintein trim.

The hinge-moment parmractore ch, end Echr,‘,ar for the low~
wing and high-ving models cre within reeaonable e recient.

CORCIABICNS

Toste vero conducted on a high-wing powercd model of a typicel
fichtor eirplane with tujl on end tail off cquipped with fulle-epan
eingle slotted flap ard fullespen doudle elotted flup to invoetigate
the effecta of power and flep daflection on the stntic lateral eta-
bility snd control churecterietics. Effect of wing positicn cn
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laterel stadbility end contrel cheracteristice wne elso investicated.
The followin:; conclusiens can be drewn from the dnta prscentsd.

1. Effect of power:

(») Applicetion of power hed no effect on the effective
dihedrel with the flap neutral; however, with the singlo elotted
and dovble olotted flep deflected, epplicetion ef power decreesod
the sffoctive dihedral.

(bv) Tho application of power incroasod the directional eta-
bility of the.corplete model except with flap neutral et lew
1ift coefficients, .

(c) The epplication of pover decreasec the ruvdder effoc-
tivenees with tho flnp neutrel end with thie doudble elotted flap
deflected and incrseced rudder offsctivencss with the single
slettod flap doflectod.

(4) Trim changes caused by power wore emall; thus, good
control wma indicetsd.

« Effect of flap deflectient

(o) Deflocting tho sincle alotted flap docreesed the effec-
tive dihodrsl; however, deflecting tho coubls slottsd flap
incroesed the effective dihedrsl with power off and decreased
the effectivs dihedrel vith pover .

(b) Deflecting the single sletted flap increeged the direc-
ilonal stability of the campleto model witi: both pewer eff end
power cn. Dellectin; the double slotted flap increased tlie
directional stebility for ell tail-on cenditiersn.

(c) Deflecting the singlo sletted flap increased the rudder
effectiveness for the power-on condition, vhereas deflecting
the doudle eletted flap (corparsd with the flep-neutral con-
figuration) decroesed the ruider effectivencas.

3. Effoct of tgil ewrfaces:

(a) The effective dihedral was incressed vith the eddition
ef the tail eurfeces.

(b) The tail ewrfaces =d?ed inerements of directiommel sta-
bility for ell flap end pover conditions investipmted.
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4, Effeot of wing roesition:

(a) For the high-wing model groater effoctive dihodral wes
apparent then for the low-winz rndel when power wa3d applied
and flaps were deflectad.

(v) The Tin effectivoness wac jess on the high=wiug rodol
than on the low-wing model.

(c) The rwdder effectivenees was fowdd to he reater on
the hish-wing rodel than on the low-wing medel becauss of less
directional stability for the high~wing model.

(4) Application of power rosulted in grall rudder deflec-
ticns required to trim on the hish-wing desicn nnd lare rudder
deflecticns on tho low-winy; cosin.

langley Merorial Aoronsuticel Iaboratory
National Advieory Carmitteo for Aeronautics
Tengley Fleld, Va., May 6, 1947
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Relative wind
.

NATIONAL ADVISORY
z COMMITTEE FOR AERONAUT s

Figure 2,- System of axes and trol-surface hinge moments and
deflections. Positive values Gl forces, moments, and angles are
indicated by arrows. Positive values of tab hinge moments and
deflections are in the same directions as the positive values for
the control surtaceao which the tabs are attached.
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Figure 4 .~Plan-form and blade -form curves
for the model propeller. D, diameler ;
R, radius To tip; r, skalion radius ; b,
section chord; h, seclion Thickness;

RAF 6 airfoil section.
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Figure 12.~Ircrements in Cry, Cpy, and
c ry resullng from flap deflection for
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