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Preface

This report is pertinent to the project
designated by the War Department Liaison
Officer as OD-26, It pertains to work in
progress at Indian Head, Maryland, as a joint
project of the Bureau of Ordnance, U.S. Navy,
and Section H, Division A, National Research
Committee.

Distribution of copies of this report. --
The report was prepared for duplication on
December 20, 1941. The initial distribution
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Copies No. 1 to 23, inclusive, to the Office
of the Secretary of the Committee for distribu-~
tion in the usual manner;

Copies No., 2l and 25 to the Chief of the
Bureau of Ordnance, Navy Department, Washington,
D.C. (Attention: Research and Development Divi-
sion).

Copies No. 26 and 27 to the U.S. Naval Powder
Factory, Indian Head, Maryland (Attention:
Lieutenant Commander H., J. Orth);

Copy No. 28 to Major L. A. Skinner, Ordnance
Department, U, S, Army;

Copy No,., 29 to C. N, Hickman, Chairman,
Section H, Division Aj;

Copy No. 30 to Dr. W. A. Fowler, Consultant,
Section H, Division A.

Copy No. 31 to Prof. E. C. Watson, Member,
Section H, Division A.

Copy No. 32 to E. Lakatos, Consultant,
Section H, Division 4.
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INTERNAL BALLISTICS OF POWDER DRIVEN ROCKETSl/

Abstract

An approximate theory of the internal ballistics of rockets
driven by colloidal propellants is developed in this report. 4
number of approximate relationships are derived which may be of
use in preliminary design work., Particular emphasis is placed
on the case of a constant chamber pressure. Included in the
report are sample design calculations for a 3-in. 15-1b shell,
The calculations are summarized on graphs which show the weight
of TNT that can be carried as a function of the propellant
charge weight, chamber pressure and muzzle velocity. The
results show that the largest weight of TNT can be carried when
the operating pressure is between 25 and 50 atmos. This result
is then shown to apply equally well to all shells geometrically
similar to the one considered.

The theory developed in this report is necessarily approx-
imate in the following respects:

(2) In formulating the law of burning, heat losses in
walls are neglected. This means that no account is taken of
the fact that the mean temperature of the gas in the rocket
chamber is less than the temperature of the layer of gas im-
mediately adjacent to the burning surface.

(E) The mass of gas discharged through the nozzle of the
rocket is calculated on the assumption that the steady flow
formulas may be applied to variable flow problems on a quasi-

steady state basis. A more rigorous treatment of this problem

does not seem to be available at this time.

1/ This report is a revision of one of October 29, 1940.
For other material pertinent to the present subject, see C. N.
Hickman, NDRC Report A-li, Appendix D; C., N, Hickman,
Memos, A-18M to A-22M; J.W.M. Duliond, NDRC Report A-2L. The
last-named report is a relatively elementary treatment of the
mechanical efficiency of rockets.
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(3) The variation in gas temperature in the initial stages

I\

of burning is ignored. While this simplification yields a cor-
rect prediction of the equilibrium pressure, it may at times
lead to incorrect results in the prediction of how soon equildb-
rium-is reached.

(d)  Effects of friction are ignﬁred.

The English system of units based on the pound as the unit
of force and slug as the unit of mass is used throughouﬁ the

reports, The list of symbols used is given in the Appendix.

t

1. Basic equation

The basic equation connecting the rate of burning and the
rate of gas discharge is that the mass burned up to time t is
equal to the mass of gas in the chamber plus the total mass of
gas diécharged,- A equivalent statement is that the rate at
which the propellant is consumed equals the rate at which the
gas is discharged plus the rate at which the mass of gas inside
the chamber changes; in symbols,

ho= fig + (dm /dt), (1)

where‘é‘is the mass (slugs) of propellant burned per second,
ﬁd is the mass (slugs) of gas discharged per second and m, is

the mass (slugs) of gas in the chamber at the time t.

2. Law of burning

From therutset we shall restrict the treatment to the case

of constant burning surface, such as a tube burning on its

inside and outside curved surfaces, or a solid cylinder burning
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only on its flat ends, Let D be the dimension of the propellant
along the line of burning., This quantity is so defined that %Q
is the greatest depth burned away below any receding surface
before the whole grain is consumed. In the case of a tube, D
is the wall thickness. For a cylinder burning from both of
its flat ends, D is the length of the cylinder. If the cylinder
burns from only one end, D is taken as twice the length of the
cylinder. It is easy to see that, in the cases cited, the
definition is satisfied. For example, in the tube, the wall
burns a distance %2 from the inside and a distance %Q from
the outside,

With this understanding, we take as the law of burning,

dz
B g =b+ BP, (2)

where Z is the fraction of the propellant consumed at time t,
b and B are conétants of the specific propellant used, and P
is the chamber pressure (1b/ft2). The physical meaning of
Eqe (2) can be shown as follows.

If it is assumed that the burning takes place by parallel
layers and that the total burning surface is constant, the
fractional mass of propellant consumed will be proportional to
D:Z, the total depth burned away. Hence D(dZ/dt) must be the
total distance that the flame travels per second., That is to
say, if the flame velocity is, say, 1 ft/sec, then D(dZ/dt)
will be 2 ft/sec for the two burning surfaces., It is also
clear that b has the dimensions of a velocity (ft/sec) and

that B is a velocity per unit of pressure [(ft/sec)/(1b/ft®)].
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It should be remarked that this form of the burning law
has been strongly criticized ih thé past because it is not
correct‘either phjsically or pﬁiIOSOphically.g/ However,
the writer has found that it appears to be the only simple
relationship using the burning constants determined from
closed-bomb experiments that correctly predicts the equilib-
rium pressure in rockets., For example, the theoretical law
derived by Crow and Grimshawz/ fits the experiments with bombs
but for rockets gives materially’incorrect values of the |
equilibrium pressure atﬁained as a function of the ratio of
burning area to throat érea, Just why apparently equivalent

laws should give different results is not yet clear to the

writer.

3. Additional relationships

The remaining equations necessary for the formulation of
the problem are |
m = m_dZ/dt, (3)
where mﬁ@ is the injtial mass of the propellant. The gaé
equation, assuming that the gas can be regarded as an ideal
gas, is
Pv = RT,. (L)
where P is the pressure (1b/ft®), v is the specific volume
(ft3/slug), R is the gas constant (R = 1930 ft 1b/slug °F)

and T is the combustion temperature (°r absolute).

2/ In particular, see Crow and Grimshaw, Phil. Trans.
Roy, .Soc, (London) 230, A691, pages 387-L11 (1932).
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Alsc, the instantaneous value of the mass of gas in the
chamber is given by
m, = V/v, (5)
where V (fta), the instantaneous gas volume in the chamber,
may be expressed as

V=V o+ (mtﬂf) Z=V_ o+ Vp-Z, (6)

V, being the initial, or clearance, volume (ft3) Vp‘the volume
of the propellant (ft>) and § the density of the propellant
(slug/ft3).
Finally, the rate of gas discharge may be written as
my = kP, (7
if the chamber pressure does not fall below about 4300 1b/ft?,

or 2 atmos, above zero pressure. The constant k has the value

/ o T(¥+1)/(-1)
k=ﬁd7[z¢71

‘ N

(8)

or

k=pa, (8a)

whereAAt is the throat area of the nozzle (ft%), ¥ is the
adiabatic constant -- that is, the ratio of the specific heats
at constant pressure and : volume -- and the factor /2 , which
represents the quantities under the radical in Eq. (8), is a
constant that depends on the properties of the specific pro-

pellant used.

) i, Equilibrium pressures

s By combining Eqs. (L), (5) and (6) we can write the expres-
sion for the mass of gas in the chamber as

m, = (vO + VpZ)P/RT. (9)
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Equation (1) may then be written as.

. . 1 d
m=my +*E7 I} [(VO+VpZ)P]

1 4 dz
mg + g7 gz [(Vo*VpZ)Pl 3

]

or, upon eliminating dZ/dt by means of Eq. (3),
. - . r dP"i -
m=mg + (1/RT)| P v, * (\fo+vpz) = | (m/m_).

Solving for the derivative dP/dZ, we obtain
ap BRI [1 - (mg/m)] - PV ‘

a—z—,z
VeV, 2 - (10)

For equilibrium, dP/dZ must be zero. The equilibrium pressure
is therefore given by

Tmy

e
VP

m
d
(1 -35).

But mTJ/Vp is the density 2 of the propellant, and RTS is

the bomb pressure that would exist with 100 percent density

of loading if the temperature were that for burning at constant
pressure. Let this pressure be de?oted by Pb. Then

Por Py (1 - :‘.{i). (11)

This result is impo;@gnt and requires some comment. First
of all, it holds independéhtl& of any particular law of burning.
It is true whether the tempera#gre transient is taken into
account or not. Itﬁshows that, for an equilibrium pressure to
exist, the rate of discharge must be less than the rate of
burning. Finally, it shows that the value of the equilibrium

- pressure 1s apt to be critical as to factors that affect either




the burning or the discharge rates, This is so because Pb is
of the order of 200,000 1b/in.®, and the value of P, desired
for rocket work hardly ever reaches 10,000 1b/in.?

If the burning law, Eq. (2), and discharge rate law,

Ege (7), are substituted into Eq. (10), there results

k P, P
1=~ -—= =0
nBy b
7 57 e
Let
m.B/D = C, (12)
b/BP =0, (13)
and
Pe/Pb =Ae.

The equation that gives the (dimensionless) equilibrium pres-
sure ratio explicitly is

A2+ N JG/C) + = 1] - =0, (1)

Instead of solving feor ’*e’ it is more convenient to solve for
k/C in terms of the equilibrium value; thus

K/C = (/) +1 -~ A (15)
If S is the total burning area,

m_ =18 sp, (15a)
Then
k/C = 2/5;%/553,

or

¢ B

2p

U)|:!>
c+

(=r1-x= M) a8)
e
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5. JVariation of pressure-with S/At, the ratio of burning area

To throat area

To see how these considerations work. out, consider a
propellant particularly well adapted for rocket work; namely,
one having a compositioﬁ of L0 percent nitroglycerine and
60 percent nitrocellulose, without any stabilizer, and having

properties approximately as follows:

§ =1,25,

R = 1930 1b ft/slug °F,

T = 5050°F absolute, at constant pressure,
b = 0.065 ft/sec,

B = 1.5 x 107" (ft/sec)/(1b/£t?),

é = 3,10 slug/ft> [= 100 1b of mass/ft°].

Then, from Eq. (L), Py = 3.02 x 107 1b/ft2, or 210,000 1b/in.?;
from Egqs. (8) and 8(a), /2 =11.97 x ].O-.)4 slug/1b sec; from
Bq. (13), & = L.80 x 10 ~.

By assuming successive values of )‘e’ that is, of Pe/?b,
and substituting in Eq. (16), we get the curve in Fig. L
showing the equilibrium chamber pressure in terms of the rétio
S/At' The circles and squares show experimental points for
two batches of powder. The agreement with the theoretical
curve is quite good. It will be noted that, at low pressures,
the rate of change of pressure with area ratio S/'At is small,

However, at the higher pressures, the actual pressure is quite

sensitive to comparatively small g¢hanges in the area ratio.
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6. Variation of pressure with fraction of propellant consumed

Returning now to the general equation [Eq.'(lO)] we can

rewrite it in the dimensionless form

dz ] d A L
)+ 2 " R A AL+ - - O

Let us assume that the pressure is initially brought up
to some value PO by means of a black powder charge. Then
Eq. (17) can be integrated if we note that

A = A,O = P_/P , when Z = O,

The solution is

A, [CA/ A1 (W2 + o) )
e (A2 o)/ N, -
D
(A hre0 i+ 22 = (A A0

This rather formidable looking equation purports to show how
the actual pressure approaches the equilibrium pressure as a
function of the fraction burned. It will be noticed that if
Ao = Ny ~— that is, if the black powder charge starts the
combustion off at just the right pressure -- the pressure
throughout the burning interval will be the equilibrium pres-
sure. For other values of the initial pressure, the results
are more complex. Figure 3 shows :\/;\e plotted as a function
of (Vp/VO)Z for pairs of values of )\e and Ao/,\e.

It will be noted that the curves of Fig. 3 have a dual
significance., The abscissa is (VP/VO)Z. Hence for 2 = 1
the curves give the pressures attained for various densities

of loading at the end of the combustion period. For Z « 1 and




épnstant loading density the curves show the manner in: which
the pressure builds up with the fractional mass of propellant
consumed, Forvexample; consider the curve marked
A o = 0,01, N/ A s = 0.5. This means that we are considering
the cése where ihe equilibriﬁm pressure is 0,01 x 210,000, or
2100 lb/in;2 Suppose the design is such that VP/V° =2,
which corresponds to a density of loading of 66,7 percent.
Then, since the propellant is all consumed when Z = i, we see
that, for (Vp/VO)Z = 2, }\/”\e = 0,7, or the pressure reached
is 1470 1b/in.®; that is, the equilibrium pressure is not
reached (according to this equation) during the combustion
process. If we wish to know the pressure when the combustion
is 30 percent complete, Z = 0;3,‘and (Vp/Vo)Z = 0.,6. The
ordinate is 0,605 and hence the pressure reached is
0.605 x. 210,000, or 1270 1b/in.® If the density of loading
is increased, the same curve shows that the final pressure
approaches the equilibrium value of 2100 1lb/in.2, and ,fbr'
100 percent density of loading -~ that is, Vp/VO'= ® -
equilibrium is reached at the very end of the process.

For. lower values of the equilibrium pressure; say
Ae = 0.0025, or a pressure of 525 1lb/in.2, the approach to
equilibrium tends to be more rapid, but it is still not
completed. A similar situation is predicted if the initiai
pressure is higher than the equilibrium value.

These predictions are anly partially confirmed by experi-

ment. . While the evidence is still not complete; it appears




- 1] -

that in most practical cases, the pressure builds up to the
equilibrium value quite rapidly and stays there until the com-
bustion is completed. By a "practical case'" is meant one
where the density of loading exceeds, say, 23 percent and the
burning time exceeds, say, 0.03 sec. Under thesevconditioné
the equilibrium pressure is quickly reached even for very low
starting pressures.

On the other hand, if the burning is very rapid, lasting,
say, 0.01 sec, the equilibrium pressure is never reached. Also,
if the density of loading is small, equilibrium is not attained
even when the combustion lasts as long as 0.3 sec. The experi-
mental curves appear quite similar to those in Fig..3, -even in
respect to the effect of initial pressure.

In view of the onky partial agreement between experiment
and the simple theory used here and the lack of a criterion of
applicability, we are forced to conclude that the theory cannot
be relied on to predict the transient state. However, it does
appear to predict equilibrium values with a reasonable degree
of accuracy. Hence, for design work, a simple theory of this
type is adequate for most purposes when tempered by a knowledge
of experimental results,

It may be remarked here that, for the case of constant
pressure, the burning time U may be calculated from Eq.(2).
This equation becomes, for this case,

T =D/(b + BP). (18a)



In design calculations, once the throat area At is known, the
time T may be algo calculated from the equation
. .

7. Exit veloéities of~gas in simple convergent nozzles and
in expanding nozzles '

On the assumption that the chamber pressure is never less
than about 2 atmos and that the gas flow is steady, the usual
engineering formulas for frictionless adiabatic flow give the

gas velocity at the nozzle thr@fb as

w, = VZE RI/(3+ 1), (19)
and the gas exit vgiocity from an expanding nozzle as
¥ -
= - ! - k [H
"o T L TR ! (20)

If the nozzle is cut off at the throat, theﬁ Eq.(19) of
dourse gives the exit‘velocity for a simple convergent nozzle.
In Eqi(éo); P is the chamber pressure and P is the pressureb
at the mouth of the nozzle, The latter is not necessarily the
atmospheric pressure, If the nozzle under-expands, the
pféssure Pm is higher'than atmpspheric; this results in a
decreased jet velocity which is partially compensated for by
the thrust developed by the pressure in excess of atmospheric.
If the nozzle overéeXpands'the situation is quite complicated.
An excellent treatment of these effects can be found in an

article by F, J, Malina.é

3/ J. Franklin Institute 230, L33-L51 (15L0).
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For the propellant already referred to in Sec. 5, these

gas velocities are

= 3280 ft/sec (19a)
and
w = 9850 [1 -~ +) . (20a)

Note that, with this propellant, the highest velocity possible,
(with infinite pressure ratio) is 9850 ft/sec. The effect of
finite pressure ratios can be seen from Fig. 1.

It should be also remembered that the mass of gas dis-
charged per second is given by Eq.(7) for both types of nozzles.

Moreover, the pressure at the throat for both types is given by

’ (21)

or
P, = 0.555 P (21a)

for the propellant here considered.

8. Exit area

L/

The standard formula for the nozzle mouth area A is~

] (%8 +1)/(3 -1)

j/zs/ 2 (¥ -5

= { N (¥ -1)/%
& { -t)
: | 1-—(—;?}

FU'PU

, (22)

which, for the specific propellant here considered, becomes

by 0280
A

t 0.200
/ 1 ~( iy
\ P }

/ For the theory of expanding nozzles see, for example,
Martin, Textbook of mechanics, vol.V, "Thermodynamics", pp,230-236.

* (22a)
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The plot of this function appears in Fig. 2. One should note
that, in actual designs, it is frequently impracticable to use
full expansion. That is, Am is really fixed by the diameter
of the projectile rather than by theoretical considerations.
In such cases, Fig. 2 can be used to find the pressure drop
when the areas are prescribed.

9, Comparison of thrusts-obtained with a simple convergent

nozzle and with an expanding nozzle for the case of
constant pressure

Assume that the orifice area of the simple nozzle is the
" same as the throat area At of the expanding nozzle. The
thrustth (1b) is the time rate of change of momentum
(slug ft/sec2) plus the unbalanced force (1b) acting on the
orifice area, or

Ft = ﬁdwt + At (Pt“Pa)* (23)
For practical purposes the atmospheric pressure P, may be
negiected in comparison wi;h the pressure Pieo If we then

substitute the value Qf'éd from Eq,(7), w, from Eqe(19) and

P, from Eq.(21), we get :

2 V(¥ 1)
r, = 24, (55) R
For the propellant cited (Séc, 5), .
Ey = .2k 4R, (2ha)

The numerical factor in E§.(2ha) is called the thrust
coefficient. It is a very convenient criterion for making

comparisons in performance.,
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In the case of an expanding nozzle of correct ratio, that
is, one which expands the gas to atmospheric pressure, the
thrust is given by the first term of Fq.(23), except, of course,
that the value of the exit velocity is now W, not W, . Sub-

stituting the value of w_ from Eq. (11), we get

p) 2 \(3”)/(5"‘1) f P 1G—-1)/%
F2=AtP23J[5_1(3+1} | 1..(P\} . (25)
Numerically,

i (in.l 0.200
Fp = 2.08 AtP‘/l- BN (25a)

By referring to Fig. 1 we find that, for a pressure of
200 atmos, the radical in Eq.(25a) is 0.81. In this particu-
lar case; the thrust coefficient would be 0.81 x 2,08, or 1.69.
Comparing this value with that for the simple orifice [Eq.<2ha)]
we see that the thrust is improved in the ratio of 1.69 to 1.2k,
or 1.36. For lowe: chamber pressures, this improvement
decreases, owing to the decreaéing value of the radical.

For the case of an overexpanding nozzle, reference should
be made to Malina's paper.é/ The method to be used in the case

of underexpansien is illustrated in Sec. 13.

10. Projectile velocity

To avoid the ccnfusion that sometimes ray arise, we will

base the momentum calculations on first principles.

5/ See reference 3.
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Consider a rocket of instantaneous mass M?(t).moving to

the right and having, at time t, a velocity é relative to
the ground. Take %X as positive in the right-hand direction.
An observer stationed on the rocket causes the reléase of a
differential mass of gas dmd with a velecity LA this velocity
being measured relative to the rocket after the mass dmd has
been released. The observer takes the origin of his coordinate
frame as being on the rocket. Relative to this frame he calls
W, positive when it is in the left~hand direction.

 Since it is assumed that no external forces are acting,
the law of conservation of momentum requires that the momentum
before dmy is released is equal to the algebraic sum of the
momentums of the rockét and of dmd after the latter is re-~
leased. In other words, if the velocity of the rocket after
the release of dmd is % + di, the law of conservation of
momentum requires that

Mp(t):’c = [Mp(t)-dmd] [x+dx] + [x+dx - w Jdm,
or .
0= Mp(t)dx - w dm;. (26)

Since all the quantities in this equation are, in general,

functions of the time,

% = jtwm dmd/Mp(t),

0
or .
. rt .
x= I mddt/Mp(t), (27)
where

2]

t

s, »
MA(t) =M -} mdt 28

() = - | B, (28)
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Mo being, of course, the initial mass of the loaded projectile.
Formally, at least, the problem of calculating the

velocity is solved. Actually, in the general case, the function

Wﬁ is of such nature that any expression containing it is not

likely to be integrable by any except numerical methods,.
However, for the special case of a constant chamber pres-

sure, the integration is quite simple because wh and id are

both constants. For this case,then,

. oat M
x =W m, | —— =w log — . (29)
mod ki m it m % -m b
o © o d

When the combustion ceases, at t = T , the chamber is still
filled with gas, which then escapes at a constantly diminish-
ing velocity. If the momentum of this residue is neglected,

we may assume that

n T ;1nf. ‘ (30)

Making this substitution in Eq.(29), we obtain for %1, the

maximum, or muzzle, velocity of the projectile,

il = w, log o, (31)

The following relationships are sometimes useful:

(a) If M is the mass of the shell without propellant,

Xy /o0
my =M (e 1 L (32)

(b) If the ratio m /MO is sufficiently small,

2

m m =1
. T ;
X, =W [ -+ %— ( 'I\! + ... . (33)

u
o} L o/ -

=]




- 22 =

For this condition, the acceleration of the projectile is

approximately constant curing the burning period.

11, Efficiency for thes case of a constant chamber pressure

The expression for the efficiency is

kKinetic energy of projectile at muzzle
Heat energy of propellant

Efficiency = s

or

e 2
E=3Mmglky /JHn_, (3L)

where J is the mechanical equivalent of heat, which is equal
to 778 £t 1b/Btu, and H is the heat of combustion, expressed
in British thermal units (Btu) per slug of propellant. But,

according to Eq.(29)
2

M
* 2 o] [y
2 =
Xq v, |log -
» MO.‘— t rd

and, according to Eq.(20),

2 XRT /o (X-1)/ %
m X -1 5 VP I
hence _

i . . 2
AT T e\, e T
YT THL TP Dmg T T T %)

But the gas constant expressed in heat units -- that is,

R/J (Btu/slug OF) -~ is merely the differehce of the mean

specific heats at constant pressure and at constant volume,

provided the gas may be treated as ideal; in other words,

R/J = EP -3 (36)

Vo
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Moreover, since most of the combustion takes place under constant
pressure, and in view of the simplification it introduces, the

equation

H=¢CT | (37)

P
is taken to represent the complete process., Combining
Eqs.(36) and (37), we have

RT/JH = , - ‘c‘v)/cp = (¥ -1)/%. (38)

Let

A = !
hxo/mT K.

Then Eq.(35) becomes

(6= /% 1 [ T |

L Y o 1

The form of the functions Pm/P and o' are shown in
Figs. 1 and 5, respectiveiy. The latter curve shows that the
best value of o ! is 1.25, which means that, of the projectile
weight, 80 percent is propellant and 20 percent is shell.
Assuming an infinite expansion ratio, we see that the greatest
efficiency possible is 0.65.

As a more practical éxample, consider a 15-1b projectile,
with 2.5 1b of propellant charge operating at 200 ‘atmos pressure.,

P X"‘l
Then us' = 6, X = 1'25) 1 —3‘ __;Il'!( )/{ 0065' and}

Lp !

[

from Eq.(39), E = 0.65 x 0,168 = 0,109; that is, the effi-

ciency is almost 11 percent.
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It should be noted that Eq.(39), the expression for the
efficiency, can be split into two factors. One depends only

on the pressure ratio and is the thermal efficiency; it

measures the fraction of the heat energy that goes into giving
kinetic energy to the jet. The second factor,which depends only
on o', the ratio of the initial total weight of the projectile

to the weight of the propellant, is the Qggpulsiqn efficiency;

it measures the fraction of the jet energy that is converted
into kinetic energy of the rocket itself,

Equation (39) is quite.interesting in that it shows that
when the weights of the propellant and of the projectile ark
fixed, nothing can really be done about increasing the effi-
ciency.é/ The value of ¥ varies but slightly for various
proportions‘of combustion products. The same thing is true for

the factor 1 -(Pm/P)(x ‘1)/3', for the pressure ratios in common
use; Even H, the heat of combustion of the propellant, drops
out of fhe efficiency expression.’ This is not to say that the
heat of combustion H is unimportant. As will be shown in the
next section, the muzzle velocity per unit mass of propellant
varies as the square root of H.. Hence, all other factors
being;equql; the substitution of propellants having larger

heats of combustion will result in higher values of the muzzle

é/ It is true the propulsion efficiency can be increased
by giving the rocket an initial velocity. Whether the overall
efficiepcy (including the energy required to impart the initial
velocity) is also increased is rather problematical,
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L ]
velocity. But, since x, wvaries as H, no higher efficiencies

can be obtained.

12, Muzzle velocity expressed in terms of the properties of
the propellant

Assume that (mt./Mo)<< 1 so that, in view of Eq. (32),
5(1 = Wm m_c /?‘u’io .
Hence the muzzle velocity per unit mass of propellant, namely

il/mt , is given by

ko/m = wp /iy

or, in view of Eq,(20), by

X, w1 2% P \(3“1)/2‘
—— = =% = — =g 1«(—51; ,
ny Mg N[ - P R

But

from Eq.(38), and therefore

i -

i (% -1)/¥]
% = rf—: \/ 2 |1 ~(§—~m) X} . (L)

A

Thus, the larger the heat of combustion of the propellant, the

greater is the muzzle velocity per unit mass of propellant.

13. Rocket design calculations

The formulas developed in the preceding sections will now
be applied to a specific design problem., Let it be required
to calculate the mass of the propellant and the TNT load as

a function of the chamber pressure and muzzle velocity for a
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shell of diameter 3 in. and weight 15 lb, exclusive of the "
propellant.
(E) Calculations of muzzle velocities. =- The procedure

followed can best be understood in connection with Table T.
We first assume that the propellant is to be furnished with
an outside diameter‘of 3/4 in. and an inside diameter of

3/16 in., so that the web thickness D is 9/32 in., or

0.023L ft. A further assumption necessary is that the maxi-
mun outside diameter of the nozzle is the same as that of the
shell, and that the wall thickness is 1/16 in. The nozzle
mouth is then 2—7/8 in., in diameter and the exit area is

6.L6 in.®

We assume a fixed mass m_. of propellant, in this case

f
3 1b(0.0930 slugs). The surface area S as found from &g.(15a)
is 369 in.® Taking the chamber pressure as the independent
variable [see line (1), Table I], we find the corresponding .

2, the corres-

value of S/At from Fig. L. Since § is 369 in.
ponding values of the throat area At can be found and listed
[line (3), Table I].

The next step is to set down in line (L) the ratio of nozzle
mouth area Am‘to throat area At’ it being known that Am is
6,46 in.? Then, from Fig. 2, we find the corresponding pres-
sure expansion ratio, listed as (P/Pm)/in line (5), Table I.
‘A comparison Wifh line (2) shows that the actual expansion

ratio is appreciably smaller than the available pressure ratio.

This is caused by the fact that the exit diameter of the

nozzle is limited to the shell diameter. It therefore follows ’
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TABLE I. Rocket design calculations.

m_ =3 1b* 5 = 369 in.2 A = 6.46 in,2 D = 0,281 in,

(1) P(lb/in.2) 368 735 1&70 2940 5880 11,760
(2) »/p, 25 50 100 200 400 800
(3) 4 (in.?) L.61 2,93 2.05 1,62 1.39 1.25
(L) A/a, 1.0 2,20 3,17 3.99 L.65 5.17
(5 (o/p)] 5.0 10.L 18,2 26.0 32,0 37.0
( 6) Excess Force
(1b) 380 361 L27 636 1180 1960

(7)) w (ft/sec) 5210 60LO 6530 6820 6950 7060
(8) my(lb/sec) | 11.55 1h.60 20,5 32.4  55.6 99.8
(9) mgw (1b) 1870  27L0 L150 6860 12,000 21,900
(10) F,(1b) 2250 6820 L580 7500 13,200 23,900
(11) W&(ft/sec) 6260 6320 7210 7L50 7650 7720
(12)  x.(ft/sec) 1140 12,0 1310 1355 1390 1405
(13) Thrust Coeff} 1.32 1l.LL 1.52 1,57 1.61 1.63
(1) mc(lb)* 2,02 2,02 2.86 L.60 9,16 18.h
(15) mp(lb)* 0.13. 0,19 0.26 0.37 0,53 0, 7L
(16) Nozzle and

Flange (1b)] 0.27 0.53 0.66 0,73 0,76 0.78
(17) S W(1lb) 2,42 2,74 3.78 5.70 10.75 -
(18) 1s(in.) 11,0  10.6 9,31 6.90 0.61 -
(19) TNT (1b) L.8Lh  L.72 .32 3.57 . 1.6l —

* These masses are expressed in pounds of mass; the values
may be converted to slugs by dividing them by 32.2. The mass
in pounds and the weight in pounds are practically equal
numerically. '




- 28 -

that the nozzle discharges the gases at pressures higher than
atmospheric, and an unbalanced excess pressure will exist

over the nozzle exit area. For example, for P = 368 1lb/in.>?
and a pressure expansion ratio of 5.0 (see the first column

of data in'Table I), the pressure Pm is 368/5.0, or

73.6 1b/in.2 Taking the atmospheric pressure as 14.7 1b/in. 2,
the unbalanced pressure is 58.9 1b/in.2, and this, acting over
6.6 in.?, produces an excess force of 330 lb. Line (6),
Table I, gives the excess force thus calculated for the other
pressure ratios assumed.

The other component of thrust is that caused by the
momentum of the escaping jet, The velocity w, can be cal-
culated fromAEq.(2Oa), the vélue of the radical being read
from the curve in Fig. 1. The pressure ratio to be used is
that given in line (5). The rate of gas discharge gy is
found from Eqs.(7), (8) and (85); that is,

mg = /3AtP’
the value of /4 being given in Sec. 5 as 11,97 slug/lb sec
for the propellant used here; The rate of discharge of the
gas is tabulated in 1ine(&L»#nd the jet reaction ﬁdwh is listed
in line (9)

The total thrfu',st F, is obviously the sum of lines (f)and (9 From

F, the effective jet velocity wﬁ can be found; more specifi-

cally,.

w!/w = Column 10/column 9.
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The muzzle velocity il can now be calculated from Eq.(31).
The initial mass of the loaded projectile, M_, is (15 + 3) 1b,
or 18 1b, W being taken as the effective velocity w& listed
in line (11}  The muzzle velocity is given in line(12h As a
matter of interest, the thrust coefficient is given in line (13}
it is calculated from Eq.(25a).

fie now assume other values of the propellant mass and
repeat the calculations. The results are shown in Figs. 6
and 8. TFigure 6 is a plot of the muzzle velocity as a
function of propellant mass (expressed in pounds) for the
various assumed pressure ratios. Figure 8 represents plots of
the effective jet velocity and the thrust coefficient, each as
a function of pressure and two different weights of propellant
charge. Figure 9 gives the burning time as a function of the
pressure expansion ratio. Since we have assumed the same web
thickness in all cases, this curve is the same for all designs,

(b) Calculation of weight of TNT charge. -~ The shell

structure is shown diagrammatically in Fig. 10, The shell
head is threaded on a flanged plate which forms one end of
the combustion chamber, The cylindrical portion of the com-
bustion chamber is welded to this plate, and the end plate
which carries the nozzle is threaded into the chamber body.
The following data are assumed. The shell nose and quy are
made of 3/16-in. steel and the nozzle is made from steel of
thickness 1/16 in.  The chamber and plates will have thick-

nesses that are determined by the pressure. The safe allowable
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stress is taken as 50,000 1b/in.? in direct stress and v
37,500 1b/in.? in shearing stress. The threaded flanged plate
will have a flange 1/L-in. long and 3/16-in. thick as a mini-
mum unless the plate thickness is larger, in which case the
flange will be eliminated. The plate thickness will be calcul-
ated for direct and shearing stresses, and the thicker plate
will be chosen. The two plates will be assumed to be of the
same weight._

The radius of the shell ogive is taken as 6 calibers.
The surface of the nose is Ll in.?, and the volume is 25 in,3

The weights per unit volume of the propellant and of
the TNT will both be taken as 0.058 1lb/in.2 The weight per
unit volume of the steel is taken as 0.28 1b/in. 2.

Shell nose and body. The nose weighs

L x (3/16) x 0.28 = 2,31 1b.

The shell body weighs
mx 3 x (3/16) x 0.28 1_ = 0.L9L 1, 1v,

where 1S‘is the length of thg shell. The volume available for
TNT is 25 +~E-x (2 5)215, or (25 + 5.31 1) in.3 The weight
of INT is 0,058 (25 + 5.31 1), or (1,45 + 0,308 1) 1b, The
shell length ls will be determined later.

Weight Qf‘gombustion chamber. The wall thickness is com-~
7/

puted from Clavarino's formula,t

rg/rl = [(3f+P)/(36_?'t)4P)] ’ (L1)

W

: Z/ For a deriwvation of this formula see Kartjn, Textbook
of mechanics, Vol,ITI, "iechanics of materials", pp.l76—180,

particularly exercise 21l, <
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where r, [= 1.5 in.] is the outer radius of the chamber, r, is
the inner radius and ¢ is the stress (1b/in.®). The least
acceptable thickness is assumed to be 1/32 in,

The length of the chamber, 1C, may be calculated from
the prOpellant weight., Assume as before that the outside and
inside diameters of the propellant are 3/l in. and 3/16 in.,
respectively, and that 6 sticks are used. We first check the
density of loading. The net frontal area of the 6 sticks
is 2,00 in.?® At a pressure of 800 atmos the area of the
combustion chamber is }.50 in.®  Hence the density of load-
ing is 2.00/4.50 or O.LL5, which is an acceptable value. It
will be somewhat less than this for lower pressurés.

The length 1 can then be found from the relation

m. = échp,
where Ap [= 2.00 in.?] is the cross-sectional area of the pro-
pellant, § [= 0.058 1b/in.®] is the density of the propellant
and m£ is the mass of the propellant. The chamber masses m,
as calculated from the thickness r, ~ r, and the length 1,
are given in line (1L} Table I.

End plates. To be on the safe side, the stresses in bend-
ing were calculated on the assumption that the plates were
simply supported at the edges. The maximum stress § is at
the center and is given by

= 1.25 P(ra/tp)a, (42)

where r, is the radius and t_ is the thickness of the plate.

p

For all cases it turned out that the bending stress was greater
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than the shearing stress and hence the plates were designed v
for bending rather than shear. The weights of the two plates
are given in line.(lé),'Table I.

Nozzle. The weight of the nozzle was calculated on the
assumption that the wall thickness was 1/16 in. and the cone
angie was 16°. Allowing 20 percent increase in mass due to
the flange and fillets, one may express the weight in pounds
quite closely by the formula

W, = 0.15 (A = A;). (13)

The calculated values are given in line (16), Table I.

Weight of TNT. At this point we can total up all the
P

weights except that for the shell body and the weight of TNT
located therein. The sup of the chamber, end plate'and nozzle
weights is given in line (17)? marked XW.

To get the total weight, we add tokggg the weight of the
shell nose and body, which is (2.31 + O.h9h‘ls) 1b, and the
weight of TNT, which is 1,45 1b for the TNT in the nose and
0.308 1_ 1b for that in the shell body. The grand total of
these components must be 15 lb; that is,

EW + (2.3140.49% 1) + (1.45+0.308 1) = 15 1b,
or |

ls = 1L,05 - 1.25 = W.

The values of 1., the length of the shell body, are given

in line (18] Knowihg this, the corresponding total Weights of

TNT can be calculated and are given in'line(l%. o,

i
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Discussion. —- The results of these calculations are sum-
marized graphically in Fig, 7. These curves show the TNT
load as a function of the propellant charge m. for various
values of the pressure. The dotted lines are the loci for
constant muzzle velocity. For example, for every point on the
dotted curve marked il = 1000, the corresponding design has a
muzzle velocity of 1000 ft/sec. These curves were obtained by
projecting, from Fig. 6, the points of intersection of constant
il—lines with constant P/Pm—lines on to the corresponding pres-
sure lines of Fig. 7.

It appears that the largest load of TNT can be carried
when the pressure is somewhererbetween 50 and 25 atmos. The
weight of TNT will then be between L.75 and 5 1lb. For pres-
sure either above or below this value, the "payload" decreases,
This is to be expected. For very low pressures, the thermal
efficiency is small and the propellant weight must be increased
to attain a given muzzle velocity. This means a longer com-
bustion chamber. For very high pressures, the thermal effi-
ciency increases very slowly but the weight of the chamber

goes up rapidly, and again the payload will decrease.

1li. Performance of geometrically similar shells

These results are more general and therefore more widely
applicable than they may appear offhand., While the calcula-
tions were made for a shell of specific size, it is easy to
show that the conclusions as to optimum pressures apply to all

shells geometrically similar to one considered here.
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If the diameter and length are multiplied by the same
scalé factor s, the available Vplume and weight of TNT will
vary as s3. For constancy of energy (during fragmentation)
per unit mass of sheli nose or body, the thickness of these
parts must therefore be increased by the same scale factor,
Hence the weight of the shell and its TNT load will vary as s°.

If all shells in the series are to have the same muzzle
velocity x,; it is clear from Eq.(32) that the mass of the
propellant charge must likewise vary as 53, assﬁming that the
effective jet velocity is the same for all shells. Let us
see what this requires. Assume tentatively that all shells
operate at‘the same chambe} pressure. Then, since the throat
area At and nozzle exit area Am both vary as Ez, Am/At is
constaht. Hence all nozzles have the same expansion ratio and,
since the chamber pressure was assumed to be the samé for all
designs, it follows that the effective jet velocity will be
the same fof the entire series of shells, To sum up to this
poinﬁ; we have the result that, in a series of geometrically
similar shells, all working at the same pressure, the muzzle
velocity and jet velocity will remain censtant provided that
the propelh&nt weight is increased in proportion to the weight
of the shell,

The argument is not quite complete for, up to this point,
we have ignored the weight variations of the combustion chamber,
end plates and nozzles., From Eg.(l1), r,/r; is the same for

all shells for equal pressures and equal allowable strésses.

R
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Hence the weight of the combustion chamber, which is propor-
tional to 1, (ry%-r;2), must vary as s  Similarly, an
examination of Eq.(L2), which gives the stress in the end
plates, shows that the thickness tp must vary as s for
constant stress and hence the weight, being proportional

to rp®t_ must vary as 33. The nozzle weight will likewise

p
be seen to vary as s® if we remember that Eq.(L3) conceals,

in its numerical coefficient, the length of the nozzle. ?his
length will vary as s provided that the same taper is uséé in
all designs. From the foregoing arguments, it is evident that
if the optimum pressure is somewhere between 25 and 50 atmos

for a 3-in. shell, the same range of pressures will be the
optimum for all geometrically similar shells., Since the optimum
condition is not critical, we can expect that small deviations
in proportions from the ones assumed here will not materially
affect the conclusion as to the best pressure range.

There 1is one more point to notice, Constancy'of pressure
requires that S/At be constant, Hence S varies as Ez' But,
since the propellant mass m . varies as gs, the web thickness
D must vary as s. Again, since S is proportion;i to the
length of the propellant stick and the mean diameter of the
stick, the latter must also vary as s. From this it follows
that the burning time T will be proportional to the scale
factor but that the number of sticks of propellant is to be

kept the same for all designs.,
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APPENDIX

List of Symbols Used

Area of nozzle mouth (ft?)

Cross-sectional area of propellant (in.?)

Area of nozzle throat (ft2)

Propellant burning constant (ft/sec)

Propellant burning constant [(ft/sec)/(lb/ftz)]
Design parameter

Mean specific heat at constant pressure (Btu/slug °F)
Mean specific heat at constant volume (Btu/slug °F)
Web thickness of propellant (ft)

Efficiency

Thrust for simple nozzle (1b)

Thrust for expanding nozzle (1b)

Acceleration due to gravity (ft/sec®)

Heat of combustion of propellant (Btu/slug)
liechancial equivalent of heat [= 778 ft 1b/Btu]

Mass of gas discharged per unit time, per unit of
pressure [(slug/sec)/(1b/ft2)]

Length of chamber (ft)

Length of shell body (ft)

Mass of propellant charge (slug)
Mass burned per unit time (slug/sec)
Mass of gas in chamber (slugs)

Mass of gas discharged per unit time (slug/sec)




UNCLASSIFiED

< L2 -
Mp(t) Iﬁstantaneous nass of projectile (slug)
M Tnitial mads of projectile, including propellant '
° charpe (slug)
Ma) Initial mass of vrojectile, exclusive of pro-~
pellant charge (slugs)
P Chamber pressure (1b/ft°)
P, . Atmospheric pressure (1b/ft%)
Py Bomb pressure (1b/ft2)
P, Equilibrium chamber pressure (1b/ft?)
P Pressure at nozzle mouth (1b/ft?)
Py Pressure at nozzle throat (1b/ft%)
R Gas cohstant for an ideal gas (ft 1b/slug “F)
ry Inner radius of combustion chamber (in.)
rp Outer radius of combustion chamber (in,)
) Total burning surface (ftz)
t Time (sec)
tp Thickness of end plates fin.)
T Temperature of gas (°F absolute)
v Specific volume of gas (ft3/slug)
v Instantaneous volume of gas in chamber (ft°)
v, Initial, or clearance,volume (ft°)
Vp Initial volume Qf propellant (ft3)
W Gas exit velocity (ft/sec)
w$ Effective gas exit velocity (ft/sec)
Wi Gas velocity at nozzle throat (ft/sec)
Wy, Weight of nozzle and flange (1b)
x Velocity of projectile at time t ¢
X, Muzzle velocity of projectile (ft/sec) (

]

UNCLASSIFIED

S —
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UNCLASSIFIED

‘LLB"

Fractional mass of propellant burned
Propellant constant

Mo/mr

Propellant constant (slug/lb sec)
Adiabatic exponent for propellant gases
Density of propellant (slug/ft>, 1b/in.2)
Ratio of chamber pressure to bomb pressure
Equilibrium pressure ratio

Initial pressure ratio

Stress (1b/in.?)

Burning time (sec)




o0 ‘woukog IVIINIQIINOD pucwwoy PUNOW Y -
3338&.—<§o=n...:_013 KuﬂZ..—dU-ZSUuhm_d ; ._8320 a v

1-31-22-0 YON 133HS VY

(21) soAsired NOLLD3S
(88528) SOASIITEq J014330] - F13}]00Y SONIAVIH LOIrANS (g2) JuPWBLY DUE SUBUPIO NOISIAID

QX AIOK ‘WY UO[SIAIQ SIUIUNIOQ ATV IO} AIqBUTEIQO Wodax s1p jo 8a1do) :NOUNERLSIA

S[[2Ys8

eqpuys ArTeoriewoad 03 ospe safdde S[UY, ‘wne g 03 T WOI} sf exnsgaxd Supexedo
uaga PatLIed 8q MBS LNL, J0 spunod o°g 0} §4'F JO peol i5eBreT *[1ays punod-usayi)
JIoPuep Youj-aaxyy jo uBlsep J0j 100124 A[ZZNWX pue 2Ins52d I3qUEYD J0 UORIUY BB
peor NI pue syupqredoad jo ssew X0 sydess uo PazjIewwWns 318 SUORE[MI[D "Jloa
uBisep Arzupmpraad Uy o[qEsn 3I% juip PIAIIep SAIYSUORE[AL SNOLIEA WA gyueradoxd
Tep1o((02 4q uURATJp 818301 JO BIRSITEq [BUIAUT J0) pado[24ap uaaq sey £100Q) ¥

(LOVYLSEV

AELNNOD

Sqdexs I8ep 03.5_ LY IRE ‘8N 1.P3u05 Th. 930
saov sovnoN) “S5YD 200 uve

(owreg) A8 QIHSITEAN
SEM ‘QMAN “uamdoreaaq PUE YIIeagay JHUALIS JO 831HQ AONIOV ONLLVNIONO
Azowg ‘sojeyey {SNOHLNY

£1920)] U2AIIQ 29pA0d JO SORSTITEE [PUIaIUl 311l
TYLNIQHNOD




