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INTRODUCTION

During the last decade, interest in computer-assisted diagnosis (CAD) schemes for the
early detection of breast cancer on mammograms has been rapidly increasing, and a large variety
of schemes have been developed and tested. As a result, it is believed that eventually CAD
schemes could provide radiologists with useful information to improve the efficiency and
accuracy in the diagnosis of breast cancer [1-4]. However, prompting potential areas of
abnormalities can affect the mammographic interpretation process, and unfortunately, the effect
may not be always beneficial [5-8]. Therefore, to better understand the radiological interpretation
process, we conducted an experiment to examine how different CAD cueing environments affect
the error rate (particularly for false-negative interpretations). For this purpose, we first selected a
set of subtle cases (including the mix of subtle malignant and difficult negative cases). These
cases were cued under different levels of sensitivity and specificity based on a CAD scheme's
processing. Radiologists were then selected to participate in an observer performance experiment
to view and score these cases under five different reading modes (including one non-cued and
four CAD-cued modes). From the experimental results, we performed different analyses using
ROC-type methodology. From the relationship between the CAD cueing levels and average
diagnostic performance, we hope not only to better understand the impact of CAD cueing on
diagnostic performance, but also evaluate an optimal approach to use CAD schemes in the
screening environment.

BODY - SUMMARY OF WORK PERFORMED

In the past three years of this project, we performed and completed the following tasks:

Year 1:

1. Case selection:

From a large pool of initial cases, using a comprehensive case verification,
categorization, and selection protocol, we selected 120 subtle mammographic examinations from
120 patients undergoing routine examinations in three different medical centers. In these 120
cases, 85 were abnormal and 35 were negative. The abnormal cases involved a total of 38
verified microcalcification clusters (27 malignant and 11 benign) and 57 masses (39 malignant
and 18 benign). Most of these cases involve two images (the same view of left and right breasts),
but in some, we used only one image. Table 1 summarizes the number of cases in different
categories. All positive cases were verified using source documents. All the negative cases were
determined based on the current and follow-up mammographic examination results. All the cases
were considered to be "subtle" by radiologists, because these involve either subtle abnormalities
or complex normal anatomy. Original film mammograms were digitized in our laboratory using
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the same high quality film digitizer with resolution of 12-bit gray levels and 100 ýtm xl 00 pm
pixel sizes.

Table 1: Distribution of cases in different categories. (M - malignant, B - benign).

Mass Microcalcification Mass and Cluster Negative Total

Cluster Cases

M B M B M B

Single image case 10 1 11 3 1 1 4 31

Two image cases 20 16 7 7 8 0 31 89

Total Cases 30 17 18 10 9 1 35 120

2. CAD processing and cueing mode design:

In this study one non-cued mode and four CAD cued-modes were designed (as shown in
Table 2). The four cued modes emulated what can be expected using current levels of CAD
performance as well as what one hopes to achieve using CAD in the future. To generate the cues
(including masses and microcalcification clusters), every image in the selected database was first
processed by our own CAD schemes [9-11]. Each suspicious region detected by the CAD
schemes received a likelihood score for being positive (from 0 to 1). The larger the score, the
more "likely" the region was estimated to represent a true-positive region. Based on the detection
scores, we separately selected cueing regions for true-positive regions and false-positive regions
in different cueing modes to meet the cueing requirements as listed in Table 2.

Table 2: Five reading modes in the experiment.

Reading mode ROI Marked Marked sensitivity Marked FP / image

1 No 0 0

2 Yes 0.9 0.5

3 Yes 0.9 2

4 Yes 0.5 0.5

5 Yes 0.5 2
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3. Implementation of a computer-controlled image display system.

The reading in this study was performed directly from the digitized images displayed on a
SUN-workstation monitor. Each reading session was designed to include 30 cases. Hence, each
observer had 20 reading sessions (by reading 120 cases using five different display modes) in the
study. To prepare such a reading experiment, we designed, tested, and implemented an automatic
image display and control system. First, we assigned a file containing a counterbalanced order of
reading modes for each observer. The 20 sessions were divided into 4 blocks with 5 sessions
each. In each block, one observer read five sessions with five different modes in a random order.
Second, the computer program was used to randomly select the cases and their sequential order
in each session. The random "seed" used in the program was date-dependent. Because each
observer had a different reading schedule, the cases selected in each session for each observer
were different. A minimum time delay between two consecutive readings of the same cases was
also imposed in the program. Third, a computer display and control program was designed and
implemented. The images can be alternatively displayed at two display modes. The observer can
view two images side by side displayed on the monitor at a reduced resolution to fit monitor size.
By changing display mode, the observer can also examine full resolution images, one at a time
using scrollbars in both vertical and horizontal directions (zoom and scroll). A
"Display/Remove" button could be used to superimpose or delete the CAD cues on the images.
An observer could make a diagnostic decision while viewing either sub-sampled or full-
resolution images. A management computer program was designed to automatically record all
diagnostic information entered by the observers, including the type of a detected abnormality
(mass or microcalcification cluster), its location (the center of the detected region), and two
estimated likelihood scores for the detection (presence/absence) and classification
(benign/malignant) of "detected" regions.

4. Finalizing study protocol.

We have thoroughly tested the reliability of our computer management system in our
laboratory for this study and have written a comprehensive set of "Instructions for the Readers."
The instruction provided the detailed requirement of the reading experiments and described how
to use the computer-controlled image display and scoring system.

Year 2:

5. Selection of readers and pre-training

In the second year of the project, after we finalized the study protocol, we set up our soft-
display workstation in a clinical reading room of our medical center and recruited radiologists to
participate in this study. All the radiologists selected were Board certified radiologists with a
minimum of three years' experience in the interpretation of mammograms. Before the main
study, we first provided each reader a comprehensive written "Instructions for the Readers."
Then, each reader had a training session using a set of sample cases. The written instruction and
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the training session enabled each reader to get familiar with the reading environment (soft-
display image and diagnostic scoring system) in the main reading experiment. We originally
selected eight radiologists to participate in the study, but the blind nature of the study precluded
us from recognizing that one of them completely misinterpreted the task at hand and reported the
cases under a totally different set of rules, which was only found at the end of the study.
Although this reader's results led to the same conclusions, the "rules" under which he/she
reported cases were so different that we excluded the results from the analysis, and a separate
analysis is underway and will result in a separate publication.

6. Performing the main reading experiment.

The main reading experiment was carried throughout the second year at our medical
center. Each reader interpreted 120 cases five times (five display modes) in a counterbalanced
order. We divided the reading process into 20 reading sessions. Each reading session included 30
cases. To reduce the bias caused by the possible recognition of specific cases read previously, a
minimum time delay (10 days) between two consecutive readings of the same case was
implemented. By the end of the year, six observers completed all reading sessions. The
remaining observers also completed the majority of their reading sessions.

Year 3:

7. Completing the main reading experiment.

This observer performance experiment under different CAD cueing modes was completed in
the third year of this project. The reading sessions were finished before November 1, 2000. All
data collected during the entire reading period were then examined and transferred from the
experimental workstation for analyses.

8. Data analysis.

Although detection performance varied among the observers who participated in the
study, we found that a general pattern of performance curves was consistent for all observers
(with the exception of the one noted previously). Hence, the data from seven observers were
pooled together in most of our data analyses. The reading results have been analyzed using
FROC and other statistical methodologies (i.e., trend analysis using two-way analysis of variance
(AOV) [12] and a Wilcoxon matched pair test). The ROCFIT program developed by Dr. Metz et
al at the University of Chicago was used to generate the performance curves [13]. From these
FROC curves generated for the different reading modes, we compared detection sensitivity at ten
different false-positive rates uniformly distributed over the measured range. Both sensitivity and
specificity of CAD cueing results affected observer performance. The trend was significant
(p<O.05). The data analysis from Wilcoxon matched pair tests demonstrated that increasing
false-positive cueing could significantly increase false-negative detections in both cued and non-
cued areas (p<O.05). To assess the reliability of our data analysis procedure (or reduce potential
bias), we conducted two additional tests. First, we re-ordered the reading results by grouping all
cases that were read for the first time (regardless of mode) as one group, and all cases read for
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the second time as another group, etc. The performance curves were computed separately for
these five mutually exclusive groups and were compared. Second, we excluded all single-image
cases from the database and compared the detection results on all cases with bilateral images.
The analysis results from these two additional tests were consistent with our initial observations.
Finally, we also analyzed the pooled classification ratings (malignant vs. benign) provided by
these observers. The result showed that once identified (detected), observers' ability to
distinguish between malignant vs. benign abnormalities (classification) were not affected
(p>O.05) by the cueing mode or lack thereof [14].

KEY RESEARCH ACCOMPLISHMENTS

" We performed a blind multi-abnormality, multi-mode, multi-observer performance study
using a set of 120 subtle cases and a large number of experienced observers.

" We demonstrated for the first time that although CAD systems with high accuracy had the
potential of significantly improving diagnostic performance in mammography, poorly
performing schemes could adversely affect observer performance in both cued and non-cued
areas.

REPORTABLE OUTCOMES

The detailed results (including experimental design and statistical analysis of the
experimental data) from this observer performance study have been reported in our manuscript,
which has been accepted for publication by Radiology, as cited below:

Zheng B, Ganott MA, Britton CA, Hakim CM, Hardesty LA, Chang TS, Rockette HE,
Gur D, Soft-display mammographic readings under different computer-assisted detection
cueing environments: Preliminary findings, Radiology 2001; accepted for publication

In addition, we also published two related CAD papers, which used a similar analytic
method that we applied in this project and acknowledged the support of this research grant:

"* Zheng B, Sumkin JH, Good WF, Maitz GS, Chang YH, Gur D, Applying computer-
assisted detection schemes to digitized mammograms after JPEG data compression: An
assessment, Academic Radiology 2000; 7:595-602.

"* Zheng B, Chang YH, Good WF, Gur D, Performance gain in Computer-assisted detection
schemes by averaging scores generated from artificial neural networks with adaptive
filtering, Medical Physics 2001; (conditionally accepted / pending minor revision).
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CONCLUSION

There are five research tasks listed in the Statement of Work of this project. In the first
year, we completed the first three tasks. Task four (main reading) was carried out through the
second year and completed in the first several months of the third year. Task five (data analysis)
was completed in the third year. In this project, a blind multi-abnormality, multi-mode, multi-
observer performance study was performed to examine the impact of different CAD cueing
modes on the diagnostic performance of radiologists. Such an observer performance study has
not been performed and reported elsewhere.

So What:

From this study we demonstrated that in a laboratory environment, observer performance
in the detection of subtle mammographic abnormalities was significantly affected by the inherent
performance of a cueing system. A good (or "highly" accurate) CAD cueing system (i.e., 90%
cueing sensitivity and 0.5 false-positive cueing rate) could significantly improve diagnostic
performance of radiologists, while a poorly performing CAD cueing system could actually
degrade their diagnostic performance. Because this is a relatively small and preliminary study,
large-scale studies are required to further address and confirm many issues discussed in this
project. Although the experimental results and conclusions generated in this project are
considered preliminary, this study clearly indicates the need for (1) appropriate usage of CAD
cueing systems by radiologists and (2) further improvement of the accuracy of current CAD
schemes.
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Applying Computer-assisted Detection Schemes
to Digitized Mammograms after

JPEG Data Compression:
An Assessment'

Bin Zheng, PhD, Jules H. Sumkin, DO, Walter F. Good, PhD, Glenn S. Maitz, MS
Yuan-Hsiang Chang, PhD, David Gur, ScD

Rationale and Objectives. The authors' purpose was to assess the effects of Joint Photographic Experts Group (JPEG) im-
age data compression on the performance of computer-assisted detection (CAD) schemes for the detection of masses and
microcalcification clusters on digitized mammograms.

Materials and Methods. This study included 952 mammograms that were digitized and compressed with a JPEG-compat-
ible image-compression scheme. A CAD scheme, previously developed in the authors' laboratory and optimized for
noncompressed images, was applied to reconstructed images after compression at five levels. The performance was com-
pared with that obtained with the original noncompressed digitized images.

Results. For mass detection, there were no significant differences in performance between noncompressed and compressed
images for true-positive regions (P = .25) or false-positive regions (P = .40). In all six modes the scheme identified 80% of
masses with less than one false-positive region per image. For the detection of microcalcification clusters, there was signifi-
cant performance degradation (P < .001) at all compression levels. Detection sensitivity was reduced by 4%-10% as com-
pression ratios increased from 17:1 to 62:1. At the same time, the false-positive detection rate was increased by 91%-140%.

Conclusion. The JPEG algorithm did not adversely affect the performance of the CAD scheme for detecting masses, but it
did significantly affect the detection of microcalcification clusters.

Key Words. Breast neoplasms, diagnosis; breast radiography; computers, diagnostic aid; data compression; images, storage
and retrieval.

Mammography is the most commonly used method for underserved areas in particular, there has been an increas-
early detection of breast cancer (1,2). With the current rec- ing interest in telemammography (4,5).

ommendations for annual screening of women over 40 Because high-resolution mammograms require large

years of age and with gradually increased compliance, the data sets of 10-40 Mbyte each, digital management of such
total number of mammograms obtained each year is in- images, including transmission, display, and archiving,

creasing (3). To improve the efficiency and effectiveness of quickly becomes a problem, especially when one is dealing

mammographic screening in general and in rural or with a large number of images. Hence, image-compression

techniques have been explored. Many image-compression

methods, such as full-frame discrete cosine transform (6),
Acad Radiol 2000; 7:595-602 wavelet-type decomposition (7), and data compression
1From A433 Scaife Hail, Radiological Imaging Division, Department of Radi- compatible with Joint Photographic Experts Group (JPEG)
ology, University of Pittsburgh, 3550 Terrace St, Pittsburgh, PA 15261-
0001. Received December 16, 1999; revision requested February 23, 2000; scheme (8), have been applied successfully to digitized
revision received March 13; accepted March 16. Supported in part by the mammograms. At the same time, a large number of com-
National Cancer Institute under grants CA62800, CA77850, and CA82912 puter-assisted detection (CAD) schemes have been devel-
and the U.S. Army under contract DAMD1 7-98-1-8018. Address correspon-
dence to B.Z. oped during the past decade to help detect masses and
©AUR, 2000 microcalcification clusters with digitized mammograms
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(9). Several large-scale studies have evaluated the perfor- ment team at the Eastman Kodak Company, Rochester, NY.
mance of CAD schemes in clinical mammographic screen- All mammograms were digitized in our laboratory; we used
ing (10,11). Many investigators believe that CAD schemes a laser-film digitizer (Lumisys, Sunnyvale, Calif) with a
can and eventually will provide radiologists with useful pixel size of 100 x 100 jim and 12-bit gray-level resolu-
ý'second opinion" information to improve the diagnostic ac- tion. The quality of the digitizer was monitored routinely

curacy and efficiency of mammography (12,13). Integrat- to ensure that gray levels (or pixel values) were linearly
ing CAD schemes into telemammography systems could proportional to optical density in the range of 0.2-3.2. Our
provide practical advantages and could make mammogra- digitization protocol has been described in detail else-
phy more accessible, less expensive, and more accurate, where (17). In addition to the image, the two groups pro-

We routinely refer to our own CAD schemes as com- vided the diagnostic information ("truth") for each case.
puter-assisted detection schemes. Other investigators use This included the type of abnormalities (mass, microcalci-
the term to refer to computer-assisted (or computer-aided) fication cluster, or both) and, when applicable, the location
diagnosis, which includes detection tasks either alone (6,9- of the abnormalities and histopathologic results. On the
11) or in combination with classification (ie, determining 952 images, there were 408 regions depicting masses and
the nature of the abnormality) (14-16). In this article, 303 depicting microcalcification clusters. Biopsy results
"CAD" refers to the detection tasks only. indicated that 264 regions depicted malignant masses, and

The feasibility of combining CAD schemes with tele- 142 depicted microcalcification cluster regions associated
mammography systems has not been fully investigated, with malignant cases.
Theoretically, a CAD scheme can be applied either to the Although we are not privy to the protocols used by the
original digitized images prior to data compression or to other groups for selecting the images that we used, we ex-
the reconstructed images at the receiving site. The first ap- amined the feature distribution of these images and com-
proach requires more computing power at the sending site pared such features to those for the images collected at our
and may slow down the complete process. The second ap- own institution. We selected consecutively the cases with a
proach allows for CAD schemes to be applied off-line, diagnostic level of concern of at least 3. (With a rating scale
which does not affect data transmission and may be more system developed in our medical center in 1987, concern
flexible. A prerequisite for the second approach is that im- level 3 means "probably benign finding.") Using our own
age compression must not impair the performance of the image database for comparison, we found a similar "detec-
CAD scheme. One study, which involved 25 regions of in- tion difficulty" for the masses and microcalcification clus-
terest, examined the effects of image compression on com- ters identified on the images provided to us by the external
puterized detection of a single microcalcification. The re- groups. A larger proportion of the images provided by the
sults demonstrated that, to avoid marked degradation in research group at Eastman Kodak, however, contained
performance, the compression ratio should be limited to dense parenchymal breast patterns. To describe detection
3.6:1 or less for the discrete cosine transform algorithm and difficulty, different measurements have been proposed,
9.6:1 or less for the enhanced discrete cosine transform such as the effective size and contrast (18) or "visibility" as
with the LPHC, or Laplacian pyramid hierarchical coding, rated subjectively by radiologists (19). We typically use
method (6). In the current study, we investigated the rela- "conspicuity," defined as lesion contrast divided by sur-
tionship between a JPEG compression algorithm and the rounding complexity (20), to infer the difficulty of detect-
performance of a CAD scheme for both masses and clus- ing mammographic abnormalities. The computing algo-
tered microcalcifications. In this article, we describe the ex- rithm for conspicuity has been reported before (21). Figure
perimental procedure in detail and present the results we 1 demonstrates the normalized distributions of conspicuity
obtained when applying the scheme to a set of 952 images. for positive mass regions in the three image databases.

Lower conspicuity indicates greater difficulty in detecting
MATEIL AD Mthe abnormality visually (22) and routinely with CAD

schemes, as well (21).
The image database selected for this study included 952 A JPEG image-compression scheme has been previously

digitized mammograms. Among these, 424 were selected developed and evaluated in our laboratory (8). In brief,
from a set of mammograms provided by a research group each image was compressed to five different levels. Be-

at Washington University, St Louis, Mo, and 528 were se- cause in the JPEG algorithm it is the degree of quantization
lected from images provided by the research and develop- rather than the compression ratio itself that determines the
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0.35 cious regions (about 70%-80%). For each of the remaining

0 Database 1 regions, a set of features (or a feature vector) is automati-
0.3 Database 2 cally computed. In the third stage, a nonlinear multilayer

multifeature analysis is applied to classify suspected re-
' Database 3 gions as positive or negative. In this study, a pretrained arti-

02ficial neural network (ANN) (24) was incorporated into theS0.2
Z CAD algorithm for mass detection. The ANN involves 16

,o.15 features, which were selected by means of a genetic algo-
"*6 rithm-based optimization process (25).
0o 0.1 To detect microcalcification clusters, the following steps
L are applied. First, Gaussian band-pass filtering and local

0.05 Hcontrast-based thresholding are applied. A large number of
suspicious pixels are identified in this step. Second, a spe-

0 2 3 9 6 7'cial local minimum search ring is applied to analyze all se-1 2 3 4 5 6 7 8 9

Level of Conspicuity lected pixels (26), followed by "blob" labeling and cluster-

Figure 1. Normalized distributions of conspicuity for positive ing. A topographic growth and rule-based feature analysis
mass regions in the three image databases. Database 1 included is used for each suspected microcalcification. The remain-
our own cases; database 2, cases provided by Washington Uni-
versity; and database 3, cases provided by the research group at ing suspected microcalcifications are clustered, and a set of

Eastman Kodak. rules related to the clustering is applied (26). The perfor-
mance and robustness of this algorithm have been reported

(27). Recently, an ANN classifier has been trained indepen-

degradation of an image by compression, the quantization dently and replaced the last step of the algorithm. The ANN

factor was used as an independent variable, and not the ac- involves 13 input neurons, seven hidden neurons, and one

tual compression ratio. The five quantization factors we used output neuron. The definitions and computation methods of

are 40, 60, 80, 100, and 120, which produced average com- these features have been described elsewhere (26).

pression ratios of 17:1, 26:1, 35:1, 45:1, and 62:1 for this set It should be emphasized that all of the decision rules and

of images. Each image is then decompressed (or recon- the two ANNs were trained independently with a different

structed) into a restored image with the original matrix size. image database (24,27). This CAD scheme was applied

All six images (one noncompressed and five com- without any modification ("as is") to the database tested

pressed) for each case were processed by using a CAD here. Because images were compressed at five levels and

scheme developed and tested in our laboratory (23,24). The reconstructed, the scheme was applied six times to each im-

CAD scheme includes two independent algorithms, one for age. The detection results for all six testing modes were

detecting masses and one for detecting microcalcification tabulated and compared.

clusters. For mass detection, every image is subsampled The number of true-positive regions identified, the pro-

(pixel averaged) by a factor of four in both dimensions to portion of images without any false-positive regions, and

reduce the size of each image to approximately 600 x 450 the average number of false-positive regions per image

pixels. were the summary indexes used to compare the results be-

The algorithm for mass detection includes three distinct fore the application of the ANNs. Because the number of

stages (24). The first stage of image segmentation (includ- images was relatively large, we assumed that the average

ing dual kernel filtering, subtraction, thresholding, and la- value of the summary statistics was approximately nor-

beling) is used to search for all regions in which masses are mally distributed (the central limit theorem). For testing the

suspected. Depending on the complexity of breast tissue hypothesis of equality in the proportion of images without

structure, approximately 10-30 regions are likely to be any false-positive regions and the average number of im-

identified for each image. Then, based on local contrast ages with false-positive findings across the six presenta-

measurement, an adaptive region growth algorithm to de- tions, we used a modification of a test proposed by Abelson

fine three topographic layers is applied to each suspicious and Tukey (28) to identify trends within one-way analysis

region. For each growth layer, a set of simple intralayer of variance. Tests for trends were one sided, with the hy-

boundary conditions on growth ratio and shape factor of pothesized alternative showing a decrease in true-positive

the region is applied to eliminate a large portion of suspi- detections with increasing compression, or an increase in
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Table 1
True-Positive and False-Positive Detection of Masses

Compression Ratio

Finding 0 17:1 26:1 35:1 45:1 62:1

No. of true-positive 383 382 381 381 382 382
mass regions

Average no. of false-positive 3.4 3.4 3.4 3.4 3.4 3.4
regions per image

Percentage of images without 8 8 9 9 9 8
any false-positive region

Note.-Regions with suspected masses identified with CAD before application of the
ANN (16).

Table 2
True-Positive and False-Positive Detection of Microcalcification Clusters

Compression Ratio

Finding 0 17:1 26:1 35:1 45:1 62:1

No. of true-positive 298 285 285 284 269 270
cluster regions

Average no. of false-positive 2.6 5.0 5.4 5.2 5.5 6.3
regions per image

Percentage of images without 35 18 16 14 14 10
any false-positive region

Note.-Regions with suspected microcalification clusters identified with CAD before
application of the ANN (20).

false-positive detections. The variance term in the one-way

analysis of variance was adjusted for correlations resulting

from the fact that images were evaluated in all six modes. Tables 1 and 2 summarize the performance of the CAD
For a comparison of the true-positive detections across the schemes in identifying regions suspicious for masses or

six modes, we applied the same test for trend to the propor- microcalcification clusters before the application of ANNs.
tion of images for which all positive regions had been cor- Results are summarized for noncompressed images and the

rectly identified. For each mode and for both mass and five compression modes and include the total number of
microcalcification clusters, the X2 goodness-of-fit test was true-positive regions detected, the false-positive detection

used to determine whether the distribution of false-positive rates, and the fraction of images without any false-positive

detections per image obeyed a Poisson distribution, detections. Figures 2 and 3 show the distribution of false-

After application of the ANN, a score from 0 to 1 is as- positive regions per image before image compression and
signed to each identified mass or microcalcification cluster, when images had been compressed to five levels (average
Equality of the average ANN score per image across the six compression ratios, 17:1 and 62:1). Table 1 and Figure 2

modes was compared separately for the true-positive re- demonstrate that JPEG image compression had little impact

gions and the false-positive regions by using a two-way on mass detection before the ANN was applied. The maxi-

analysis of variance (mode or compression level by image). mum change in the number of true-positive regions identi-
When the scores for true-positive regions were compared fled for the six modes is less than 0.5% (between 381 and

across modes, if a true-positive region was not identified, it 383 regions for all modes, P = .3 1). There was no signifi-

was assigned a score of 0. cant difference in either the number of images without a
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Figure 2. The number of false-positive mass regions identified Figure 3. The number of false-positive microcalcification cluster
in three testing modes (at no compression and at compression regions identified before the ANN was applied in three testing
ratios [CR] of 17:1 and 62:1), before application of the ANN. modes (at no compression and at compression ratios [CR] of

17:1 and 62:1).

400 strate a reduction in initially identified true-positive clus-

ter regions from 298 for noncompressed images to as few as
350 269 (9.7% reduction) for 45:1 compression (P < .001). As

the compression levels increased there was a corresponding
S300 decrease in the proportion of images without any false-
a
0"_z positive regions (P < .001). The initially identified false-

250 positive rate of 2.61 regions per image for the non-
2 compression mode increased to 6.27 (140% increase) for

200 the 62:1 compression ratio (P = .13). When the distribu-
tions of false-positive regions per image (Figs 2, 3) were

150 CR=0 CR=17:1 tested to determine whether the data were in a Poisson dis-

"0 tribution, the hypothesis of such a distribution was rejected
z100 O -CR=26:1 --x-CR= 35:1 for both mass detection and clusters of microcalcification

detection for all modes. This occurred because the number-*-:-- CR =45:1 --O--- CR =62:1

50 of images with very few (two or fewer) or many (seven or

more) false-positive regions was much higher than ex-

0i pected under the assumption of a Poisson distribution.
0 0.5 1 1.5 2 2.5 3 3.5 ,When the average scores assigned by the ANN were com-

False-Positive Regions per Image pared across modes for the true-positive regions, there was a

Figure 4. The number of detected true-positive mass regions at clear decrease in scores for microcalcification cluster regions
six image-compression levels as a function of the false-positive
rates. CR = compression ratio. as the compression increased (P < .001), but for masses there

was no significant difference (P = .25). A higher average ANN

score is associated with a higher true-positive fraction for a

false-positive detection (P = .50) or the average number of given false-positive fraction. Figures 4 and 5 show the num-

false-positive regions detected per image (P = .91). ber of true-positive regions detected at selected levels at the

The image-compression schemes did affect the detection average number of false-positive detections per image (0.25

of microcalcification clusters. Table 2 and Figure 3 demon- or more). When the average scores assigned by the ANN for
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0 Figure 6. Performance of the CAD scheme, including the ANN,
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Figure 5. The number of detected true-positive microcalcifica- 1
tion clusters at six image-compression levels as a function of the
false-positive rates. CR = compression ratio. 0.9 -X

" 0.8 /-

false-positive regions were compared across modes, there was 0.7

no difference for masses (P = .40), but there was a significant 00

increase in scores for regions suspected to have microcalcifi- X
cation clusters as the compression levels increased (P < .001). "

The results were similar when we analyzed change in patterns 0.4 CR = -0-CR= 17:1
X

of the false-positive detection rates at a series of fixed sensi- 7/

tivity levels for all compression modes.

Figures 6 and 7 show a series of free-response receiver -- cR =45:1 -c---CR =62:1

operating characteristic (FROC) curves. These curves dem- 0.1
onstrate the ultimate performance (after application of

ANN) when our CAD schemes were used to detect mass and 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

microcalcification cluster regions in the testing database Average No. of False-Positive Clusters per Image

containing 952 images under six different compression Figure 7. Performance of the CAD scheme, including the ANN,
for microcalcification cluster detection (n = 952 images). CR =

modes. The CAD performance for the detection of masses compression ratio.

shows little change among the six testing modes (Table 1,

Fig 4), so only three FROC curves were plotted in Figure 6.

Because 408 true-positive mass regions were included in sensitivity of 80%, the false-positive detection rate is 0.4 for

the testing database and the CAD scheme identified only noncompressed images and increases to 1, 1.2, 1.4, 1.5, and 3

383 (Table 1), the maximum detection sensitivity is 94%, regions per image for the five JPEG compression levels from

as shown in Figure 6. From the FROC curves we also find 17:1 to 62:1. Figure 7 also demonstrates that some FROC

that our CAD scheme can identify 80% of true-positive curves may cross (eg, curves for compression ratios of 26:1 and

mass regions at an average false-positive detection rate of 35:1) at low sensitivity levels (<60%). For sensitivity levels

about one region per image for both noncompressed im- above 70%, which have more practical value, no curves cross.

ages and all five JPEG compression modes. Figure 7 shows that as the compression ratio increases, there
As shown in Figure 7, the maximum sensitivity for micro- is a monotonic trend for simultaneous decreases in detection

calcification cluster detection can reach 98%. For a detection sensitivities and increases in false-positive detection rates.
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D results are somewhat encouraging (<5% decrease up to
35:1 compression ratios), the specificity decreases mark-

In this study we assess the relationship between JPEG-type edly even at low compression ratios. These results indicate
image compression and performance changes in our CAD that even at high levels of compression, the JPEG algorithm
scheme for both mass and microcalcification cluster detection, can preserve some information on the presence of micro-
The JPEG, a lossy data-compression algorithm, is based on calcification clusters in the decompressed images. The
the concept of gradually compromising the accuracy of the re- marked increase in identified false-positive clusters could
constructed image in exchange for increased data compression mean that our previous CAD scheme, as optimized, might be
(29). The unique characteristics of this study are that (a) we too customized to a specific set of image (or data) character-
used a wide range of compression ratios, from 17:1 to 62:1, istics. Not surprisingly, images with more false-positive clus-
and (b) we tested the impact of these compression levels on ters identified before compression ("difficult" images) seem
CAD results in a large database with 952 images. to degrade faster with increasing levels of compression, with

It should be noted that for mass detection the images are the number of identified clusters increasing rapidly.
first subsampled (pixel averaged) by a factor of four in two We emphasize that both CAD schemes used in this study
dimensions, which is approximately equivalent to the 16:1 had been trained and optimized with a set of noncompressed
data compression. The effect generated by pixel averaging, images. If these or similar schemes are implemented with pic-
however, is different from that generated by JPEG data com- ture archiving and communication systems or telemammog-
pression, for both frequency-dependent information content raphy applications, they should ideally be applied to full-
and noise characteristics in the decompressed (reconstructed) fidelity images than to the compressed data sets. Furthermore,
image. Our previous "just-noticeable difference," or JND, compression-specific optimization is required before these
study (using the same quantization factors) indicated that the schemes can reliably be applied to highly compressed images.
JPEG scheme imposed barely noticeable, albeit physically Finally, because CAD performance may depend on the
measurable, distortion for most reconstructed images (8). difficulty and diversity of the training database (18), as well
Such distortions could be transferred to the subsampled im- as the potential bias in the feature domain and possibly
ages, but these changes (both noise and distortion) have been overfitting during training (24), this study serves indirectly
found to have virtually no impact on the performance of the as a robustness test for the independent noncompressed
CAD scheme for mass detection. Since compression-gener- data set. In this regard, the experimental results with the
ated changes are not generally in the frequency range of in- noncompressed images were encouraging.
terest for mass detection, we did not observe noticeable
changes in the number of initially selected suspicious regions ACOW

at all the compression levels. The topographic multilayer re- The authors thank William Reinus, MD, at Washington
gion growth (23,26) is performed on the reconstructed im- University, St Louis, Mo, and the medical imaging research
ages. Hence, the feature values computed for the regions and and development group at Eastman Kodak Company, Roch-
the background may be different in each testing mode. Any ester, NY, for providing us with images used in this study.
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ABSTRACT

Purpose: To assess the performance of radiologists when detecting masses and

microcalcification clusters on digitized mammograms using different Computer-Assisted Detection

(CAD) cueing environments.

Materials and Methods: 209 digitized mammograms depicting a total of 57 verified masses

and 38 microcalcification clusters in 85 positive and 35 negative cases were interpreted independently

by seven radiologists using five different display modes. Except the first mode, for which no CAD

results were provided, suspicious regions identified by a CAD scheme were cued in all other modes

using a combination of two cueing sensitivities (90% and 50%) and two false-positive rates (0.5 and 2

per image). A receiver-operating characteristic (ROC-type) study was carried out using soft display.

Results: CAD cueing at 90% sensitivity and 0.5 false-positive regions per image improved

observers' performance levels significantly. As accuracy of CAD cueing decreased so did observer

performances (P<0. 01). Cueing specificity affected mass detection more significantly, while cueing

sensitivity affected the detection of microcalcification clusters more significantly (P<0.01). Reducing

cueing sensitivity and specificity significantly increase false-negative rates in non-cued areas

(P<0. 05). Trend results were consistent for all observers.

Conclusion: CAD systems have the potential of significantly improving diagnostic

performance in mammography. However, poorly performing schemes could adversely affect observer

performance in both cued and non-cued areas.

Key Words: Breast Cancer, Observer performance study, Computer-assisted detection,

Mammography.
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INTRODUCTION

Breast cancer is one of the leading causes of death in women over the age of 40 [1,2]. To

reduce mortality and morbidity of patients through early diagnosis and treatment, current guidelines

recommend periodic mammography screening for women age forty and over [3]. Due to the large

volume of mammograms performed and the low yield of abnormalities in screening environments,

detecting abnormalities (mainly masses and microcalcification clusters) from the background of

complex normal anatomy is a tedious, difficult, and time-consuming task for most radiologists [4,5].

Hence, there is a growing interest in the development of computer-assisted detection (CAD)

schemes for mammography. It is generally believed that such schemes could eventually provide a

valuable "second opinion" to radiologists and aiding could help improve the accuracy and efficiency of

breast cancer detection at an early stage [6,7].

To assess the potential for improving diagnostic accuracy and efficiency in mammography,

several studies have been performed using CAD-prompted systems. These studies demonstrated that

with the appropriate assistance of CAD systems, radiologists could either detect more subtle cancers in

a screening environment [8,9] or increase the accuracy of distinguishing malignant lesions from benign

ones [10-12]. While some studies indicated that using CAD did not significantly decrease the

specificity levels of the radiologists [13-15], others indicated that current CAD systems could

significantly decrease radiologists' diagnostic accuracy and efficiency due to the high false-positive

detection rates [16,17]. Similar to the difficulty in comparing the performance of different CAD

schemes developed at various institutions [18], the results of these studies are not easily compared

since different CAD schemes, radiologists, and cases were included. These studies did not address in

4



detail how CAD performance could affect observers' diagnostic performance or the level of CAD

performance that may be required in order to be widely acceptable as a true aiding tool in the clinical

environment. Researchers have suggested that large-scale experiments are needed to assess the effect

of CAD performance (e.g., the false-positive identifications) on the diagnostic accuracy of radiologists

[19]. Some doubt remains whether using CAD systems might increase the number of unnecessary

follow-up examinations or biopsies, thereby offsetting the benefits from the potential gains in

sensitivity [20].

The effect of pre-cueing images has been of great interest within the fields of perception

psychology in general [21,22] and diagnostic radiology in particular [23-25]. Much of the work in this

regard was associated with attempts to improve tumor detection in x-ray images of the chest. In a

series of carefully designed experiments, Krupinski et al demonstrated that in a cued environment,

radiologists' performance in detecting true-positive lung nodules that had not been cued was degraded

substantially [26]. The shapes of abnormalities (i.e., masses and microcalcification clusters) and the

complexity of the background tissue in mammograms are somewhat different from those of lung

nodules and the surrounding background breast parenchyma. Therefore, it is not clear how CAD

cueing may affect radiologists' performance in mammography.

The purpose of our study was to assess the performance of radiologists when detecting masses

and microcalcification clusters on digitized mammograms in a CAD-assisted environment, after

modulating cueing sensitivity levels and false-positive rates.
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MATERIALS AND METHODS

Seven board-certified radiologists with a minimum of three years' experience in the

interpretation of mammograms participated in this observer performance study. None of these seven

observers had participated in the case selection process. All images used in this study were selected

from a large and diverse image database established in our laboratory under an IRB-approved, patient-

consent exempt protocol. The original database contained mammograms collected mainly from several

thousand patients undergoing routine mammographic screening in three different medical centers [27].

All positive masses were biopsy verified. All the negative cases were rated as to level of concern by

radiologists using standard BI-RADS recommendations. The negative cases had been diagnosed as

negative during at least two subsequent follow-up examinations. Although we routinely acquire four

images in a single examination (2 views of each breast), for some cases in our digitized database we

have only two images of one breast due to a variety of clinical reasons. Using an established

digitization protocol, all mammograms were digitized using a laser-film digitizer (Lumisys, Sunnyvale,

CA) with a pixel size of 100 ýim x 100 Vtm and 12-bit digital-value resolution. The quality of the

digitizer was monitored routinely to ensure that value levels were linearly proportional to optical

density in the range of 0.2 to 3.2 [28].

The selection of "subtle" or "difficult" cases includes several steps. First, we select a large set

of positive cases (in this experiment 200) for which the output scores generated by the CAD scheme

are low for the likelihood that the abnormality in question is present [27]. Similarly, a set of suspicious

negative cases (in this experiment 80) is used for which CAD scores were high for the likelihood that a

mass or a cluster of microcalcifications, or both was present. Then, two experienced observers prune

the data set by visual inspection on the same display as used in the study with the "true diagnosis"

known to select the final 120 cases to be used in the study. The total number of positive cases was
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selected to include a reasonable mix of benign and malignant cases depicting both single and multiple

abnormalities with a minimum of 25 malignant cases depicting each of the abnormalities. The

resources required in terms of radiologist effort (reading time) was a factor in limiting the total number

of cases in this study to 120 and reading modes to 5. Of these, 85 depicted either masses or clusters of

microcalcifications, or both, and 35 cases were negative for these abnormalities. Ten of the positive

cases depicted both a mass and a microcalcification cluster. All other positive cases depicted only one

abnormality (either a mass or a cluster). Hence, the positive cases consisted of a total of 38 verified

microcalcification clusters and 57 verified masses. Biopsy results indicated that 27 of the clusters and

39 of the masses were malignant, while the remaining 11 clusters and 18 masses were benign. Since

we were interested in the detection (not classification) of abnormalities, cases were selected based on

subtleness of the depicted abnormality, and no attempt was made to balance the number of benign and

malignant cases in the dataset. Although studies suggested that in order to preserve subtle

microcalcifications mammograms should be digitized using pixel sizes of 50 gtm x 50 gmli or less

[15,29], all the microcalcification clusters in this study were detectable by our CAD scheme. In

addition, we verified that all these clusters were visible on the images when digitized with 100 pim x

100 Iim pixel size.

In this study, radiologists were asked to detect masses and microcalcification clusters in

digitized mammograms displayed on a monitor. In most of the 120 cases (89), two contralateral images

(the same view of left and right breasts) were displayed on the monitor side-by-side. For some cases

(31), only a single image was displayed. The latter group was selected from the cases for which we

have only two views of one breast in our database. Hence, only one view was displayed in this study

following our study protocol. Table 1 summarizes the distribution of the abnormalities depicted in

these 120 cases by type and verified finding. The observers interpreted each case only on the basis of
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the images displayed on the monitor. No images from previous examinations or other clinical

information about the patients were made available during the interpretation.

Each radiologist interpreted the same 120 cases five times using five different display modes.

With the exception of the first mode in which no CAD results were provided to the radiologists,

suspicious regions, as identified by our CAD schemes, were marked (cued) on the images in all other

modes. Two true-positive cueing sensitivity levels (90% and 50%) and two false-positive cueing rates

(0.5 or 2 per image) were used in these four cueing modes (see Table 2). During the cued modes, when

a new case was loaded onto the display, radiologists viewed the cued images first. Then they could

remove the prompts from the display or add them back at their discretion.

To generate the cues, CAD schemes developed by our group [27] were applied to these 209

images (or 120 cases). The schemes use filtering, subtraction, and topographic region growth

algorithms to identify suspicious regions (including masses and microcalcification clusters) [30,31].

Then, using nonlinear multi-layer multi-feature analyses, two pre-trained artificial neural networks

(ANNs) were used to classify each region as positive or negative for the presence of an abnormality in

question [32]. One was designed to assess regions suspicious for masses and the other one was for

microcalcification clusters. Before applying the ANNs, the schemes initially identified 133 suspicious

regions for "microcalcification clusters" and 831 for "masses." Of the 133 "clusters," 38 represented

true clusters and 95 were false identifications (or a rate of 0.45 [95/209] false-positive detections per

image). Of the 831 "mass regions," 57 were true positive and 774 were false positive (or 3.7 per image,

or 774/209). The ANNs were then applied to classify all of these regions. Each suspicious region

received a likelihood score for being positive (from 0 to 1). The larger the score, the more likely the

region was to represent a true-positive region.
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Selection of true-positive and false-positive cues for each display mode was performed

separately. Two cueing sensitivities (90% and 50%) were applied to masses and microcalcification

clusters. Each abnormality was assigned a number (e.g., from 1 to 57 for masses or 1 to 38 for

clusters). A computer program randomly selected regions to be cued until the required number was

reached for the sensitivity level being evaluated. In display modes #2 and #3 with the cueing

sensitivity set at 90%, 51 true masses of 57 and 34 of 38 clusters were selected. In modes #4 and #5

with the cueing sensitivity set at 50%, 29 of the 57 masses and 19 of the 38 clusters were selected. Two

false-positive cueing rates (approximately 0.5 and 2 false-positive regions per image) were used.

Because the total number of false-positive "clusters" identified by the scheme was 95, all of these

regions were used in display modes #3 and #5, which provided a false-positive cueing rate of 0.45

(95/209). In modes #2 and #4, the total false-positive desired cueing rate was 0.5 per image, which

was one fourth of that in modes #3 and #5. Hence, one-fourth (24) of the available (95) false-positive

"clusters" were selected based on the ANN-generated scores with the 24 highest scoring regions being

selected in descending order, resulting in a cueing rate of 0.11 (24/209). To reach the overall target of

0.5 and 2 false-positive cues per image (including both mass and microcalcification cluster regions),

774 false-positive mass regions were also sorted based on the ANN-generated scores. Then, 82 of the

highest scoring false-positive regions were selected from the list for display in modes #2 and #4, and

324 false-positive "masses" were selected for display modes #3 and #5. Thus, the false-positive cueing

rates for mass only were 0.39 (82/209) and 1.55 (324/209) per image, respectively. In summary, modes

#2 and #4 included 106 (24+82) false-positive cues (or 0.5 per image), and modes #3 and #5 included

419 (95+324) false-positive cues (or 2 per image).
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Each of the 20 reading sessions for individual observers included 30 randomly selected cases

using one reading mode. To eliminate the potential for learning effects, the order of display modes (or

cueing rates) for each observer was pre-selected using a counterbalanced approach. The 20 sessions

were divided into 4 blocks with 5 sessions each. In each block, one observer read five sessions with

five different modes in a random order. However, at each session number in the series (e.g., session

#6), at least five observers read different modes, and no more than two readers read the same mode.

For example, in the first session for all the observers, observers started reading with different modes.

Because there were seven observers and five display modes, observers 1 to 5 read modes I to 5,

respectively, while observer 6 read mode #3 and observer 7 read mode #2. Last, a study management

program was used to randomly select the cases and their sequential order in each session. The random

"seed" used in the program was date-dependent. Because each observer had a different reading

schedule, the cases selected in each session (e.g., session #4) and their sequential order for each

observer were different. A minimum time delay (10 days) between two consecutive readings of the

same case was implemented.

A standard SUN SPARC-20 landscape workstation monitor was used to display the images.

Images were not pre-processed other than we did optimize the contrast of each individual image

through a window and level manipulation for optimal visual display. The image parameters were then

fixed. The observers could not manipulate the contrast and brightness during the readings. Initially,

images were displayed on the screen as sub-sampled (low resolution) to fit the screen size (with

approximately 1,200 x 850 pixels). Using zoom and roam functions, the radiologists were able to view

the images at full resolution by clicking the appropriate control button or scroll bars. A "Display/

Remove" button could be used to superimpose or delete the CAD cues on the images. Radiologists

could make diagnostic decisions while viewing either sub-sampled images or full-resolution images.
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Observers were asked to perform and score two separate tasks. First, they were asked to identify

(detect) suspicious areas for the presence of an abnormality, and then they were required to classify the

suspected abnormality as benign or malignant. Once a radiologist pointed to and clicked the cursor

onto the center of a suspected abnormality, a scoring window appeared, followed by a confidence level

sliding scale. The program automatically recorded all diagnostic information entered by the radiologist,

including the type of a detected abnormality (mass or microcalcification cluster), location (the center

of the detected region), and two estimated likelihood scores (from 0 to 1) for detection

(presence/absence) and for classification (benign/malignant) of any identified region that was

suspected for depicting an abnormality. The likelihood scores were used to generate FROC curves.

The results for each observer, each abnormality, and each display mode were qualitatively

viewed, and FROC curves were plotted for individual readers and modes, as well as for pooled

confidence ratings for all readers since their general patterns were consistent. For testing the

hypothesis of equality of the FROC curves (or the detection sensitivities at the same false-positive

rates) across four different CAD cueing modes, we compared sensitivities among curves at ten

different false-positive rates uniformly distributed over the measured range. Sensitivity levels across

modalities were compared using a repeated measures logistic regression model, where the binary

outcome variable was replicated over patients and the independent variables included reader and

modality. Estimation was done using a Generalized Estimating Equation (GEE) approach [33]. In

addition, we analyzed the changes of performance indices (i.e., the number of missed true-positive

regions in the cued or non-cued areas) for the two sensitivity levels (50% and 90%) and for the two

false-positive cueing rates (0.5 to 2 per image). The hypotheses of equality of the number of missed

abnormalities were also tested using a repeated measures logistic regression with reader and modality

in the model. Last, to examine the potential biases for reading the same case five times, the reading
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results were re-ordered and analyzed for all cases read the first time (regardless of mode) as one group,

and all cases read for the second time as another group, etc. Performance curves were computed

separately for these five mutually exclusive groups and were compared (using the analysis of variance

test).

RESULTS

Performance curves varied among observers, but the general pattern was consistent for all

observers. Figures 1 to 3 demonstrate the average performance of the seven observers. These figures

present curves of the average performance for the detection of either abnormality, masses alone, or

microcalcification clusters alone, respectively. As noted from the non-cued results (mode #1), the task

in general was challenging, whether due to the display environment, the subtlety of the abnormalities,

or both.

Figure 1 demonstrates that both sensitivity and specificity of the CAD results affected observer

performance. The differences between modes #2 through #5 were highly significant (P<0.01).

However, the results showed different patterns for the detection of masses as compared with

microcalcifications. In the case of masses (Figure 2), specificity of the CAD results (or cueing false-

positive rate) affected the observer in a more significant manner. The differences between modalities

was statistically significant (P<0.01) with the performance decreasing as the total number of cued

regions increases. In the case of clusters (Figure 3), observers' performances were affected to a greater

extent by the cueing sensitivity. The combination of case subtlety and viewing on soft display

rendered the test of microcalcification cluster detection so difficult that only approximately 60% were
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detected without cueing or with cueing at low sensitivity (modes #4 and #5). With the support of

highly sensitive cues, the performance improved to a detection rate of approximately 75% (P<O. 01).

Highly accurate cueing (i.e., 90% sensitivity and 0.5 false-positive cues per image) helped the

observers improve performance as compared with the non-cued environment (P<0.01). As the

accuracy of the cueing decreases, so does the performance of the typical observer. This effect

continues for either detection task, but the detection of microcalcification clusters was more

significantly affected by sensitivity of the cueing in our case. Most important, perhaps, our results

clearly indicate that overall poorly performing CAD (Figure 1) can result in significant degradation of

observer performance (P<O. 01).

Table 3 demonstrates the number of CAD-cued abnormalities that were identified in mode #1

(non-cueing) but were missed in other (cued) modes by each radiologist. Some increases in rejection

rates of true-positive regions were observed when the total number of cues increased, but the results

were not significant (P>O. 05).

Table 4 summarizes the number of missed abnormalities in non-cued areas during CAD-cued

observations. The table shows that for the highly sensitive cueing modes (e.g., modes #2 and #3,

where only 10% of true-positive regions were not cued), the majority of the missed abnormalities (>

94%) were also missed in mode #1. As CAD cueing sensitivity is reduced to 50%, the average number

of missed abnormalities in non-cued areas increased significantly (P<0.05). More importantly,

approximately 30% of these regions were detected by the radiologists in mode #1. Increasing false-

positive cueing rate from 0.5 to 2 per image (mode #4 vs mode #5) increased the number of missed

abnormalities in non-cued areas from an average of 14.4 to 18.0, which was not significant (P=0.16),

most likely due to the small sample size. In this case, the observers also missed significantly more
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regions that were detected in mode #1 (P=0.03). In general, the number of missed abnormalities

(false-negative rate) in the non-cued areas increases as the cueing sensitivity decreases and false-

positive cueing rate increases. As a result, mode #5 has the highest miss rate in non-cued areas. When

we compared the detection performances for benign and malignant abnormalities, the latter group was

somewhat better detected (probably due to differences in subtleness), but the differences between

modes were similar to that of the benign group.

The pooled classification confidence ratings (malignant vs. benign) provided by the seven

observers on all identified true-positive regions for each mode were used to generate and compare

ROC curves (A.) for the different modes (ROCFIT [34]). Areas under the curves were estimated using

maximum likelihood (MLE) under the binormal assumption. Areas under the ROC curves for

classification performance over all readers were 0.70±0.02, 0.69+0.02, 0.69+0.02, 0.70±0.02, and

0.68±0.02 for modes #1 through #5, respectively. Comparing each pair of modes did not result in any

significant differences (P>O.05). Hence, once identified (detected), the observers' ability to

distinguish between benign vs malignant abnormalities (classification) were not significantly affected

(P>0. 05) by the cueing mode or lack thereof. Although there were differences in performance among

the observers, we did not identify any correlation for either the detection or classification tasks with

observers' experience as measured by the number of years of interpreting mammograms or the average

number of mammograms interpreted per year. The performance trends we observed were consistent

for all observers.

The minimum time delay between two consecutive readings of the same case by the same

observer was set at 10 days, but the actual time delay ranged from 12 days to 154 days, with an

average time delay of 48 days. When we examined the results after re-ordering cases by their order of
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appearance (i.e., first time, second time), regardless of the mode, no significant difference between the

groups (P>0.8) was identified (Figure 4). Similar performance patterns were observed when the 31

cases that included only one image were excluded from the analyses, and the detection results were not

significantly altered in any comparison between the results for the whole group (120 cases) and the

subset of 89 cases containing two images (p>0.5).

DISCUSSION

This preliminary study under laboratory conditions has to be clearly viewed as such. The fact

that the conditions in the study were removed from the typical clinical environment has to be

considered before any generalization of the results is contemplated. However, the consistency of the

patterns observed for the individual readers and the group as a whole warrant further assessments of

the affect of CAD performance on the observer.

Clearly, the expectation that observers can readily and easily discard most false-positive cues

regardless of their presentation or prevalence was not what we found [14]. Both true- and false-positive

cues affected the results. The effect was also dependent on the type of abnormality in question and its

subtleness (detection difficulty). Despite significant reader, case, and mode variability, the results we

obtained were consistent and interpretable. As expected, at low specificity levels, all CAD cued modes

aid in increasing sensitivity of observers, as can be seen from the tendency to cross the non-cueing

performance'curve. This observation is consistent with some of the results previously reported by

others, but it may not be clinically relevant in situations when most abnormalities are not as difficult to

detect as those in this study.
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Our results suggest that the use of a CAD-cued environment during the interpretation of

mammograms has to be carefully investigated and fully understood before it is widely accepted in

routine clinical practice. In particular, one should consider the cueing performance level of the scheme

itself and the potential increase in missed abnormalities in non-cued regions due to the fact that the

possible liability associated with false-negative interpretations far exceeds that of false-positive

readings [26].

The general consistency of our results is somewhat surprising in view of the fact that cueing

rates were maintained only for short durations (within a single session of 30 cases). Unlike the display

environment, the CAD results in our study emulated what can be expected using current levels of CAD

performances as well as what one hopes to achieve using CAD in the future. The range of CAD

performances used for cueing 90% sensitivity at 0.5 false-positive identifications per image to 50%

sensitivity at 2 false-positive identifications per image clearly make this study an interesting one in

enabling an assessment of what could be expected under improved CAD results. It is interesting to

note that for all display modes, the use of CAD cueing with either high or low performance had a

limited effect on observers when they operated on a conservative level. Namely, they indicated only

regions they were quite confident about and therefore had low false-positive rates. This stemmed

largely from the fact that the CAD cueing identified mainly truly appropriate ("reasonable") areas on

the image as "suspicious." As observers loosened their criteria (indicated a larger number of

suspicious regions), the CAD-cueing performance affected observers in a more significant manner.

Namely, the use of the better performing cueing scheme significantly improved observer performance,

while the use of the poorly performing cueing schemes significantly degraded observer performance.
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Analysis of the datasets after reordering cases by appearance indicate that "learning" effects, if

any, were not a significant factor in this study. Although all selected abnormalities in this study were

detectable by the CAD schemes and visible on the displayed images, the relatively low detection levels

of the seven participating observers in the case of subtle clustered microcalcifications suggest that this

task is likely to be a continuing challenge when using soft display for this purpose. We are not aware

of any comprehensive study assessing this issue, and our results, albeit very preliminary, suggest that

such a study should be performed.

Despite the limited information provided (no prior studies or reports and only a single view for

each breast) and the fact that different abnormalities were detected in each mode, the classification

performances of determining that an identified abnormality was either benign or malignant, were

reasonable and consistent. It was encouraging to learn that once detected, the task of classifying the

abnormality as benign or malignant was not affected by the detection cueing performance, pointing to

the fact that these are likely to be two distinct and largely independent tasks. Our CAD scheme was

designed solely for detection purposes. Other classification schemes have been shown to perform well

[12] and when used during interpretation, significantly improved tissue classification performance of

the observers [10,11].

The overall detection sensitivity of the radiologists was in general relatively low compared to

that observed in the clinical environment. This may be due to the fact that most of the cases selected

for this study were subtle and reading was performed on soft-display using a limited number of views

without prior examinations being available for comparison. We note the difference between this and

other reported studies where observers could view both hard copy images and low-resolution soft copy

images with CAD-cued areas on the screen [14,15]. Not providing hard copy images to the observers
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could be a significant factor in lowering detection sensitivity in this study. This resulted in a crossing

of the performance curves for the detection of microcalcifications (Figure 3), since the non-cued mode

exhibited a "capping" effect (an imposed upper limit) that was "removed" with the aid of CAD cueing.

This does not invalidate any of the analyses or observations made in this study. Despite the generally

low level of performance-and -the fact that we -used very high prevalence of abnormalities in our ....

dataset, we believe that on a relative scale, the results concerning the general trends we observed are

valid. We emphasize that our study design called for a change in m r

session. The effects we observed under these conditions are probably different and likely minimized

as compared with a study design in which each mode is read to its completion before any prevalence

changes (i.e., change to a different mode).

In conclusion, our preliminary study indicates that in a laboratory environment, observer

performance in the detection of subtle mammographic abnormalities is significantly affected by the

inherent performance of a cueing system. High performance cueing systems can significantly improve

observer performance. On the other hand, low performance cueing systems can significantly degrade

observer performance. These findings, together with the inter-mode consistency we observed, are

important since there could be diagnostic implications associated with the inappropriate use of or

reliance on CAD results during the interpretation. These issues have to be further investigated with

larger datasets and a more closely simulated clinical environment.
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List of Table Captions

Table 1: Number of mammographic cases in different categories. (M - malignant, B - benign).

Table 2: CAD cueing conditions of the five display modes used in the study.

Table 3: The number of missed abnormalities that were identified as suspicious in mode 1 (non-cued)

but missed in other modes despite the fact that the abnormality in question was cued.

Table 4: The number of missed abnormalities in non-cued regions. The number in parenthesis indicates

the number of missed regions that were detected in mode 1 (non-cued).
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List of Figure Captions

Figure 1: Curves of average detection performance of mammographic abnormalities (including both

masses and microcalcification clusters) for seven participating radiologists using the five display

modes. Display modes are represented as follows: mode 1 (o), mode 2 (M), mode 3 (A), mode 4 (*),

and mode 5 (,).

Figure 2: Curves of average performance of mass detection for seven radiologists using the five

display modes. Display modes are represented as follows: mode 1 (o), mode 2 (U), mode 3 (A), mode

4 (*), and mode 5 (*).

Figure 3: Curves of average performance of microcalcification cluster detection for seven radiologists

using the five display modes. Display modes are represented as follows: mode 1 (o), mode 2 (U),

mode 3 ("), mode 4 (*), and mode 5 (*).

Figure 4: Curves of average detection performance of abnormalities for seven radiologists as a function

of the order of appearance or round (e.g., first time, second time, etc) and regardless of reading mode.

Order of appearance is represented as follows: first time (o), second time (U), third time ('), fourth

time (*), and fifth time (*).

24



U

Table 1: Number of mammographic cases in different categories. (M - malignant, B - benign).

Mass Microcalcification Both mass and Negative Total

cluster cluster cases

M B M B M B

Single image cases 10 1 11 3 1 1 4 31

Two image cases 20 16 7 7 8 0 31 89

Total Cases 30 17 18 10 9 1 35 120

Table 2: CAD cueing conditions of the five display modes used in the study.

Reading mode CAD cueing Cueing sensitivity Cueing FP rate

1 No

2 Yes 0.9 0.5

3 Yes 0.9 2

4 Yes 0.5 0.5

5 Yes 0.5 2
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Table 3: The number of missed abnormalities that were identified as suspicious in mode 1 (non-cued)

but missed in other modes despite the fact that the abnormality in question was cued.

Reader Mode 2 Mode 3 Mode 4 Mode 5

#1 5 5 3 3

#2 5 4 4 3

#3 5 6 3 6

#4 3 1 5 4

#5 1 9 5 11

#6 5 4 8 5

#7 3 1 4 2

Average 3.9 4.3 4.6 4.9
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Table 4: The number of missed abnormalities in non-cued regions. The number in parenthesis indicates

the number of missed regions that were detected in mode 1 (non-cued).

Reader Mode 2 Mode 3 Mode 4 Mode 5

#1 5(1) 5(1) 13(3) 14(5)

#2 6(0) 8(0) 19(2) 21(7)

#3 5(1) 5(0) 11(2) 15(3)

#4 5(0) 6(0) 19(3) 25(5)

#5 6(0) 4(0) 10(4) 13(5)

#6 7(1) 7(2) 14(4) 20(9)

#7 6(0) 5(0) 15(3) 18(6)

Average 5.7(0.4) 5.7(0.4) 14.4(3.0) 18.0(5.7)
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Figure 1: Curves of average detection performance of mammographic abnormalities (including both

masses and microcalcification clusters) for seven participating radiologists using the five display

modes. Display modes are represented as follows: mode 1 (o), mode 2 (U), mode 3 ("), mode 4 (*),

and mode 5 (*).
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Figure 2: Curves of average performance of mass detection for seven radiologists using the five

display modes. Display modes are represented as follows: mode 1 (o), mode 2 (U), mode 3 ('), mode

4 (*), and mode 5 (*).
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Figure 3: Curves of average performance of microcalcification cluster detection for seven radiologists

using the five display modes. Display modes are represented as follows: mode 1 (o), mode 2 (U),

mode 3 (A), mode 4 (*), and mode 5 (*).
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Figure 4: Curves of average detection performance of abnormalities for seven radiologists as a function

of the order of appearance or round (e.g., first time, second time, etc), regardless of reading mode.

Order of appearance is represented as follows: first time (o), second time (U), third time (A), fourth

time(*), and fifth time (*).
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