<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB273096</td>
</tr>
</tbody>
</table>

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies only; Proprietary Information; May 2001. Other requests shall be referred to US Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD 21702-5012

AUTHORITY

USAMRMC ltr, 8 Jan 2003
Award Number: DAMD17-99-1-9373

TITLE: Total Synthesis of Eleutherobin and Analogs and Study of Anti-Cancer Mechanism

PRINCIPAL INVESTIGATOR: Qiang Tan, Ph.D.
 Samuel Danishefsky, Ph.D.

CONTRACTING ORGANIZATION: Sloan-Kettering Institute for Cancer Research
 New York, New York 10021

REPORT DATE: May 2001

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, May 01). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-99-1-9373
Organization: Sloan-Kettering Institute for Cancer Research

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure, or use is subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor or subcontractor asserting the restriction is notified of such release, disclosure, or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

[Signature]

16-12-01
Eleutherobin is a potent anti-cancer natural product. Progress on an improved eleutherobin synthesis is reported herein. Since PI has completed the postdoctoral training, this should be considered as the final progress report.
Table of Contents

Cover...

SF 298...

Introduction...5

Body..6

Key Research Accomplishments...11

Reportable Outcomes...12

Conclusions..13

References...14

Appendices...15
Introduction:

The proposed research for this grant was the total synthesis of eleutherobin. Significant results has been achieved towards an improved synthesis of eleutherobin, which is summarized as Part I in the report. On the other hand, at that time several efficient eleutherobin syntheses had already been accomplished, including one from Danishefsky group. Thus it was decided that the focus of the research was shifted to the synthesis of a pair of potent anti-tumor compounds, the CP compounds, which are synthetically more challenging. The work on CP is summarized in Part II.
PART I Second-Generation Eleutherobin Synthesis

Eleutherobin was first isolated from the soft coral *Eleutherobia sp.* as a novel marine natural product. It has a similar tumor-type selectivity mimicking Taxol, one of the best breast cancer treatments. Moreover, eleutherobin has its own advantage that it is more water soluble and more effective against some multiple drug resistant or Taxol-resistant cell lines. On the other hand, eleutherobin has a very limited supply from the natural sources, thus an efficient total synthesis is very important for producing large quantities of eleutherobin and its analogs for testing. Although the total synthesis of eleutherobin had been accomplished in several labs including Danishefsky group, we felt that the synthesis still could be improved, as stated below.

Scheme 1

The above Scheme 1 outlines the initial eleutherobin synthesis developed in this lab (ref.1). It features addition of 2-bromo-5-lithio furan 4 to aldehyde 2 to give the key intermediate 5. The C8 epimer is also isolated as a substantial side product (ca. 7:5 diastereomeric ratio). Although the undesired epimer can be recycled, the efficiency of the synthesis certainly has a room for improvement. Moreover, we would like to directly install a two carbon piece to avoid the steppy homolongation of the one carbon piece (from 3 to 5).

Scheme 2
Scheme 2 indicates the recent progress on this front, which was achieved since the last progress report. It outlined our modified synthesis toward the intermediate 5, starting from known compound 8 (from 7, see ref. 2). For the start, a regio- and stereo-selective Diels-Alder reaction gave 9 as the major product. Driven by the release of the ring-strain, deprotection of TMS leads to a Retro-Henry type fragmentation to give the two-carbon side chain.

Next, we wish to install the furan piece through a Claisen rearrangement of allylic vinyl ether 14. After a stereoselective reduction as the result of the equatorial attack of L-selectride to give 12, esterification, Nef reaction which directly transforms the nitro group to protected aldehyde, and Tebbe reaction gave the Claisen precursor.

During the last progress report, a synthesis toward the intermediate 17 was described so was the conversion of 17 to 18 via the Claisen rearrangement. We hope that by the same token, conversion of 14 to 15, then 5, could be achieved.
PART II. Total Synthesis of CP Molecules

CP compounds 1 and 2 were discovered by Pfizer from the fermentation broth of an unidentified fungus as inhibitors for farnesyl transferase and squalene synthase. Since farnesyl transferase is involved in the functioning of oncogene Ras, these molecules are potential anti-tumor agents.

Farnesyl transferase has been identified as responsible for the farnesylation of ras protein, a process that occurs in the early stages of cell division. When a ras gene is mutated, the molecular switch for cell proliferation may be left in the "on" position, resulting in uncontrolled cell growth (i.e. cancer). In principle, inhibition of ras farnesyl transferase, and thus inhibition of the farnesylation could effectively turn this switch "off", allowing for specific control of cell growth through chemotherapeutic process.

CP-263,114 and CP-225,917 inhibit Ras farnesyl transferase from rat brains with IC₅₀ values of 20μM and 6μM, respectively. CP-263,114 inhibits SQS isolated from rat liver microsomes with an IC₅₀ value of 160 μM and CP-225,917 with an IC₅₀ of 43μM. Hence, molecules of this type appear to be reasonable candidates for the advancement of anticancer medications. With an unusual polycyclic ring system, a densely packed array of oxygen functionalities, quaternary center, an anti-Bredt bridgehead double bond, novel lactone-ketal arrangement and a rare maleic anhydride moiety, the CP molecules are synthetically challenging.
We had achieved the global structure of CP compounds (cf. Dongfang Meng, DAMD17-97-1-7146), but the steric center at C7 was opposite to the natural products. During the past grant period, as the following schema show, we have successfully achieved the installation of the correct C7 and ultimately the synthesis of CP 1 and 2. We were able to use chelation control from a remote group to affect the outcome of a lithio dithiane-aldehyde coupling to achieve different stereochemistry at C7, for the CP or 7-iso CP series. Moreover, the 7-iso CP compound was converted to the CP compounds via the inversion of C7 hydroxyl through an oxidation-reduction strategy. Treatment of 7-iso-CP-263114 or its methyl ester with TMS-diazomethane gave rise to trimethyl ester. The side chain ketone was then protected as a dioxolane using the Noyori method. Opening of the γ-lactone with LiOH, followed by treatment with TMS-diazomethane afforded ester. Dess-Martin oxidation furnished the diketone. Treatment with LiAlH(OtBu)₃ was able to selectively reduce the C7 ketone without affecting the C1 ketone to give a 1:1 C7 diastereoisomers at C7. We attribute the regio- and equal face selectivity of the reduction to the assistance of the neighboring dioxolane as it may complex with the reducing reagent to both faces of the C7 ketone. For instance, the keto dithiane analog undergoes more rapid reduction at the C1 ketone relative to that at C7. Finally, all four methyl esters and the dioxolane protection were removed by hydrolysis under LiOH and TFA, respectively, to furnish the CP-225917 (2), which can be converted to CP-263114 (1) upon treatment with MSA.
deprotection and oxidation in one step

Lewis-Acid Sensitive, Remains Intact

7-iso CP-263,114 resistant to CH₃N₂

TMSOH

LIOH

TMSCHN₂
Key Research Accomplishments:

1. Critical steps have been established on an improved eleutherobin synthesis. The rest of the strategy, i.e., Claisen rearrangement, has been validated on the model system.

2. Total synthesis of the novel anti-tumor CP compounds have been achieved.
Reportable Outcomes:

Publications:
1. The Synthesis of CP-263,114 and CP-225,917: Striking Long-Range Stereocontrol in the Fashioning of C7
 Qiang Tan, Samuel J. Danishefsky
 Angewandte Chemie International Edition
 Volume: 39, Issue: 24, Pages: 4509-4511

2. Discovery Through Total Synthesis - Epimerization at C7 in the CP Compounds: Is (7S)-CP-263,114 a Fermentation Product?
 Dongfang Meng, Qiang Tan, Samuel J. Danishefsky
 Angewandte Chemie International Edition
 Volume: 38, Issue: 21, Pages: 3197-3201
Conclusions:

Key steps toward an improved eleutherobin synthesis have been completed. This is an important step toward setting the stage for the large-scale synthesis of Eleutherothin and its analogs. On the CP project, the completion of the synthetic CP compounds not only gives an alternative method to achieve those potent anti-tumor agents, and open the gate for structural modifications, but also demonstrate the power of the modern organic synthetic techniques in making such complex structures.
Conclusions:

Key steps toward an improved eleutherobin synthesis have been completed. This is an important step toward setting the stage for the large-scale synthesis of Eleutherobin and its analogs. On the CP project, the completion of the synthetic CP compounds not only gives an alternative method to achieve those potent anti-tumor agents, and open the gate for structural modifications, but also demonstrate the power of the modern organic synthetic techniques in making such complex structures.
Appendices:

Attached are PI's publications during the grant period.
The Synthesis of CP-263,114 and CP-225,917: Striking Long-Range Stereocontrol in the Fashioning of C7**

Qiang Tan and Samuel J. Danishefsky*

During a screening exercise which was designed to target inhibitors of Ras farnesyl transferase and eukaryal synthase, Pfizer scientists reported the isolation of two natural products CP-263,114 (1) and CP-225,917 (2) as fungal metabolites extracted from juniper twigs in Texas.[1] These compounds have fostered a great deal of creative research from synthetic chemists. The interest accrues from the novel and challenging structures of the CP metabolites rather than from compelling biological imperatives. Three total syntheses of 1 and 2 have been described.[2] The first of these was reported by Nicolaou and co-workers.[3-4] When appropriately modified, their synthesis revealed the configuration of 1 and 2. These compounds are now known to correspond to the absolute stereostructures shown. This finding was independently confirmed by the groups of Shair[5] and Fukuyama,[6]

![Chemical structures of CP-263,114 and CP-225,917.](image)

In our earlier report[5] we disclosed the total synthesis of the 7-epi series of the CP compounds (3 and 4). We are now confident that these 7-epi compounds are themselves less abundant natural products, found in the fermentation broth.[7] Nonetheless, since the goal structures of our synthetic venture were compounds 1 and 2, we undertook the challenge of reaching these natural products. In the course of this study, we encountered some remarkable instances of stereochemical guidance by remote functional groups arising from the novel architectures of the pre-CP intermediates. These findings, as well as the attainment of our synthesis goals in reaching 1 and 2, are described herein.

On casual inspection it would appear that the synthetic problem could readily be solved by equilibration of 3 or 4, or their precursors, at C7. However, as was detailed in our total synthesis report,[6] epimerization at C7 under apparent thermodynamic control only proceeds in the direction of the 7-epi diastereomer. Hoped for solutions based on kinetic quenching of enolates derived from protonation at C7 under irreversible conditions were unsuccessful. Complicating both of these strategies for inverting the C7 configuration was the general instability of the CP systems to several intended deprotonation protocols. Hence it was necessary to retreat to earlier stages of the synthesis to accomplish our objective of reaching 1 and 2 through our total synthesis.

The reaction that established the eventual 7-epi stereochemistry arose from the action of osmium tetroxide on the side-chain allyl group of compound 5 (Scheme 1a). This oxidation resulted in a hemiacetal bearing a hydroxymethyl group at C7. The dihydroxylation was essentially stereospecific. The hemiacetal was shown to have the stereochemistry of 6 by its eventual conversion into 3 and 4. In retrospect this result can be explained by α-face attack of the oxidant upon an "extended anti" conformation as proposed for 5 (Scheme 1a). While this was a disappointing result at the time, a seemingly workable solution virtually suggested itself. The thought was to gain access to the required C7 side-chain stereochemistry by inverting the order of element linkage to the achiral C7 sp2 precursor (Scheme 1b). Thus, in the dihydroxylation reaction (Pathway 1) an oxygen atom had been added to the C7 methane carbon of a terminal methylene group. Now we hoped to reverse the stereochemical outcome by adding a carbanion equivalent to a C-O linkage (Pathway 2).

![Scheme 1.](image)

Specifically we sought to add lithio dithiane 8 to aldehyde 10. Of course the successful realization of the scheme encountered some remarkable instances of stereochemical guidance by remote functional groups arising from the novel architectures of the pre-CP intermediates. These findings, as well as the attainment of our synthesis goals in reaching 1 and 2, are described herein.
COMMUNICATIONS

presumed that the conformation of the reacting formyl group of 10 would also be "extended anti" and that the nucleophile would again (as with the osmium tetroxide reaction) attack from the α-face. Indeed as we were preparing for this very experiment, Nicolaou and co-workers reported that the addition of lithio dithiane 8 to aldehyde 7 produced 9 in an approximately 11:1 ratio relative to the C7 epimer (Scheme 2). The result from the Nicolaou group was consistent with our dihydroxylation result in that opposite diastereomers had been produced at C7 following the opposite linkage orders.

Notwithstanding its dominantly hemiacetal character, 6 reacted with lead tetraacetate to afford 10 (Scheme 2). The latter reacted smoothly with 8 (generated in situ from its 2a rotamer shown in Scheme 2) to afford substantially a single carbonyl in a 10:1 ratio with the C7 diastereomer. Our satisfaction with the result was short-lived when it was learned that the carbonyl was 11.

This realization followed a two-step conversion of 11 into 13 followed by oxidation of the γ-lactol and the deprotection of the dihydroxyl (Scheme 3). The resultant 15 had been previously encountered in our synthesis of the 7-epi systems 3 and 4.

It seemed that a factor to explain the massive difference (11:1 versus 1:10) between our case and that of Nicolaou and co-workers was the absence or existence of the C1 ketone. Perhaps the presence of this ketone in our substrate 10 occasioned a shift in either the nature of the reactive aldehyde rotamer or the sense of attack on the corresponding rotamer. For instance, formation of a local "lithio channel", by the C1 ketone and the C7 aldehyde, would favor an otherwise unfavorable syn-like rotamer as shown in Scheme 2.

This argument was evaluated following conversion of 6 into 16 and 17 as shown in Scheme 4. While not productive with respect to our goal, these studies provided striking instances...
of long-range effects. Indeed, even the two C27 epimeric thiolphenyl compounds reacted quite differently with 8. In the case of 16, the ratio of 8 and its C7 epimer was 5:2, whereas with 17, the ratio of 19a:19b was 2:3.[6]

Qualitatively at least, removal of the C1 ketone did markedly shift the sense of addition of anion 8 in the predicted sense. Failure to achieve the very high selectivity described by the Nicolau and co-workers[24] may be a consequence of the presence of the C1 ketone in their substrate 7. This ketone could well provide additional guidance for a-face attack by the nucleophile on the rotamer shown.

While 18 and 19a are potentially valuable precursors toward the CP systems 1 and 2, a more rapid progress was registered. This involved the reduction of a C7 ketone to reach our goal (Scheme 5). Here too neighboring group influences are pivotal. The sequence started with the interesting reaction of trimethylsilyldiazomethane with 3 to afford 20 and thence 21. The latter reacted with lithium hydroxide and then trimethylsilyldiazomethane to give 22, which following oxidation yielded 23. Treatment of this compound with lithium tri(tert-butoxide) hydride provided 22 and 24. We note again[25] that, in the case of 21, a "cascading"[26] by carboxylate participation can not be invoked, since the lactone saponification occurs with the C29 methylster intact.

II is also likely that the regioselective reduction of the C7 ketone relative to that at C1 is orchestrated by the proximal dioxygen protecting group. For instance, the corresponding ketodithiane analogue undergoes more rapid reduction at the C1 ketone relative to that at C7. The reduction of 23 as well as the separable and recyclable 22. The four methyl esters are cleaved through long-term treatment of 24 with lithium hydroxide and reconstruction of the system was accomplished through the action of TFA (see structure 2). The conversion of 2 to 1 has been reported.[34]

The contrathermodynamic conversion of the 3,4 minor series of metabolites into the more prevalent 1,2 family has been accomplished, which thus completes our file on all the known components of the fermentation mixture. Clearly the densely functionalized architectures of these four compounds and their synthetic precursors give rise to quite striking intramolecular signaling which invites further experimentation and elucidation.

Received: August 22, 2000 [Z15679]

[4] These compounds have now been identified directly in the fermentation mixture as will be described in detail.

[5] The ratios were determined by oxidizing the C1 alcohol of the dithiane adducts (PDC, PDA, approximately 80% in), and comparing the NMR spectra of the resultant ketones with those of 1. PDC = pyridinium dichromate.

© WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000

4511

07/27/01 FRI 15:28 [TX/RX NO 7080]
Discovery Through Total Synthesis—
Epimerization at C7 in the CP Compounds: Is (7S)-CP-263,114 a Fermanation Product??

Dongfang Meng, Qiang Tan, and Samuel J. Danishefsky

The goal of accomplishing the total syntheses of CP-225,917 (1) and CP-263,114 (2) has attracted the active participation of a variety of research groups.* The goal of accomplishing the total syntheses of CP-225,917 (1) and CP-263,114 (2) has attracted the active participation of a variety of research groups. These substances inhibit farnesyltransferase and squalene synthase activity. While the biological potential, if any, of agents that combine both activities is far from demonstrated, chemists have been attracted to this challenge by the novel molecular architecture of these target compounds. Elsewhere, we have described an approach to the synthesis of the CP series that delivered compound 3, with the full framework to reach the target structure (Scheme 1).**

We noted that the stereochemistry we were assigning at C7 (S)* of our synthetic structure was not the same as that assigned by the Pfizer discovery group to CP-263,114 (7R). However, one could not then be sure that the assignment to the natural product was necessarily correct. Some preliminary attempts on our part to epimerize aldehyde 3 were not successful and were attended by extensive decomposition. Accordingly, we undertook the installation of the remaining functionality required to go from 3 to the CP compounds (neglecting the issue of the C7 stereochemistry) in the hope of settling this question. Pentenylation of 3 followed by the oxidation of the resultant carbinol afforded 4 (Scheme 2).

References

[*] Prof. S. J. Danishefsky,[1] D. Meng,[1] Q. Tan
Laboratory for Bioorganic Chemistry
 Sloan-Kettering Institute for Cancer Research
 1275 York Avenue, New York, NY 10021 (USA)
 Fax: (+1)212-772-8991
 E-mail: s-danishefsky@skic.mskcc.org

[**] Further address:
 Department of Chemistry, Columbia University
 3000 Haven Avenue, New York, NY 10027 (USA)

[†] We thank the Pfizer Corporation and particularly Drs. T. Kaneko and T. T. Dabrah for their encouragement by providing valuable farnesyl transferase fragment. This research was supported by the National Institutes of Health (CA28824). D.M. and Q.T. gratefully acknowledge the U.S. Army for predoctoral and postdoctoral Fellowship support, respectively.

Fortunately, we could deprotect the primary hydroxyl group on the C4 side chain with dichlorodicyanobenzoxquinone (DDQ) to afford alcohol S. Oxidation of S provided aldehyde 6. The direct coupling of the compound with 1,1-diodoethane gave rise to 7. NMR spectral analysis continued to suggest that our compounds had the 7S configuration. At this stage we were in a position to exploit the fused 2-(3-ethyl-2-oxazolidinyl)furran moiety.

Treatment of this compound, as previously described in our model studies indeed gave rise to the hemiacetal as an anomeric mixture. Oxidation with tetrabutylammonium perruthenate/N-methylmorpholine-N-oxide (TPAP/NMO) produced the internal carboxylic anhydride. We assigned the configuration in accordance with the assignment of Kaneko and colleagues. Correspondingly, the ester derived from total synthesis was, as we had surmised, indeed gave the natural OP-derived ester indeed corresponds to structure 10. This finding raised the possibility that the 7S product may also be naturally occurring. We set this question aside and probed whether epimerization at C7 would be possible in the ester series. Interestingly, when a purified sample of 10, prepared from the methylation of 2 with diazomethane, was subjected to the action of various strong acids such as trifluoroacetic acid (TFA) or, preferably methanesulfonic acid (MSA), there was clear epimerization at C7 leading to a mixture of 9 and 10. With time, the mixture significantly favored 9. A precise statement of the ratio is not possible, since some side reactions were occurring as “equilibration” was in progress. We note that after treatment with MSA for one week the ratio 9:10 is approximately 3:1. However, equilibrium had not yet been reached.

Unfortunately, the attempt to equilibrate 9 and 10, starting with 9, using TFA or MSA, was attended by serious decomposition in the case of the former acid and essentially no reaction with the latter reagent. These experiments show that the 7S compound 9 is substantially more stable than the 7R compound 10 in the ester series. More extensive investigations of the situation at C7 in the CP-225,917 series are described below.

While the full range of possible acid-catalyzed experiments or other epimerization strategies starting in the manifold of the “closed” 7-epi...
series has not yet been pursued, we posed the question as to whether base-catalyzed epimerization at C7 in the "open" CP series (see structure 1, where "closed" and "open" refer to the presence and absence, respectively, of an ether bridge between C7 and C28) might be possible (Scheme 3). Such an epimerization could be pictured in terms of the C7-C8 enediols (see partial structure 12). Clearly, this approach was not without its own attendant risks. In addition to C7 protonation to produce the two stereoisomeric alcohols at C7, there loomed the possibility that ketonization could occur at C7 (partial structure 14), resulting in a new line of CP congeners that could not readily be "rehabilitated" in our total synthesis venture.

We first probed this question indirectly by starting with a specimen reference sample of the "open" CP acid 1. In the event, treatment of this compound with lithium hydroxide, generated an approximate 1:1 mixture of 1 and a new acid 13, which we assumed to be the 7-epimer of 1. Remarkably, the mixture seemed to be substantially confined to epimerization at C7 (partial structure 14), resulting in a new line of CP congeners that could not readily be "rehabilitated" in our total synthesis venture.

Thus, starting with 1, crossing of the C7R-C7S boundary was possible without significant wandering into the structurally isomeric ketol terrain (→14). The lithium hydroxide experiment was also conducted starting with the 7R methyl ester 10 of the natural series. The process was closely monitored by HPLC and 1H NMR spectroscopy. The fastest step is that of cleavage of the δ-lactol, which is initiated by a reversible opening of the γ-lactone under formation of the open-chain methyl ester 16. Concurrently, a slower epimerization at C7 was accompanied by hydrolysis of the methyl ester. After 24 h the ester linkage had been cleaved and the resultant mixture of acids, somewhat richer in 1 relative to 15, could be separated. Given the fact that the hydroxide-induced conversion of 10 → 16 occurs much more rapidly than hydrolysis of the ester, the critical role postulated by Nicolaou et al. of free carboxylate being a crucial element in a presumed "cascade" process to achieve the opening of the γ-lactone, as judged by cleavage of the δ-lactol, is open to considerable question. In our case, clearly no such participation is involved in the hydroxide-driven opening of the γ-lactone since there are no free carboxylate groups. Because of some attendant decomposition we cannot quote a precise equilibrium ratio of 1 and 15. However, we were able to interconnect the open (CP-225,917) and closed (CP-263,114) systems in the 7S series by taking advantage of the cyclization reaction with methanesulfonic acid, initially discovered by the Pfizer scientists starting with the natural 7R isomer. Compound 1 was indeed converted into 2 exactly as they reported. Similarly, 15 was converted into 17, the 7S analogue of 2. In each case the cyclization reaction occurred without noticeable epimerization at C7. Long-term treatment of 2 with MSA did result in epimerization at C7. Thus, an 8:1 mixture of 17:2 was obtained from 2 after one week. Clearly, the 7S acid is substantially more stable than the 7R acid 2, which is in keeping with our findings in the case of the corresponding esters 9 and 10.

We now had in hand pure samples of the natural (7R) "open" (CP-225,917) and "closed" (CP-263,114) series as the acids (1 and 2) and the methyl esters (10 and 16), as well as the corresponding 7S series of closed acid (17), closed ester (9), open acid (15), and open methyl ester (18). At this point it was very clear that the reference samples of 2, obtained from several fermentation runs, con-
COMMUNICATIONS

To be 5–30% of 17. Without an authentic sample such as we had available through total synthesis, it would be quite understandable for the minor 7S version of 2 to be overlooked in an isolation program. We also note that the HPLC separation of 2 and its 7S epimer is quite difficult.\[35\]

We then explored the possibility of entering the natural series (7R) by base-catalyzed equilibration starting with the 7S epimers that could be derived from total synthesis. Remarkably, treatment of 15 with lithium hydroxide followed by acidification gave recovered starting material in addition to some general decomposition. At best, we could detect only trace quantities (about 5%) of 1 by HPLC. However, with the amounts of 15 available to us, fully homogenous CP-225,917 (1) was not secured from a total synthesis route.

In summary, the total syntheses of the 7S-CP systems has been accomplished. This program, initially directed at the total syntheses of 1 and 2, has served to broaden our understanding of the chemistry of the CP-225,917 (open) and 263,114 (closed) series and to identify the 7S closed isomer 17 in the latter case as a very likely fermentation product. In the closed case a very powerful thermodynamic advantage favoring the 7-epi series (9/10 and 17/2) was discovered. We attribute this striking stability differential to the fact that in the epi series (9 and 17) the hexenoyl side chain projecting from C7 is exo with respect to the bicyclo-[3.3.1]nonane substructure. By contrast, in the naturally prevalent 7R series, the hexenoyl moiety is endo and substantially more hindered (Figure 1). A similar conclusion.

arises from examining the two series from the sterical perspective of the tetrahydropryan ring. If this ring is in a chair conformation, then the hexenoyl group is equatorial in the 7S series while it is axial in the 7R case (Figure 1). Alternatively, the pyran ring may adopt an energetically costly boatlike conformation in the 7R case, to avoid placement of the large hexenoyl group in a 1,3-diaxial relationship to C7. In any case, dynamic equilibration apparently does not lead to detectable conversion of 7S into 7R diastereomer in the closed systems.

Surprisingly, the preference for the 7S-configured system, while perhaps less overwhelming, extends to the open CP-

225,917 stereoisomers (15 and 1). Here it was initially felt that given free rotation in the open structures, the stability margins between the 7R and 7S isomers would have been markedly reduced. Instead, we again found (at least in the context of the systems where, in addition to the free CH₂CO₂⁻, the internal anhydride has been opened to form a distosidum salt) a strong preference for the 7S configuration. Apparently, even in the "open" series, there are rigidifying influences—possibly arising from intramolecular hydrogen bonds—which favor the 7S diastereomers. Whether the preference for the 7S configuration extends to "open" systems that lack the array of lithium carboxylates, remains to be established. Such matters, as well as the biological properties of the newly fashioned and recognized 7S compounds, are the subjects of continuing investigation.

Received: July 28, 1999 [Z137911E]
German version: Angew. Chem. 1999, 111, 3393 - 3397

Keywords: epimerization - natural products - polycycles

[4] Synthetic 3 is racemic. Furthermore, the absolute configuration of the natural products is not known. For purposes of discussion, we arbitrarily depict the absolute configuration as shown. The descriptors 7R or 7S is meaningful only in respect to the rest of the particular core structure determined drawn here. We also note that in our earlier discussion, this center (C7) had been numbered as C12 before the full construction of the CP system had been completed. We now return to the numbering system proposed by Kancano et al.\[3-4\]

[8] The NOESY spectrum of 3 showed a cross peak between H7 and H17 instead of the expected H7 and H10. Every "closed" compound with the 7S configuration at C7 exhibited a quartet at δ 4.5–4.6 in their 1H NMR spectra. By contrast, 7R-CP-263,114 (2) and its methyl ester (16) display a triplet at δ 4.5–4.6 in the 1H NMR spectra.

Electron Microscopy Reveals the Nucleation Mechanism of Zeolite Y from Precursor Colloids**

Svetlana Mintova, Norman H. Olson, and Thomas Bein*

Zeolites are crystalline, porous solids whose intricate pore and channel systems in the molecular size range of 0.3 to 1.5 nm are the basis for their immense importance in catalysis, separations, and ion exchange.2-4 Although numerous studies have addressed the preparation of zeolites, it has been very difficult to model the complex mechanism by which they assemble from framework constituent precursor species under hydrothermal synthesis conditions.

An improved understanding of the synthesis mechanism is pivotal for the design of new zeolites (only about 100 structures are known so far), and for the preparation of novel zeolitic assemblies such as zeolite thin films for membrane reactors, monoliths, or functional nanostructures. Here we report direct, high-resolution electron microscopic evidence for the nucleation mechanism of zeolite Y (faujasite structure type; FAU) in nanoscale amorphous aluminosilicate gel particles, followed by full conversion of the gel aggregates into 25–35 nm large single crystals of zeolite Y. Further crystallization of the colloidal zeolite Y suspension is mediated by soluble aluminosilicate species. Different mechanisms have been discussed regarding nucleation and crystallization of zeolites, based on experimental evidence obtained with various methods such as X-ray diffraction and scattering, solid-state NMR spectroscopy, atomic force microscopy, and electron microscopy.5-22 These include transformation of the precursor gel phase, aggregation and realignment of preassembled building blocks containing template molecule/(aluminosilicate) clusters, and assembly of soluble small species from solution. Most of the above techniques give information about the final crystalline product; however, imaging the initial stage of the zeolite formation has not previously been possible.

Several molecular sieves, including zeolite A, Y, L, ZSM-5, silicate-I, TS-1, and AlPO₄-5 can be made in colloidal form with particle sizes in the nanometer range.22-25 Recently, we reported a detailed study of the very early stages of zeolite A

[**] This research was supported by the US National Science Foundation (T.B. and S.M.) and through a NIH biotechnology grant (N.H.O.).
MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to the enclosed. Request the limited distribution statement for the enclosed be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Judy Pawlus at DSN 343-7322 or by e-mail at judy.pawlus@det.amedd.army.mil.

FOR THE COMMANDER:

PHYLIS M. RINEHART
Deputy Chief of Staff for Information Management
ADB265840	ADB251763	ADB265386
ADB279138	ADB281601	ADB282057
ADB264578	ADB258874	ADB258251
ADB281645	ADB281773	ADB264541
ADB281128	ADB281660	ADB241630
ADB261128	ADB259064	ADB281924
ADB261339	ADB266141	ADB281663
ADB273096	ADB281664	ADB281659
ADB281681	ADB281664	ADB281663
ADB259637	ADB258830	ADB281659
ADB256645	ADB266029	ADB281661
ADB262441	ADB281668	ADB281661
ADB281674	ADB259834	ADB281661
ADB281771	ADB266075	ADB281661
ADB281612	ADB281661	ADB281661