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Chapter 1

Introduction

This final report documents the overall efforts and accomplishments of research and devel-
opment of the Phase I project Trauma Care Classification undertaken by the American
GNC (AGNC) Corporation for the U.S. Army Medical Research and Materiel Command,
Fort Detrick, Frederick, MD and technically monitored by the U.S. Army Institute of Sur-

gical Research, Mechanical Trauma Research Branch, San Antonio, Texas.

The objective of this Phase I project was to develop a processing architecture that
accepts data from multiple inputs and provides likely trauma survival ratings. The pro-
‘cessing architecture is based on a neural network configuration expanded to encode in a
direct and unambiguous manner statisticél information. This creates a hybrid architecture
that permits the best attributes of both domains to be utilized for the classification of data
related to trauma survival predictive variables. The approach is based on the realization
that no single technique is capable of solving by itself the more difficult aspects of the
highly complex trauma survival classification problem. Thus, there exists a strong need to
coherently assemble the best elements of different techniques so as to reinforce the posi-
tive contributions by each and to neutralize, through complementation, their deficiencies.
The architecture chosen is a Gaussian Potential Function Network (GPFN) consisting of
Gaussian Potential Function Units (GPFU) with some key parameters determined by the

statistical properties of the input feature vectors. Other network structural parameters are

1
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determined through a “training” process that aims to yield a network output compatible

to the object class the input vector belongs to.

1.1 Trauma Outcome Prediction Variables and Scores

The development of effective trauma classification techniques have a significant impact
on the delivery of immediate medical care since they allow attention to be appropriately
focused on the most severe cases and provide a logical maximization of the availability of
limited resources. For example, in the military arena, reliable trauma classification can
differentiate cases in the battlefield that can be dispensed with through field treatment

versus the severe ones that dictate transportation to field hospitals.

There is an evident need, thus, to characterize a trauma patient in terms that relate to
the probability or chance for survival. For this to occur appropriate features must be
measured. There is a body of knowledge and experience, accumulated through the years,
that provides useful guidance. Methods are directed at assessment of vital signs (such as,
pulse, blood pressure and level of consciousness) as key determinants of organ and tissue
damage. Variables are sought that are linked to cardiovascular, respiratory and central
nervous system functions. For these variables to be effective it is deemed that they must
possess certain properties that enhance their ”intuitive” acceptability, i.e., there must be
a reasonable association with probability of survival making them credible to experienced

medical practitioners.

Variables that have been investigated as correlating with trauma care classification purposes
include pulse, skin color, bleeding, injury region, injury type, respiratory rate, respiratory
expansion, systolic blood pressure, capillary refill, eye opening, best verbal response and

best motor response (Bever [2], Teasdale [15], Champion [4], Jennett [9], Morris [13]).

Various trauma scores have been created through the years in an attempt to capture by
means of field measurable variables the degree of trauma severity. Among the most promi-

nent efforts in this area are Dr. H. Champion’s Trauma Score (TS), the Abbreviated Injury

2
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Scale (A.LS.) published in 1971 as a single comprehensive system for rating tissue damage
sustained in motor-vehicle accidents, the Injury Severity Score (ISS) developed in 1974 to
evaluate motor-vehicle victims with multiple injuries, the CRAMS scale and others. These
séores attempt to categorize the degree of severity of trauma patients and some (such as
the TS and CRAMS) are specifically designed for field triage of trauma victims to trauma

centers.

Physical examination for the purpose of increasing the diagnostic precision has obvious
limitations in environments such as the battlefield. Thus, the variables sought for trauma
outcome prediction in a coarse field environment must exclude those that can be ascertained

through the more sophisticated tools and practices available in a specialized hospital setting.

1.2 Statistics and Neural Networks

Statistical considerations have been the most prominent in the long history of data classifi-
cation. Their mathematical formalism is well developed and numerous application studies
complement the theoretical pronouncements (Lin [11], Lin[12], Fukunaga[6]). In all scien-
tific disciplines there is a steady requirement to automate the data classification process.
Although numerous classification techniques have been formulated over the years no method
has demonstrated clear superiority. The common concensus is that each problem invariably
presents its own intricate details and thus particularizes its classification approach. The
volume of techniques and approaches is thus of benefit to the designer of a specific effort
since he has now available a wealth of tools to tap for his problem. The data classification
literature does distinguish gross stratification of techniques such as parametric and non-
parametric, supervised and nonsupervised and deterministic versus statistical. However,
cross-fertilization of ideas among the various classification categories constantly takes place

and sometimes it is very difficult to clearly demarcate them.

The statistical classification problem has a clear separation into two phases. The first

isolates from raw data characterizations appropriately computed subsets that are deemed

3
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pertinent to the problem at hand. This is commonly referred to as the feature extraction
phase. The second phase creates feature partitioning functions so that feature data from
different classes can be clearly separated from each other. This is commonly referred to
as the classification phase. Experience indicates that the feature definition phase is most
crucial to the pattern classification efforts, although it should be noted that a poorly designed

classifier can easily ruin the potential benefits of a well designed feature set.

The data classification discipline has been heavily influenced by statistical consider-
ations and justifiably so since its roots lie in statistics. However, the ultimate successful
embedding of a classification problem in a statistical framework requires assumptions (such
as normality) which may not always be valid for the data at hand. Although the method-
ologies may be optimal under assumed conditions, the data may simply not fulfill the
implied hypotheses. Several attempts have been made to abandon restrictive probability
distributional assumptions but no method has emerged as a clear alternative. Although the
statistical classifiers have shown sufficient success to reinain at the top of the useful classi-
fication tools, new and effective aiding techniques are always in demand. Such techniques

emerged with the advent of neural networks.

One important attribute of neural networks is that neural networks are learning systems.
Furthermore, artificial neural network structures can be easily implemented in hardware
that has a large scale, robust and parallel computational power. Massive parallelism in
computational networks is extremely attractive in principle. But in practice there are
many important issues to be addressed before a successful implementation can be achieved
for a given problem. In the following, we present some prominent issues which are crucial

to the success of practical neural network implementations.

The representation ability of multilayer feedforward networks has been investigated
over the past few years. There are many papers on this subject. These include Cybenko
[5), Hornik [7], Hornik [8], Poggio [14] and many others. Their results show that any

continuous functions can be approximated arbitrarily well by a layered network with one
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hidden layer, where the hidden nodes represent either sigmoidal functions Cybenko [5],
Hornik [7], Hornik [8], or radial basis functions Poggio [14]. This conclusion holds under
the condition that there are a sufficiently large number of hidden units. The concept
of using neural networks as modeling tools has been tested over many practical cases in
different areas. In basically all applications of artificial neural networks, the networks are

built almost entirely by trial and error. Some guidance is gained from prior experience as

such as learning rate and momentum.

to the number and arrangement of neurons and the particular parameters used in training,
Many other researchers consider the comprehensive design of neural networks in a vari-
ety of ways. Some use an expert system, some use genetic algorithms to evolve a superior
network for a given application, some design the neural network with hierarchical struc-
I
| tures that are related to the known structure of the application and some combine neural

networks with fuzzy sets to advantage.

Neural networks are much better interpolators than extrapolators. Although we still
do not have a comprehensive guideline for the design of artificial neural networks, it has
been demonstrated by numerous successful cases that by trial and error, one can always
: come up with a neural network model which associates certain inputs to certain outputs

even under noise corruption.

The reason for much of the appeal of neural networks is their ability to generalize to
a new situation. This is a very useful property in applications since all the measurements

will not be the same for different occasions even under very similar operating conditions.

After being trained on a number of examples of a relationship, neural networks can
often define a complete relationship that interpolates and extrapolates from the examples
in a sensible way. But what is meant by sensible generalization is often not clear. In many
problems there are almost infinitely many possible generalizations. How does a neural
network - or a human for that matter - choose the “right” one? We should know what we

|
|
are expecting a network to do when we look for generalization.
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Neural networks have shown excellent capabilitiés in encoding large amounts of infor-
mation and provide even more beneficial attributes in their ability to accommodate new
information through' “learning” -algorithms. However, most neural network architectures
suffer an interpretation problem. In other words, their behavior is that of a black box that
makes it almost impossible to decipher the cause and effect internal interactions that lead
to the external manifestations. Basically, the network’s behavioral traits are accepted as
such with no easy linkage to their interconnection properties. This is to be expected given

the vast number of weights and involved feedforward and feedback computational links.

In this project we employ a neural network configuration consisting of an assemblage of
gaussian functions. The architecture chosen allows the exploitation of both statistical in-
formation and the "training” benefits of neural networks. It is also easy to geometrically
visualize, in contrast to the other neural network architectures. The approach was moti-
vated by the realization that no single technique is capable of solving by itself the more
difficult aspects of the highly complex trauma survival classification problem. Thus, there
exists a strong need to coherently assemble the best elements of different techniques so as to
reinforée the positive contributions by each and to neutralize, through complementation,

their deficiencies.

1.3 Results of the Phase I Work

The Phase I project aimed at the development of an integrated trauma care classification
system within the context of measurable variables that can be easily ascertained in the
field environment. The research involved clustering and neural network based methodolo-
gies that can accommodate the practical aspects of the trauma care classification domain.
The objectives were to: (1) establish a neural network based architecture that allowed
through training to capture the detailed feature space based distribution of trauma care
related feature vectors; (2) Improve the efficiency of the neural network based classifica-

tion methodology through the use of the fuzzy c-means clustering algorithm; (3) Enhance
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the effectiveness of the fuzzy c-means .clustering algorithm through utilization of member-
ship validity measures, and (4) Employ a direct data encoding approach utilizing gaussian
functions to provide a direct and unambiguous statistical summary of the probabilistic

prevalence of the observed feature vectors.

Specifically, the major achievements of the Phase I study include the following:

e Establishment of a Gaussian Potential Function Network (GPFN) architecture that
allows the discrimination between various classes representing the degree of severity
of the trauma classification problem. These classes constitute the basis for.field
triage. The GPFN is configured as an aggregate of Guassian Potential Function
Units (GPFUs) that are positioned at the mean of the data distributions and along
the feature axes at distances which are functions of the standard deviation per feature

axis.

e

e Demonstration of the convergence properties of the training algorithm for the GPFN
which adjusts the amplitudes, the means and the covariance matrices of the GPFUs

to effect characterization of a given class as an integer value declaration.

e Utilization of the fuzzy c-means clustering algorithm to partition the data into com-
pact sets over which the GPFUs can be assigned. Since the fuzzy c-means clustering
algorithm requires the a priori specification of the expected number of clusters a mem-
bership validity measure is invoked whose minimum value is configured as a general

indication of the most likely number of clusters present in the data set.

o A direct encoding classification method is presented that assigns a gaussian function
to each data point of a given class. This method, encountered in probability density
estimation studies, allows the direct encoding of the prevalence of a given feature

vector among the various classes.

The report is organized as follows:
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In Chapter 2, to alleviate the difficult interpretation problem of the established neural
network architectures and to provide a more tractable mathematical foundation, the basic
element for the classification configuration considered is the Gaussian Potential Function
Unit (GPFU). The collection of several GPFUs constitutes a Gaussian Potential Function
Network (GPFN). The GPFN synthesizes a potential field by allocating a set of Gaussian
functions at selected points of an input feature space (Lee and Kil [10]). The “potential
field“, created by a GPFN, is to be utilized as a pattern discrimination tool based on a
training phase which adjusts the magnitude, position and covariance characteristics of each
GPFU so that a specific desired answer results for input vectors that are known to belong
to a given object class.

Chapter 3 presents the classification approach within the context of specific examples illus-
trating the efficacy of the GPFN architecture. In a classification problem the first act is the
definition of classes that we want to partition our problem into. The next step is to train
the classifier to yield the correct mapping from feature vectors to output classes for a set of
data for which this relation is known from past experience. Thus, this classification training
phase adjusts the parameters of the classifier so that it properly performs in the desired
manner (i.e., high correct classification rate). The classification technique represented by
the GPFN assigns to a given class a distinct output value. Thus for a multiclass problem

we would choose a different integer value (say, 1,2,3, etc.) for each class.

Chapter 4 examines the fuzzy c-means clustering algorithm as an aid to the GPFN clas-
sification algorithm. Clustering represents one of the broader and most sought after data
analysis techniques. The vast appeal of clustering techniques has to do with the fact that
realistic data structures are often the aggregate of a disjoint set of data groups, as so
characterized by common consensus in visual observations, at least for low dimensional-
ity feature vectors where such visual appraisals can be directly executed. Clustering can
become a classification technique all by itself. However, for our purposes clustering is to
act as a preprocessing method that allows identification of compact groups of data that

Gaussian Potential Function Units can be defined for. Thus, clustering represents a band-
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width compression technique for us. The clustering algorithm we chose is the fuzzy c-means
algorithm developed by Dunn [17] and extended by Bezdek [3]. It is the most prominent

fuzzy clustering algorithm with significant applications in the biomedical area [1].

Chapter 5 presents results from real data obtained from the National Study Center for
Trauma and EMS at the University of Maryland. Trianalytics, Inc., which maintains the
data base for the University of Maryland, provided us with 200 records corresponding to 100
penetrating (gunshot) wound records for male patients who survived and 100 penetrating
(gunshot) wound records for male patients who did not survive. The patient population
age was around 25-30. years. Also the patients had no preexisting conditions. The fuzzy
c-means clustering and the GPFN classification approach were exercised with this data.
In addition, a direct encoding classification technique is presented where a GPFU of unit
variance was utilized for each entry from the surviving class of patients and for each of
the patients of the nonsurviving class. The gaussians were added to create two surfaces in
feature space that effectively summarized the probabilistic prevalence of a feature vector in
feature space. This method, encountered in probability density estimation studies provides

a direct and unambiguous classification methodology.

Chapter 6 draws conclusions from this study and also provides recommendations for future

efforts.
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Chapter 2

(zaussian Potential Functions

To alleviate the difficult interpretation problem of the established neural network architec-
tures and to provide a more tractable mathematical foundation the basic element for the
classification configuration considered in this project is the Gaussian Potential Function

Unit (GPFU) which is a Gaussian function:

Y(Z, 1, ) = e T ENTTER) (2.1)

that assigns a functional value ¢ to an arbitrary input vector T. We have used the nota-
tion @ and ¥ from the statistical literature to denote the center value and the dispersion
of the Gaussian function although no connection with statistical means and covariances
may occasionally be in effect. Thus, although sometimes it might be conceptually slightly
disagreeable, this notational convention is so prevalent that it deemed to us unnecessary
to deviate from accepted practice. However, in the context of a specific discussion we shall

be careful to clarify the exact meaning of the specific 7 and ¥ under consideration.

The collection of several GPFUs constitutes a Gaussian Potential Function Network (GPFN).
The GPFN synthesizes a potential field by allocating a set of Gaussian functions at selected
points of an input feature space (Lee and Kil [10]). A summation function of GPFUs is

then created.:

10
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M

$(E) = 3 c(i(E, iy Bi) = 3 cli)e R BT ER) (22)

1=1

ﬂ
il
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The “potential field“, created by a GPFN, is to be utilized as a pattern discrimination tool
based on a training phase which adjusts the magnitude, position and covariance charac-
teristics of each GPFU so that equation (2) yields a specific desired ¢ answer for input
vectors that are known to belong to a given object class. The adjustment of the amplitude
c(i), mean vector ; and covariance matrix ¥; of each GPFU is accomplished through the

following training process.

An input feature vector 7, from a set of predictive variables, is presented to the GPFN and
the output ¢(Z) noted. If this output is not equal to the desired output value, @uesirea(Z),

an error, E, ensues

E = %( Qsdesired(fc—) - ¢(§) )2
1 < - 2
- 2( ¢des1red Z cQt 2(E-H ) BT E-E) ) (23)

i=1
Now the goal of training consists in modifying the various parameters under the designer’s
control, i.e. the amplitude components c(i), the elements of the mean vectors z; and the
elements of the covariance matrices ¥; of the GPFUs, in a direction that tends to minimize
the error equation (2.3). The error is minimized through a gradient-descend process requir-
ing that the various parameters be updated in proportion to the negative partial derivative
of the error function (2.3) with respect to the parameter of interest. Thus, by evaluat-
ing the partial derivatives, the weights ¢(1),¢(2),...,c(M), the elements of the mean vectors
Pl iy i g2 p2 o p2 o pMo M uM and the elements of the shape matrices K; (
MM kM

: : : 1l 1 722 1.2 2
the inverse of the covariance matrix X; ), kyy, kly, ooy kppy kiys kigy cois K2y oo k11 kg s oo Ky

are modified according to the formulas

OFE
de(?) 3

= Old C(Z) + n(¢desired(~7f) - ¢(E))e_%(zi—ﬁ.‘)TE:l (Zi-u)

New c(i) = OId c(i)+n(-
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o5,
out

7

New p;- = Old,uj--{-n(——

= Old y}

+ 1 @desired(T) — 3@ Y (x5 — ) (kij + kji ) ) X

Jj=1
X cfi)e=HE-RITE @)
OF

New ki, = Old K+ =)
J

= Old K,

+ n(¢desired(f) - ¢(T))(m1 - :u;)(wl - lu; ) X

x c(i)e”sE-R)ET @) (2.4)

where 7 is a positive constant called the learning rate.

Repeated iteration of the above described parametric update process over the set of
input vectors structures a specific distribution of these GPFUs over the input space such
that the error between the desired output and the actual output is minimized. If sufficient
exemplars of the input object class have been utilized during this training phase then the
GPFN can act as a pattern classifier by responding with the desired output for an input

that originated from the same object class but was not part of the training set.

2.1 Gaussian Potential Function Network

2.1.1 Classification with a GPFN (Training Phase)

The first phase of a classification problem consists of the definition of a feature vector
that has as elements the N variables that are deemed essential to characterize the problem
at hand. For example, trauma characterization may involve variables such as pulse, skin
color, bleeding, injury region, injury type, respiratory rate, respiratory expansion, systolic
blood pressure, capillary refill, eye opening, best verbal response and best motor response.

Often the feature variables are restricted in number, due to practical considerations, to a

12
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subset of what would be ideally desired. In general then, the feature vector, T, is defined

as T = (zy,Zs,....2N) Where z,,z,,...z5 are the individual feature variables.

The second phase of the classification problem defines a set of classes that are deemed per-
tinent‘ to the problem under investigation. For example, we could partition the prediction
of the ultimate future state of the trauma victim into, say, three classes: Highly likely to
survive (Class 1), likely to survive (Class 2) and unlikely to survive (Class 3). One may
even be able to dispense with a discrete stratification of outcomes and utilize a continuous
scale, such as, probability of survival, p, with the interpretation that in a large series of
observations the observed feature vector is expected to manifest itself px 100 percent of the
time (i.e. if p = 0.1, for example, then a feature vector associated with such a probabilistic
manifestation implies that 0.1x100 = 10 percent of the trauma victims characterized with
such a feature vector are expected to survive). Discretization of the classification problem
into a number of distinct classes, instead of a continuous classification outcome, is often
encountered in practice due to considerations that deem such a partitioning to be adequate

for whatever other actions are further needed for the problem under consideration.

Having defined the features that constitute the feature vector and having established the
number of classes that we want to partition our problem into, the next step is to train the
classifier to yield the correct mapping from feature vectors to output classes for a set of
data for which this relation is known from past experience. Thus, this classification training
phase adjusts the parameters of the classifier so that it properly performs in the desired
manner. The parameters to be adjusted depend on the design of the classifier. Following
this training phase the classifier is to be used as a future predictive tool to yield the right
answers for feature vectors for which the classification outcome is not known. This is the,
so called, testing phase of the classifier. It represents its generalization capability. In an
intuitive sense, one desires that the training phase consists of data sufficient to capture the
statistical essence in both depth and breadth of the problem under consideration. As an
analogy, it is not reasonable to expect that troops trained only for mountainous operations

will adequately perform during amphibious ones.

13
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It is assumed that training data for a given class are available. The classification technique

represented by the GPFN configuration now involves two key considerations.

First it is noted that an input object to the classifier is characterized by a set of N features
constituting its ”signature”. For the trauma classification problem it can be safely assumed
that each feature assumes a set of discrete values. For example, the respiratory rate feature
can be discretized into, say, five discrete numerical outcomes, 1 (1 to 9 breaths per minute),
2 (10 to 24 breaths per minute), 3 (25 to 35 breaths per minute), 4 ( 36 or more breaths
per minute) and 5 (no breaths). In other scientific areas where continuous variables are
encountered (say, a voltage measurement) it is again feasible to discretize the feature range

through appropriate interval definitions at any desired level of refinement.

Let it be assumed that there are N total features and that the ith feature is represented by n;
discrete values. When the N features are considered in combination they define the feature
vector T = (z1,%,,...2x). Since feature 1 can assume n; values, feature 2 n, values,...,
and feature N ny values, the total number of possible N-dimensional manifestations of the
feature vector is L = nyxnyX...xny. For example, if we have three features and feature
1 is characterized by 10 values, feature 2 by 20 values and feature 3 by 30 values then the

total number of possible feature vectors is L = 10x20x30 = 6000.

The feature vector is now input to a set of M unit amplitude GPFUs. The selection of
a unit amplitude is arbitrary and corresponds to a desired classification answer of 1 for
the specific survival class under consideration. For a multiclass problem we would choose
several sets of M GPFUs, in parallel, with each parallel set designed to yield different

integer values ( say, 1,2,3, etc. ) for each class.

Statistical considerations are now invoked to structure a total of M = 2N + 1 GPFUs
by first centering one GPFU (i.e. setting its center value) at the nominal mean value of
the feature vector as determined by the training data. In other words, the N-dimensional

center vector of this first GPFU has as elements the mean values of the features.

Following the definition of the first GPFU, 2N additional GPFUs are next considered,

14
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positioned symmetrically along each N _dimensional axis (with each axis associated with a
feature) at a distance § from the nominally centered first GPFU. The distance § varies,
in general, per axis and is equal to the standard deviation o of each feature. It should be
noted that it is straightforward, if needed by the data structure, to either refine or extend

the expanse of the GPFUs by, for example, positioning them at intervals of o/2 or 20, say.

The initial (prior to training) covariance matrices of all GPFUs are made equal to diagonal
matrices with diagonal elements the variances o? of the features. The use of diagonal
matrices is for convenience. It is easy to incorporate off diagonal terms if there exist

feature crosscorrelations.

The above discussion set the initial conditions of the GPFUs as regards the amplitudes
c(i), mean vectors 7i; and covariance matrices X;. The training phase first considers all the
sample objects and calculates the statistics necessary to establish the centering parameters
and the dispersion matrices of the GPFUs. Then, feature vectors are iteratively provided
as inputs to the GPFUs. Now, an error correction process takes place which alters the
amplitudes c(i), mean vectors f; and covariance matrices ¥; of the GPFUs so as to achieve
minimization of the discrepancy between desired classification output and actual output.
The number of iterations through the training samples to achieve minimum error can not

be theoretically predicted. It is experimentally determined.

2.1.2 Classification with a GPFN (Testing Phase)

Following the training phase a classifier is evaluated on the basis of a testing phase. The
testing phase evaluates the correct classification rates for feature vectors that were not
included in the training phase. This process characterizes the efficacy of the classifier’s
design and ascertains that the training phase captured the essential statistical basis of the
problem at hand. Thus, in the testing phase, if the classification response to the testing
feature vectors is close (to within a predetermined threshold) to the expected output value

for the survival class under consideration (say, 1), then, the feature vector under test is
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declared as a member of the class and a correct classification outcome is noted.

2.1.3 Example

Here we present an example that demonstrates the quantitative properties of the GPFN

classification technique.

Four arbitrary features are considered. The nominal values of these features are taken to
be 9, 5, 17 and 22, respectively. Noise which is uniform in the interval 0 to 3 is utilized to

generate variations of these values for ten training feature vectors:

train vector 1 (z1,z2,z3,24) = (8.16, 5.09, 17.08, 21.48)
train vector2  (zy, 9,3, T4) =.(7.64, 5.51, 15.77, 22.39)
train vector 3 (z1,%2,23,24) = (9.54, 3.52, 17.46, 22.77)
train vector 4  (z1,z2,23,24) = (9.53, 4.65, 16.74, 23.47)
train vector 5  (z1,z2,23,24) = (10.3, 3.70, 17.60, 21.59)
train vector 6  (z1,2,,z3,24) = (8.65, 4.75, 18.23, 21.24)
train vector 7 (z1,z2,23,24) = (9.05, 5.56, 17.78, 23.44)
train vector 8 (1, z2,z3,24) = (9.99, 5.26, 16.28, 22.66)
train vector 9 (z1,z2,z3,24) = (7.60, 6.29, 15.64, 22.76)
train vector 10 (zq, 22,23, 24) = (7.66, 6.04, 17.70, 22.45)

deviation for each feature for the ten training feature vectors are:

These ten feature vectors are used to train the GPFN classifier. The mean and standard

Featurel: Mean : 8.81 Standard Deviation : 0.97

Feature 2: Mean : 5.04 Standard Deviation : 0.86
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Feature 3 : Mean : 17.03 Standard Deviation : 0.84

Feature 4 : Mean : 22.42 Standard Deviation : 0.73

The GPFUs are selected by first centering a GPFU at the four-dimensional (since there

are four features) vector

GPFU No.l center : (8.81, 5.04, 17.03, 22.42) (2.5)

with elements the corresponding mean vectors of each feature.

Eight more GPFUs (two per axis in the four-dimensional feature space) are centered at a
distance of one standard deviation (for the corresponding to the axis feature) from the first
GPFU :

GPFU No.2 center: (9.78, 5.04, 17.03, 22.42)

GPFU No.3 center : (7.84, 5.04, 17.03, 22.42)

GPFU No.4 center : (8.81, 5.90, 17.03, 22.42)

GPFU No.6 center : (8.81, 5.04, 17.87, 22.42)

GPFU No.7 center : (8.81, 5.04, 16.18, 22.42

(

(

(
GPFU No.5 center : (8.81, 4.17, 17.03, 22.42)

(

(

GPFU No.8 center : (

(

)
8.81, 5.04, 17.03, 23.16)
)

GPFU No.9 center : (8.81, 5.04, 17.03, 21.69

The dispersion of the GPFUs is set equal to a diagonal matrix with each diagonal element

being equal to the variance of the corresponding feature.

The desired classification output is set to 1 and an iterative training phase follows to
adjust the magnitudes c(i), mean vectors p; and covariance matrices ¥; of each GPFU
to achieve minimum error between the desired classification output (equal to 1) and the
actual output. Without training the resulting average squared error from the ten vectors
is 0.8402. After 500 iterations of the training algorithm the average squared error drops to
0.0248, an improvement by a factor of 33.
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2.2 Learning Rate

As previously mentioned, the GPFN synthesizes a potential field by allocating a set of
Gaussian functiorns at selected points of the input feature space. A summation function of

gaussian functions is then created

M

(Z) = Y ci)h(E, i T) = Y cfi)e HER) BT ER) (2.6)
i=1 i=1

to be utilized as a pattern discrimination tool based on a training phase which adjusts
the magnitude, position and covariance characteristics of each GPFU so that the above
expression yields a specific desired ¢ answer for input vectors that are known to belong to
a given object class. The adjustment of the amplitude c(i), mean vector ; and covariance
matrix X; of each GPFU is effected through equations 2.4 which involve the learning rate
constant 5. The learning rate constant is a key variable to the iteration process but un-
fortunately there is no theoretical method to establish its value for a given problem. We
have determined experimentally a nominal range of feature values and a set of values for
the constant n that show good results. The following description presents the details of our

efforts.

Let it be assumed that there are N total features and that the mean of the ith feature
is m;. When the N features are considered in combination they define the feature vector
Z = (21, 2y, ...xN). We first bias off the means m; to a predetermined value M. This can be
effected through the transformation X; = z; + (M - m;). The reason for selecting a constant
value M for all features is to symmetrize the distribution with respect to the feature axes
and thus enhancing the validity of a non directionaly dependent constant learning rate. We

have selected the value 10 for M.

We next considered a nominal three dimensional feature vector of three elements: (10,10,10).
We then generated 500 feature vectors by perturbing the nominal vector with a random

value in the range -10 to 10. The 500 feature vectors are shown in Figure 2.1. The feature
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vectors are plotted as waveforms for illustration purposes. The elements of the feature
vectors are the ordinate values corresponding to the integer abscissa values 1,2 and 3. The

mean and standard deviation for each feature for the 500 feature vectors are:

Feature 1 : Mean : 9.9392 Standard Deviation : 5.6367
Feature 2: Mean : 10.0160 Standard Deviation : 5.5954
Feature 3: Mean : 9.8471 Standard Deviation : 5.7422 (2.7)

Since there are three features we have a corresponding set of 7 GPFUs centered at the
mean value of the distribution and at one sigma distances from the mean in each direction

for each feature axis.

The GPFUs are selected by first centering a GPFU at the three-dimensional (since there

are three features) vector
GPFU No.l center : (9.9392, 10.0160, 9.8471) (2.8)

with elements the corresponding mean vectors of each feature.

Six more GPFUs (two per axis in the three-dimensional feature space) are centered at a

distance of one standard deviation (along each feature axis) from the first GPFU :

GPFU No.2 center : (15.5759,10.0160, 9.8471
GPFU No.3 center : ( 4.3025,10.0160, 9.8471
GPFU No.4 center :
GPFU No.6 center : { 9.9392,10.0160,15.5893

)
)
9.9392,15.6115, 9.8471)
)
)
9.9392,10.0160, 4.1048)

(
(
GPFU No.5 center : ( 9.9392, 4.4206, 9.8471
(
(

GPFU No.T center :
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The shape matrices (inverse of the covariance matrices) of the GPFUs are initially set equal
to a diagonal matrix with each diagonal element being equal to the inverse of the variance

of the corresponding feature:

0.0315 0 0
0 00319 0 (2.10)
0 0  0.0303

The learning rate was adjusted experimentally to have the following values:

n = 0.00025
72 = 0.00025
ns = 0.0000025 (2.11)

We next trained the network for 300 iterations. The resulting error time history is shown
in Figure 2.2. It is seen that significant improvement results from the learning phase. The
initial error (i.e. the square of the difference between the desired GPFN value of 1 and the
actual output) is 3.6675. After 300 iterations the error has dropped to a value of 0.0477. The
learning phase has resulted into the mean vectors of the GPFUs shifting to new positions

as follows:

New GPFU No.l center : ( 9.8884, 9.9543, 9.8158
New GPFU No.2 center: (16.2617,10.6919,10.4892

)
)
New GPFU No.3 center : ( 3.6272, 9.3740, 9.2284)
New GPFU No.4 center : ( 9.9193,16.2078,10.4552)

)

New GPFU No.5 center : (1 9.9793, 3.7706, 9.2417
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New GPFU No.6 center : ( 9.9646,10.0510,16.9319)

New GPFU No.7 center : ( 9.9629, 9.9948, 2.7820)

The new shape matrices (inverse of the covariance matrices) of the GPFUs are:

New GPFU No.l shape matriz :

New GPFU No.2 shape matriz :

New GPFU No.3 shape matriz :

0.1422
0.0024
0.0022

0.1373
0.0036
0.0076

0.1428
0.0074
0.0086

0.0537

New GPFU No.4 shape matriz : | —0.0062

New GPFU No.5 shape matriz :

New GPFU No.6 shape matriz :

21

—0.0032

0.0607
—0.0114
—0.0005

—0.0062
0.0006
—0.0005

0.0024
0.1404
0.0034

0.0036
0.0528
0.0047

0.0074
0.0474
0.0088

—0.0062
0.1311
0.0148

—0.0114
0.1424
—0.0076

0.0006
—0.0042
0.0013

0.0022
0.0034
0.1193

0.0076
0.0047
0.0839 |

0.0086
0.0088
0.0665 ]

—0.0032
0.0148
0.0354

-

—0.0005
—0.0076
0.0336

—0.0005
0.0013

—0.0034

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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—0.0042 0.0005 —0.0034
New GPFU No.7 shape matriz : | 0.0005 —0.0012 0.0020 (2.19)

—0.0034 0.0020 0.0608

It is noted that some of the diagonal elements of the shape matrices for GPFUs 6 and 7
have negative values. This is not compatible to theory which requires them positive. Their

small values here indicate numerical computation effects.

The above results established a range of nominal feature values and a corresponding learning
rate constant value set that exhibits good performance relative to convergence stability of

the training algorithm.
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Figure 2.1: Feature Vectors plotted as Waveforms.
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Figure 2.2: Learning Error Iteration History.
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Chapter 3

Classification

In a classification problem the first act is the definition of classes that we want to partition
our problem into. The next step is to train the classifier to yield the correct mapping from
feature vectors to output classes for a set of data for which this relation is known from past
experience. Thus, this classification training phase adjusts the parameters of the classifier
so that it properly performs in the desired manner (i.e., high correct classification rate).
The classification technique represented by the GPFN assigns to a given class a distinct
output value. Thus for a multiclass problem we would choose a different integer value (say,
1,2,3, etc.) for each class. In the following we show the performance of the GPFN for a two

class problem. We selected a two-dimensional feature vector so as to be able to illustrate |

geometrically our results. The methodology is directly extendable to any dimensions.

3.1 Class A

For Class A we first considered a nominal two dimensional feature vector of two elements:
(10,10). We then generated 100 feature vectors by perturbing the nominal vector with a
random value in the range -5 to 5. The 100 thus created feature vectors are shown in
Figure 3.1. The feature vectors are plotted as waveforms for illustration purposes. The

elements of the feature vectors are the ordinate values corresponding to the integer abscissa
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values 1 and 2. The mean and standard deviation for each feature for the 100 feature vectors

of Class A are:

Feature 1: Mean : 10.1588 Standard Deviation : 2.9031
Feature 2 : Mean :10.0947 Standard Deviation : 2.9008 (3.1)

Since there are two features there are 5 GPFUs centered at the mean value of the dis-
tribution and at one sigma distances from the mean in each direction for each feature

axis.

The GPFUs are initially assigned unit amplitudes:

GPFU No.l amplitude : 1
GPFU No.2 amplitude: 1
GPFU No.3 amplitude: 1
GPFU No4 amplitude: 1
GPFU No.5 amplitude: 1 (3.2)

and are centered at:

GPFU No.l center : (10.1588,10.0947
GPFU No.2 center : (13.0619,10.0947

)
)
GPFU No.3 center : ( 7.2558,10.0947)
GPFU No.4 center : (10.1588,12.9955)

)

GPFU No.5 center : (10.1588, 7.1938
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with their sum shown in Figure 3.2.

The shape matrices (inverse of the covariance matrices) of the GPFUs are initially set equal

to a diagonal matrix:

0.4746 0
(3.4)
0 0.4753

with each diagonal element being equal to the inverse of 0.25 times the variance of the

corresponding feature leading to a more compact GPFUs configuration.

We next trained the network for 1000 iterations. The resulting error time history is shown
in Figure 3.3. It is seen that significant improvement results from the learning phase. The
initial error (i.e. the square of the difference between the desired GPFN value of 1 and the
actual output) is 0.3225. After 1000 iterations the error has dropped to a value of 0.0018.
The learning phase has resulted into the amplitudes of the GPFUs having the values:

New GPFU No.l amplitude : 0.9062
New GPFU No.2 amplitude : 0.9114
New GPFU No.3 amplitude : 0.8753
New GPFU No.4 amplitude : 0.8929
New GPFU No.5 amplitude : 1.0128 (3.5)

The mean vectors of the GPFUs have shifted to new positions as follows:

New GPFU No.l center : (10.2671,10.4148
New GPFU No.2 center : (14.2591,10.3745

)
)
New GPFU No.3 center : ( 6.0280, 9.1429)
New GPFU No.4 center : (10.5719,14.4891)

)

New GPFU No.5 center : (11.8913, 5.7831

26




American GNC Corporation Proprietary Data

The new shape matrices (inverse of the covariance matrices) of the GPFUs are:

[ o0.3550 0.0111
New GPFU No.l shape matriz : (3.7)

L 0.0111 0.3528

[ 03635 0.0350 |
New GPFU No.2 shape matriz : (3.8)

| 0.0350 0.1692 |

[ 03155 —0.0220 | :
New GPFU No.3 shape matriz : (3.9)

—0.0220 0.0973

[ 0.018 —0.0366 |
New GPFU No.4 shape matriz : (3.10)

—0.0366 0.3461

(3.11)

New GPFU No.5 shape matriz :
0.0218 0.2542

0.0503 0.0218 }

The sum of the GPFUs under their new configuration, following the training phase, is

shown in Figure 3.4.

3.2 Class B

For Class B we first considered a nominal two dimensional feature vector of two elements:
(20,20). We then generated 100 feature vectors by perturbing the nominal vector with a
random value in the range -5 to 5. The 100 thus created feature vectors are shown in
Figure 3.5. The feature vectors are plotted as waveforms for illustration purposes. The
elements of the feature vectors are the ordinate values corresponding to the integer abscissa
values 1 and 2. The mean and standard deviation for each feature for the 100 feature vectors

of Class B are:
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Feature 1: Mean : 20.1588 Standard Deviation :
Feature 2 : Mean : 20.0947 Standard Deviation :

(3.12)

Since there are two features there are 5 GPFUs centered at the mean value of the dis-

tribution and at one sigma distances from the mean in each direction for each feature

axis.

The initial amplitudes of the GPFUs are equal to 2:

GPFU No.l amplitude : 2

GPFU No.2 amplitude : 2

GPFU No.3 amplitude : 2

GPFU No.4 amplitude: 2

GPFU No.5 amplitude: 2

and are centered at:

GPFU No.l center :
GPFU No.2 center :
GPFU No.3 center :
GPFU Nod4 center :
GPFU No.5 center :

with their sum shown in Figure 3.6.

(20.1588,20.0947)
(23.0619,20.0947)
(17.2558,20.0947
(20
(20.1588,17.1938

)
588, 22.9955)
)

(3.13)

(3.14)
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The shape matrices (inverse of the covariance matrices) of the GPFUs are initially set equal

to a diagonal matrix

0.4746 0
(3.15)
0 . 0.4753

with each diagonal element being equal to the inverse of 0.25 times the variance of the

corresponding feature leading to a more compact GPFUs configuration.

We next trained the network for 1000 iterations. The resulting error time history is shown
in Figure 3.7. It is seen that significant improvement results from the learning phase. The
initial error (i.e. the square of the difference between the desired GPFN value of 2 and the
actual output) is 1.2413. After 1000 iterations the error has dropped to a value of 0.0008.
The learning phase has resulted into the amplitudes of the GPFUs having the values:

New GPFU No.l amplitude : 1.2888
New GPFU No.2 amplitude : 1.4253
New GPFU No.3 amplitude : 1.2908
New GPFU No.4 amplitude: 1.8088
New GPFU No.5 amplitude : 1.8982 (3.16)

The mean vectors of the GPFUs shifting to new positions as follows:

New GPFU No.l center : (20.4727,20.2604)
New GPFU No.2 center : (24.5723,20,5599)
New GPFU No.3 center : (19.2209,24.8075)
New GPFU No.4 center : (19.2209,24.8075)

(

New GPFU No.5 center : (22.0443,15.4032) (3.17)
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The new shape matrices (inverse of the covariance matrices) of the GPFUs are:

New GPFU No.l shape matriz

New GPFU No.2 shape matriz

New GPFU No.3 shape matriz :

New GPFU No.4 shape matriz :

New GPFU NoJ5 shape matriz :

.
.

[ 0.2858 0.0066
| 0.0066 0.2293

[ 0.2901 0.0240 |
0.0240 0.1851 |

0.26375 —0.0206
—0.0206 0.1945

0.0036 —0.0236
—0.0236 0.1796

0.0057 —0.0006
—0.0006 0.1489

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

The sum of the GPFUs under their new configuration, following the training phase, is

shown in Figure 3.8.

3.3 Class A versus B

The classification performance for the set of data representing Classes A and B is established

as follows. The training phase of the classifier created two sets of GPFNs. One for Class

A and one for Class B. A data point that belongs to Class A must ideally yield a value of

1 while a data point that belongs to Class B must yield the value 2. Figure 3.9 illustrates

the superposition of the GPFN output values for the two classes. Figure 3.9 is thus the

superposition of Figure 3.4 and Figure 3.8.

There are 200 data points to consider, 100 from Class A and 100 from Class B. Each point

is fed to the GPFN corresponding to Class A and the GPFN corresponding to Class B.
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Two responses are thus noted. Next, the percent deviation of the actual response from
the desired response (the desired response is 1 for Class A and 2 for Class B) is calculated
and the data point is assigned to the class with the smallest percent deviation. The results
for the 200 points are given in Table 3.1. Column (1) of the Table lists the data point
No., column (2) the known correct classification, column (3) the calculated classification,
column (4) the response of the Class A GPFN, column (5) the percent error resulting from
the Class A GPFN response, column (6) the response of the Class B GPFN and column (7)
the percent error resulting from the Class B response. Thus, as an example, let us take data
point 1. It belongs to class 1 (which is the same as class A) and has been correctly assigned
to Class A because its response to.the Class A GPFN is 0.9735, representing a 2.6478
percent error from the ideal value of 1, while its response to the Class B GPFN is 0.2048,
representing an 89.7599 percent error from the ideal value of 2. Comparing columns (1)
and (2) of Table 3.1 we note that all data poins have been correctly classified. This is not
totally surprising because the data distributions from the two classes are nonoverlapping.
The objects from Class A have a nominal center at (10,10) with dispersions from 5 to
15 in each feature while the objects from Class B have a nominal center at (20,20) with
dispersions from 15 to 25 in each feature. Thus our results establish the capability of the
GPFNs to tightly encode the data distributions.

To evaluate the GPFNs performance under overlapping conditions we next generated a
new Class B (which we now call BB) with mean vector at (17,17) and dispersions from 12
to 22 in each feature. The data are shown in Figure 3.10. The initial GPFN distribution
is shown in Figure 3.11 and the training error time history in Figure 3.12. The new
GPFN configuration, following training, is shown in Figure 3.13. Figure 3.14 represents
the superposition of the GPFNs for Classes A and BB following training. The classification
results are shown in Table 3.2. It is now noted that 8 class A data points and 4 Class BB
data points have being misclassified. The classifier thus yields a 94 % correct classification

rate.

The optimum classifier design involves a training phase and a testing phase. Having defined
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the features that constitute the feature vector and having established the number of classes
that we want to partition our problem into, the first step is to train the classifier to yield
the correcf mapping from feature vectors to output classes for a set of data for which this
relation is known from past experience. Thus, this classification training phase adjusts the
parameters of the classifier so that it properly performs in the desired manner. Following
this training phase the classifier is to be used as a future predictive tool to yield the right
answers for feature vectors for which the classification outcome is not known. This is the,
so called, testing phase of the classifier. It represents its generalization capability. In an
intuitive sense, one desires that the training phase consists of data sufficient to capture the
statistical essence in both depth and breadth of the problem under consideration. In the
examples presented -here we did not consider a testing phase because we utilize a computer
simulation based on a known probabilistic data generation mechanism. Thus, sets of data

so generated inherently possess similar statistical characteristics.
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Figure 3.9: Superposition of Class A and Class B GPFUs distributions
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Figure 3.11: Initial Class BB GPFUs Distribution.
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Figure 3.12: Class BB Learning Error Iteration History.
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Figure 3.14: Superposition of Class A and Class BB GPFUs distributions
following training.
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Table 3.1:  Class A versus Class B Classification Results. s - e -

Column (4): Response to Class A assignment.

Column (1): Object No Column (5): Percent error corresponding to Class A assignment.
Column (2): Correct Class. Column (6): Response to Class B assignment.

Column (3): Assigned Class. Column (7): Percent error corresponding to Class B assignment.
(1) (2) (3) (4) (5) (6) (7)

1.0000 1.0000 1.0000 0.9735 2.6478 0.2048 89.7599
2.0000 1.0000 1.0000 1.0242 2.4229 0.5809 70.9548
3.0000 1.0000 1.0000 1.0163 1.6265 0.0008 99.9610
4.0000 1.0000 1.0000 1.0156 1.5600 0.2154 89.2289
5.0000 1.0000 1.0000 1.0323 3.2344 0.1845 90.7753
6.0000 1.0000 1.0000 .9842 1.5804 1.1008 44.9595
7.0000 1.0000 1.0000 .9752 2.4819 0.6869 65.6545
8.0000 1.0000 1.0000 .0349 3.4871 0.2701 86.4962
9.0000 1.0000 1.0000 .9833 1.6732 0.7353 63.2335
10.0000 1.0000 1.0000 .9051 9.4874 0.2504 87.4780
11.0000 1.0000 1.0000 .9925 0.7459 0.9682 51.5916
12.0000 1.0000 1.0000 .0464 4.6360 0.0046 99.7709
13.0000 1.0000 1.0000 .9566 4.3396 0.0055 99.7246
14.0000 1.0000 1.0000 .9798 2.0199 0.5364 73.1800
15.0000 1.0000 1.0000 .9902 0.9841 0.0020 99.8991
16.0000 1.0000 1.0000 .9541 4.5949 0.0015 99.9228
17.0000 1.0000 1.0000 .9396 6.0350 0.0188 99.0625
18.0000 1.0000 1.0000 .9205 7.9473 0.0005 99.9765
19.0000 1.0000 1.0000 .0200 1.9994 0.0889 95.5565
20.0000 1.0000 1.0000 .0160 1.6010 0.0008 99.9614

0
1
1
21.0000 1.0000 1.0000 0.9932 0.6826 0.5790 71.0487
22.0000 1.0000 1.0000 0.9724 2.7588 0.8445 57.7747
23.0000 1.0000 1.0000 0.9652 3.4750 0.0123 99.3842
24.0000 1.0000 1.0000 0.9739 2.6089 0.0051 99.7428
25.0000 1.0000 1.0000 . 0.9195 8.0548 0.0303 98.4829
26.0000 1.0000 1.0000 1.0231 2.3079 1.371¢9 31.4073
27.0000 1.0000 1.0000 0.9651 3.4871 0.4901 75.4971
28.0000 1.0000 1.0000 1.0375 3.7460 0.0031 99.8452
29.0000 1.0000 1.0000 0.9254 7.4617 0.3431 82.8430
30.0000 1.0000 1.0000 0.9305 6.9516 0.0620 96.8998

0

1

1

0

1

0

0

0

1

0

1

1

COO0OOCOHOCOOHOO

31.0000 1.0000 1.0000 .9549 4.5131 0.0488 97.5607
32.0000 1.0000 1.0000 .0504 5.0357 0.1604 91.9810
33.0000 1.0000 1.0000 .0769 7.6882 0.0041 99.7962
34.0000 1.0000 1.0000 .9008 9.9177 0.3630 81.8508
35.0000 1.0000 1.0000 .0461 4.6100 0.8702 56.4907
36.0000 1.0000 1.0000 .9625 3.7493 0.2374 88.1312
37.0000 1.0000 1.0000 .9433 5.6715 1.6386 18.0719
38.0000 1.0000 1.0000 .9933 0.6738 0.2586 87.0722
39.0000 1.0000 1.0000 .0758 7.5810 0.0041 99.7948
40.0000 1.0000 1.0000 .9682 3.1818 1.3670 31.6506
41.0000 1.0000 1.0000 .0426 4.2570 0.0483 97.5875
42.0000 1.0000 1.0000 .0470 4.7004 0.0035 99.8231
43.0000 1.0000 1.0000 1.0497 4.9667 0.2979 85.1036
44.0000 - 1.0000 - 1.0000 1.0429 4.2946 0.0110 99.4481
45.0000 1.0000 1.0000 1.0626 6.2618 0.1293 93.5375
46.0000 1.0000 1.0000 0.9782 2.1764 0.1284 93.5786
47.0000 1.0000 1.0000 0.9674 3.2592 1.1868 40.6596
48.0000 1.0000 1.0000 1.0288 2.8782 0.0022 99.8903
49.0000 1.0000 1.0000 1.0471 4.7062 0.0059 99.7058
50.0000 1.0000 1.0000 0.9424 5.7586 0.0249 98.7544
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(1)

51.0000
52.0000
53.0000
54.0000
55.0000
56.0000
57.0000
58.0000
59.0000
60.0000

61.0000
62.0000
63.0000
64.0000
65.0000
66.0000
67.0000
68.0000
69.0000
70.0000
71.0000
72.0000
73.0000
74.0000
75.0000
76.0000
77.0000
78.0000
79.0000
80.0000

81.0000
82.0000
83.0000
84.0000
85.0000
86.0000
87.0000
88.0000
89.0000
90.0000
91.0000
92.0000
93.0000
94.0000
95.0000
896.0000
97.0000
98.0000
99.0000
100.0000

Table 3.1 (cont.)

(2)

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

American GNC Corporation Proprietary Data

(3)

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

OFRPMFHMHOFRORROOOOOHOMROO HHEOPFPOOOOFFOOHHORMREOMOROMOMEPEPIREMOO
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(4)

.9867
.9956
.0054
.0146
.0419
.0302
.1007

9985

.0078
.9175
.0122
29881

0397

.9862

0428

.0014
.0438
.9642
.0605
.9898
.9624

0082

.9698

9741
9759

.9827
.0521
.9811
.0275
.0125

.9860
.9454
.0426
.9331
.0295

.

9978

.9673
.9824
.9858
.9491
.0304
.9860
.0152
.9829
.0166
.0085
.0017
.9258

(5)

. 3277
.4372
.5365
.4565
.1926
.0243
.0735
.1492
7759
.2482
.2231
.1919
.9666
.3767
.2834
.1398
.3845
.5759
.0481
.0219
.7559
.8167
.0219
.5883
.4105
7292
.2091
.8875
.7518
.2487

.4039
.4598
.2552
.6905
.9512
.2215
.2689
.7612
.4203
.0859
.0429
.3980
.5193
7131
.6630
.8489
.1725
4243

0.6984
11.7059

=
OWR OO

.

NOORRRFPHFWURFRWONOBRURENRFPURNMNMWOWERAWEROD I HWIHI®OO O

(6)

0.2844
0.0026
0.5211
0.4386
0.5896
0.0153
0.1225
0.0565
0.0064
0.0008
1.0935
0.0668
0.0024
1.5873
0.0490
0.0028
0.9768
0.0014
0.0053
0.0013
0.0431
0.0165
0.0021
0.9160
0.1194
0.0452
0.0748
0.5768
1.3135
0.5153
0.0090
0.5629
1.2908
0.0163
1.2667
0.0962
0.1351
0.2753
0.8882
0.7428
0.1314
1.1189
0.4551
0.0752
0.8485
0.5252
0.5361
1.0539
0.9321
0.7441

(7)

85.7794
99.8677
73.9464
78.0707
70.5198
99.2366
93.8749
97.1767
99.6823
99.9583
45.3233
96.6583
99.8796
20.6372
97.5502
99.8582
51.1610
99.9291
99.7349
99.9374
97.8428
99.1765
99.8941
54.1976
94.0313
97.7415
96.2621
71.1606
34.3248
74.2357
99.5486
71.8569
35.4604
99.1867
36.6643
95.1899
93.2428
86.2343
55.5922
62.8587
93.4289
44.0567
77.2438
96.2416
57.5749
73.7423
73.1969
47.3045
53.3943
62.7950
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Table 3.1 (cont.)

(1) (2) (3) (4) (3) (6) (7)

101.0000 2.0000 2.0000 .0033 99.6724 2.0122 0.6102
102.0000 2.0000 2.0000 .0000 99.9988 2.0157 0.7863
103.0000 2.0000 2.0000 .3466 65.3439 1.9898 0.5125
104.0000 2.0000 2.0000 .0081 99.1870 2.0139 0.6935
105.0000 2.0000 2.0000 .0131 98.6870 2.0320 1.5976
106.0000 2.0000 2.0000 .0000 100.0000 1.9915 0.4266
107.0000 2.0000 2.0000 .0001 99.9901 1.9904 0.4822
108.0000 2.0000 2.0000 .0058 99.4178 2.0264 1.3186
109.0000 2.0000 2.0000 .0000 99.9999 2.0087 0.4346
110.0000 2.0000 2.0000 .0009 99.9089 1.9269 3.6547
111.0000 2.0000 2.0000 .0000 99.9991 2.0034 0.1692
112.0000 2.0000 2.0000 .3084 69.1573 2.0204 1.0190
113.0000 2.0000 2.0000 .3565 64.3483 1.9338 3.3085
114.0000 2.0000 2.0000 .0002 99.9812 1.9734 1.3283
115.0000 2.0000 2.0000 .5806 41.9382 1.9950 0.2513
116.0000 2.0000 2.0000 .4954 50.4613 1.9992 0.0422
117.0000 .2.0000 2.0000 .1673 83.2741 1.9638 1.8096
118.0000 2.0000 2.0000 .3871 61.2886 1.9391 3.0434
119.0000 2.0000 2.0000 .0378 96.2181 2.0144 0.7179
120.0000 2.0000 2.0000 .2479 75.2130 1.9852 0.7394
121.0000 2.0000 2.0000 0.0002 99.9753 1.9989 0.0562
122.0000 2.0000 2.0000 0.0000 100.0000 1.9822 0.8897
123.0000 2.0000 2.0000 0.2169 78.3141 1.9848 0.7578
124.0000 2.0000 2.0000 .3677 63.2326 1.9865 0.6736
125.0000 2.0000 2.0000 1179 88.2079 1.9526 2.3718
126.0000 2.0000 2.0000 .0000 99.9996 - 2.0063 0.3161
127.0000 2.0000 2.0000 .0010 99.9010 1.9710 1.4523
128.0000 2.0000 2.0000 4711 52.8906 2.0154 0.7676
129.0000 2.0000 2.0000 .0003 99.9746 1.9361 3.1928
130.0000 2.0000 2.0000 .0594 94.0585 1.9533 2.3355
131.0000 2.0000 2.0000 .0633 93.6669 1.9496 2.5224
132.0000 2.0000 2.0000 .0140 98.6031 2.0473 2.3648
133.0000 2.0000 2.0000 .2834 71.6567 2.0246 1.2278
134.0000 2.0000 2.0000 .0033 99.6736 1.9105 4.4756
135.0000 2.0000 2.0000 .0000 99.9994 2.0225 1.1239
136.0000 2.0000 2.0000 .0024 99.7643 1.9924 0.3797
137.0000 2.0000 2.0000 .0000 99.9999 1.9707 1.4639
138.0000 2.0000 2.0000 . 0057 99.4297 1.9929 0.3548
139.0000 2.0000 2.0000 .2843 71.5708 2.0241 1.2037
140.0000 2.0000 2.0000 .0000 100.0000 1.9907 0.4662

141.0000 2.0000 2.0000 .0434 95.6610 2.0139 0.6929
142.0000 2.0000 2.0000 .3425 65.7528 2.0293 1.4636
143.0000 2.0000 2.0000 .0049 99.5131 2.0464 2.3185
144.0000 2.0000 2.0000 .2506 74.9382 1.9907 0.4628
145.0000 2.0000 2.0000 .0160 98.3987 2.0218 1.0880
146.0000 2.0000 2.0000 .0227 97.7281 1.9805 0.9730
147.0000 2.0000 2.0000 .0000 100.0000 1.9910 0.4489
148.0000 2.0000 2.0000 .5288 47.1202 2.0190 0.9477
149.0000 2.0000 2.0000 .3610 63.9043 2.0031 0.1570
150.0000 2.0000 2.0000 .1357 86.4277 1.9392 3.0382

QOO0 OO0 OOOOODODODOOO0
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Table 3.1 (cont.) :

(1) - (2) (3) (4) (3) (6) (7)

151.0000 2.0000 2.0000 0.0010 99.9038 2.0196 0.9809
152.0000 2.0000 2.0000 0.4240 57.6041 2.0170 0.8490
153.0000 2.0000 2.0000 0.0010 99.8966 2.0129 0.6452
154.0000 2.0000 2.0000 0.0018 99.8191 2.0219 1.0968
155.0000 2.0000 2.0000 0.0000 99.9988 2.0262 1.3088
156.0000 2.0000 2.0000 0.1537 84.6321 2.0095 0.4749
157.0000 2.0000 2.0000 0.0196 98.0439 2.0686 3.4287
158.0000 2.0000 2.0000 0.0621 93.7887 2.0290 1.4483
159.0000 2.0000 2.0000 0.3459 65.4054 1.9825 0.8771
160.0000 2.0000. 2.0000 0.1816 81.8400 1.9699 1.5044
161.0000 2.0000 2.0000 0.0000 99.9998 2.0185 0.9263
162.0000 2.0000 2.0000 0.0374 96.2643 1.9901 0.4932
163.0000 2.0000 2.0000 0.5419 45.8082 2.0194 0.9696
164.0000 2.0000 2.0000 0.0000 99.9999 2.0017 0.0848
165.0000 2.0000 2.0000 0.0425 95.7518 2.0153 0.7626
166.0000 2.0000 2.0000 0.4123 58.7721 2.0196 0.9817
167.0000 2.0000 2.0000 0.0000 99.9998 2.0271 1.3566
168.0000 2.0000 2.0000 0.5677 43.2320 1.9968 0.1616
169.0000 2.0000 2.0000 0.2118 78.8174 2.0446 2.2291
170.0000 2.0000 2.0000 0.4423 55.7658 2.0124 0.6181
171.0000 2.0000 2.0000 0.0824 91.7628 1.9896 0.5197
172.0000 2.0000 2.0000 0.1418 85.8206 2.0081 0.4052
173.0000 2.0000 2.0000 0.5730 42.7027 1.9820 0.9010
174.0000 2.0000 2.0000 0.0001 99.9946 1.9657 1.7154
175.0000 2.0000 2.0000 0.0255 97.4535 1.9782 1.0914
176.0000 2.0000 2.0000 0.0798 92.0191 1.9664 1.6778
177.0000 2.0000 2.0000 0.0237 97.6332 2.0609 3.0450
178.0000 2.0000 2.0000 0.0000 99.9991 1.9923 0.3870
179.0000 2.0000 2.0000 0.0000 99.9999 2.0173 0.8641
180.0000 2.0000 2.0000 0.0010 99.8977 2.0161 0.8053
181.0000 2.0000 2.0000 0.2556 74.4428 2.0001 0.0035
182.0000 2.0000 2.0000 0.0006 99.9442 1.9564 2.1822
183.0000 2.0000 2.0000 0.0000 99.9998 2.0197 0.9851
184.0000 2.0000 2.0000 0.1318 86.8223 1.9783 1.0834
185.0000 2.0000 2.0000 0.0000 99.9992 2.0069 0.3432
186.0000 2.0000 2.0000 0.0190 98.1045 2.0185 0.9256
187.0000 2.0000 2.0000 0.0114 98.8634 1.9716 1.4224
188.0000 2.0000 2.0000 0.0021 99.7869 1.9675 1.6230
189.0000 2.0000 2.0000 0.0000 99.9983 1.9990 0.0507
190.0000 2.0000 2.0000 0.0001 99.9911 1.9725 1.3742
191.0000 2.0000 2.0000 0.0225 97.7537 2.0162 0.8092
192.0000 2.0000 2.0000 0.0000 100.0000 1.9969 0.1564
193.0000 2.0000 2.0000 0.0015 99.8533 2.0154 0.7684
194.0000 2.0000 2.0000 0.0312 96.8806 1.9885 0.5737
195.0000 2.0000 2.0000 0.0000 99.9988 2.0096 0.4786
196.0000 2.0000 2.0000 0.0004 99.9602 2.0071 0.3552
197.0000 2.0000 2.0000 0.0003 99.9724 1.9957 0.2158
198.0000 2.0000 2.0000 0.0000 100.0000 1.9318 3.4084
195.0000 2.0000 2.0000 0.0000 100.0000 1.9787 1.0628
200.0000 2.0000 2.0000 0.0000 99.9996 2.0651 3.2563
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Table 3.2: Class A versus Class BB Classification Results. -
Column (4): Response to Class A assignment.
Column (1): Object No. Column (5

Column (2): Correct Class.  Column

): Percent error corresponding to Class A assignment.
(6): Response to Class BB assignment.
Column (3): Assigned Class. Column (7):
(1) (2) (3) (4) (5) (6) (7)

1.0000 1.0000 1.0000 0.9735 2.6478 1.5940 20.3009
2.0000 1.0000 1.0000 1.0242 2.4229 1.8291 8.5434
3.0000 1.0000 1.0000 1.0163 1.6265 0.0396 98.0180
4.0000 1.0000 1.0000 1.0156 1.5600 1.4340 28.3005
5.0000 1.0000 1.0000 1.0323 3.2344 1.2766 36.1694
6.0000 1.0000 1.0000 0.9842 1.5804 1.2326 38.3709
7.0000 1.0000 1.0000 0.9752 2.4819 1.9015 4.9255
8.0000 1.0000 1.0000 1.0349 3.4871 1.5273 23.6356
9.0000 1.0000 1.0000 0.9833 1.6732 1.5220 23.8985
10.0000 1.0000 1.0000 0.9051 9.4874 1.7930 10.3488
11.0000 1.0000 1.0000 0.9925 0.7459 1.7622 11.8882
12.0000 1.0000 1.0000 1.0464 4.6360 0.1453 92.7370
13.0000 1.0000 1.0000 0.9566 4.3396 0.2274 88.6305
14.0000 1.0000 1.0000 0.9798 2.0199 1.8896 5.5190
15.0000 1.0000 1.0000 0.9902 0.9841 0.1073 94.6326
16.0000 1.0000 1.0000 0.9541 4.5949 0.0730 96.3493
17.0000 1.0000 1.0000 0.9396 6.0350 0.3748 81.2620
18.0000 1.0000 1.0000 0.9205 7.9473 0.0278 98.6102
19.0000 1.0000 1.0000 1.0200 1.9994 0.8896 55.5224
20.0000 1.0000 1.0000 - 1.0160 1.6010 0.0375 98.1243
21.0000 1.0000 1.0000 0.9932 0.6826 1.9033 4.8362
22.0000 1.0000 1.0000 0.9724 2.7588 1.2980 35.0989
23.0000 1.0000 1.0000 0.9652 3.4750 0.2877 85.6154
24.0000 1.0000 1.0000 0.9739 2.6089 0.1738 91.3119
25.0000 1.0000 1.0000 0.9195 8.0548 0.5052 74.7422
26.0000 1.0000 2.0000 1.0231 2.3079 1.9986 0.0703
27.0000 1.0000 1.0000 0.9651 3.4871 1.8674 6.6317
28.0000 1.0000 1.0000 1.0375 3.7460 0.1307 93.4675
29.0000 1.0000 2.0000 0.9254 7.4617 1.9106 4.4718
30.0000 1.0000 1.0000 0.9305 6.9516 0.7628 61.8604
31.0000 1.0000 1.0000 0.9549 4.5131 0.7673 61.6355
32.0000 1.0000 1.0000 1.0504 5.0357 1.2752 36.2409
33.0000 1.0000 1.0000 1.0769 7.6882 0.1303 93.4829
34.0000 1.0000 1.0000 0.9008 9.9177 1.6561 17.1967
35.0000 1.0000 1.0000 1.0461 4.6100 1.6619 16.9049
36.0000 1.0000 1.0000 0.9625 3.7493 1.6600 16.9977
37.0000 1.0000 2.0000 0.9433 5.6715 1.9198 4.0085
38.0000 1.0000 1.0000 0.9933 0.6738 1.5300 23.5012
39.0000 1.0000 1.0000 1.0758 7.5810 0.1311 93.4463
40.0000 1.0000 1.0000 0.9682 3.1818 1.7397 13.0128
41.0000 1.0000 - 1.0000 1.0426 4.2570 0.8630 56.8487
42.0000 1.0000 1.0000 1.0470 4.7004 0.1225 93.8738
43.0000 1.0000 1.0000 1.0497 4.9667 1.5704 21.4823
44.0000 1.0000 1.0000 1.0429 4.2946 0.3132 84.3397
45.0000 1.0000 1.0000 1.0626 6.2618 1.2217 38.9135
46.0000 1.0000 1.0000 0.9782 2.1764 1.1132 44.3410
47.0000 1.0000 1.0000 0.9674 3.2592 1.3198 34.0085
48.0000 1.0000 1.0000 1.0288 2.8782 0.1033 94.8359
49.0000 1.0000 1.0000 1.0471 4.7062 0.2041 89.7934
50.0000 1.0000 1.0000 0.9424 5.7586 0.5073 74.6350

Percent error corresponding to Class BB assignment.
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Table 3.2 (cont.)

(1) (2) (3) (4) (3) (6) (7)

51.0000 1.0000 1.0000 0.9867 1.3277 1.7906 10.4712
52.0000 1.0000 1.0000 0.9956 0.4372 0.1051 94.7466

53.0000 1.0000 1.0000 1.0054 0.5365 1.8662 6.6920
54.0000 1.0000 1.0000 1.0146 1.4565 1.7789 11.0553
55.0000 1.0000 1.0000 1.0419 4.1926 1.8247 8.7626

56.0000 1.0000 1.0000 1.0302 3.0243 0.3099 84.5028
57.0000 1.0000 1.0000 1.1007 10.0735 1.1652 41.7377
58.0000 ~1.0000 1.0000 0.9985 0.1492 0.7738 61.3097
59.0000 1.0000 1.0000 1.0078 0.7759 0.2106 89.4724
60.0000 1.0000 1.0000 0.9175 8.2482 0.0387 98.0651
61.0000 1.0000 1.0000 1.0122 1.2231 1.5485 22.5768
62.0000 1.0000 1.0000 0.9881 1.1919 0.9381 53.0942
63.0000 1.0000 1.0000 1.0397 3.9666 0.1202 93.9905
64.0000 1.0000 1.0000 0.9862 1.3767 1.9413 2.9327
65.0000 1.0000 1.0000 1.0428 4.2834 0.8699 56.5044
66.0000 1.0000 1.0000 1.0014 0.1398 0.1098 94.5083
67.0000 1.0000 1.0000 1.0438 4.3845 1.5207 23.9665
68.0000 1.0000 1.0000 0.9642 3.5759 0.0734 96.3287
69.0000 1.0000 1.0000 1.0605 6.0481 0.1509 92.4525

70.0000 1.0000 1.0000 0.9898 1.0219 0.0596 97.0217
71.0000 1.0000 1.0000 0.9624 3.7559 0.6760 66.2015
72.0000 1.0000 1.0000 1.0082 0.8167 0.3232 83.8379
73.0000 1.0000 1.0000 0.9698 3.0219 0.1123 94.3832
74.0000 1.0000 2.0000 0.9741 2.5883 2.0374 1.8722
75.0000 1.0000 1.0000 0.9759 2.4105 1.0727 46.3674
76.0000 1.0000 1.0000 0.9827 1.7292 0.6210 68.9515

77.0000 1.0000 1.0000 1.0521 5.2091 1.0619 46.9035
78.0000 1.0000 1.0000 0.9811 1.8875 1.8186 9.0699
79.0000 1.0000 1.0000 1.0275 2.7518 1.8777 6.1142
80.0000 1.0000 1.0000 1.0125 1.2487 1.8690 6.5496
81.0000 1.0000 1.0000 0.9860 1.4039 0.2355 88.2274
82.0000 1.0000 2.0000 0.9454 5.4598 1.9270 3.6498
83.0000 1.0000 2.0000 1.0426 4.2552 1.9568 2.1591
84.0000 1.0000 1.0000 0.9331 6.6905 0.3172 84.1391
85.0000 1.0000 2.0000 1.0295 2.9512 2.0230 1.1488
86.0000 1.0000 1.0000 0.9978 0.2215 1.1471 42.6435
87.0000 1.0000 1.0000 0.9673 3.2689 1.3060 34.6999
88.0000 1.0000 1.0000 0.9824 1.7612 1.6868 15.6576
89.0000 1.0000 1.0000 0.9858 1.4203 1.8035 9.8233
90.0000 1.0000 2.0000 0.9491 5.0859 1.9338 3.3110
91.0000 1.0000 1.0000 1.0304 3.0429 1.1066 44.6690
92.0000 1.0000 1.0000 0.9860 1.3980 1.2714 36.4295
93.0000 1.0000 1.0000 1.0152 1.5193 1.8161 9.1952
94.0000 1.0000 1.0000 0.9829 1.7131 0.9968 50.1594
95.0000 1.0000 1.0000 1.0166 1.6630 1.7364 13.1792

96.0000 1.0000 1.0000 1.0085 0.8489 1.8879 5.6073
97.0000 1.0000 1.0000 1.0017 0.1725 1.8884 5.5808
98.0000 1.0000 1.0000 0.9258 7.4243 1.0560 47.1997
99.0000 1.0000 1.0000 0.9930 0.6984 1.2081 39.5954
100.0000 1.0000 1.0000 1.1171 11.7059 1.6573 17.1355
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Table 3.2 (cont.)

(1) (2) (3) (4) (3) (6) (7)

101.0000 2.0000 2.0000 0.0484 95.1601 1.9728 1.3613
102.0000 2.0000 2.0000 0.1558 84.4222 2.0232 1.1586
103.0000 2.0000 1.0000 1.0020 0.2001 2.0469 2.3439
104.0000 2.0000 2.0000 0.9540 4.6045 2.0260 1.3009
105.0000 2.0000 2.0000 1.0455 4.5522 2.0077 0.3861
106.0000 2.0000 2.0000 0.8110 18.9005 2.0348 1.7392
107.0000 2.0000 2.0000 0.5297 47.0302 2.0331 1.6560
108.0000 2.0000 . 2.0000 0.5364 46.3611 1.9782 1.0922
109.0000 2.0000° 2.0000 0.0083 99.1708 2.0275 1.3739
110.0000 2.0000 2.0000 0.4728 52.7199 - 2.,0554 2.7697
111.0000 2.0000 2.0000 0.0011 99.8885 2.0224 1.1190
112.0000 2.0000 2.0000 0.0185 98.1471 1.9888 0.5619
113.0000 2.0000 2.0000 0.9030 9.6996 2.0078 0.3906
114.0000 2.0000 2.0000 0.0968 90.3173 2.0159 0.7950
115.0000 2.0000 2.0000 0.0959 90.4091 2.0099 0.4928
116.0000 2.0000 2.0000 0.2978 70.2246 1.9651 1.7439
117.0000 2.0000 2.0000 0.4247 57.5277 2.0167 0.8340
118.0000 2.0000 2.0000 0.0035 99.6485 2.0015 0.0761
119.0000 2.0000 2.0000 0.0032 99.6797 1.9860 0.6999
120.0000 2.0000 2.0000 0.0339 96.6089 2.0070 0.3516
121.0000 2.0000 2.0000 0.0022 99.7844 2.0079 0.3958
122.0000 2.0000 2.0000 0.5709 42.9095 1.9776 1.1215
123.0000 2.0000 2.0000 0.0675 93.2529 1.9989 0.0564
124.0000 2.0000 2.0000 0.4317 56.8282 1.9739 1.3063
125.0000 2.0000 2.0000 0.3318 66.8162 2.0354 1.7691
126.0000 2.0000 2.0000 0.0009 99.9147 2.0176 0.8790
127.0000 2.0000 2.0000 0.3663 63.3676 1.9928 0.3585
128.0000 2.0000 2.0000 0.7197 28.0292 1.9717 1.4147
129.0000 2.0000 2.0000 0.0390 96.1042 1.9995 0.0238
130.0000 2.0000 2.0000 0.0350 96.4977 1.9482 2.5913
131.0000 2.0000 2.0000 0.0037 99.6336 2.0423 2.1163
132.0000 2.0000 2.0000 0.1828 81.7202 2.0069 0.3434
133.0000 2.0000 2.0000 0.0036 99.6424 2.0320 1.6005
134.0000 2.0000 2.0000 0.1841 81.5933 2.0081 0.4038
135.0000 2.0000 2.0000 0.0724 92.7631 1.9854 0.7280
136.0000 2.0000 2.0000 0.1613 83.8725 2.0228 1.1377
137.0000 2.0000 2.0000 0.0328 96.7163 1.9816 0.9211
138.0000 2.0000 2.0000 0.0386 96.1431 1.9735 1.3272
139.0000 2.0000 2.0000 0.0739 92.6112 2.0160 0.7980
140.0000 2.0000 2.0000 0.0483 95.1715 1.9943 0.2843
141.0000 2.0000 2.0000 0.2668 73.3204 1.9887 0.5655
142.0000 2.0000 2.0000 0.0004 99.9595 2.0041 0.2031
143.0000 2.0000 2.0000 0.0492 95.0764 2.0055 0.2762
144.0000 2.0000 2.0000 0.1101  88.9882 2.0222 1.1094
145.0000 2.0000 1.0000 1.0044 0.4396 2.0095 0.4735
146.0000 2.0000 2.0000 0.0041 99.5927 2.0358 1.7883
147.0000 2.0000 2.0000 0.2805 71.9527 1.9818 0.9096
148.0000 2.0000 2.0000 0.2607 73.9256 2.0305 1.5233
149.0000 2.0000 2.0000 0.0980 90.1971 1.9842 0.7876
150.0000 2.0000 2.0000 0.4568 54.3194 1.9808 0.9590
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Table 3.2 (cont.)

(1) (2) (3) (4) (5) (6) (7)
151.0000 2.0000 2.0000 +0.0630 93.7048 2.0144 0.7198
152.0000 2.0000 2.0000 0.0482 95.1759 2.0039 0.1942
153.0000 2.0000 - 2.0000 1.0019 0.1945 2.0030 0.1502
154.0000 2.0000 2.0000 0.0258 97.4157 1.9612 1.9398
155.0000 2.0000 2.0000 0.3745 62.5493 2.0463 2.3127
156.0000 2.0000 "2.0000 0.2262 77.3792 2.0506 2.5283
157.0000 2.0000 2.0000 0.0003 99.9720 1.9834 0.8321
158.0000 2.0000 2.0000 0.0216 97.8413 1.9750 1.2512
159.0000 2.0000 2.0000 0.0039 99.6124 1.9861 0.6941
160.0000 2.0000 1.0000 1.0085 0.8477 2.0464 2.3194
161.0000 2.0000 2.0000 0.5277 47.2270 1.9570 2.1475
162.0000 2.0000 2.0000 0.4875 51.2548 2.0240 1.2016
163.0000 2.0000 2.0000 0.6499 35.0126 1.9942 0.2889
164.0000 2.0000 1.0000 0.9811 1.8901 1.9458 2.7113
165.0000 2.0000 2.0000 0.0875 91.2489 2.0075 0.3766
166.0000 2.0000 2.0000 0.0599 94.0138 2.0058 0.2910
167.0000 2.0000 2.0000 0.0240 97.6000 1.9842 0.7901
168.0000 2.0000 2.0000 0.4628 53.7166 1.9922 0.3881
169.0000 2.0000 2.0000 0.0003 99.9658 1.9965 0.1741
170.0000 2.0000 2.0000 0.5690 43.1032 2.0186 0.9323
171.0000 2.0000 2.0000 0.3324 66.7573 1.9688 1.5593
172.0000 2.0000 2.0000 0.2539 74.6121 1.9914 0.4316
173.0000 2.0000 2.0000 0.1354 86.4613 2.0251 1.2537
174.0000 2.0000 2.0000 0.0101 98.9862 2.0030 0.1507
175.0000 2.0000 2.0000 0.0110 - 98.8977 2.0114 0.5721
176.0000 2.0000 2.0000 0.0001 99.9873 1.9933 0.3326
177.0000 2.0000 2.0000 0.1848 81.5162 1.9531 2.3460
178.0000 2.0000 2.0000 0.4435 55.6484 2.0249 1.2442
179.0000 2.0000 2.0000 0.0002 99.9835 1.9969 0.1530
180.0000 2.0000 2.0000 0.0052 99.4797 2.0114 0.5701
181.0000 2.0000 2.0000 0.9698 3.0186 2.0018 0.0887
182.0000 2.0000 2.0000 0.0086 99.1419 2.0097 0.4832
183.0000 2.0000 2.0000 0.9370 6.3003 2.00009 0.0470
184.0000 2.0000 2.0000 0.0002 99.9801 1.9628 1.8592
185.0000 2.0000 2.0000 0.1920 80.8027 2.0088 0.4409
186.0000 2.0000 2.0000 0.4221 57.7878 2.0205 1.0265
187.0000 2.0000 2.0000 0.5677 43.2302 2.0109 0.5464
188.0000 2.0000 2.0000 0.1071 89.2944 1.9880 0.6016
189.0000 2.0000 2.0000 0.1245 87.5472 1.9981 0.0944
190.0000 2.0000 2.0000 0.4564 54.3586 2.0151 0.7575
191.0000 2.0000 2.0000 0.0004 99.9618 1.9745 1.2749
192.0000 2.0000 2.0000 0.5734 42.6560 1.9813 0.9348
193.0000 2.0000 2.0000 0.5854 41.4564 2.0245 1.2270
194.0000 2.0000 2.0000 0.0294 97.0592 1.9709 1.4528
195.0000 2.0000 2.0000 0.6830 31.7014 1.9739 1.3058
196.0000 2.0000 2.0000 0.0033 99.6726 2.0494 2.4704
197.0000 2.0000 2.0000 0.0019 99.8144 2.0085 0.4260
198.0000 2.0000 2.0000 0.0849 91.5147 2.0205 1.0225
199.0000 2.0000 2.0000 0.0241 97.5858 1.9666 1.6698
200.0000 2.0000 2.0000 0.0008 99.9228 2.0126 0.6290
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Chapter 4

Clustering

Clustering represents one of the broader and most sought after data analysis techniques.
The vast appeal of clustering techniques has to do with the fact that realistic data struc-
tures are often the aggregate of a disjointed set of data groups,. as so characterized by common
consensus in visual observations, at least for low dimensionality feature vectors where such
visual appraisals can be directly executed. There are numerous algorithms and a volumi-
mous literature on the topic of cluster analysis. One distinguishes hard, probabilistic and
fuzzy clustering approaches. The hard techniques assign a data point to one and only one
cluster. The fuzzy techniques have assumed more prominence in the last few years because
they assign a data point to all clusters with the assignment to a given cluster being char-
acterize by a degree of membership with a value that varies between 0 and 1. Thus, if a
data point is very far away from a cluster center the membership value may be close to 0
while if a data point is very near to a cluster center its degree of membership is close to 1.
This is a much more intuitively appealing quantitative environment to imbed the clustering

problem into than the binary choice of the hard clustering techniques.

Clustering can become a classification technique all by itself. However, for our purposes
clustering is to act as a preprocessing method that allows identification of compact groups of
data that Gaussian Potential Function Units can be defined for. Thus, clustering represents

a bandwidth compression technique for us. The clustering algorithm we chose is the fuzzy
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c-means algorithm developed by Dunn [17] and extended by Bezdek [3]. It is the most

prominent fuzzy clustering algorithm with significant applications in the biomedical area

[1].

4.1 Fuzzy c-means Algorithm

Discrimination of data sets for realistic problems is a difficult task because the probabilistic
distributional data generating mechanisms and the ensuing feature space geometric configu-
rations are, typically not known, a priori. Clusteriﬁg algorithms are thus useful in allowing
the partitioning of the data into a set of geometrically compact elements which can, in
turn, be encoded with the Gaussian Potential Functions. The typical clustering algorithms
assign an element in the data set to one and only one cluster. A fuzzy clustering technique

enhances flexibility by assigning membership function values to each element of all clusters.

To show how this is accomplished, let the data set be denoted by X = {z;,...z,,} where
each element is called a feature vector, i.e., zx = [zk1, ..., Tky] With z4; being the jth feature
of the kth sample in the data set. The clustering criterion is to have the elements of a
cluster be as similar (in a distance metric sense) as possible while elements of different
clusters should be as dissimilar as possible. The Euclidean distance between two elements

(d(zx,2;) = || zx — z; ||*) is a common and good distance metric.

Each cluster of the data set X can be mapped into fuzzy subsets S;,z = 1,...c by
a membership function pg, : X — [0,1]. In other words, for a feature vector zj, its
degree of belonging to cluster i is given by u;i, the membership of z; to the subset S;, 1.e,
pie = psi(zr). Let V., be the set of all real cxn matrices with 2 < ¢ < n. The matrix

U = [pik] € V. is called a fuzzy c-partition matrix if it satisfies the following conditions:

#ike[oal]a 1<i<e, 1<k<n (41)
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c

Z/L;k’—‘l, lgkgn (42)
1=1
0< > pax<n, 1<i<c (4.3)
k=1

The last two conditions imply that the ”total membership” of an element is normalized
to 1 and that it can not belong to more clusters than there exist. The location of a cluster
is represented by its ”cluster center” or its prototype v; = [v;1, ..., vy, ¢ =1,...,c. The v,

in general, may not correspond to any element of X.

The basic fuzzy-c means problem now is to minimize the following objective function

for m>1:

n c

min Jn(Usv) = 33 (i)™ || 2% — vi || (4.4)

k=11i=1

such that U € V., and v € R°*". Differentiating the objective function with respect to v;
(for fixed U) and with respect to y; (for fixed v), and applying the condition 3°5_; pix = 1,
yields

mz /L,k .’Bk, 1= 1,...c (4.5)

vy =
zk 1(”1]‘7 k=1

=2
Ty —v; [|™ .
Hik = c“ k | —, t=1,.¢c; k=1,..,n (4.6)
Y=l 2k — vy |7

The parameter m is an exponential weight, used to reduce the influence of relatively

distant points. That is, the influence of small u;; (points further away from v;) is penalized
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compared to that of large p;; (points close to v;). The iteration algorithm (Bezdek [3]) to

solve the optimal fuzzy c-means cluster problem comprises the following steps:
Step 1. Choose ¢ (2 < c < n) and m (I < m < o). Initialize U© and set 1 = 0.

Step 2. Calculate the c fuzzy cluster centers v! from 4.5 by using U'.

Step 3. Calculate the new membership function matrix U™** through 4.6, by using v,gl)

if zp # v,(l); else set p;r = 1 for j=i or p;, =0 forj # 1.

Step 4. Calculate A =|| i+ @) . A > esetl =141 and go to Step 2;

otherwise, stop.

The fuzzy c-means algorithm assumes that the number,c, of clusters is a priori known (below
we show how such a practically unrealistic assumption can be circumvented). Given the ¢
cluster centers v; the degree of membership of data point z; to cluster i is:
—2_
| 2k — v [[7=2

Wik = , i=1,.¢; k=1,..,n (4.7)

_—2_
St ze —vj ||7

To evaluate the efficacy of such a definition let us first set the value of m to 2. Then, the
above expression becomes:

-2
Kk = l2x = vl i=1,..c; k=1,..,n (4.8)

S L 2k = v; |7

The degree of membership of the data point z; to the cluster i, g, is the ratio of the
inverse square distance of z; from the cluster center v; to the sum of the inverse square
distances of the same data point from the c clusters. If the data point z; is close to the
center of cluster i and far from the remaining cluster centers then the membership value will
be close to 1, an intuitively satisfying result. If the data point zj is far away from the center
of cluster i and close to some other center, j say, then the numerator of 4.8 will be small

and the denominator large yielding a membership value close to 0, an equally intuitively
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appealing circumstance. We thus see that the definition of the degree of membership of a
data point to a given cluster, as given by 4.8 is in harmony with an acceptable geometric
interpretation of the clustering process. It is now noted that higher values of m imply more

severe weighting for data points further away from the cluster centers.

The cluster centers are defined through the expression:

1 n
S ua) e i=1,.c (4.9)
Zk=1(llik)m;§‘1 )

Vg

Thus, the cluster center i is nothing more than the mean of the data points weighted by

their degree of membership to the cluster i.

The fuzzy c-means algorithm iterates through the above expressions for cluster membership
values and cluster centers as a process that has been shown to minimize the objective

function
TnlU50) = 35 3 ()" | 26— v | (4.10)

which represents the fundamental fuzzy c-means algorithmic aim which is to minimize the
sum of the weighted square distances of the data points from the cluster centers. The

iterative algorithm converges to at least a local minimum.

4.2 Example

To demonstrate the fuzzy c-means clustering algorithm an arbitrary set of four two-dimensional

clusters was generated, as shown in Figure 4.1. Each cluster consists of thirty feature vec-
tors generated by randomly perturbing through a uniform distribution the nominal center

values of each cluster which was arbitrarily selected as follows:
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Cluster 1 Center: (17, 7)
Cluster 2 Center : (22, T)
Cluster 3 Center :  (14,22)
| Cluster 4 Center : (22,22)

(4.11)

The so generated feature vectors for each cluster are shown in Figures 4.2, 4.3, 4.4 and 4.5.
The feature vectors are plotted as waveforms for illustration purposes. The elements of the
feature vectors are the ordinate values corresponding to the integer abscissa values 1 and

2.

The membership matrix U has four rows (corresponding to the four clusters) and one
hundred and twenty columns (corresponding to the number of data points or feature vec-

tors). It is arbitrarily initialized with the values:

100010001
010001000

(4.12)
001000100
(000100010 .|

The fuzzy c-means algorithm was iterated 11 times until the stopping error criterion became
less than 0.000001. The error iteration history is shown in Figure 4.6. The four cluster
centers as determined by the fuzzy c-means algorithm are shown below (and in comparison

to the designed centers):

Fuzzy ¢ — means Cluster 1 Center:  ( 6.9392, 7.1862) versus (7, 7)

Fuzzy ¢ — means Cluster 2 Center :  (21.9267, 6.7180) versus (22, 7

Fuzzy ¢ — means Cluster 3 Center : 2462, 21.4249) versus
)

(14
Fuzzy ¢ — means Cluster 4 Center :  (22.5265,22.2849) versus
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The fuzzy c-means centers are shown in Figure 4.7 superimposed onto the four clusters.
The membership matrix U is shown in Table 4.1. There are four rows corresponding to the
number of clusters and one hundred and twenty columns corresponding to the number of
total feature vectors. The algorithm assigns a given element to the cluster that it exhibits
the highest membership value for. Thus, Table 4.2 shows the individual cluster assignment
for each data point. Column (1) identifies the feature vector, column (2) is the originally
designed cluster assignment, column (3) is the algorithm derived cluster assignment and
columns (4), (5), (6) and (7) are the membership values for each cluster established by
the algorithm. It is noted that the designed cluster assignment number has no relation to
the algorithm derived cluster number. In other words, the originally designated cluster 1
may be called cluster 2 or 3 or 4 by the algorithm. The basic focus of the fuzzy c-means

algorithm solution are the data points assigned to each cluster.

Figures 4.8 through 4.19 show the membership values of the data points, with 10 data
points plotted per Figure. Thus, Figures 4.8, 4.9 and 4.10 show that the first thirty data
points exhibit the highest memberhip values for cluster no. 2. Figures 4.11, 4.12 and 4.13
show that the next thirty data points have the highest membership values for cluster no. 1.
Figures 4.14, 4.15 and 4.16 show the association of the next thirty points with cluster no.
4 with respect to which they have the highest membership values. Finally, Figures 4.17,
4.18 and 4.19 clearly show the assignment of the last thirty points to the cluster no. 3.

4.3 Selection of ¢

The example above assumed that the number of clusters is already known. In practice
one is not expected to often know, a priori, the expected number of clusters the data can
be partitioned into. Xie and Beni [16] proposed a measure whose minimization aims at
identifying the "right” number of clusters present in the data. This cluster validity measure

is defined as:
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2
§ = Zim Tl il on = v | (4.14)
n* minl| v; — vy ||

and can be given the following interpretation. First we note that the term p;™|| zx — vi ||2
repreéents the fuzzy square distance or square deviation of data point k from the cluster
center i. For each cluster i, the sum of the squares of the fuzzy deviations is called the
variation of cluster i. Thus, the expression (X5_, SF_, uZ|| zx — v; ||°)/n represents the
average variation of the data points, called the compactness of the data. This average vari-
ation (which has an interpretation analogous to the statistical variance) is then referenced
to the smallest distance among the cluster centers to yield the validity measure 4.14. The
validitity measure 4.14 is therefore stuctured to have a smaller value for a configuration of
clusters versus data that is more "compact” relative to the cluster centers separation, an

intuitively appealing formulation.

The above described validity measure was tested by noting its values as ¢ (the number of
assumed clusters) of the fuzzy c-means algorithm was varied from 2 to 10. The results are

shown below and plotted in Figure 4.20:

When No. of Clusters = 2 § = 0.1573
When No. of Clusters = 3 § = 0.2960
When No. of Clusters = 4 § = 0.0610
When No. of Clusters = 5 § = 0.4114
When No. of Clusters = 6 S = 1.2170 (4.15)
When No. of Clusters = 7 § = 1.3417
When No. of Clusters = 8 § = 1.9601
When No. of Clusters = 9 § = 1.9081
When No. of Clusters = 105 = 1.5854

It is noted that a minimum occurs when the selected number of clusters is 4, matching the

designed actual cluster number.
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Figure 4.4: Cluster 3 feature vectors plotted as waveforms.
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Figure 4.14: Membership values for feature vectors 61-70.
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Figure 4.16: Membership values for feature vectors 81-90.
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Table 4.1: Fuzzy membership matrix U. ( There are four rows corresponding
to four clusters and one hundred and twenty columns corresponding to the

data points.)

Columns 1 through 7

0.0135
0.9764
0.0034
0.0066

0.0077
0.9867
0.0019
0.0037

Columns 8 through 14

0.0270
0.9568
0.0051
0.0110

Columns 15

0.0157
0.9725
0.0040
0.0078

Columns 22

0.0120
0.9790
0.0030
0.0059

Columns 29

0.0230
0.9593
0.0061
0.0116

Columns 36

0.9918
0.0011
0.0010
0.0060

Columns 43

0.8204
0.0717
0.0237
0.0842

Columns 50

0.7735
0.0148
0.0219
0.1898

0.0039
0.9933
0.0009
0.0019

through 21

0.0019
0.9968
0.0004
0.0008

through 28

0.0268
0.9572
0.0051
0.0109

through 35

0.0509
0.9201
0.0090
0.0200

through 42

0.9985
0.0003
0.0002
0.0011

through 49

0.9100
0.0084
0.0101
0.0716

through 56

0.7916
0.0142
0.0205
0.1738

0.0153
0.9753
0.0030
0.0064

0.0067
0.9884
0.0016
0.0032

0.0014
0.9976
0.0003
0.0006

0.0077
0.9875
0.0016
0.0033

0.8853
0.0099
0.0125
0.0923

0.9573
0.0107
0.0060
0.0260

0.9236
0.0074
0.0087
0.0603

0.9999
0.0000
0.0000
0.0001

0.0426
0.9328
0.0077
0.0169

0.0110
0.9810
0.0028
0.0053

0.0028
0.9952
0.0007
0.0013

0.0047
0.9919
0.0011
0.0023

0.9791
0.0046
0.0029
0.0134

0.9827
0.0022
0.0022
0.0130

0.4796
0.0180
0.0363
0.4661

0.9997
0.0001
0.0000
0.0002
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0.0063
0.9896
0.0013
0.0027

0.0065
0.9894
0.0013
0.0028

0.0025
0.9958
0.0005
0.0011

0.0678
0.8947
0.0116
0.0259

0.9998
0.0000
0.0000
0.0001

0.9799
0.0044
0.0028
0.0129

0.9994
0.0001
0.0001
0.0004

0.5545
0.0182
0.0341
0.3932

0.0097
0.9831
0.0024
0.0047

0.0014
0.9977
0.0003
0.0006

0.0025
0.9958
0.0005
0.0011

0.0048
0.9922
0.0010
0.0021

0.9459
0.0057
0.0063
0.0421

0.9921
0.0011
0.0010
0.0058

0.9586
0.0103
0.0058
0.0253

0.9942
0.0008
0.0007
0.0043

0.0214
0.9656
0.0041
0.0088

0.0086
0.9850
0.0021
0.0042

0.0072
0.9876
0.0018
0.0034

0.0042
0.9928
0.0010
0.0020

0.9401
0.0163
0.0084
0.0353

0.5229
0.0182
0.0352
0.4238

0.6945
0.0168
0.0272
0.2615

0.8960
0.0333
0.0144
0.0562
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Table 4.1 (cont.)

Columns 57 through 63

0.9608 0.9045 0.9999 0.9683 0.0342 0.0059 0.0002
0.0096 0.0297 0.0000 0.0075 0.0048 0.0007 0.0000
0.0055 0.0133 0.0000 0.0044 0.0467 0.0047 0.0001
0.0241 0.0524 0.0001 0.0198 0.9143 0.9888 0.9996
Columns 64 through 70
0.0049 0.0105 0.0118 0.0112 0.0683 0.0004 0.1341
0.0005 0.0013 0.0015 0.0014 0.0052 0.0000 0.0088
0.0023 0.0093 0.0108 0.0101 0.0183 0.0002 0.0271
0.9923 0.9789 0.9760 0.9773 0.9082 0.9994 0.8300
Columns 71 through 77
0.0284 0.0000 0.2256 0.0556 0.0246 0.0155 0.0742
0.0039 - 0.0000 0.0127 0.0087 0.0033 0.0014 0.0134
0.0352 0.0000 0.0338 0.1126 0.0285 0.0061 0.2873
0.9325 1.0000 0.7279 0.8231 0.9437 0.9770 0.6251
Columns 78 through 84
0.0314 0.2086 0.0052 0.0078 0.1465 0.0195 0.0039
0.0026 0.0121 0.0006 0.0007 0.0094 0.0017 0.0005
0.0106 0.0329 0.0040 0.0035 0.0283 0.0074 0.0029
0.9554 0.7465 0.9902 0.9880 0.8157 0.9715 0.9927
Columns 85 through 91
0.0002 0.0040 0.0428 0.0001 0.0115 0.0009 0.0051
0.0000 0.0004 0.0063 0.0000 0.0014 0.0001 0.0013
0.0001 0.0019 0.0678 0.0001 0.0104 0.0006 0.9758
0.9996 0.9938 0.8832 0.9998 0.9767 0.9985 0.0178
Columns 92 through 98
0.0041 0.0083 0.0030 0.0073 0.0013 0.0020 0.0013
0.0012 0.0025 0.0008 0.0019 0.0004 0.0005 0.0003
0.9832 0.9666 0.9860 0.9647 0.9943 0.9910 0.9942
0.0115 0.0226 0.0102 0.0261 0.0040 0.0066 0.0042
Columns 99 through 105
0.0071 0.0038 0.0043 0.0084 0.0007 0.0231 0.0131
0.0018 0.0011 0.0011 0.0026 0.0002 0.0055 0.0041
0.9654 0.9844 0.9795 0.9661 0.9969 0.8772 0.9483
0.0256 0.0107 0.0150 0.0229 0.0022 0.0942 0.0345
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Table 4.1 (cont.)

Columns 106 through 112

.0008 0.0006 0.0003 0.0145
.0002 0.0002 0.0001 0.0036
.9965 0.9976 0.9985 0.9262
.0025 0.0017 0.0010 0.0557

0.0063 0.0075 0.0055
0.0019 0.0023 0.0016
0.9745 0.9697 0.9774
0.0174 0.0206 0.0154

OO0

Columns 113 through 119

.0035 0.0007 0.0060 0.0057
.0010 0.0002 0.0016 0.0017
.9855 0.9968 0.9710 0.9768
.0100 0.0022 0.0214 0.0158

0.0040 0.0431 0.0052
0.0010 0.0096 0.0013
0.9811 0.7445 0.9754
0.0138 0.2028 0.0181

OO OO

Column 120

0.0001
0.0000
0.9997
0.0002
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Column (4): Membership value for algorithm derived cluster 1.

lumn (1): Feature Vector No. Column (5): Membership value for algorithm derived cluster 2.

lumn (2): Initially assigned cluster assignment. Column (6): Membership value for algorithm derived cluster 3.

olumn (3): Fuzzy c-means cluster assignment. Column (7): Membership value for algorithm derived cluster 4.

(1) (2) (3) (4) (5) (6) (7)

1.0000 1.0000 2.0000 0.0135 0.9764 0.0034 0.0066
2.0000 1.0000 2.0000 0.0077 0.9867 0.0019 0.0037
3.0000 1.0000 2.0000 0.0153 0.9753 0.0030 0.0064
4.0000 1.0000 2.0000 0.0426 0.9328 0.0077 0.0169
5.0000 1.0000 2.0000 0.0063 0.9896 0.0013 0.0027
6.0000 1.0000 2.0000 0.0097 0.9831 0.0024 0.0047
7.0000 1.0000 2.0000 0.0214 0.9656 0.0041 0.0088
8.0000 1.0000 2.0000 0.0270 0.9568 0.0051 0.0110
9.0000 1.0000 2.0000 0.0039 0.9933 0.0009 0.0019
10.0000 1.0000 2.0000 0.0067 0.9884 0.0016 0.0032
11.0000 1.0000 2.0000 0.0110 0.9810 0.0028 0.0053
12.0000 1.0000 2.0000 0.0065 0.9894 0.0013 0.0028
13.0000 1.0000 2.0000 0.0014 0.9977 '0.0003 0.0006
14.0000 1.0000 2.0000 0.0086 0.9850 0.0021 0.0042
15.0000 1.0000 2.0000 0.0157 0.9725 0.0040 0.0078
16.0000 1.0000 2.0000 0.0019 0.9968 0.0004 0.0008
17.0000 1.0000 2.0000 0.0014 0.9976 0.0003 0.0006
18.0000 1.0000 2.0000 0.0028 0.9952 0.0007 0.0013
19.0000 1.0000 2.0000 0.0025 0.9958 0.0005 0.0011
20.0000 1.0000 2.0000 0.0025 0.9958 0.0005 0.0011
21.0000 1.0000 2.0000 0.0072 0.9876 0.0018 0.0034
22.0000 1.0000 2.0000 0.0120 0.9790 0.0030 0.0059
23.0000 1.0000 2.0000 0.0268 0.9572 0.0051 0.0109
24.0000 1.0000 2.0000 0.0077 0.9875 0.0016 0.0033
25.0000 1.0000 2.0000 0.0047 0.9919 0.0011 0.0023
26.0000 1.0000 2.0000 0.0678 0.8947 0.0116 0.0259
27.0000 1.0000 2.0000 0.0048 0.9922 0.0010 0.0021
28.0000 1.0000 2.0000 0.0042 0.9928 0.0010 0.0020
29.0000 1.0000 2.0000 0.0230 0.9593 0.0061 0.0116
30.0000 1.0000 2.0000 0.0509 0.9201 0.0090 0.0200
31.0000 2.0000 1.0000 0.8853 0.0099 0.0125 0.0923
32.0000 2.0000 1.0000 0.9791 0.0046 0.0029 0.0134
33.0000 2.0000 1.0000 0.9998 0.0000 0.0000 0.0001
34.0000 2.0000 1.0000 0.9459 0.0057 0.0063 0.0421
35.0000 2.0000 1.0000 0.9401 0.0163 0.0084 0.0353
36.0000 2.0000 1.0000 0.9918 0.0011 0.0010 0.0060
37.0000 2.0000 1.0000 0.9985 0.0003 0.0002 0.0011
38.0000 2.0000 1.0000 0.9573 0.0107 0.0060 0.0260
39.0000 2.0000 1.0000 0.9827 0.0022 0.0022 0.0130
40.0000 2.0000 1.0000 0.9799 0.0044 0.0028 0.0129
41.0000 2.0000 1.0000 0.9921 0.0011 0.0010 0.0058
42.0000 2.0000 1.0000 0.5229 0.0182 0.0352 0.4238
43.0000 2.0000 1.0000 0.8204 0.0717 0.0237 0.0842
44.0000 2.0000 1.0000 0.9100 0.0084 0.0101 0.0716
45.0000 2.0000 1.0000 0.9236 0.0074 0.0087 0.0603
46.0000 2.0000 1.0000 0.4796 0.0180 0.0363 0.4661
47.0000 2.0000 1.0000 0.9994 0.0001 0.0001 0.0004
48.0000 2.0000 1.0000 0.9586 0.0103 0.0058 0.0253
49.0000 2.0000 1.0000 0.6945 0.0168 0.0272 0.2615
50.0000 2.0000 1.0000 0.7735 0.0148 0.0219 0.1898

Table 4.2: Membership values per feature vector.
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Table 4.2 (cont.)

51.0000 2.0000 1.0000 0.7916 0.0142 .0.0205 0.1738
52.0000 2.0000 1.0000 0.9999 0.0000 0.0000 0.0001
53.0000 2.0000 1.0000 0.9997 0.0001 0.0000 0.0002
54.0000 2.0000 1.0000 0.5545 0.0182 0.0341 0.3932
55.0000 2.0000 © 1.0000 0.9942 0.0008 0.0007 0.0043
56.0000 2.0000 1.0000 0.8960 0.0333 0.0144 0.0562
57.0000 2.0000 1.0000 0.9608 0.0096 0.0055 0.0241
58.0000 2.0000 1.0000 0.9045 0.0297 0.0133 0.0524

} 59.0000 2.0000 1.0000 0.9999 0.0000 0.0000 0.0001
60.0000 2.0000 1.0000 0.9683 0.0075 0.0044 0.0198

| 61.0000 3.0000 4.0000 0.0342 0.0048 0.0467 0.9143
’ 62.0000 3.0000 4.0000 0.0059 0.0007 0.0047 0.9888
63.0000 3.0000 4.0000 0.0002 0.0000 0.0001 0.9996
64.0000 3.0000 - 4.0000 0.0049 0.0005 0.0023 0.9923

' 65.0000 3.0000 4.0000 0.0105 0.0013 0.0093 0.9789
66.0000 3.0000 4.0000 0.0118 0.0015 0.0108 0.9760
67.0000 3.0000 4.0000 0.0112 0.0014 0.0101 0.9773
68.0000 3.0000 4.0000 0.0683 0.0052 0.0183 0.9082
69.0000 3.0000 4.0000 0.0004 0.0000 0.0002 0.9994
70.0000 3.0000 4.0000 0.1341 0.0088 0.0271 0.8300
71.0000 3.0000 4.0000 0.0284 0.0039 0.0352 0.9325
72.0000 3.0000 4.0000 0.0000 0.0000 0.0000 1.0000

, 73.0000 3.0000 4.0000 0.2256 0.0127 0.0338 0.7279
| 74.0000 3.0000 4.0000 0.0556 0.0087 0.1126 0.8231
| 75.0000 3.0000 4.0000 0.0246 0.0033 0.0285 0.9437
| 76.0000 3.0000 4.0000 0.0155 0.0014 0.0061 0.9770
77.0000 3.0000 4.0000 0.0742 0.0134 0.2873 0.6251
78.0000 3.0000 4.0000 0.0314 0.0026 0.0106 0.9554
79.0000 3.0000 4.0000 0.2086 0.0121 0.0329 0.7465
80.0000 3.0000 4.0000 0.0052 0.0006 0.0040 0.9902
81.0000 3.0000 4.0000 0.0078 0.0007 0.0035 0.9880

| 82.0000 3.0000 4.0000 0.1465 0.0094 0.0283 0.8157
83.0000 3.0000 4.0000 0.0195 0.0017 0.0074 0.9715
84.0000 3.0000 4.0000 0.0039 0.0005 0.0029 0.9927
85.0000 3.0000 4.0000 0.0002 0.0000 0.0001 0.9996
86.0000 3.0000 4.0000 0.0040 0.0004 0.0019 0.9938
87.0000 3.0000 4.0000 0.0428 0.0063 0.0678 0.8832
88.0000 3.0000 4.0000 0.0001 0.0000 0.0001 0.9998
89.0000 "3.0000 4.0000 0.0115 0.0014 0.0104 0.9767
90.0000 3.0000 4.0000 0.0009 0.0001 0.0006 0.9985
91.0000 4.0000 3.0000 0.0051 0.0013 0.9758 0.0178
92.0000 4.0000 3.0000 0.0041 0.0012 0.9832 0.0115
93.0000 4.0000 3.0000 0.0083 0.0025 0.9666 0.0226
94.0000 4.0000 3.0000 0.0030 0.0008 0.9860 0.0102
95.0000 4.0000 3.0000 0.0073 0.0019 0.9647 0.0261

. 96.0000 4.0000 3.0000 0.0013 0.0004 0.9943 0.0040
97.0000 4.0000 3.0000 0.0020 0.0005 0.9910 0.0066
98.0000 4.0000 3.0000 0.0013 0.0003 0.9942 0.0042
99.0000 4.0000  3.0000 0.0071 0.0018 0.9654 0.0256
100.0000 4.0000 3.0000 0.0038 0.0011 0.9844 0.0107

70




101.0000
102.0000
103.0000
104.0000
105.0000
106.0000
107.0000
108.0000
109.0000
110.0000
111.0000
112.0000
113.0000
114.0000
115.0000
116.0000
117.0000
118.0000
119.0000
120.0000

Table 4.2 (cont.)

4.0000
4.0000
4.0000
4.0000
4.0000
4.0000

4.0000

4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
4.0000
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3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
3.0000

0.0043
0.0084
0.0007
0.0231
0.0131
0.0063
0.0075
0.0055
0.0008
0.0006
0.0003
0.0145
0.0040
0.0431
0.0052
0.0035
0.0007
0.0060
0.0057
0.0001
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0.0011
0.0026
0.0002
0.0055
0.0041
0.0019
0.0023
0.0016
0.0002
0.0002
0.0001
0.0036
0.0010
0.0096
0.0013
0.0010
0.0002
0.0016
0.0017
0.0000

0.9795
0.9661
0.9969
0.8772
0.9483
0.9745
0.9697
0.9774
0.9965
0.9976
0.9985
0.9262
0.9811
0.7445
0.9754
0.9855
0.9968
0.9710
0.9768
0.9997

0.0150
0.0229
0.0022
0.0942
0.0345
0.0174
0.0206
0.0154
0.0025
0.0017
0.0010
0.0557
0.0138
0.2028
0.0181
0.0100
0.0022
0.0214
0.0158
0.0002
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Chapter 5

Results from Real Data

Real data were obtained from the National Study Center for Trauma and EMS at the
University of Maryland. Trianalytics, Inc. maintains the data base for the University
of Maryland. The data consist of 200 records corresponding to 100 penetrating (gunshot)
wound records for male patients who survived and 100 penetrating (gunshot) wound records
for male patients who did not survive. The hospital stay for 97 out of the 100 patients who
did not survive was 0 to 1 days indicative of the fact that their death was a direct result of
their trauma injuries. The patient population age is around 25-30 years. Also the patients

had no preexisting conditions.

Four features were selected to correspond to the variables encountered in field directed

trauma score indices. The features, with their encoded severity are:

e Eye Opening. 4 = Spontaneous, 3 = To Voice, 2 = To Pain, 1 = None.

e Verbal Response. 5 = Oriented, 4 = Confused, 3 = Inappropriate Words, 2 =

Incomprehensible Sounds, 1 = No Verbal Response.

e Motor Response. 6 = Obeys Command, 5 = Localizes Pain, 4 = Withdraws, 3 =

Flexion Response, 2 = Extension Response, 1 = No Motor Response.
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e Is Patient’s Respiratory Rate Controlled by Bagging or Ventilator?. 1 =
Yes, 2 = No.

e Missing values are coded as 9s.

Table 5.1 lists the 100 surviving patients records with the corresponding feature values.
Table 5.2 lists the 100 nonsurviving patients and their corresponding feature values. The Xie
and Beni algorithm was then exercised on the set of the 100 surviving patients to ascertain
a reasonable number of clusters to partition the data in. The Xie and Beni cluster validity
measure values for 2,3,4,5,6,7,8 and 9 clusters are 0.0421, 0.0144, 0.0466, 0.0123, 0.1495,
0.0912, 0.0714 and 0.0705 respectively. They are plotted in Figure 5.1. The minimum value

is 0.0123 and occurs for a partition of 5 clusters. The fuzzy c-means algorithm is next
invoked with a 5 clusters partition. The resulting feature vector contents of the 5 clusters
are shown in Table 5.3. It is noted that the clustered vectors are intuitively reasonable. The
application of the Xie and Beni algorithm to the 100 nonsurviving patients yields the cluster
validity measure values 0.0522, 0.1333, 0.0610, 0.1038, oo, 0.3901, 0.3211, and 0.1570 for
2,3,4,5,6,7,8 and 9 clusters respectively. The oo value is the result of occasional singularities
in the algorithm when two cluster centers coincide. They are plotted in Figure 5.2. Upon
inspection of the results, in this case, we selected the 3 clusters configuration over the
2 clusters minimum solution as being more representative of the data structure. This is
indicative of the fact that the cluster algorithms provide useful direction but no guarantee
of absolute goal accomplishment.The resulting feature vector contents of the 3 clusters for

the nonsurviving class are shown in Table 5.4

For the surviving class of patients nine GPFUs per cluster were then established for each
of the 5 clusters with the centering GPFU at the cluster center. The desired GPFN integer

characterization  for the surviving patients class was set equal to 1 and for the nonsurviving
patients to-1. The training algorithm was iterated 500 times with the iteration error results

as shown below:
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Inttial Error : 5.4380 Error after 500 iterations : 0.3331
Initial Error : 5.7328 Error after 500 iterations : 0.0000
Initial Error : 5.7938 Erfor after 500 tterations : 0.0441 (5.1)
Initial Error : 6.9660 Error after 500 sterations : 0.0000
Initial Error : 7.1010 Error after 500 iterations : 0.0833

A similar, 500 iteration training phase was executed for the nonsurviving patients 3 clusters

with the training error history results as follows:

Initial Error : 0.3857 Error after 500 iterations : 0.2049
Initial Error : 0.4422 Error after 500 iterations : 0.0000 (5.2)
Initial Error : 0.5143 Error after 500 iterations : 0.0536

The classification performance for the set of data representing Classes 1 (Surviving Patients)
and 1 (Nonsurviving Patients) is established as follows. The training phase of the classifier
created two sets of GPFNs. One for Class 1 and one for Class 2. A data point that
belongs to Class 1 must ideally yield a value of 1 while a data point that belongs to Class
2 must yield the value -1. There are 200 data points to consider, 100 from Class 1 and
100 from Class 2. Each point is fed to the GPFN corresponding to Class 1 and the GPFN
corresponding to Class 2. Two responses are thus noted. Next, the percent deviation of
the actual response from the desired response (the desired response is 1 for Class 1 and
-1 for Class 2) is calculated and the data point is assigned to the class with the smallest
percent deviation. The results for the 200 points are given in Table 5.5. It is noted that
the feature vectors are listed in this Table as grouped in clusters. Thus, the first three
entries correspond to the first cluster of the surviving patients, the next four entries to
the second cluster of the surviving patients, etc. Records 100 through 200 correspond
to the nonsurviving patients. Column (2) is the known correct classification, column (3)

the calculated classification, column (4) the response of the Class 1 GPFN, column (5)
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the percent error resulting from the Class 1 GPFN response, column (6) the response of
the Class 2 GPFN and column (7) the percent error resulting from the Class 2 response.
Comparing columns (1) and (2) of Table 5.5 we note that the correct classification rate is
88.5%. This is not unanticipated because the data distributions from the two classes are

overlapping.

5.1 Direct Classification Encoding

The above classification results bring forward the probabilistic nature of the classification
problem. It is ideally desired that featurés be selected that effect a complete and unambiguous
separation of the various classes in feature space. However, most real problems involve
inescapable feature vector overlaps meaning that the same feature vector is observed for
members of different classes. In this case, assignment to a certain class is effected by
probabilistic arguments (Bayes Theorem) that basically select the most likely class for this
feature vector as demonstrated by experience or theoretical considerations. To emphasize
this case we encoded through a GPFU of unit variance each entry from the surviving class
of patients and added this group of gaussians in feature space. We did the same for the 100
patients of the nonsurviving class. Each one of these surfaces was then used to compute a
score for each patient which was, in turn, assigned to the class that exhibited the highest
score. The results are shown in Table 5.6. The correct classification rate is 86.5 %. A

careful scrutiny of the misclassified cases reveals the following:

Nonsurvivors classified as surviving.

e Nonsurviving patients 102, 130, 162, 166, 167, 197 and 199 are classified as surviving.
Their feature vector is (4,5,6,2). There are 65 such vectors in the surviving category

versus 8§ in the nonsurviving category.

e Nonsurviving patients 108, 111, 112, 117, 118, 119, 121, 123, 124, 135 and 194 are

classified as surviving. Their feature vector is (9,9,9,1). There are 11 such vectors in
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the nonsurviving category versus 1 in the surviving category. However, there are 17

(9,9,9,2) vectors in the surviving category versus 1 in the nonsurviving category.

e Nonsurviving patients 133, 136 and 171 are classified as surviving. Their feature
vector is (9,9,9,2). There are 17 such vectors in the surviving category and one in the

nonsurviving category.

e Nonsurviving patient 173 is classified as surviving. His feature vector is (3,4,5,2).
There is one such vector in the nonsurviving category and one in the surviving cate-
gory. However the score is much higher for the surviving category due to the influence

of the (4,5,6,2) vectors.

Survivors classified as nonsurviving.

o Surviving patients 23, 62 and 78 are classified as nonsurviving. Their feature vector
is (1,1,1,1). There are 48 such vectors in the nonsurviving category versus 3 in the

surviving category.

e Surviving patient 42 is classified as nonsurviving. His feature vector is (9,9,9,9).
There are 13 such vectors in the nonsurviving category versus 1 in the surviving

category.

e Surviving patient 100 is classified as nonsurviving. His feature vector is (1,1,2,1).
There is one such vector in the nonsurviving category and one in the surviving
category. However the score is much higher for the nonsurviving category due to the

influence of the (1,1,1,1) vectors.
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Figure 5.2: Validity Measure versus No. of Clusters for Nonsurviving Patients
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Table 5.1: Surviving Patients Feature Vectors.

Ho® 6 O e (1) 2 @ @ (5)
. s 5 6 ) 26 4 5 6 2
2 3 4 5 2 27 4 5 6 2
3 4 5 6 2 28 4 5 6 2
. s 1 6 1 29 9 9 9 2
5 s 5 6 2 30 9 9 9 2
6 . 5 6 2 31 9 9 9 2
7 4 5 6 2 32 3 5 6 2
o A 1 6 2 33 4 5 6 2
o . 5 6 2 34 4 5 6 2
10 A s 6 ) 35 4 5 6 2
11 . 5 6 2 36 4 5 6 2
12 s . 6 2 37 4 5 6 2
13 s 5 6 2 38 4 5 6 2
14 A 5 6 1 39 4 5 6 2
15 . 5 6 2 40 9 9 9 2
16 L . 6 2 41 9 9 9 2
- . 5 6 2 42 9 9 9 9
18 o 9 9 2 43 - 4 5 6 2
Lo 5 9 9 5 44 4 5 6 2
- o 9 9 2 45 9 9 9 2
)1 . 5 6 2 16 4 5 6 2
22 9 9 9 2 47 4 5 6 2
23 1 1 1 1 48 9 9 9 2
24 4 5 6 2 49 4 5 6 2
25 9 9 9 2 50 4 5 6 2
Column (1): Patient No. Column (4): Motor Response .
Column (2): Eye Opening. Column (5): Respiratory Assistance.

Column (3): Verbal Response. 78
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Table 5.1 (cont.)

(1) @ 63 @ 6 » n @ @ 4 ()

51 4 5 6 2 76 4 5 6 2
52 4 5 6 2 77 4 5 6 2
53 4 5 6 2 78 1 1 1 1
54 9 9 9 2 79 4 5 6 9
55 4 5 6 2 80 . 5 6 2
56 4 5 6 2 81 4 5 6 2
57 4 5 6 2 82 4 5 6 2
58 4 5 6 2 83 9 9 9 2
59 4 5 . 6 2 84 4 5 6 2
60 4 5 6 2 85 9 9 9 2
61 9 9 9 2 86 4 5 6 2
62 1 1 1 1 87 4 5 6 2
63 4 5 6 2 88 4 5 6 1
64 9 9 9 1 89 4 5 6 2
65 9 9 9 2 90 9 9 9 2
66 4 5 6 2 91 4 5 6 2
67 4 5 6 2 92 4 5 6 2
68 4 5 6 2 93 4 5 6 2
69 9 9 9 2 94 9 9 9 2
70 9 9 9 1 95 4 5 6 2
71 9 9 9 2 96 4 5 6 2
72 9 9 9 2 97 4 5 6 2
73 4 5 6 2 98 4 5 6 2
74 4 5 6 2 99 4 5 6 2
75 4 5 6 2 100 1 1 2 1
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Table 5.2: Nonsurviving Patients Feature Vectors.

O I m e e @ e
1 1 1 1 1 26 9 9 9 9
2 4 5 6 2 27 1 1 1 1
3 1 1 1 1 28 1 1 1 1
4 9 9 9 9 29 1 1 1 2
> 1 1 1 1 30 4 5 6 2
6 1 1 1 1 31 1 1 1 9
7 1 1 1 1 32 9 9 9 9
8 9 9 9 1 33 9 9 9 2
9 1 1 1 1 34 1 1 1 1
10 11 1 1 35 9 9 9 1
11 9 9 9 1 36 9 9 9 2
12 ? 9 9 1 37 1 1 1 1
13 1 1 1 1 38 1 1 1 2
14 1 1 ! 1 39 9 9 9 9
15 1 1 2 1 40 1 1 1 1
16 1 1 1 1 41 1 1 1 1
17 9 9 9 1 42 9 9 9 9
18 9 9 9 1 43 9 9 9 9
19 9 9 9 1 44 1 1 1 1
20 9 9 9 9 45 1 1 1 1
21 9 9 9 1 46 1 1 1 1
22 9 9 9 9 47 1 1 1 1
23 9 9 9 1 48 1 1 1 1
24 9 9 9 1 49 1 1 1 1
25 9 9 9 9 50 1 1 1 1
Column (1): Patient No. Column (4): Motor Response .
Column (2): Eye Opening. - Column (5): Respiratory Assistance.

Column (3): Verbal Response. 80




Table 5.2 (cont.)

(1)
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

72
73
74

75

(1)

76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

92
93
94
95
96
97
98
99

100

(4)
L

1
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(5)

1
1
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Table 5.3: Clusters for Surviving Class.

Cluster 1 (3 elements)

Surviving Patients
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Table 5.3 (cont.)

Cluster 2 (4 elements)

H s
o
N b= s
ot s

Surviving Patients
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Cluster 3 (68 elements)

Table 5.3 (cont.)

ANNANANNANNNNNNNNNNNNNNNNNNNNNANNNNNNN

LWOOLVYVWOVWVWOVOLOVVLVVLVWYWYOWYWVLYOVLWYWWVLWYWIWVWOWVIWIWOIWOLWLY

NN DO W WD NN N N NN N W0 NN W OD DO LIN W00 L0 00NN LIN W0 Wm W

PIFIII I ISP PP P PP PP PP PP

NANNNNNNNNNHANNNNNNNNNNNNNANNNNNNANANNN

VWVVLWVWVOOVLWYLLOLVLOYYLWOYOVLYWOOVLWOWWOWWYWOWLVLYLWWWOWYIOW VWY

)W) 0O W00 W0 WO N W00 NN 0 W0 0 W10 W0 N W0 W0 N DN LN 0N W0 W0 W0 N N 0o n

B T - s - k- 0 RS K SIS NS S S S S A NS S U S S S U S I I S S B S S

Surviving Patients

84



S

American GNC Corporation Proprietary Data

Table 5.3 (cont.)

Cluster 4 (1 element)

Surviving Patients
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Table 5.3 (cont.)

Cluster 5 (24 elements)

22222222222221221222222

99999999999999999999999

99999999999999999999999

99999999999999999999999

Surviving Patients
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Table 5.4: Clusters for Nonsurviving Class.

Cluster 1 (16 elements)

W D D W W B W W R
NMUITHWO R WU WU OWY
NN HAOUI DO ®UIO = O
ONNORERNNNNNONDONN

Nonsurviving Patients
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Table 5.4 (cont.)

Cluster 2 (28 elements)

WWWWWWIWVIWIWY WYL WYL
WWWWWLIWVIWO WYL WYY
WO WO WIO W WL WO WO W
NHNOWOWHEFWHEWKR D

Nonsurviving Patients
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(coht.)

Table 5.4

!

Cluster 3 (56 elements)

1111111111111111111111111111
1111.11111111111111111.1111111
1111111111111111111111111111

1111111111111111111111111111

1111111111111211211111111111
1111111112111111111111111111
1111111111111111111111111111

111111111111111111111 P s M B B B |

Nonsurviving Patients
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Table 5.5: GPFN Classification.

5 @)

1.0000 1.0000
2.0000 1.0000
3.0000 1.0000
4.0000 1.0000
5.0000 1.0000
6.0000 1.0000
7.0000 1.0000

9.0000 1.0000
10.0000 1.0000
11.0000 1.0000
12.0000 1.0000
13.0000 1.0000
14.0000 1.0000
15.0000 1.0000
16.0000 1.0000
17.0000 1.0000
18.0000 1.0000
19.0000 1.0000
20.0000 1.0000
21.0000 1.0000
22.0000 1.0000
23.0000 1.0000
24.0000 1.0000
25.0000 1.0000

Column (2): Correct Class.
Column (3): Assigned Class.

(3)

2.0000

1.0000

2.0000

2.0000

2.0000

1.0000

1.0000

1.0000

1.0000

1.0000
1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

2.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

Column

(5
Column (6
(7

Column

ment.

Column (1): Patient No. (In clustering order).

Column (4 Response to Surviving Class assignment.

):
):
):
):

American GNC Corporation Proprietary Data

(4)
0.0003

0.9996
1.0000

1.0000

1.0000

1.0032
1.0032
1.0032

1.0032
1.0032

1.0032
1.0032
1.0032
1.0032
1.0032
0.0002
1.0032
1.0032
1.0032
1.0032
1.0032
1.0032
1.0032

(3)
99.9700
0.0379

0.0001
0.0001

0.0001

0.3239
0.3239
0.3239

0.3239
0.3239

0.3239
0.3239
0.3239
0.3239
0.3239
99.9800
0.3239
0.3239
0.3239
0.3239
0.3239
0.3239

0.3239

(6)
-1.0443
~0.0491
-0.0799
-1.0000
-1.0000
-1.0000
-0.0000
~1.0062
-1.0062
-1.0062

-1.0062
~-1.0062

-1.0062
~1.0062
-1.0062
~1.0062
-1.0062
-0.7643
-1.0062
-1.0062

-1.0062
-1.0062

-1.0062
-1.0062

-1.0062

(7

4.4280
95.0930
92.0101

0.0000
0.0000
0.0000 W
99.9998

0.6159

0.6159

0.6159

0.6159
0.6159

0.6159
0.6159
0.6159
0.6159
0.6159
.5658
0.6159
0.6159
0.6159
0.6159
0.6159
0.6159

0.6159

Percent error corresponding to Surviving Class assignment.
Response to Nonsurviving Class assignment.
Percent error corresponding to Nonsurviving Class assign-
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Table 5.5 (cont.) American GNC Corporation Proprietary Data

o @ (3) (4) (5) (6) . (7)
26.0000 1.0000 1.0000.  1.0032  0.3239 -1.0062 0.6159
27.0000 1.0000  2.0000 0.0002 99.9805 -0.5738  42.6219

28.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
29.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
30.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159

31.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
32.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159

33.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
34.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
35.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
36.0000 1.0000 1.0000  1.0032 0.3239 -1.0062 0.6159
37.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
38.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
39.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
40.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159

41.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
42.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159

43.0000 1.0000 1.0000 1.0032 0.3239 ~-1.0062 0.6159
44.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
45.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
46.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
47.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
48.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
49.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159

50.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
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K6 (2) (3) (4) (5) (6) (7)
51.0000 1.0000 1.0000 | 1.0032 0.3239 ~-1.0062 0.6159
52.0000 1.0900 1.0000 1.0032 0.3239 -1.0062 0.6159
53.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
54.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
55.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
56.0000 1.0000 1.0000 1.0032 0.3239 ~-1.0062 0.6159
57.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
58.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
59.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
60.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159

61.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
62.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159

63.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
64.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
65.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
66.0000 1.0000 2.0000 0.0002 99.9800 -0.7643 23.5658
67.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
68.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
69.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
70.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
71.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159

72.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159

73.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
74.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159
75.0000 1.0000 1.0000 1.0032 0.3239 -1.0062 0.6159

- = . . A D = D T GES WD = T MR G - e T S - S IS e b G WP M SR MR D D Tem e G G e
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(1)

76.0000

Table 5.5 (cont.)
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77.0000
78.0000
79.0000
80.0000

81.0000
82.0000

83.0000

84.0000

85.0000

86.0000
87.0000
88.0000
89.0000
90.0000

91.0000
92.0000

93.0000
94.0000
95.0000
96.0000
97.0000
98.0000
99.0000

100.0000

1.0000

1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000

1.0000
1.0000
1.0000
1.0000

1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

2.0000
1.0000

1.0000
2.0000
1.0000
1.0000
1.0000
1.0000

1.0000

1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.0001
1.0000

1.0000
0.0001
1.0000
1.0000
1.0000
1.0000

1.0000

0.0004
0.0004
0.0004
0.0004

0.0004
0.0004

0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004

99.9889
0.0004

0.0004
99.9889
0.0004
0.0004
0.0004
0.0004

0.0004

93

(6)
-0.9998
-1.0134
-1.0134
-1.0134
-1.0134

-1.0134
-1.0134

-1.0134
-1.0134
-1.0134
-1.0134
-1.0134
-1.0134
-1.0134
-1.0134

-0.9963
-1.0134

-1.0134
-0.9963
-1.0134
-1.0134
-1.0134
-1.0134
-1.0134

-1.0134

(7)

0.0176
1.3402
1.3402
1.3402
1.3402

1.3402
1.3402

1.3402
1.3402
1.3402
1.3402
1.3402
1.3402
1.3402
1.3402

0.3687
1.3402

1.3402
0.3687
1.3402
1.3402
1.3402
1.3402
1.3402

1.3402
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Table 5.5 (cont.)

1) (2)
101.0000  2.0000
102.0000  2.0000
103.0000  2.0000
104.0000 2.0000
105.0000  2.0000
106.0000  2.0000
107.0000  2.0000
108.0000  2.0000
109.0000  2.0000
110.0000  2.0000
111.0000  2.0000
112.0000  2.0000
113.0000  2.0000
114.0000  2.0000
115.0000  2.0000

116.0000 2.0000

(3)
1.0000
1.0000
2.0000
1.0000
2.0000
2.0000
1.0000
1.0000
2.0000
2.0000

2.0000
2.0000

2.0000
1.0000

1.0000

(4)
1.0032
1.0032
0.0000
1.0032
0.0000
0.0000
1.0032
1.0032
0.0000
0.0003

0.0000
0.1183

0.0000
1.0032

1.0032

(3)
0.3239
0.3239

100.0000
0.3239
100.0000
100.0000
0.3239
0.3239
100.0000
59.9700

100.0000
88.1680

100.0000
0.3239
0.3239

100.0000

117.0000

118.0000 2.0000

119.0000 2.0000
120.0000 2.0000
121.0000 2.0000
122.0000 2.0000
123.0000 2.0000
124.0000 2.0000
125.0000 2.0000

2.0000
2.0000
2.0000

2.0000
2.0000

2.0000
2.0000

2.0000

0.0001

0.0001
0.0001

0.0001
1.0003

0.0001

94

0.0326
99.9889
99.9889
99.9889

99.9889
99.9889

99.9889
.0326

o

99.9889

(6)
-1.0062
-1.0062
-0.0000
-1.0062
-0.6152
-0.9952
-1.0062
-1.0062
-0.9674
-1.0443

-0.0000

~0.0000
~1.0062
~1.0062
~0.6305
~0.9998
~0.9963
~0.9963
~0.9963

-0.9963
-0.9963

-0.9963
-0.9998

-0.9963
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(7)
0.6159
0.6159

100.0000
0.6159
38.4772
0.4836
0.6159
0.6159
3.2570
4.4280

100.0000
2.4250

100.0000
0.6159
0.6159

36.9480
0.0176
0.3687
0.3687
0.3687
0.3687
0.3687
0.3687
0.0176
0.3687




(1)
126.0000
127.0000
128.0000
129.0000
130.0000
132.0000
133.0000
134.0000
135.0000
136.0000
137.0000
138.0000
139.0000
140.0000
141.0000
142.0000
143.0000

144.0000

Table 5.5 (cont.)

(2)
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

2.0000

2.0000

2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

(3)
2.0000
2.0000
2.0000
2.0000
2.0000
1.0000
2.0000
1.0000
2.0000
2.0000
2.0000
1.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

(4)

1.0003
0.0001
0.0001
1.0003
1.0003
1.0000
0.0001
1.0000
1.0003
1.0003
1.0003
1.0000
1.0003
1.0003
1.0003
1.0003

0.0001

(5)
0.0326
99.9889
99.9889
0.0326
0.0326
0.0004
99.9889
0.0004
0.0326
0.0326
0.0326
0.0004
0.0326
0.0326
0.0326
0.0326

99.9889

145.0000
146.0000
147.0000
148.0000
149.0000
150.0000

2.0000

2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
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0.0001
0.0001
0.0001
0.0001
0.0001

(6)
-0.9998
-0.9963
-0.9963
-0.9998
-0.9998
-1.0134
-0.9963
-1.0134
-0.9998
-0.9998
-0.9998
-1.0134
-0.9998
-0.9998
-0.9998
-0.9998
-0.9963
-0.9998
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
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(7)

0.0176
0.3687
0.3687
0.0176
0.0176
1.3402
0.3687
1.3402
0.0176
0.0176
0.0176
1.3402
0.0176
0.0176
0.0176
0.0176
0.3687
0.0176
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000




(1)
151.0000
152.0000
153.0000
154.0000
155.0000
156.0000
157.0000
158.0000
159.0000
160.0000

161.0000
162.0000

163.0000
164.0000
165.0000
166.0000
167.0000
168.0000
169.0000
170.0000

171.0000
172.0000

173.0000
174.0000
175.0000

Table 5.5 (cont.)

(2)
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

2.0000
2.0000

2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

2.0000
2.0000

2.0000
2.0000

2.0000

(3)
2.0000
2.0000
2.0000
1.0000
2.0000
2.0000
2.0000
1.0000
2.0000
2.0000

1.0000
2.0000

2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

2.0000
2.0000

2.0000
2.0000
2.0000
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(4)
1.0000
1.0000
1.0000
0.9999
1.0000
1.0000
1.0000
0.5945
1.0000
1.0000

0.5945
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
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(5)
0.0001
0.0001
0.0001
0.0096
0.0001
0.0001
0.0001

40.5501
0.0001
0.0001

40.5501
0.0001

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

(6)
-1.0000
-1.0000
-1.0000
-0.0000
-1.0000
-1.0000
-1.0000
-0.0000
-1.0000
-1.0000

-0.0000
-1.0000

-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000

-1.0000

(7)
0.0000
0.0000
0.0000

99.9998
0.0000
0.0000
0.0000

99.9999
0.0000
0.0000

99.9999
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000




(1)

176.0000
177.0000
178.0000
179.0000
180.0000

181.0000
182.0000

183.0000
184.0000
185.0000
186.0000
187.0000
188.0000
189.0000
190.0000
191.0000
192.0000
193.0000
194.0000
195.0000

196.0000
’197.0000
198.0000
199.0000

200.0000

Table 5.5 (cont.)

@

2.0000

2.0000
2.0000
2.0000
2.0000

2.0000
2.0000

2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

2.0000

(3)
2.0000
2.0000
2.0000
2.0000
2.0000

2.0000
2.0000

2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

2.0000
2.0000

2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

2.0000
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(4)
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000
1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

97

(5)
0.0001
0.0001
0.0001
0.0001
0.0001

0.0001
0.0001

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

0.0001
0.0001

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

0.0001

(6)
-1.0000
-1.0000
-1.0000
-1.0000
~1.0000

=1.0000
~-1.0000

-1.0000
-1.0000
~-1.0000
-1.0000
-1.0000
-1.0000
~-1.0000
~-1.0000

-1.0000
-1.0000

-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000

(7)
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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Table 5.6: Direct Encoding Classification. P P

(1) (2) ) (4) (5)

1.0000 1.0000 1.0000 67.0427 7.2231

2.0000 1.0000 1.0000 16.1420 3.6717

3.0000 1.0000 1.0000 67.0427 7.2231

4.0000 1.0000 1.0000 1.6065 0

5.0000 1.0000 1.0000 67.0427 7.2231

6.0000 1.0000 1.0000 67.0427 7.2231

7.0000 1.0000 1.0000 67.0427 7.2231

8.0000 1.0000 1.0000 1.6065 0

9.0000 1.0000 1.0000 67.0427 7.2231
10.0000 1.0000 1.0000 67.0427 7.2231
11.0000 1.0000 1.0000 67.0427 7.2231
12.0000 1.0000 1.0000 67.0427 7.2231
13.0000 1.0000 1.0000 67.0427 7.2231
14.0000 1.0000 1.0000 41.9277 4.3810
15.0000 1.0000 1.0000 67.0427 7.2231
16.0000 1.0000 1.0000 67.0427 7.2231
17.0000 1.0000 1.0000 67.0427 7.2231
18.0000 1.0000 1.0000 23.2131 9.6718
19.0000 1.0000 1.0000 23.2131 9.6718
20.0000 1.0000 1.0000 23.2131 9.6718
21.0000 1.0000 1.0000 67.0427 7.2231
22.0000 1.0000 1.0000 23.2131 9.6718
23.0000 1.0000 2.0000 3.6065 54.8196
24.0000 1.0000 1.0000 67.0427 7.2231
25.0000 1.0000 1.0000 23.2131 9.6718
26.0000 1.0000 1.0000 67.0427 7.2231
27.0000 1.0000 1.0000 67.0427 7.2231
28.0000 1.0000 1.0000 67.0427 7.2231
29.0000 1.0000 1.0000 23.2131 9.6718
30.0000 1.0000 1.0000 23.2131 9.6718
31.0000 1.0000 1.0000 23.2131 9.6718
32.0000 1.0000 1.0000 41.5281 4.6136
33.0000 1.0000 1.0000 67.0427 7.2231
34.0000 1.0000 1.0000 67.0427 7.2231
35.0000 1.0000 1.0000 67.0427 7.2231
36.0000 1.0000 1.0000 67.0427 7.2231
37.0000 1.0000 1.0000 67.0427 7.2231
38.0000 1.0000 1.0000 67.0427 7.2231
39.0000 1.0000 1.0000 67.0427 7.2231
40.0000 1.0000 1.0000 23.2131 9.6718
41.0000 1.0000 1.0000 23.2131 9.6718
42.0000 1.0000 2.0000 1.0000 14.0000

43.0000 1.0000 1.0000 67.0427 7.2231
44.0000 1.0000 1.0000 67.0427 7.2231
45.0000 1.0000 1.0000 23.2131 9.6718

46.0000 1.0000 1.0000 67.0427 7.2231
47.0000 1.0000 1.0000 67.0427 7.2231
48.0000 1.0000 1.0000 23.2131 9.6718
49.0000 1.0000 1.0000 67.0427 7.2231
50.0000 1.0000 1.0000 67.0427 7.2231

Column (1): Patient No. Column (4): Response to Surviving Class assignment.
Column (2): Correct Class. Column (5): Response to Nousurviving Class assignment.

Column (3): Assigned Class.
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Table 5.6 (cont.)

(1)

51.0000
52.0000
53.0000
54.0000
55.0000
56.0000
57.0000
58.0000
59.0000
60.0000
61.0000
62.0000
63.0000
64.0000
65.0000
66.0000
67.0000
68.0000
69.0000
70.0000
71.0000
72.0000
73.0000
74.0000
75.0000
76.0000
77.0000
78.0000
79.0000
80.0000
81.0000
82.0000
83.0000
84.0000
85.0000
86.0000
87.0000
88.0000
89.0000
90.0000
91.0000
92.0000
93.0000
94.0000
95.0000
96.0000
97.0000
98.0000
99.0000
100.0000

(2)

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
.0000
.0000
.0000
.0000
.0000
1.0000
1.0000
1.0000
1.0000

= e
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3)

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
2.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
2.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

1.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
2.0000

()

67.0427
67.0427
67.0427
23.2131
67.0427
67.0427
67.0427
67.0427
67.0427
67.0427
23.2131

3.6065
67.0427
15.3437
23.2131
67.0427

1 67.0427

67.0427
23.2131
15.3437
23.2131
23.2131
67.0427
67.0427
67.0427
67.0427
67.0427

3.6065
67.0427
67.0427
67.0427
67.0427
23.2131
67.0427
23.2131
67.0427
67.0427
41.9277
67.0427
23.2131
67.0427
67.0427
67.0427
23.2131
67.0427
67.0427
67.0427
67.0427
67.0427

2.8196

(3)

7.2231
7.2231
7.2231
9.6718
7.2231
7.2231
7.2231
7.2231
7.2231
7.2231
9.6718
54.8196
7.2231
12.8196
9.6718
7.2231
7.2231
7.2231
9.6718
12.8196
9.6718
9.6718
7.2231
7.2231
7.2231
7.2231
7.2231
54.8196
7.2231
7.2231
7.2231
7.2231
9.6718
7.2231
9.6718
7.2231
7.2231
4.3810
7.2231
9.6718
7.2231
7.2231
7.2231
9.6718
7.2231
7.2231
7.2231
7.2231
7.2231
33.8819




Table 5.6 (cont.)

(1)

101.0000
102.0000
103.0000
104.0000
105.0000
106.0000
107.0000
108.0000
109.0000
110.0000
111.0000
112.0000
113.0000
114.0000
115.0000
116.0000
117.0000
118.0000
119.0000
120.0000

121.0000
122.0000
123.0000
124.0000
125.0000
126.0000
127.0000
128.0000
129.0000
130.0000
131.0000
132.0000
133.0000
134.0000
135.0000
136.0000
137.0000
138.0000
139.0000
140.0000
141.0000
142.0000
143.0000
144.0000
145.0000
146.0000
147.0000
148.0000
149.0000
150.0000

©

2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
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3)

2.0000
1.0000
2.0000
2.0000
2.0000
2.0000
2.0000
1.0000
2.0000
2.0000
1.0000
1.0000
2.0000
2.0000
2.0000
2.0000
1.0000
1.0000
1.0000
2.0000
1.0000
2.0000
1.0000
1.0000
2.0000
2.0000
2.0000
2.0000
2.0000
1.0000
2.0000
2.0000
1.0000
2.0000
1.0000
1.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000

(4)

3.6065
67.0427
3.6065
1.0000
3.6065
3.6065
3.6065
15.3437
3.6065
3.6065
15.3437
15.3437
3.6065
3.6065
2.8196
3.6065
15.3437
15.3437
15.3437
1.0000
15.3437
1.0000
15.3437
15.3437
1.0000
1.0000
3.6065
3.6065
2.1875
67.0427
0
1.0000
23.2131
3.6065
15.3437
23.2131
3.6065
2.1875
1.0000
3.6065
3.6065
1.0000
1.0000
3.6065
3.6065
3.6065
3.6065
3.6065
3.6065
3.6065

()

54.8196

7.2231
54.8196
14.0000
54.8196
54.8196
54.8196
12.8196
54.8196
54.8196
12.8196
12.8196
54.8196
54.8196
33.8819
54.8196
12.8196
12.8196
12.8196
14.0000
12.8196
14.0000
12.8196
12.8196
14.0000
14.0000
54.8196
54.8196
34.5140

7.2231

2.0000
14.0000

9.6718
54.8196
12.8196

9.6718
54.8196
34.5140
14.0000
54.8196
54.8196
14.0000
14.0000
54.8196
54.8196
54.8196
54.8196
54.8196
54.8196
54.8196




Table 5.6 (cont.)

(1)

151.0000
152.0000
153.0000
154.0000
155.0000
156.0000
157.0000
158.0000
159.0000
160.0000
161.0000
162.0000
163.0000
164.0000
165.0000
166.0000
167.0000
168.0000
.169.0000
170.0000
171.0000
172.0000
173.0000
174.0000
175.0000
176.0000
177.0000
178.0000
179.0000
180.0000
181.0000
182.0000
183.0000
184.0000
185.0000
186.0000
187.0000
188.0000
189.0000
190.0000
191.0000
192.0000
193.0000
194.0000
195.0000
196.0000
197.0000
198.0000
199.0000
200.0000

(2)

2.0000

2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
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(3)
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
1.0000
2.0000
2.0000
2.0000
1.0000
1.0000
2.0000
2.0000
2.0000
1.0000
2.0000
1.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000
1.0000
2.0000
2.0000
1.0000
2.0000
1.0000
2.0000
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(4)
3.6065
3.6065
3.6065
3.6065
3.6065
3.6065
3.6065
3.6065
3.6065
3.6065
3.6065

67.0427
0
3.6065
0.6065
67.0427
67.0427
3.6065
0.3679
3.6065
23.2131
3.6065
16.1420
0
3.6065
3.6065
3.6065
3.6065
3.6065
3.6065

3.6065
0.1353
1.0000
3.6065
1.0000
3.6065
3.6065
1.0000
3.6065
0
1.0000
3.6065
3.6065
15.3437
3.6065
3.6065
67.0427
1.0000
67.0427
0

(5)

54.8196
54.8196
54.8196
54.8196
54.8196
54.8196
54.8196
54.8196
54.8196

54.8196
54.8196

7.2231
1.0000
54.8196
2.2131
7.2231
7.2231
54.8196
1.9744
54.8196
9.6718
54.8196
3.6717
1.0000
54.8196
54.8196
54.8196
54.8196
54.8196
54.8196

54.8196

1.1353
14.0000
54.8196
14.0000
54.8196
54.8196
14.0000
54.8196

2.0000
14.0000
54.8196
54.8196
12.8196
54.8196
54.8196

7.2231
14.0000

7.2231

1.0000
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Chapter 6

Conclusions

This Phase I project demonstrated the use of a Gaussian Potential Function Network for
classification of trauma care data. The summary of the project effort and accomplishments

as well as recommendations for future work are as follows.

6.1 Summary of Research Effort and Accomplish-
ments

o A Gaussian Potential Function Network (GPFN) architecture was created that allows
the differentiation of patient categories that correspond to trauma severity levels.
These classes constitute the basis for field triage. The GPFN is based on a collection
of Guassian Potential Function Units (GPFUs) that are positioned at feature space
locations characterized by the statistics of the data distributions such as the mean

and the standard deviation.

e The GPFN has been shown to be "trainable” through modification of the amplitudes,
the means and the covariance matrices of the GPFUs so as to allow a desired class

integer declaration.
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o The fuzzy c-means clustering algorithm was employed to separate the data into pos-
sible different groups representing their natural spatial distribution. An additional
algorithm was used to establish the most likely number of clusters. This information
is used with the fuzzy c-means algorithm which requires a priori specification of the

number of clusters anticipated in the data.

e An additional classification approach was presented that is simple and direct. It in-
volves assignment of a gaussian function to each data point of a given class. This
method allows the direct representation of the frequency of occurrence of feature vec-
tors among the various classes and has a foundation in the multidimensional proba-

bility density estimation techniques.

The results obtained provide a solid basis and powerful tools for trauma care classification
efforts. This Phase I research also opens several opportunities for further investigations of

the challenging problems faced by the important field of trauma care classification.

6.2 Recommendations for Future Work

6.2.1 Expanded Data Base

To capture the core statistical validity of the trauma care classification problem there is a
need to expand its dependency on an extensive data base. The data base must contain the
largest possible number of past records compatible with the Army’s expected utilization
scenarios so that the classification answers have a firm foundation in past observations.
The classification algorithms examined in the Phase I effort provide a faithful depiction of
the statistical prevalence of past feature vectors. This is in contrast with other approaches
which impose mathematical constructs that may not always be truly representative of past

experience as reflected in the data structure.
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6.2.2 Feature Set Selection

The trauma care classification act is effected through a set of variables that have been
found by medical researchers through past experience and knowledge as being useful for
such an act. Variables are related to vital signs (such as, pulse, blood pressure and level of
consciousness) as key determinants of organ and tissue damage. Variables are used that are
linked to cardiovascular, respiratory and central nervous system functions. Variables that
have been investigated as correlating with trauma care classification purposes include pulse,
skin color, bleeding, injury region, injury type, respiratory rate, respiratory expansion,
systolic blood pressure, capillary refill, eye opening, best verbal response and best motor
response. It is of interest to investigate which variables, in combination, among the many
proposed in the past, provide the best predictive capabilities for trauma care classification.

This can be done within the classification framework of the Phase I results.

6.2.3 Trauma Care Classification Scores

Various trauma scores have been created through the years in an attempt to capture by
means of field measurable variables the degree of trauma severity. Among the most promi-
nent efforts in this area are Dr. H. Champion’s Trauma Score (TS), the Abbreviated Injury
Scale (A.LS.) published in 1971 as a single comprehensive system for rating tissue damage
sustained in motor-vehicle accidents, the Injury Severity Score (ISS) developed in 1974 to
evaluate motor-vehicle victims with multiple injuries, the CRAMS scale and others. These
scores attempt to categorize the degree of severity of trauma patients and some (such as
the TS and CRAMS) are specifically designed for field triage of trauma victims to trauma
centers. It is of significant interest to correlate the classification declarations of the algo-
rithms developed in this effort with the corresponding major trauma score values. This will
provide a substantive validation and enhance acceptance of both the classification approach

and the successful trauma related score formulations.
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6.2.4 Hardware for Field Use

A computer-like small, portable, trauma care classification system will find an important
use by the Army in the field. The constantly improving state-of-the-art techniques in hard-
ware design, miniaturization and manufacture of circuits, circuit boards, signal processing
and software programming make such a system easy-to-use and convenient-to-carry. The
system will acquire, process, display, record and store trauma care related information.
Also, the system will provide extended output ports to peripheral devices, such as PC
computers, pen recorders, and display monitors for post data processing and analysis, ink
recording and large screen displaying. The objective is to produce a general and useful
device to allow trauma care classification to be effected in the field environment. The soft-
ware will not only be capable of accommodating the classification algorithms developed
under this project but will also be able to compute and display any desired trauma score,

such as TS or ISS, given the corresponding input variables values.
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