<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB212361</td>
</tr>
</tbody>
</table>

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies and their contractors; Critical Technology; Jan 96. Other requests shall be referred to WLFIGC, Eigth St., Wright-Patterson AFB, OJ r454433.

AUTHORITY

AFRL Ltr., 14 Sep 99
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITE GOVERNMENT-RELATED PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY OBLIGATION WHATSOEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS LICENSING THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

This technical report has been reviewed and is accepted for publication.

William J. Gillard
WILLIAM J. GILLARD
Project Engineer
Control Dynamics Branch

Siva S. Banda
SIVA S. BANDA, Chief
Control Dynamics Branch
Flight Control Division

David P. Lemaster
DAVID P. LEMASTER, Chief
Flight Control Division
Flight Dynamics Directorate

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify WL/FIGC, 2210 Eighth St. Suite 11, WPAFB OH 45433-7521 to help maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.
The following notice applies to any unclassified (including originally classified and now declassified) technical reports released to "qualified U.S. contractors" under the provisions of DoD Directive 5230.25, Withholding of Unclassified Technical Data From Public Disclosure.

NOTICE TO ACCOMPANY THE DISSEMINATION OF EXPORT-CONTROLLED TECHNICAL DATA

1. Export of information contained herein, which includes, in some circumstances, release to foreign nationals within the United States, without first obtaining approval or license from the Department of State for items controlled by the International Traffic in Arms Regulations (ITAR), or the Department of Commerce for items controlled by the Export Administration Regulations (EAR), may constitute a violation of law.

2. Under 22 U.S.C. 2778 the penalty for unlawful export of items or information controlled under the ITAR is up to two years imprisonment, or a fine of $100,000, or both. Under 50 U.S.C., Appendix 2410, the penalty for unlawful export of items or information controlled under the EAR is a fine of up to $1,000,000, or five times the value of the exports, whichever is greater; or for an individual, imprisonment of up to 10 years, or a fine of up to $250,000, or both.

3. In accordance with your certification that establishes you as a "qualified U.S. Contractor", unauthorized dissemination of this information is prohibited and may result in disqualification as a qualified U.S. contractor, and may be considered in determining your eligibility for future contracts with the Department of Defense.

4. The U.S. Government assumes no liability for direct patent infringement, or contributory patent infringement or misuse of technical data.

5. The U.S. Government does not warrant the adequacy, accuracy, currency, or completeness of the technical data.

6. The U.S. Government assumes no liability for loss, damage, or injury resulting from manufacture or use for any purpose of any product, article, system, or material involving reliance upon any or all technical data furnished in response to the request for technical data.

7. If the technical data furnished by the Government will be used for commercial manufacturing or other profit potential, a license for such use may be necessary. Any payments made in support of the request for data do not include or involve any license rights.

8. A copy of this notice shall be provided with any partial or complete reproduction of these data that are provided to qualified U.S. contractors.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.
INNOVATIVE CONTROL EFFECTORS (ICE)

E. L. Roetman, S. A. Northcraft, and J. R. Dawdy

Boeing Defense and Space Group
P.O. Box 3999, M/S 4C-61
Seattle WA 98124-2499

Flight Dynamics Directorate
Wright Laboratory
Air Force Materiel Command
Wright-Patterson AFB OH 45433-7562

Distribution authorized to U.S. Government agencies and their contractors; Critical Technology; Jan 1996. Other requests for this document shall be referred to WL/FIGC, 2210 Eighth St, Suite 11, Wright-Patterson OH 45433-7521

This report describes a joint U.S. Air Force - U.S. Navy sponsored investigation of innovative aerodynamic control concepts for fighter aircraft without vertical tails. Land-based and carrier-based configurations were analyzed to determine the flying qualities, performance, and aircraft-level integration impacts of the innovative controls. Six control concepts were evaluated for their potential to provide sufficient lateral-directional control power to a highly maneuverable tailless fighter. They were: (1) split ailerons; (2) movable chine strakes; (3) seamless leading and trailing edge flaps; (4) pneumatic forebody devices; (5) wing leading edge blowing; (6) wing mounted yaw vanes. After a preliminary screening, only the first two and a new concept, variable dihedral horizontal tails were chosen for further investigation. Detailed evaluations of the three selected controllers against baseline fighter configurations with vertical tails included low-speed, high-speed, and high AOA flying qualities performance, structural weight and subsystem integration impacts, signature performance, and carrier suitability impacts. The variable dihedral horizontal tail was evaluated as the best all-round control effector of those investigated. The split aileron and movable chine strake was ranked 2nd and 3rd, respectively.
FOREWORD

This technical report summarizes research performed by The Boeing Defense & Space Group, Seattle, Washington 98124 on the Innovative Control Effectors (ICE) Study between October 1994 and January 1996 under Air Force Contract F33615-94-C-3609. The ICE study was co-sponsored by Wright Laboratory, Wright Patterson Air Force Base, Ohio and Naval Air Warfare Center of Warminster, Pennsylvania. Mr. William J. Gillard, WL/FIGC and Mr. Steve Hynes, NAWCADWAR were the technical monitors for this contract with Mr. Gillard serving as the USAF Program Manager.

The Boeing Defense & Space Group (BD&SG) Program Manager was Dr. Ernest L. Roetman, Chief Aerodynamicist of the Flight Organization. The overall Principal Investigator was Mr. Stephen A. Northcraft. Mr. John R. Dawdy was Principal Investigator for the Aerodynamic Stability and Control Study, Task 2. Other key personnel included:

- H. Beaufreere: Aerodynamic Stability and Control
- D. Gilmore: Aerodynamic Stability and Control
- J. Kuta: Aerodynamic Stability and Control
- A. Meeker: Aerodynamic Stability and Control
- J. O'Callaghan: Aerodynamic Stability and Control
- R. Dailey: Flight Control System Development
- J. Montgomery: Flight Control System Development
- W. Herling: Computational Fluid Dynamics
- T. Lowe: Signature Analysis
- W. Price: Mechanical/Electrical Systems
- J. Ott: Cost Analysis
- W. Dean: Mass Properties
- W. Mannick: Mass Properties
- W. Moore: Configuration Integration
- W. Bigbee-Hanson: Propulsion
- S. Bockmeyer: Graphics
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF ACRONYMS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xi</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>2.0 TASK 1 - VEHICLE AND EFFECTOR SELECTION</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Selection of Baseline Vehicle</td>
<td>7</td>
</tr>
<tr>
<td>2.2 Selection of Study Effectors</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Flight Condition Selection</td>
<td>11</td>
</tr>
<tr>
<td>3.0 TASK 2 - EFFECTOR PERFORMANCE STUDY</td>
<td>12</td>
</tr>
<tr>
<td>3.1 Flight Condition Selection and Study Guidelines</td>
<td>13</td>
</tr>
<tr>
<td>3.2 Database Descriptions and Limitations</td>
<td>15</td>
</tr>
<tr>
<td>3.3 Flight Control System Description</td>
<td>19</td>
</tr>
<tr>
<td>3.4 Effector Study Results (including Thrust Vectoring)</td>
<td>30</td>
</tr>
<tr>
<td>3.5 Carrier Suitability Performance</td>
<td>58</td>
</tr>
<tr>
<td>3.6 Summary of Performance Study</td>
<td>80</td>
</tr>
<tr>
<td>4.0 TASK 3 - EFFECTOR INTEGRATION STUDY</td>
<td>82</td>
</tr>
<tr>
<td>4.1 Effector Integration Overview</td>
<td>82</td>
</tr>
<tr>
<td>4.2 Actuation Study</td>
<td>87</td>
</tr>
<tr>
<td>4.3 Carrier Suitability Requirements</td>
<td>91</td>
</tr>
<tr>
<td>4.4 Thrust Vectoring Integration</td>
<td>94</td>
</tr>
<tr>
<td>4.5 Radar Cross Section Analysis</td>
<td>99</td>
</tr>
<tr>
<td>4.6 Summary of Integration Results</td>
<td>101</td>
</tr>
<tr>
<td>5.0 TASK 4 - RISK ASSESSMENT AND REDUCTION PLAN</td>
<td>102</td>
</tr>
<tr>
<td>5.1 Aerodynamic Performance Risk Assessment</td>
<td>103</td>
</tr>
<tr>
<td>5.2 Integration Risk Assessment</td>
<td>105</td>
</tr>
<tr>
<td>5.3 Risk Assessment and Reduction Summary</td>
<td>106</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>CONCLUDING REMARKS</td>
</tr>
<tr>
<td>7.0</td>
<td>REFERENCES</td>
</tr>
</tbody>
</table>

APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Summary of Candidate Control Effectors</td>
</tr>
<tr>
<td>B</td>
<td>Summary of Performance Results</td>
</tr>
<tr>
<td>C</td>
<td>Summary of Signature Data</td>
</tr>
<tr>
<td>D</td>
<td>Summary of Analysis of Variable Dihedral Horizontal Tail Concepts</td>
</tr>
<tr>
<td>E</td>
<td>Boeing Model-24F and Wind Tunnel Model 1798 Geometry Characteristics</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Title</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1 Innovative Control Effectors (ICE) Program Overview</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2.1-1 Baseline Test Database</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.1-2 Baseline Aircraft</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.2-1 Innovative Control Effector Options</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.3-1 Analysis Flight Conditions</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3.1-1 Performance Study Flight Conditions</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3.1-2 Longitudinal and Directional Stability Level for Model-24F</td>
<td>15</td>
</tr>
<tr>
<td>Figure 3.2-1 Lift and Pitching Moments with Alpha Limits</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3.3-1 Flight Control Law Block Diagrams</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.3-2 Use of Control Effectors by the Flight Control System</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.3-3 Control Effector Limits</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.4.1-1 Takeoff and Approach</td>
<td>32</td>
</tr>
<tr>
<td>Figure 3.4.1-2 Roll Control Effectiveness Landing Approach</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.4.1-3 Roll Control Effectiveness Approach-Thrust Vectoring</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.4.2-1 Power On Departure Stall</td>
<td>36</td>
</tr>
<tr>
<td>Figure 3.4.2-2 Departure Stall - Roll Rate Time Constant</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.4.2-3 Departure Stall - Roll Performance</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.4.2-4 Departure Stall - Lateral-Directional Dynamics</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.4.3-1 Air Combat Maneuver Corner Speed</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.4.3-2 Longitudinal Control in Maneuvering Flight - Baseline/Rotating Tail</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.4.3-3 Maximum Sustained Load Factor at Mid Altitude</td>
<td>44</td>
</tr>
<tr>
<td>Figure 3.4.3-4 Air Combat Maneuver Corner Speed</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.4.4-1 Penetration Speed</td>
<td>46</td>
</tr>
<tr>
<td>Figures 3.4.4-2 Maximum Sustained Local Factor - Penetration</td>
<td>48</td>
</tr>
<tr>
<td>Figures 3.4.4-3 Longitudinal Control in Maneuvering Flight - Penetration Speed</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.4.5-1 Maximum Sustained Load Factor</td>
<td>51</td>
</tr>
<tr>
<td>Figure 3.4.5-2 Maximum Sustained Load Factor at High Altitude - Subsonic</td>
<td>52</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>3.4.5-3</td>
<td>Longitudinal Control in Maneuvering Flight - Maximum Sustained</td>
</tr>
<tr>
<td>3.4.6-1</td>
<td>Supersonic Condition</td>
</tr>
<tr>
<td>3.4.6-2</td>
<td>Sustained Load Factor at High Altitude - Supersonic Penetration</td>
</tr>
<tr>
<td>3.4.6-3</td>
<td>Longitudinal Control in Maneuvering Flight - Supersonic Condition</td>
</tr>
<tr>
<td>3.5-1</td>
<td>Pop-up Maneuver-RPAS Simulation Results</td>
</tr>
<tr>
<td>3.5-2</td>
<td>Pop-up Maneuver - Comparison between RPAS and MEATBALL</td>
</tr>
<tr>
<td>3.5-3</td>
<td>Wave-off Maneuver-RPAS Simulation Data</td>
</tr>
<tr>
<td>3.5-4</td>
<td>Wave-off Maneuver - Comparison between RPAS and MEATBALL</td>
</tr>
<tr>
<td>3.5-5</td>
<td>Level Flight Longitudinal Acceleration</td>
</tr>
<tr>
<td>3.5-6</td>
<td>Flight Path Stability-Comparison between RPAS and MEATBALL</td>
</tr>
<tr>
<td>3.5-7</td>
<td>Flight Path Stability-RPAS Comparison to Baseline</td>
</tr>
<tr>
<td>3.5-8</td>
<td>Landing Approach Nose Down Pitch Acceleration - 22° Angle-of-Attack</td>
</tr>
<tr>
<td>3.5-9</td>
<td>30 Knot at 90° Crosswind</td>
</tr>
<tr>
<td>3.5-10</td>
<td>30 Knot at 90° Crosswind - Rotating Tails, Spit Aileron with Thrust Vectoring</td>
</tr>
<tr>
<td>3.5-11</td>
<td>Carrier Suitability Roll Rate Summary</td>
</tr>
<tr>
<td>3.5-12</td>
<td>Dutch Roll Characteristics</td>
</tr>
<tr>
<td>3.5-13</td>
<td>V_{mc} with Right Engine Out</td>
</tr>
<tr>
<td>3.5-14</td>
<td>Catapult Launch</td>
</tr>
<tr>
<td>3.5-15</td>
<td>Critical Requirements for Carrier Takeoff and Approach</td>
</tr>
<tr>
<td>3.6-1</td>
<td>Flight Condition and Flying Qualities Items</td>
</tr>
<tr>
<td>4.1-1</td>
<td>Benefits from Removing Vertical Tail</td>
</tr>
<tr>
<td>4.1.1-1</td>
<td>Chine Strake Installation</td>
</tr>
<tr>
<td>4.1.2-1</td>
<td>Split Aileron Installation</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>4.1.3-1</td>
<td>Rotating Horizontal Tail Installation</td>
</tr>
<tr>
<td>4.1.3-2</td>
<td>Cycles vs. Hinge Moment</td>
</tr>
<tr>
<td>4.2-1</td>
<td>Electrical and Hydraulic Actuator Candidates</td>
</tr>
<tr>
<td>4.3-1</td>
<td>Approach Speed</td>
</tr>
<tr>
<td>4.3-2</td>
<td>Mark 7 Mod 3 Arresting Engine</td>
</tr>
<tr>
<td>4.3-3</td>
<td>USN Baseline Weight Buildup</td>
</tr>
<tr>
<td>4.4-1</td>
<td>Thrust Vectoring Nozzle Mounting Concepts</td>
</tr>
<tr>
<td>4.4-2</td>
<td>Thrust Vectoring Nozzle Concepts</td>
</tr>
<tr>
<td>4.4-3</td>
<td>Thrust Vectoring Figures-of-Merit</td>
</tr>
<tr>
<td>4.4-4</td>
<td>Determinant-Attribute Model</td>
</tr>
<tr>
<td>4.5-1</td>
<td>Signature Comparison 50%</td>
</tr>
<tr>
<td>4.5-2</td>
<td>Signature Comparison 96%</td>
</tr>
<tr>
<td>5.0-1</td>
<td>Risk Rating Guide</td>
</tr>
<tr>
<td>5.1-1</td>
<td>Future Testing</td>
</tr>
<tr>
<td>5.1-2</td>
<td>Performance Risk Assessment</td>
</tr>
<tr>
<td>5.2-1</td>
<td>Integration Risk Assessment</td>
</tr>
<tr>
<td>5.3-1</td>
<td>BMA-S-1768-6A Model</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6DOF</td>
<td>Six Degrees of Freedom</td>
</tr>
<tr>
<td>A/A</td>
<td>Air-to-Air</td>
</tr>
<tr>
<td>A/G</td>
<td>Air-to-Ground</td>
</tr>
<tr>
<td>ACM</td>
<td>Air Combat Maneuver</td>
</tr>
<tr>
<td>ADAPT</td>
<td>Data Plotting Program</td>
</tr>
<tr>
<td>AGPS</td>
<td>Aerodynamic Grid & Panel System</td>
</tr>
<tr>
<td>AEOLAS</td>
<td>Aeroelastic Prediction Code</td>
</tr>
<tr>
<td>AOA</td>
<td>Angle-of-Attack</td>
</tr>
<tr>
<td>ARBSCAT</td>
<td>Signature Prediction Code</td>
</tr>
<tr>
<td>BD&SG</td>
<td>Boeing Defense & Space Group</td>
</tr>
<tr>
<td>BMA</td>
<td>Boeing Military Airplanes</td>
</tr>
<tr>
<td>BSWT</td>
<td>Boeing Supersonic Wind Tunnel</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>EHA</td>
<td>Electro Hydraulic Actuator</td>
</tr>
<tr>
<td>EMA</td>
<td>Electro Mechanical Actuator</td>
</tr>
<tr>
<td>FCS</td>
<td>Flight Control System</td>
</tr>
<tr>
<td>FDWT</td>
<td>Flight Design Weight</td>
</tr>
<tr>
<td>IA</td>
<td>Integrated Actuator</td>
</tr>
<tr>
<td>ICE</td>
<td>Innovative Control Effectors</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared Radiation</td>
</tr>
<tr>
<td>IRAD</td>
<td>Internal Research and Development</td>
</tr>
<tr>
<td>JAST</td>
<td>Joint Advanced Strike Technology</td>
</tr>
<tr>
<td>JAF</td>
<td>Joint Strike Fighter</td>
</tr>
<tr>
<td>KEHS</td>
<td>Equivalent air speed in knots</td>
</tr>
<tr>
<td>LaRC</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>LE</td>
<td>Leading Edge</td>
</tr>
<tr>
<td>LO</td>
<td>Low Observable</td>
</tr>
<tr>
<td>LQR</td>
<td>Linear Quadratic Regulator</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>LRU</td>
<td>Line Replaceable Unit</td>
</tr>
<tr>
<td>MAC</td>
<td>Mean Aerodynamic Center</td>
</tr>
<tr>
<td>MRF</td>
<td>Multi-Role Fighter</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NAWCADWAR</td>
<td>Naval Air Warfare Center, Aircraft Division, Warminster, PA</td>
</tr>
<tr>
<td>PANAIR</td>
<td>Panel method potential flow code</td>
</tr>
<tr>
<td>PIO</td>
<td>Pilot Induced Oscillation</td>
</tr>
<tr>
<td>PLTSUM</td>
<td>Total Vehicle Signature Budgeting Code</td>
</tr>
<tr>
<td>RCAH</td>
<td>Pitch Rate Command Altitude Hold</td>
</tr>
<tr>
<td>RCS</td>
<td>Radar Cross Section</td>
</tr>
<tr>
<td>RM&S</td>
<td>Reliability, Maintainability, and Supportability</td>
</tr>
<tr>
<td>RPAS</td>
<td>Rapid Prototype Analysis System</td>
</tr>
<tr>
<td>SCFN</td>
<td>Spherical Convergent Flap Nozzle</td>
</tr>
<tr>
<td>SI</td>
<td>Structurally Integrated</td>
</tr>
<tr>
<td>SISO</td>
<td>Single-Input Single-Output</td>
</tr>
<tr>
<td>TE</td>
<td>Trailing Edge</td>
</tr>
<tr>
<td>TV</td>
<td>Thrust Vectoring</td>
</tr>
<tr>
<td>TOGW</td>
<td>Takeoff Gross Weight</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>USN</td>
<td>United States Navy</td>
</tr>
<tr>
<td>WL</td>
<td>Wright Laboratory</td>
</tr>
<tr>
<td>XPATCH</td>
<td>Ray Trace, Physical Optics Signature Prediction Code</td>
</tr>
</tbody>
</table>
List of Symbols

\[
\begin{align*}
CL & \quad \text{Lift Coefficient} \\
CL_0 & \quad \text{Lift Coefficient at Zero Angle of Attack} \\
CL_\alpha & \quad \text{Rate of Change of Lift Coefficient with Respect to Angle of Attack (}/\text{degree}) \\
V_{mc} & \quad \text{Minimum Control Speed (knots)} \\
V_{STALL} & \quad \text{Stall Speed (knots)} \\
V_s & \quad \text{Stall Speed (knots)} \\
V_{pa} & \quad \text{Velocity of Approach (knots)} \\
U & \quad \text{Forward Velocity in Body Axis x-direction (knots)} \\
V & \quad \text{Velocity in Body Axis y-direction (knots)} \\
W & \quad \text{Velocity in Body Axis z-direction (knots)} \\
P & \quad \text{Roll Rate (radian/sec)} \\
R & \quad \text{Yaw Rate (radian/sec)} \\
Q & \quad \text{Pitch Rate (radian/sec)} \\
Q_{bar} & \quad \text{Dynamic Pressure (lbs/Ft}^2) \\
n_z & \quad \text{Load factor for pitch control inputs} \\
N_z & \quad \text{Load factor for pitch control inputs} \\
\dot{q} & \quad \text{Pitch Acceleration (radians/sec}^2) \\
k & \quad \text{Break Point Frequency} \\
s & \quad \text{Transform Frequency Variable} \\
\alpha & \quad \text{Angle of Attack (degrees)} \\
\alpha_{app} & \quad \text{Angle of Attack for Carrier Approach (degrees)} \\
\beta & \quad \text{Side Slip Angle (degrees)} \\
\frac{\delta \gamma}{\delta \nu} & \quad \text{Flight Path Stability (degrees/knot)} \\
\Delta \frac{\delta \gamma}{\delta \nu} & \quad \text{Difference in Flight Path Stability Slopes (degrees/knot)} \\
\omega_{\text{nd}} & \quad \text{Undamped Natural Frequency of the Dutch Roll Oscillation (radians/sec)}
\end{align*}
\]
List of Symbols Contd.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ζ_d</td>
<td>Damping Ratio of the Dutch Roll Oscillation</td>
</tr>
<tr>
<td>ϕ</td>
<td>Bank Angle (degrees)</td>
</tr>
<tr>
<td>Γ_H</td>
<td>Dihedral Angle of the Rotating Tail (degrees)</td>
</tr>
</tbody>
</table>
SUMMARY

This report reviews work performed by the Boeing Company under USAF contract F33615-94-C-3609 Innovative Control Effectors (ICE). This is a joint Air Force and Navy program whose purpose is to develop and analyze aerodynamic control devices applicable to modern tactical aircraft where it is desired to eliminate or at least severely reduce the size of the vertical tail surfaces for reduced vehicle signature. The program addresses the development of a control device, or set of devices, effective across the broad flight envelope of tactical aircraft with minimal size, weight, cost and aerodynamic hinge moments. All this to be achieved while maintaining acceptable vehicle signature properties. Careful attention is to be given to the performance, signature and integration issues associated with the devices.

This document reports on the activity of the first phase of the two phase ICE program. Phase I covers initial selection and development of devices along with preliminary screening analysis for effectiveness. A proposed Phase II will concentrate on the testing and validation of selected effectors deemed to have the most promise. This contract was divided into four distinct tasks:

(1) Selection of a baseline vehicle concept and the identification of a set of control devices to study.

(2) The effector performance study selected three devices for detailed study and assessed their performance alone and in combination.

(3) The effector integration study task looked at the system impact of the chosen effectors.

(4) The risk reduction study addressed the technical risks associated with the selected effectors/and proposed future work to reduce the risks of implementation.

A baseline vehicle concept with which to evaluate control device effectiveness was required for realistic evaluation. The selected vehicle for this work was a Boeing advanced tactical aircraft concept, designated the Model-24F, a single engine, diamond wing, chined forebody configuration with conventional empennage designed for both air-to-air and air-to-ground missions as part of the multirole fighter design study. The vehicle and the corresponding data base was described in detail in the body of the report. As this is a joint services program, two baselines were carried, the
second being a vehicle with proposed adjustments (such as increased wing area, ...) to accommodate Navy specific performance and operational objectives.

The effectors initially chosen for study as offering the best potential for satisfying the operational requirements were a pneumatic forebody device, a movable chine/strake, wing leading edge blowing, wing mounted yaw vanes, split ailerons and seamless leading edge and trailing edge which was later replaced with a unique variable dihedral horizontal tail. A representative set of six flight conditions was chosen for assessing the effectiveness of the concepts.

The performance study was a dominant part of this effort. After initial performance screening, the number of effectors for detailed analysis was reduced to two concepts, chine stakes and split ailerons, as having the most promise of satisfying the requirements. In the search for a more promising device the concept of a variable dihedral (rotating) horizontal tail was proposed. These three concepts were then analyzed in greater detail. The performance of chine strakes was after further study deemed below that desired, and their integration into the vehicle posed such difficulty that this concept was not fully studied. The split aileron concept was found to be adequate for marginal control at low angles of attack, but its effectiveness dropped off dramatically at angles of attack above ten degrees. For the more stringent carrier suitability requirements it was not adequate.

The rotating horizontal tail was found to be effective throughout the flight envelope of interest including carrier operations. It therefore received the most attention.

Performance studies for the combined effectiveness of the rotating tail and split ailerons were conducted to determine the gains that might be achieved with integrated multiple aerodynamic effectors. For completeness, a limited comparison with the inclusion of thrust vectoring was done.

The performance analysis of the control effectiveness was done by defining an appropriate, integrated, modern set of control laws for the baseline configuration and the control device configurations. The control laws were then combined with the available aerodynamic data and subsequently included in full six degree of freedom vehicle simulations to investigate the control device characteristics and the vehicle flying qualities.
The feasibility of using any control effector is dependent on how it is to be incorporated into the vehicle. Successful incorporation requires the efforts of several technical disciplines investigating issues of structure, actuation, weight, signature, cost and the operational demands.

The integration of chine strakes has many difficulties. The forebody area near the cockpit is critical real estate for radar systems and a sensitive area for signature control. Since the performance of this device was of limited effectiveness, a complete integration was not performed.

The integration of the split aileron exposed concerns for the thickness of the outboard wing, the actuation concept and the effects on the radar cross section. These issues were investigated in some detail.

The rotating horizontal tail shows great promise if it can be reasonably incorporated into a vehicle design. Since this is a unique concept without a design history, it required additional effort at integration. The developed actuation concept did not have an excessive weight penalty. Within an appropriate design philosophy it seems that this is a viable concept worthy of further investigation.

Risk is apparent in incorporating any of the actuator concepts, both in performance and integration. The risks associated with each selected effector are outlined in the report. Additional data are needed in each case, but especially for the rotating tail which has no significant data base due to its novelty. Additional wind tunnel testing focused on the data sparsity for application of these concepts will significantly reduce the risk in transitioning the concepts to application.
Innovative Control Effectors

Task 1 - Vehicle and Effector Selection

Baseline aircraft selection

Assess control power requirements

Define set of innovative control effectors

- WL/FIGC input

Task 2 - Effector Performance Study

Initial evaluation

- Wind tunnel data

- Analytical methods

Downselect and size three effectors

Preliminary control system 6DOF analysis

Flying qualities performance evaluation

Task 3 - Effector Integration Study

Integration trade study for 3 effectors:

- Actuation (hinge moments)
- Thrust vectoring
- Weight
- Configuration integration
- Signature
- Structure
- Carrier suitability

Actuation

Thrust vectoring

RCS

Task 4 - Effector Risk Reduction

Angle-of-attack requirements

- Identify risk elements
- Risk reduction plan
- Testing requirements

Sideslip requirements

Figure 1. Innovative Control Effectors (ICE) Program Overview
1.0 Introduction

The purpose of the Innovative Control Effectors (ICE) program is to develop and analyze innovative aerodynamic control devices that might be applied to joint advanced strike aircraft with either nonexistent or reduced size vertical tail surfaces. This contract addresses the continuing need to develop new aerodynamic control effectors which are effective across a broad flight envelope with minimal integration impact while maintaining acceptable vehicle signature properties.

The objective of this contract is to develop a control effector or set of effectors which will achieve the goal of reducing or eliminating the vertical tail surfaces while maintaining vehicle lethality and improving survivability. The focus of this contract is to study the performance and integration issues associated with innovative control effectors, and develop an effector, or set of effectors, which can be integrated into future aircraft and achieve the goals stated above.

The overall ICE effort is divided into two phases. Phase I covers the initial development and preliminary analysis of the candidate effectors, while Phase II will concentrate on the testing and validation of the chosen effector concepts.

This contract is focused on the Phase I efforts and is divided into four distinct tasks. The first task is the selection of the baseline vehicle concept and the identification of a set of control effectors for inclusion in this study. The second task, the effector performance study, consists of the final selection of a set of three effectors for detailed analysis and conducting an assessment of the performance characteristics of these effectors separately and in combination. This assessment includes detailed 6 degree of freedom (6DOF) analysis using the Boeing Rapid Prototype Analysis Program (RPAS) to build a preliminary flight control system for the baseline aircraft with these effectors. The third task, the effector integration study, addresses a broad range of integration issues involving multiple technologies and the impact on the overall system of each selected effector. The final task addresses the technical risks and requirements for further development associated with the selected effector concept(s). The purpose of this task is to develop an overall risk reduction scheme and propose testing and other validation exercises which will reduce the risks associated with introducing new control effector schemes onto advanced aircraft.
As a joint Air Force and Navy contract, certain aspects of the contract were unique to each of the services. The selection of the baseline vehicle required carrying two baseline aircraft to separately assess the aircraft carrier unique operational requirements of USN aircraft and reconfiguring the vehicle layout to meet the specific performance and operational objectives.
2.0 Task 1

2.1 - Selection of Baseline Aircraft

The baseline aircraft chosen for this effort was the Boeing developed advanced tactical aircraft designated the Model-24F, which is a single engine, diamond wing configuration with a conventional empennage designed for both the air-to-air and air-to-ground missions. The wing design is similar to the F-22, with standard control surfaces including ailerons, flaperons, horizontal tail, and rudders. Thrust vectoring (TV) is available on the baseline vehicle, resulting in reduced empennage size to take advantage of this capability. The reduced vertical fin size results in directionally unstable aircraft at supersonic speeds, but stability is augmented by sideslip feedback to the rudders. Extensive wind tunnel data are available for this configuration and are summarized in Figure 2.1-1. For these tests, two complete wind tunnel models, 12.5% and 5% scale, were constructed and tested at NASA's Langley Research Center and at Boeing-Seattle. These tests resulted in a database ranging in velocity from 0.05 to 2.50 Mach. The vehicle characteristics are summarized in Figure 2.1-2, the geometry is described in Appendix E. Flight characteristics of the baseline vehicle are included in the performance data assembled in Appendix B.

Note that a second baseline aircraft was defined (see Section 4.3) to meet the USN carrier suitability requirements.
- Model -24

General
- 1998 technology, 2005 IOC
- Single crew
- FDWT: mission TOGW – 0.5 internal fuel
- Design LF: 9g @ FDWT, GR/TP structure
- Q-placard: 2,130 psf, M1.2 @ S.L.
- Maximum internal fuel capacity (lb) 8,690
- Installed avionics (lb) 1,598

Weights
- Takeoff gross weight 34,720
- FDWT 25,460
- Operating weight empty 19,980
- Mach, combat/max 0.9 / 2.2

Propulsion (lb)
- Sea level static A/B, installed (lb)
- T/W @ takeoff gross weight
- Nozzle 2-D/C-D, TV
- Inlet Fixed

Geometry
- Wing area, ref (sq ft) 465
- W/S @ takeoff gross weight (psf) 74.7
- Wing aspect ratio/taper 2.20 / 0.13
- Wing sweep, LE/TE (deg) 47.5 / 17.0
- Wing t/c @ (SOB/tip) (%) 4.5 / 3.0

Figure 2.1-2. Baseline Aircraft
2.2 - Selection of the Study Effectors

The initial list of possible candidates for study during this effort is shown in Figure 2.2-1. From this original list of candidate devices, the following were chosen for further study:

- Pneumatic Forebody Vortex Control
- Moveable Chine/Strake
- Wing Leading Edge Blowing
- Wing Mounted Yaw Vanes
- Split Aileron Devices
- Seamless Moveable Leading Edges and Trailing Edges

The criterion for selecting these devices was that they exhibit the greatest potential for meeting the objectives of the study. A secondary criterion was to study devices which differed in the primary axis of operation, the location on the vehicle, and the flow physics involved in the effector operation. The above concepts were chosen because they offered the best potential for meeting the performance enhancement goals of this contract with minimal impact on integration. A summary of each of the control options shown in Figure 2.2-1 is included in Appendix A.

Reduction from six to three effectors resulted from further analysis of the six effectors to more effectively screen them for those that looked to be the most promising effectors. The baseline vehicle database was reviewed and its flying qualities simulated. The simulation was adjusted to assess the relative effectiveness of the individual control element. The down selection was guided by the criteria that the primary focus of the study was lateral-directional control capacity, that there be possibility for realistic integration of the control element and that the effectors be distributed around the vehicle.

We readily agreed to select the moveable chine/strake and split aileron devices. The choice of the third effector was more difficult, and it was finally resolved by introducing the concept of variable dihedral all moving tail elements "rotating tail" concept that became the third effector.
<table>
<thead>
<tr>
<th>Control effector</th>
<th>Primary control function</th>
<th>Benefits</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porous forebody</td>
<td>Yaw and pitch control</td>
<td>Improves yaw control at moderate and high alphas. This yaw control is used to roll around the velocity vector.</td>
<td>Operating phenomena not well understood. Supersonic characteristics unknown. Limited database. Stealth may be poor. Hard to integrate with radar.</td>
</tr>
<tr>
<td>Pneumatic forebody vortex control</td>
<td>Yaw and pitch control</td>
<td>Improves yaw control at moderate and high alphas. This yaw control is used to roll around the velocity vector.</td>
<td>Limited success on chined forebodies. Unknown supersonic characteristics. Signature impact unknown and hard to integrate with radar.</td>
</tr>
<tr>
<td>Nose yaw vanes</td>
<td>Yaw control</td>
<td>Improves yaw control at moderate and high alphas. This yaw control is used to roll around the velocity vector.</td>
<td>Stealth may be poor. Integration with radar is difficult.</td>
</tr>
<tr>
<td>Vortex flaps, outboard fraction of wing span</td>
<td>Yaw and pitch control</td>
<td>Exploits special features of the leading edge vortex on highly swept wings.</td>
<td>May not be effective at 1 g or at supersonic speeds.</td>
</tr>
<tr>
<td>Differential H tail for moderate and high alpha yaw control</td>
<td>Yaw and roll control</td>
<td>Enhance roll capability. Roll around the velocity vector.</td>
<td>Larger actuator range. Complex software. Simultaneous control issues.</td>
</tr>
<tr>
<td>Differential canard deflections for moderate and high alpha yaw control</td>
<td>Yaw and roll control</td>
<td>Enhance roll capability. Roll around the velocity vector.</td>
<td>High signature levels.</td>
</tr>
<tr>
<td>Pivoting wing tips for side force</td>
<td>Low alpha side force</td>
<td>Exploits flat turn for heading agility. Stealth during air-to-ground maneuvering.</td>
<td>Heavy. Defeats the concept.</td>
</tr>
<tr>
<td>Fuselage mounted vanes side force</td>
<td>Low alpha side force</td>
<td>Skid turns for stealth air-to-ground weapon delivery.</td>
<td>May not be a net stealth improvement.</td>
</tr>
<tr>
<td>Differential leading edge flaps for roll control</td>
<td>Roll control</td>
<td>Improves roll control.</td>
<td>Roll reversal occurs, consequently need special software combined with a thorough database to define the reversal alpha with Mach and flexibility effects.</td>
</tr>
<tr>
<td>Seamless LEF and TEF hinges</td>
<td>L/D and stealth improvement</td>
<td>Extrapolation of MAW technology. Eliminates the seams associated with conventionally hinged flaps.</td>
<td>4 bar linkages are heavy and complex.</td>
</tr>
<tr>
<td>Wing tip split panel flaps</td>
<td>Yaw control</td>
<td>Can be used to replace the rudders. Good alt low alpha. Effective for all alphas. Effective for full flight envelope.</td>
<td>Supersonic characteristics not well known. Defeats stealth if used at 1 g.</td>
</tr>
<tr>
<td>Wing mounted yaw vanes mounted like spoilers or pop up vanes</td>
<td>Yaw control</td>
<td>Can be used to replace the rudders. Good alt low alpha. Effective for all alphas. Effective for full flight envelope.</td>
<td>Supersonic characteristics not well known. Defeats stealth if used at 1 g.</td>
</tr>
<tr>
<td>Speed brake using crossed controls</td>
<td>Speed brake functions</td>
<td>Eliminates a dedicated speed brake panel. Saves empty weight. Improves stealth by deleting seams.</td>
<td>May not meet deceleration goals.</td>
</tr>
<tr>
<td>Wing leading edge blowing</td>
<td>Lift enhancement, roll control</td>
<td>Maintain attached vortex wing flow to higher angles-of-attack.</td>
<td>Weight penalty, interference with standard high lift system.</td>
</tr>
<tr>
<td>Circulation control (wing trailing edge blowing)</td>
<td>Lift enhancement, roll control</td>
<td>Increased wing circulation and lift at given flight condition.</td>
<td>Weight penalty, integration with trailing edge flaps.</td>
</tr>
<tr>
<td>Variable dihedral horizontal tail</td>
<td>Yaw and pitch control</td>
<td>Remove vertical tails lower RCS</td>
<td></td>
</tr>
<tr>
<td>Trust vectoring with inflight thrust reversing</td>
<td>Speed brake functions</td>
<td>Eliminates a dedicated speed brake panel. Saves empty weight. Improves stealth by deleting seams.</td>
<td>Expensive and heavy, and non-stealthy. Poor IR and RCS.</td>
</tr>
<tr>
<td>Trust vectoring pitch</td>
<td>Pitch control</td>
<td>Allows size of the horizontal tail to be reduced. Excellent low speed control for takeoff rotation. Significantly improves airplane pitch agility.</td>
<td>Difficult to compensate for operations at near flight idle. Expensive, heavy, and non-stealthy. Poor IR.</td>
</tr>
<tr>
<td>Trust vectoring yaw</td>
<td>Yaw control</td>
<td>Maybe the answer to making a finless airplane. Full flight envelope yaw control.</td>
<td>Difficult to compensate for operations at near flight idle. Expensive, heavy, and non-stealthy. Poor IR.</td>
</tr>
</tbody>
</table>

Figure 2.2-1. Innovative Control Effector Options
2.3 Flight Condition Selection

In evaluating the chosen effectors, a representative set of flight conditions was chosen for assessing the vehicle performance. These conditions were selected to offer a wide range of operational capability to adequately determine the control characteristics of each of these effectors. The conditions chosen are summarized in Figure 2.3-1.

![Figure 2.3-1. Analysis Flight Conditions](image-url)
3.0 TASK 2 - EFFECTOR PERFORMANCE STUDY
The primary focus of the effector performance study was to evaluate the selected effectors and determine if Level 1 flying qualities could be achieved for a fighter size aircraft without a vertical tail or one of reduced size. No matter how effective a control surface is at high angle of attack, if it cannot be used to achieve adequate flying qualities in the normal flight regime, it may not be a viable option. Consequently this performance study will be valuable in the selection of realistic innovative control effectors. Of course, combinations of effectors may meet specific requirements in some flight regimes if the significance of the requirement will support the weight and cost penalties. The high angle of attack evaluation was beyond the scope of the current aerodynamic data base.

Three effectors were used in the performance study:
- Split Ailerons
- Chine Strakes
- Rotating Tail

The effectors were evaluated individually with the vertical tails removed. Additionally the baseline Model-24F (with vertical tails and rudders) was evaluated to provide a reference performance baseline. Limited evaluation of a combination of Rotating Tail and Split Ailerons with and without 2 axis thrust vectoring was also conducted. The performance study was conducted with an operating flight control system due to the instability of the configuration about the longitudinal axis, for subsonic speeds, and directionally with the vertical tails off.
3.1 Flight Condition Selection and Study Guidelines

The performance study was conducted at six flight conditions which were selected with WL/FIGC and NAWC concurrence. These conditions are summarized in Figure 3.1-1.

<table>
<thead>
<tr>
<th>Flight Condition</th>
<th>Gross Weight (lbs)</th>
<th>Altitude (ft)</th>
<th>V_e/Mach</th>
<th>Leading Edge Flaps</th>
<th>Trailing Edge Flaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeoff and Approach</td>
<td>25,000</td>
<td>1,000</td>
<td>132 kts</td>
<td>TO/LDG</td>
<td>30'</td>
</tr>
<tr>
<td>Power-On Departure Stall</td>
<td>27,000</td>
<td>15,000</td>
<td>Maximum Database Angle of Attack</td>
<td>Transonic Maneuver</td>
<td></td>
</tr>
<tr>
<td>Air Combat Maneuver Corner Speed</td>
<td>27,000</td>
<td>15,000</td>
<td>0.6</td>
<td>Transonic Maneuver</td>
<td>0</td>
</tr>
<tr>
<td>Penetration Speed</td>
<td>27,000</td>
<td>1,000</td>
<td>600 kts</td>
<td>Transonic Cruise</td>
<td>0</td>
</tr>
<tr>
<td>Maximum Sustained Load Factor</td>
<td>27,000</td>
<td>30,000</td>
<td>0.9</td>
<td>Transonic Maneuver</td>
<td>0</td>
</tr>
<tr>
<td>Supersonic Condition</td>
<td>27,000</td>
<td>35,000</td>
<td>2.0</td>
<td>Supersonic Cruise</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 3.1-1 Performance Study Flight Conditions

These flight conditions are also plotted on the flight envelope shown in Figure 2.3-1.

The Boeing Rapid Prototype Aircraft Simulation (RPAS) software tool was used to compute trims and maneuver time histories at the flight conditions. The performance of the airplane, with the various effectors, was evaluated against MIL-F-8785C and MIL-STD-1797A. The criteria selected did not include control force requirements because it was assumed that an artificial "feel" system would be used and could be tailored to meet the specifications.

The evaluation was conducted at the aft center of gravity (38% MAC) which was assumed to be the critical condition. An active flight control system was included for all of the performance studies due to the instability of the Model-24F. The configurations were longitudinally unstable at aft center of gravity for subsonic speeds and with the vertical tails removed the vehicle was directionally unstable at all Mach numbers. The longitudinal and directional stability levels are shown in Figure 3.1-2.

The evaluation of the rotating tail effector was limited to a single fixed dihedral configuration in this study in order to reduce the impact on the flight control system. Inclusion of horizontal tail dihedral variation in the control system results in multiple
solutions for trim and control inputs. The weighting functions required for the automatic selection of dihedral angle must be developed with additional testing and evaluation of other criteria than aerodynamic forces and moments. For this performance study the rotating tail effector was fixed at 20° of dihedral on each side.
3.2 Database Description and Limitations

The Model-24F aerodynamic data base used in the RPAS simulation is based on wind tunnel test data along with analytical results described below. The wind tunnel test data included a test in the Langley Unitary Tunnel, conducted in May of 1991, a Langley 8 ft Transonic test, LaRC 1039 conducted in September 1992, and a transonic/supersonic test in the Boeing Supersonic Wind Tunnel, BSWT 633 conducted in August 1995. The BSWT 633 test included the use of the transonic insert to allow test at Mach numbers down to 0.4. Analytical studies were conducted using the Boeing AEOLAS program which is a code based on a linear potential flow code called PANAIR. The AEOLAS program was used to estimate rate derivatives and to assess the impact of configuration changes for which no wind tunnel test data are available.

The aerodynamic data base covers the Mach range from 0.2 to 2.2 and is structured to allow the user to select tails on or off and which effectors are operational. The aerodynamic data are referenced to body station 475 (35% MAC) and the moments transferred to the user selected center of gravity.

The range of Mach number, angle of attack, and sideslip for each of the tests is shown in Figure 3.1-2. The simulation database limits are -4° ≤ α ≤ 22° and -10° ≤ β ≤ +10°. Figure 3.2-1 shows an example of the lift and pitching moment curves with the simulation database limits. These data are from a test in the Langley 12 ft tunnel conducted in October of 1991. These data show that the simulation data base is valid down to approximately 1.2 VSTALL. The test data at higher angles of attack from the 12 ft test was at very low speed and was not extensive enough to allow for its inclusion in the aerodynamic database.

The sideslip limits were eliminated for the carrier suitability study and the simulation was allowed to extrapolate on the database. This was done to allow the carrier landing crosswind studies to be completed.

The mass model used in the performance study was simplified since the majority of the study was conducted at one gross weight and center of gravity. No change in inertia's with weight and center of gravity were programmed. The inertia's in the mass model were changed for the carrier suitability portion of the study.
Horizontal and Vertical Tail On
Mach = 0.05
Data Source: LaRC 12 ft Wind Tunnel Test (Oct/Nov 1991)

Figure 3.2-1 Lift and Pitching Moments with Alpha Limits
A simplified engine model of the F119 thrust class was also used. Engine dynamics were approximated using first order lags. The gross thrust and ram drag were implemented as a function of Mach number and altitude. This engine model was not developed as part of the ICE contract but was one used for a number of Boeing IRAD studies over the years.

No landing gear dynamic model was included in the MEATBALL model for the carrier performance study. A drag increment due to landing gear deployment was included as part of the aerodynamic model.
3.3 Flight Control System Description

The evaluation of effectiveness of control elements requires a baseline operational capability. The as drawn, as tested vehicle, the Model-24F, that we are using in this study is longitudinally unstable at aft CG in subsonic flight, thereby, requiring a flight control system definition in enough detail to have a meaningful simulation for operational flying qualities. A flight control system has been developed for the Model-24F based on the aerodynamic data base for modeling in the simulation program RPAS. Figure 3.3-1 illustrates a summary diagram of the flight control law.

The flight control system was optimized, subject to some constraints such as rate and position limits, for the baseline and the effector configurations to provide the most realistic simulation. The control laws developed are very integrated, blending all the available effectors to optimize the total control effectiveness of the overall vehicle. Figure 3.3-2 presents a summary of the use by the flight controls system of the various effectors and combinations of effectors.

There are limiting values to effector operations in both the extremes and rates. For reference, Figure 3.3-3 contains a list of the effector limits assumed for this study.
Figure 3.3-1 Flight Control Law Block Diagram
<table>
<thead>
<tr>
<th>With Vertical Tails</th>
<th>Without Vertical Tails</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>Split Allerons</td>
</tr>
<tr>
<td>no TV</td>
<td>no TV</td>
</tr>
<tr>
<td>6 Effectors</td>
<td>6 Effectors</td>
</tr>
<tr>
<td>- Left Horizontal Tail</td>
<td>- Left Horizontal Tail</td>
</tr>
<tr>
<td>- Right Horizontal Tail</td>
<td>- Right Horizontal Tail</td>
</tr>
<tr>
<td>- Left Rudder</td>
<td>- Right Rudder</td>
</tr>
<tr>
<td>- Left Alleron</td>
<td>- Right Alleron</td>
</tr>
<tr>
<td>- Right Alleron</td>
<td>- Right Upper Alleron</td>
</tr>
<tr>
<td>- Right Chine Strake</td>
<td>- Right Lower Alleron</td>
</tr>
</tbody>
</table>

Additional effectors not controlled by the FCS:
- Left Flap
- Right Flap
- Left Leading Edge
- Right Leading Edge
- Throttle

- Each effector controlled individually
- Each effector contributes to:
 - Pitch (Commanded \(n_z \))
 - Roll (Commanded Roll Rate)
 - Yaw (Commanded Slipslip)
- FCS mixes control input for optimal results

Figure 3.3.2 Use of Control Effectors by the Flight Control System
<table>
<thead>
<tr>
<th>Effector</th>
<th>Deflection limits</th>
<th>Rate limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Stabilizers Incidence</td>
<td>±30°</td>
<td>100 deg/sec</td>
</tr>
<tr>
<td>Horizontal Stabilizers Dihedral</td>
<td>±20°</td>
<td>20 deg/sec</td>
</tr>
<tr>
<td>Rudder</td>
<td>±30°</td>
<td>100 deg/sec</td>
</tr>
<tr>
<td>Allerons</td>
<td>±30°</td>
<td>100 deg/sec</td>
</tr>
<tr>
<td>Split Allerons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Upper</td>
<td>45°TEU</td>
<td>100 deg/sec</td>
</tr>
<tr>
<td>• Lower</td>
<td>45°TEU</td>
<td>100 deg/sec</td>
</tr>
<tr>
<td>Chine Strakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>118° from Side of Body</td>
<td>100 deg/sec</td>
</tr>
<tr>
<td>Thrust Vectoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pitch</td>
<td>±30°</td>
<td>100 deg/sec</td>
</tr>
<tr>
<td>• Yaw</td>
<td>±30°</td>
<td>100 deg/sec</td>
</tr>
</tbody>
</table>

Figure 3.3-3 Control Effectors Limits
3.3.1 Nonlinear Control Mappings

Chine Strakes. Because the aero model data showed the chine strakes having very low incremental control effectiveness at deflection angles below 28 deg, the nonlinear control mapping was set up to bias both chine strakes at this nominal value. A single strake input signal is mapped into both strakes by commanding differential motion around this nominal bias value. For example, a strake command of +10 deg is mapped into 18 deg for the left strake and 38 deg for the right. For commands greater than the bias value, one strake simply goes to its 0 deg limit. An upper limit of 73 deg was also imposed, even though the model permits strake angles up to 118 deg, because the aero data show a reversal of control effectiveness beyond 73 deg. By biasing at the "knee" of the effectiveness curve in this way, the combined control moment generated by both strakes becomes an approximately linear function of the command. Without this approach, the strake command effectiveness would show a near-deadband effect at low commanded angles, which would be likely to cause limit cycle behavior in the control system.

Split Ailerons. These four surfaces are biased at a nominal 5 deg value, in a manner similar to the chine strakes. The 5 deg bias value was chosen by examining two-dimensional maps of the effectiveness of upper and lower split ailerons on both roll and yaw. They display a "knee" of control effectiveness near this value. Both roll and yaw commands are mapped into the four surfaces through a simple mapping matrix, and summed with the nominal 5 deg bias settings. Hard limits are applied to the results at the 0 deg and 45 deg deflection limits.

Rotating Tail. The control law does not directly command tail dihedral angles, because realistic servo response time and inertial coupling effects might permit only a slow loop bandwidth through this feedback path. Instead, only the left and right tail incidence angles are commanded over a ±30 deg range, with the tail dihedral angles fixed at the RPAS simulation user's settings, ranging over ±20 deg. Independent pitch and yaw commands from the longitudinal and lateral control laws are mapped into these two incidence angles. The yaw command is scaled by the reciprocal of the dihedral angle over a 5 to 20 deg dihedral range, to provide approximately constant yaw control sensitivity allowing for the tail dihedral angles to vary.
3.3.2 Linear Multivariable Control Law Design

Control Mixer Matrix As the overview diagram of Figure 3.3-1 shows, the control law gain matrices directly produce only three output commands, which are "pseudo-control" signals commanding certain blends of pitch, roll, and yaw moment. These blended signals are mapped into commands to each actuator by an additional control mixer gain matrix called V, see Figure 3.3-1. For the "linear" control surfaces (conventional ailerons, rudders, nonrotating horizontal tails, and pitch and yaw thrust vectoring) these outputs of the matrix V are sent directly to the control surface servos. For the "nonlinear" control surfaces (split ailerons,chine strakes, rotating tail incidence angles) the outputs of V are passed through the nonlinear control mappings described above to produce control surface commands.

Using the control mixer matrix V allows the control law to use the least-squares optimal blend of all available control surfaces to produce roll, pitch, and yaw using minimal total control surface activity. The matrix V is calculated for each flight condition and for each configuration set of control surfaces, using linear least squares matrix theory. This allows each surface to be used simultaneously for roll, pitch, and yaw in proportion to its control effectiveness in each axis. For this reason, it increases the maximum vehicle performance when compared against the traditional technique of assigning ailerons for roll only, rudders for yaw only, etc., in a single-input single-output (SISO) control system.

This technique also differs from a better-known pseudo-control method in which the columns of the V matrix attempt to provide pure, decoupled roll, pitch, and yaw moments. That technique, called the pseudo-inverse method, tends to degrade the loop stability margins in vehicles with strong roll-yaw coupling. In contrast, Boeing's method preserves the loop stability margins. One side-effect is that the signals labeled "pseudo-roll" and "pseudo-yaw" in the diagram do not actually command pure roll and yaw moments: they command certain optimal blends of moments and forces that depend on the vehicle's natural cross-axis coupling.

H-infinity state feedback design. Boeing has developed a set of very efficient techniques for designing the multivariable feedback and feed forward gain matrices using H-infinity optimal control theory. These allow the designer to specify the desired closed-loop dynamic responses (pole locations and cross-axis decoupling behavior) and to produce a corresponding gain matrix with little or no design iteration. The
design process was repeated for each of six control surface configurations: baseline, split ailerons, chine strakes, rotating tail, split ailerons with rotating tail, and baseline with split ailerons, rotating tail, and thrust vectoring. For each configuration, a "point design" was produced for each of four flight conditions: takeoff/approach, corner speed, penetration speed, and supersonic. The remaining flight conditions were covered by interpolating these gain matrices versus the reciprocal of dynamic pressure. Each point design consisted of a longitudinal and a lateral gain matrix design, for a total of 48 gain matrices. The baseline design was performed under IR&D funding, the others under contract.

The efficient H-infinity method allowed all eight gain matrices for each configuration to be designed in, typically, a single afternoon. Much less trial and error was required than would have been needed for either LQR (linear quadratic regulator) multivariable control or for conventional SISO control law designs.

Implicit integration for anti windup. The control law uses integrating feedback on the three commanded variables: stability-axis roll rate, sideslip angle, and normal acceleration Nz. (The Nz regulator actually uses a blend of Nz with speed acceleration Udot, as explained below.) Integrating feedback is desirable because it drives steady-state tracking error to zero. Conventional integrating control laws require special care to properly initialize the integrator states and to prevent them from "winding up" or ramping during control surface saturation. Boeing has developed a technique called implicit integration that prevents these problems and simplifies the implementation of integrating control laws. This technique was applied to the ICE control law, eliminating the need for special integrator logic to reinitialize the integrator states or to freeze them during saturation. The benefit is significant, since integrator logic can occupy more lines of code than the linear control law gains in conventional controllers.

3.3.3 Longitudinal axis control law

Nz-Alpha mapping. The stick command is interpreted as a commanded increment to normal acceleration Nz in units of g, above what is required to maintain a straight-line flight path at the current flight path angle \(\gamma \). In this way, zero stick force will always command a straight-line flight path when the wings are level. To do this, the commanded increment Nz_stick is summed with \(\cos(\gamma) \), which is 1 g in level flight.
Without this \(\cos(\gamma) \) compensation, \(N_z \) regulators tend to cause mild flight path instability when attempting to hold a steady climb or descent.

Both the commanded and measured total \(N_z \) values are converted into nominally equivalent values of angle of attack \(\alpha \). This is done using the standard formulas relating lift coefficient \(CL \), dynamic pressure \(Q_{bar} \), wing area, and weight to \(N_z \). \(CL \) is assumed to be a linear function of angle of attack \(\alpha \): \(CL = CL_0 + CL_\alpha \alpha \). Nominal values of \(CL_0 \), \(CL_\alpha \), wing area, and weight are used by the control law.

The equivalent commanded and measured values of \(\alpha \), based on the \(N_z \) values, are labeled \(\text{Alpha}_{N_z \text{ cmd}} \) and \(\text{Alpha}_{N_z} \) in the diagram. The regulator uses these instead of using \(N_z \) values directly. The reason is to accommodate high-\(\alpha \) flight regimes, when \(CL_\alpha \) changes sign and an \(N_z \) regulator could become unstable. At high-\(\alpha \) conditions, \(N_z \) to \(\alpha \) mapping can blend the \(N_z \)-equivalent \(\alpha \) values with true \(\alpha \) values, so that the control law becomes an \(\alpha \) regulator. Doing this with a smooth blending function as \(\alpha \) approaches stall allows the vehicle to be flown into post-stall conditions with no mode switching by the pilot.

Meanwhile, basing the regulator on \(N_z \) in normal flight allows the control law to be self-trimming. While flying post-stall was not required for ICE, this structure was retained in the controller to permit such use in the future.

\textbf{\(N_z \)-Udot regulator.} At landing and approach speeds, it is desirable to slightly modify the response of a pure \(N_z \) regulator. If, for instance, the airplane held \(N_z \) firmly at 1.1 g at low airspeeds, \(\alpha \) would have to increase rapidly to compensate for the rapidly dropping airspeed as the flight path curved upward. This can cause unexpected stalls with only small values of steady stick force. To prevent this, the landing/approach control law gain matrices were designed to provide a low-frequency "washout" behavior in \(N_z \) command tracking. In effect, the quantity being tracked by the regulator is a blend of \(N_z \) with speed acceleration \(U_{\dot{\text{dot}}} = \frac{dU}{dt} \), so that the stick step response is an initial jump in \(N_z \) followed by a steady airspeed deceleration while \(N_z \) returns to its straight-line value of \(\cos(\gamma) \). The controller structure remains the same as shown in the diagram: the \(U_{\dot{\text{dot}}} \) regulation behavior is provided implicitly by the appropriate proportional feedback gain terms on \(U \).
Command shaping filter. While regulation of Nz is desirable for auto-trim behavior over a time scale of many seconds, the stick response of a "tight" Nz regulator can cause undesirable flying qualities on a shorter, transient time scale. Specifically, pilots expect the "nose to follow the stick" on a short time scale, meaning that pitch rate, not Nz, should be proportional to stick force. A tight Nz regulator would ordinarily cause high levels of pitch rate overshoot and "bobble tendency." But since a pitch rate regulator is not auto-trimming and causes flight path instability at low airspeeds, we need to combine the best of both schemes.

We have resolved this problem by inserting a unity-gain lag-lead command shaping filter in the feed forward path. Airplanes have a natural transmission zero in their response from pitch moment to pitch rate, caused by the effect of CL_α on lift and flight path as an airplane pitches. The transmission zero frequency is typically near 1 rad/s for the Model-24F. The shaping filter places a pole at this zero frequency and a zero at a higher frequency near 4 rad/s. The effect is to make the stick response mimic that of a pitch rate command attitude hold (RCAH) system on a short time scale, restoring good flying qualities for pitch acquisition tasks. At the same time, the high-gain Nz regulator provides tight control over Nz and Alpha during aggressive roll maneuvers, as well as providing auto-trim. Also, the filter still provides a direct (no-lag) gain term from stick to control surfaces to help prevent pilot-induced oscillation (PIO) from excessive lag.

3.3.4 Lateral-Directional Axis Control Law.

The multivariable control law regulates two variables in the lateral-directional axis: roll rate p and sideslip angle β. The commands are normally generated by processing lateral stick force and pedal force through appropriate deadbands and shaping functions. For unpiloted simulation studies, the control law can accept p and β commands directly. There is no artificial separation of control surfaces into "roll-only" and "yaw-only" sets as in classical single-input single-output (SISO) design. The control law gain matrix is free to command all available control surfaces to track both commands. Generally the lateral-directional gain matrix maps roll rate, sideslip angle, and yaw rate into two commands to the "pseudo-roll" and "pseudo-yaw" inputs of the control mixer matrix V, see Figure 3.3-1. The V matrix, designed by the Singular Value Decomposition technique, then maps these commands into the full set of control effectors. The control law uses integrating feedback to drive steady-state command tracking error to zero for both p and β.

27
3.3.5 Standard Sensor Processing

Air-referenced and inertial-referenced measurements of angle of attack α, sideslip angle β, and body-axis velocities U, V, and W (in the x, y, and z body axes respectively) are passed through a standard set of first-order complementary filters. The purpose is for the feedback law to use air-referenced measurements at low frequencies and inertial-referenced measurements at high frequencies. Each complementary filter applies a transfer function of $\frac{k}{s+k}$ to the air-referenced input and $\frac{s}{s+k}$ to the inertial input, where k is a breakpoint frequency in radians per second. A typical value of k is 0.3 rad/s. This reduces the system sensitivity to air data noise. Most control laws use only the α and β signals, but U, V, and W are provided for use in hover-mode control laws for STOVL vehicles.

The estimated angle of attack α from the complementary filter is used to derive stability-axis rotation rates, velocities, and accelerations from the body-axis values reported by the sensors. Standard transformations involving $\sin(\alpha)$ and $\cos(\alpha)$ are applied. Also, a stability-axis direction cosine matrix is derived from the body-axis matrix. This can be used when stability-axis Euler angles such as bank angle ϕ are used by the feedback law.

Gravity-compensated values of roll rate p, pitch rate q, and yaw rate r are made available to the control law by calculating the contributions to the rotation rates of the vehicle caused by the acceleration of gravity for the vehicle's current flight path and inertial speed. These gravity increments are subtracted from the measured rotation rates, and the results can be used by the control law when desired. The benefit of this is to prevent the control law from "fighting against gravity" during rapid maneuvers such as rolls. Without gravity compensation, for example, a control law using yaw rate feedback may produce strong attitude-dependent rudder commands in a sustained roll as it fights gravity's tendency to yaw the vehicle back and forth. This effect is most pronounced at low speeds.

3.3.6 Automatic Command Limiting.

Boeing has developed a powerful real-time optimization method for preventing cross-axis coupling between pitch, roll, and yaw commands during aggressive maneuvers or large sudden disturbances that produce control saturation. This technique is distinct
from the implicit integration method used to prevent integrator windup during control saturation. The Boeing automatic command limiting method allows penalty weights to be assigned to each controlled variable (e.g., roll rate, sideslip angle, and Nz) so that the controller will allow tracking errors in the lower-priority controlled variables first, rather than incurring tracking errors in all variables at once. For example, without command limiting, applying a very large roll rate command can cause excessive sideslip angle to develop when the ailerons or rudders are saturated. With command limiting, the control system will automatically "back off" from the commanded roll rate just enough so that tight regulation of sideslip can be maintained. These command limits are implicit in the position and rate limits of the control surfaces themselves, and are not arbitrarily imposed. This allows the full maneuver performance envelope of the vehicle to be realized safely.
3.4 Effector Study Results (including Thrust Vectoring)

Overview
The individual effectors and effector combinations were evaluated at the six flight conditions previously summarized in Figure 3.1-1. Note that the "best" effector combination (rotating horizontal tail + split ailerons) was also evaluated with 2-axis thrust vectoring (TV).

The evaluation criteria are summarized below (Reference: MIL-F-8785C):

Level 1:
Flying qualities clearly adequate for the mission Flight Phase.

Level 2:
Flying qualities adequate to accomplish the mission Flight Phase, but with some increase in pilot work load or degradation in mission effectiveness, or both, exists.

Level 3:
Flying qualities such that the airplane can be controlled safely, but pilot work load is excessive or mission effectiveness is inadequate, or both. Category A Flight Phases can be terminated safely, and Category B and C Flight Phases can be completed.

Pass:
Meets specification (for sections without Level 1, 2 or 3 requirements)

Fail:
Does not meet specification (for sections without Level 1, 2 or 3 requirements)

Note that where results are inferred for this Phase I study they are indicated in the Summary Charts with an asterisk.
3.4.1 Takeoff and Approach
Analysis for takeoff and approach stability and control was conducted under the following conditions:

- Vehicle gross weight \(= \) 25,000 lb.
- Equivalent velocity \(v_e \) = 132kts
- Altitude = 1,000 ft

In total, 10 flying qualities items were addressed with the results summarized in the performance summary sheet of Figure 3.4.1-1, based on data such as contained in Figures 3.4.1-2 and 3.4.1-3.

In a number of cases the flying qualities evaluation was done by inspection (without detailed evaluation) where a specific effector would have no impact on the result. For example, if the Baseline configuration passed the trim requirements (Longitudinal control in unaccelerated flight) the Split Ailerons and Chine Strake configurations were assumed to pass since the horizontal tail configuration was unchanged. Additionally, without the vertical tails and with limited directional control power these configurations were assumed to fail for some of the lateral-directional items.

The crosswind evaluation was conducted to the limit of the simulation data base \((\beta=\pm 10^\circ)\). At 132kts, the \(\beta=10^\circ\) condition equates to approximately 23kts of 90\(^\circ\) crosswind.

The baseline Model-24F configuration includes vertical tails but without thrust vectoring. The baseline vehicle, as tested, meets the Level 1 or pass criteria of the Military Specification, MIL-F-8785C, revised above, for 6 of the 10 conditions. It meets Level 2 criteria in 2 flying quality items for two longitudinal control in maneuvering flight and turn coordination which failed due to angle of attack limit of the simulation data base with only a limited load factor capability.

For the split ailerons configuration (without thrust vectoring) the “Level 1” or “pass” criteria are met only for longitudinal control in unaccelerated flight, the “Level 2” criteria are estimated to be met for Flight Path Stability while for all other qualities the configuration fails.
The reader can summarize the remaining elements of the summary sheet, Figure 3.4.1-1, in a similar fashion. The rotating tail shows the overall best performance among the effectors. The reader is to keep in mind that only the baseline configuration had a vertical tail. For more details, see the data collected in Appendix B.

\[GW = 25,000 \text{ lbs} \quad V_e = 132 \text{ kts} \quad \text{Altitude} = \text{Sea Level} \]

CONFIGURATIONS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>REQUIREMENTS SOURCE</th>
<th>Baseline</th>
<th>Split Ailerons</th>
<th>Chin Stakes</th>
<th>Holding Tail (β H = 20°/20°) no TV</th>
<th>Holding Tail + Split Ailerons no TV</th>
<th>Holding Tail + Split Ailerons with TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight-path Stablity</td>
<td>MIL-F-8785C §3.2.1.3 MIL-STD-1797A §4.3.1.2</td>
<td>Level 2</td>
<td>Level 2*</td>
<td>Level 2*</td>
<td>Level 2*</td>
<td>Level 2*</td>
<td>Level 2*</td>
</tr>
<tr>
<td>Longitudinal control in unaccelerated flight</td>
<td>MIL-F-8785C §3.2.3.1 MIL-STD-1797A §4.2.7.1</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
<td>Pass*</td>
</tr>
<tr>
<td>Longitudinal control in maneuvering flight</td>
<td>MIL-F-8785C §3.2.3.2 MIL-STD-1797A §4.2.7.2</td>
<td>Fall</td>
<td>Fall*</td>
<td>Fall*</td>
<td>Fall*</td>
<td>Fall*</td>
<td>Fall*</td>
</tr>
<tr>
<td>Lateral-directional oscillations Dutch roll</td>
<td>MIL-F-8785C §3.1.1 MIL-STD-1797A §4.1.11.7 §4.6.1</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Roll mode</td>
<td>MIL-F-8785C §3.3.1.2 MIL-STD-1797A §4.5.1.1</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Spral mode</td>
<td>MIL-F-8785C §3.3.1.3 MIL-STD-1797A §4.5.1.2</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Turn coordination</td>
<td>MIL-F-8785C §3.3.2.6 MIL-STD-1797A §4.5.9.5.1 §4.6.7.2</td>
<td>Fail (data base α limit)</td>
</tr>
<tr>
<td>Roll control effectiveness</td>
<td>MIL-F-8785C §3.3.4 MIL-STD-1797A §4.5.8.1</td>
<td>Level 2</td>
<td>Fail</td>
<td>Fail</td>
<td>Level 3</td>
<td>Level 3</td>
<td>Level 1</td>
</tr>
<tr>
<td>Lateral-directional control in cross winds</td>
<td>MIL-F-8785C §3.3.7 MIL-STD-1797A §4.5.6 §4.5.8.3 §4.5.9.5.3 §4.6.4 §4.6.7.4</td>
<td>Pass (data base β limit)</td>
<td>Fail</td>
<td>Fail</td>
<td>Fail</td>
<td>Pass (data base β limit)</td>
<td></td>
</tr>
<tr>
<td>Final approach in cross winds</td>
<td>MIL-F-8785C §3.3.7.1 MIL-STD-1797A §4.5.6.3 §4.5.9.5.4 §4.6.7.1</td>
<td>Pass (data base β limit)</td>
<td>Fail</td>
<td>Fail</td>
<td>Fail</td>
<td>Pass (data base β limit)</td>
<td></td>
</tr>
</tbody>
</table>

* Evaluated by Inspection

Figure 3.4.1-1 Takeoff and Approach
Figure 3.4.1-2 Roll Control Effectiveness Landing Approach
GW = 25,000 lbs Alt. = 1,000 ft $V_\theta = 132$ kts CG @ 33% mac

Figure 3.4.1-3 Roll Control Effectiveness Landing Approach-Thrust Vectoring
3.4.2 Power on Departure Stall
Analysis for power on departure stall flying qualities was conducted under the following conditions:

- Vehicle gross weight = 27,000 lb.
- Altitude = 15,000 ft
- Maximum database AOA (22°) low speed

In total seven (7) flying qualities items were addressed with the results summarized in the performance summary sheet of Figure 3.4.2-1 with sample data in Figures 3.4.2-2, 3.4.2-3 and 3.4.2-4.

Again in this assessment as in others, a number of cases the flying qualities evaluation was done by inspection (without detailed evaluation) where a specific effector would have no impact on the result. Additionally, without the vertical tails and with limited directional control power some configurations were assumed to fail for some of the lateral-directional items. The moments that could be generated are just not large enough.

The baseline Model-24F configuration is with vertical tails but without thrust vectoring. The baseline vehicle, as tested, meets the Level 1 or pass criteria of the Military Specification, MIL-F-8785C, reviewed above, for five of the seven conditions.

The Level 3 performance in roll control of the baseline is due to the fact that small amounts of sideslip degrades the available roll control power through the flow interaction with the canted tail and swept wings.

The baseline fails in longitudinal control in maneuver because of this simulation software, it can hold the speed or altitude only with severe degradation of flight path angle.

The reader can summarize the remaining elements of the summary sheet, Figure 3.4.2-1, in a similar fashion. Again the rotating tail shows the overall best performance among the effectors. The reader is to keep in mind that only the baseline configuration had a vertical tail. See the Appendix B for more detailed information.
CONFIGURATIONS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>REQUIREMENTS SOURCE</th>
<th>Baseline no TV</th>
<th>Split Ailerons no TV</th>
<th>Chin Strakes no TV</th>
<th>Holing Tail (TH = 20°/20°) no TV</th>
<th>Holing Tail Split Ailerons no TV</th>
<th>Holing Tail Split Ailerons with TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal control in unaccelerated flight</td>
<td>MIL-F-8785C §3.2.3.1</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass*</td>
</tr>
<tr>
<td>Longitudinal control in maneuvering flight</td>
<td>MIL-F-8785C §3.2.3.2</td>
<td>Fail</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Fail</td>
<td>Fail*</td>
<td>Fail*</td>
</tr>
<tr>
<td>Lateral-directional oscillations Dutch roll</td>
<td>MIL-F-8785C §3.3.1.1</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Roll mode</td>
<td>MIL-F-8785C §3.3.1.2</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Level 2</td>
<td>Level 2</td>
<td>Level 1</td>
<td></td>
</tr>
<tr>
<td>Spiral mode</td>
<td>MIL-F-8785C §3.3.1.3</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td></td>
</tr>
<tr>
<td>Turn coordination</td>
<td>MIL-F-8785C §3.3.2.6</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
<td></td>
</tr>
<tr>
<td>Roll control effectiveness</td>
<td>MIL-F-8785C §3.3.4.4</td>
<td>Level 3</td>
<td>Fail</td>
<td>Fail</td>
<td>Fail</td>
<td>Fail</td>
<td>Level 1</td>
</tr>
</tbody>
</table>

* Evaluated by inspection

Figure 3.4.2-1 Power-On Departure Stall
Figure 3.4.2-2 Departure Stall-Roll Rate Time Constant
Figure 3.4.2-4 Departure Stall-Lateral-Directional Dynamics
3.4.3 Air Combat Maneuver Condition

Analysis for air combat maneuver stability and control was the most extensive flying qualities analysis of this project and was conducted for the following conditions:

- Vehicle gross weight = 27,000 lb.
- Altitude = 15,000 ft
- Mach number = 0.6

In total, 18 flying qualities items were addressed for 5 configurations in addition to the baseline configuration with the results summarized in the performance summary sheet of Figure 3.4.3-1, with illustrative data in Figures 3.4.3-2 through 3.4.3-4.

In a number of cases the flying qualities evaluation was again done by inspection (without detailed evaluation) where a specific effector would have no impact on the result. (See the remarks for earlier sections.)

The majority of the analysis concentrated on the baseline vehicle or the rotating tail configuration since the other effectors did not generate the desired control power.

The baseline Model-24F configurations with vertical tails but without thrust vectoring, as tested, meets the Level 1 or pass criteria of the Military Specification, MIL-F-8785C, reviewed above, for 16 of the 18 conditions. It meets Level 2 criteria for one flight quality, short period frequency and acceleration sensitivity, and fails for one quality, longitudinal control in maneuvering flight. Failure to meet this requirement is mainly due to the way the simulation analysis is performed in the simulation code RPAS. The simulation tries to hold the speed and the altitude while trimming at load factor. This results in a solution where the flight path angle is varied. For a high load factor (Nz) very large negative flight path angles result, approaching -90° in limit. See Figure B-1 in the Appendix B to the report. This result and its explanation holds true for all configurations.

The rotating tail meets or exceeds Level 1 for all items except longitudinal control in maneuvering flight. This failure is again mainly a result of the simulation as discussed in the previous paragraph.

The simulation tries to hold a constant velocity. The dynamic maneuver where the speed bleeds off is not a problem. There is plenty of control power.
The split ailerons and chine strakes (without vertical tails) fail (by inspection) to meet the lateral-directional dynamics requirements. They do not generate required control power for important flying qualities conditions.

The reader can review the remaining elements of the summary sheet, Figure 3.4.3-1, in a similar fashion. The rotating tail shows the overall best performance among the effectors. The reader is to keep in mind that only the baseline configuration had a vertical tail. For more details, see the data collected in Appendix B.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>REQUIREMENTS SOURCE</th>
<th>Baseline no TV</th>
<th>Split Ailerons no TV</th>
<th>Chine Strakes no TV</th>
<th>Rotating Tail (T_H = 20°/20°) no TV</th>
<th>Rotating Tail+ Split Ailerons no TV</th>
<th>Rotating Tail+ Split Ailerons with TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phugoid stability</td>
<td>MIL-F-8785C §3.2.1.2, MIL-STD-1797A §4.2.1.1</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Flight-path Stability</td>
<td>MIL-F-8785C §3.2.1.3, MIL-STD-1797A §4.3.1.2</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
<td>Pass*</td>
<td>Pass*</td>
<td>Pass*</td>
</tr>
<tr>
<td>Short-period frequency and acceleration sensitivity</td>
<td>MIL-F-8785C §3.2.2.1.1, MIL-STD-1797A §4.2.1.2</td>
<td>Level 2</td>
<td>Level 2*</td>
<td>Level 2*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Short-period damping</td>
<td>MIL-F-8785C §3.2.2.1.2, MIL-STD-1797A §4.2.1.2</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Longitudinal control in unaccelerated flight</td>
<td>MIL-F-8785C §3.2.3.1, MIL-STD-1797A §4.2.7.1</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
<td>Pass*</td>
</tr>
<tr>
<td>Longitudinal control in maneuvering flight</td>
<td>MIL-F-8785C §3.2.3.2, MIL-STD-1797A §4.2.7.2</td>
<td>Fall</td>
<td>Fall*</td>
<td>Fall*</td>
<td>Fall*</td>
<td>Fall*</td>
<td>Fall*</td>
</tr>
<tr>
<td>Lateral-directional oscillations</td>
<td>MIL-F-8785C §3.3.1.1, MIL-STD-1797A §4.1.11.7, §4.6.1.1</td>
<td>Level 1</td>
<td>Fall*</td>
<td>Fall*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Dutch roll</td>
<td>MIL-F-8785C §3.3.1.2, MIL-STD-1797A §4.5.1.1</td>
<td>Level 1</td>
<td>Fall*</td>
<td>Fall*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Roll mode</td>
<td>MIL-F-8785C §3.3.1.3, MIL-STD-1797A §4.5.1.2</td>
<td>Level 1</td>
<td>Fall*</td>
<td>Fall*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Spiral mode</td>
<td>MIL-F-8785C §3.3.1.3, MIL-STD-1797A §4.5.1.2</td>
<td>Level 1</td>
<td>Fall*</td>
<td>Fall*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
</tbody>
</table>

* Evaluated by inspection

Figure 3.4.3-1a Air Combat Maneuver Corner Speed
<table>
<thead>
<tr>
<th>Coupled roll-spiral oscillation</th>
<th>MIL-F-8785C § 3.3.1.4</th>
<th>MIL-STD-1797A § 4.5.1.3</th>
<th>Pass</th>
<th>Fail*</th>
<th>Fail*</th>
<th>Pass</th>
<th>Pass*</th>
<th>Pass*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roll rate oscillations</td>
<td>MIL-F-8785C § 3.3.2.2</td>
<td>MIL-STD-1797A § 4.5.1.4</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Additional roll rate requirements for small inputs</td>
<td>MIL-F-8785C § 3.3.2.2.1</td>
<td>MIL-STD-1797A § 4.5.1.4</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Bank angle oscillation</td>
<td>MIL-F-8785C § 3.3.2.3</td>
<td>MIL-STD-1797A § 4.5.1.4</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Sideslip excursions</td>
<td>MIL-F-8785C § 3.3.2.4</td>
<td>MIL-STD-1797A § 4.6.2</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Additional sideslip requirements for small inputs</td>
<td>MIL-F-8785C § 3.3.2.4.1</td>
<td>MIL-STD-1797A § 4.6.2</td>
<td>Pass</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
</tr>
<tr>
<td>Turn coordination</td>
<td>MIL-F-8785C § 3.3.2.6</td>
<td>MIL-STD-1797A § 4.5.9.5.1 § 4.6.7.2</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
</tr>
<tr>
<td>Roll control effectiveness</td>
<td>MIL-F-8785C § 3.3.4</td>
<td>MIL-STD-1797A § 4.5.8.1</td>
<td>Level 1</td>
<td>Level 2</td>
<td>Level 2</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Lateral-directional characteristics in steady sideslip</td>
<td>MIL-F-8785C § 3.3.5</td>
<td>MIL-STD-1797A § 4.5.5 § 4.5.1.2</td>
<td>Pass</td>
<td>Fail</td>
<td>Fail</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
</tr>
</tbody>
</table>

* Evaluated by inspection

Figure 3.4.3-1b Air Combat Maneuver Corner Speed
Air Combat Maneuver Corner Point

Figure 3.4.3-2 Longitudinal Control in Maneuvering Flight - Baseline/Rotating Tail
Air Combat Maneuver Corner Speed Analysis Condition

GW = 27,000 lbs
C.G. @ 38% MAC
Altitude = 15,000 ft
Subsonic Maneuver Leading Edge

Air Combat Maneuver Corner Point
Figure 3.4.3-3 Maximum Sustained Load Factor at Mid Altitude
Figure 3.4.3-4 Air Combat Maneuver Corner Speed - Coordinated Turn
3.4.4 Penetration Speed
The assessment of the flying qualities for penetration were conducted for low level flight with the following conditions:

- Vehicle gross weight = 27,000 lb.
- Altitude = Sea level
- Effective velocity v_e = 600kts

For this flight regime 7 flying qualities were addressed for the 6 configurations (see Figure 3.4.4-1). The flying qualities of the baseline vehicle which includes vertical tail surfaces passes or reaches Level 1 for all but one of the flying qualities assessed. The longitudinal control in level flight condition attaining only Level 3. The origin of the failure for this flying quality is related to the simulation and is consistent with its failure in other conditions. The reader is referred to the previous sections for further discussion.

For the 5 effector configurations, evaluation on many cases could be again determined by inspection. Where pass or Level 1 conditions were satisfied at one level, it is assumed to be achieved with additional effectors operative. The chine strakes and split ailerons configurations are assumed to fail since the data in Appendix B indicate that the control power generated by these effectors will not compensate for the lack of vertical tail control power.

Overall, only 12 of the 42 conditions evaluated failed to achieve pass or Level 1 assessment. The rotating tail being again very effective.
GW = 27,000 lbs \(V_e = 600 \text{ kts} \) Altitude = Sea Level

CONFIGURATIONS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>REQUIREMENTS SOURCE</th>
<th>Baseline no TV</th>
<th>Split Ailerons no TV</th>
<th>Chine Strakes no TV</th>
<th>Rotating Tail (TH = 20°/20°) no TV</th>
<th>Rotating Tail+Split Ailerons no TV</th>
<th>Rotating Tail+ Split Ailerons with TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal control in unaccelerated flight</td>
<td>MIL-F-8785C § 3.2.3.1, MIL-STD-1797A § 4.2.7.1</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Longitudinal control in maneuvering flight</td>
<td>MIL-F-8785C § 3.2.3.2, MIL-STD-1797A § 4.2.7.2</td>
<td>Level 3</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 3</td>
<td>Level 3</td>
<td>Level 3*</td>
</tr>
<tr>
<td>Lateral-directional oscillations</td>
<td>MIL-F-8785C § 3.3.1.1, MIL-STD-1797A § 4.1.1.1, § 4.6.1.1</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Dutch roll</td>
<td>MIL-F-8785C § 3.3.1.2, MIL-STD-1797A § 4.4.1.1</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Roll mode</td>
<td>MIL-F-8785C § 3.3.1.3, MIL-STD-1797A § 4.4.1.2</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Spiral mode</td>
<td>MIL-F-8785C § 3.3.2.6, MIL-STD-1797A § 4.6.9.6.1, § 4.6.7.2</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Turn coordination</td>
<td>MIL-F-8785C § 3.3.4, MIL-STD-1797A § 4.5.8.1</td>
<td>Level 1</td>
<td>Level 1</td>
<td>Level 1</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
</tbody>
</table>

* Evaluated by Inspection

Figure 3.4.4-1 Penetration Speed
Penetration Speed Analysis Condition
GW = 27,000 lbs
C.G. @ 38% MAC
Altitude = 1,000 ft
Subsonic Cruise Leading Edge

Figure 3.4.4-2 Maximum Sustained Load Factor - Penetration
Figure 3.4.4-3 Longitudinal Control in Maneuvering Flight-Penetration Speed

GW = 27,000 lbs
Alt. = 1,000 ft
CG @ 38% MAC
Ve = 600 kts
3.4.5 Maximum Sustained Load Factor

The maximum sustained load factor flying qualities assessment was conducted for the following conditions:

- Vehicle gross weight = 27,000 lb.
- Altitude = 30,000 ft
- Mach number = 0.9

In total, for this flight condition, seven flying qualities items were addressed for five configurations in addition to the baseline configuration with the results summarized in the performance summary sheet of Figure 3.4.5-1. Illustrative data are shown in Figures 3.4.5-2 and 3.4.5-3.

The majority of the analysis concentrated on the baseline vehicle or the rotating tail configuration since the other effectors did not generate the required control power. The baseline Model-24F configuration with vertical tails but without thrust vectoring, as tested, meets the Level 1 or pass criteria of the Military Specification, MIL-F-8785C, reviewed above, for six of the seven conditions and fails for one flight quality item. The failure is again due to the simulation. The reader is referred to the discussion in Section 3.4.3.

The rotating tail meets or exceeds Level 1 for all items except longitudinal control in maneuvering flight. Failure to meet this requirement is again mainly due to the way the simulation analysis is performed in the simulation code RPAS as discussed in Section 3.4.3.

The split ailerons and chine strakes (without vertical tails) fail to meet the lateral-directional dynamics requirements. They do not generate required control power for important flying qualities conditions.

The reader can summarize the remaining elements of the summary sheet of Figure 3.4.5-1, in a similar fashion. The rotating tail shows the overall best performance among the effectors. The reader is to keep in mind that only the baseline configuration had a vertical tail. For more details, see the data collected in Appendix B.
GW = 27,000 lbs M = 0.9 Altitude = 30,000 ft

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>REQUIREMENTS SOURCE</th>
<th>Baseline no TV</th>
<th>Split Ailerons no TV</th>
<th>Chine Strakes no TV</th>
<th>Rotating Tail (TN = 20°/20°) no TV</th>
<th>Rotating Tail+ Split Ailerons no TV</th>
<th>Rotating Tail+ Split Ailerons with TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal control in unaccelerated flight</td>
<td>MIL-F-8785C § 3.2.3.1 MIL-STD-1797A § 4.2.7.1</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
<td>Pass*</td>
</tr>
<tr>
<td>Longitudinal control in maneuvering flight</td>
<td>MIL-F-8785C § 3.2.3.2 MIL-STD-1797A § 4.2.7.2</td>
<td>Fail</td>
<td>Fail*</td>
<td>Fail</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Fail*</td>
</tr>
<tr>
<td>Lateral-directional oscillations Dutch roll</td>
<td>MIL-F-8785C § 3.3.1.1 MIL-STD-1797A § 4.1.11.7 MIL-STD-1797A § 4.6.1.1</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Roll mode</td>
<td>MIL-F-8785C § 3.3.1.2 MIL-STD-1797A § 4.5.1.1</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Spiral mode</td>
<td>MIL-F-8785C § 3.3.1.3 MIL-STD-1797A § 4.5.1.2</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Control of sideslip in rolls</td>
<td>MIL-F-8785C § 3.3.4 MIL-STD-1797A § 4.6.7.1</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
<td>Pass*</td>
</tr>
<tr>
<td>Roll control effectiveness</td>
<td>MIL-F-8785C § 3.3.5 MIL-STD-1797A § 4.5.8.1</td>
<td>Level 1</td>
<td>Level 1</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
</tbody>
</table>

* Evaluated by Inspection

Figure 3.4.5-1 Maximum Sustained Load Factor
Maximum Sustained Load Factor Analysis Condition

GW = 27,000 lbs
C.G. @ 38% MAC
Altitude = 30,000 ft
Subsonic Maneuver Leading Edge

Figure 3.4.5-2 Maximum Sustained Load Factor at High Altitude - Subsonic
Figure 3.4.5-3 Longitudinal Control in Maneuvering Flight-Maximum Sustained Load Factor

GW = 27,000 lbs
Alt. = 30,000 ft
CG @ 38% MAC
M = 0.9
3.4.6 Supersonic Condition

The supersonic condition flying qualities assessment was conducted for the following conditions:

- Vehicle gross weight = 27,000 lb.
- Altitude = 35,000 ft
- Mach number = 2.0

In total, for this flight condition seven flying qualities items were addressed for five configurations in addition to the baseline configuration with the results summarized in the performance summary sheet of Figure 3.4.6-1 based on data as illustrated in Figures 3.4.6-2 and 3.4.6-3.

The majority of the analysis concentrated on the baseline vehicle or the rotating tail configuration since the other effectors did not generate the required control power. The baseline Model-24F configurations with vertical tails but without thrust vectoring, as tested, meets the Level 1 or pass criteria of the Military Specification, MIL-F-8785C, reviewed above, for six of the seven conditions and meets Level 3 quality for one flying quality item, longitudinal control in maneuvering flight. The failure is again due to the simulation and the reader is referred to Section 3.4.3.

The rotating tail meets or exceeds Level 1 for all items except longitudinal control in maneuvering flight where it attains only Level 3. Failure to meet this requirement is again mainly due to the way the simulation analysis is performed in the simulation code RPAS as discussed in Section 3.4.3.

The split ailerons (without vertical tails) fail to meet the lateral-directional dynamics requirements as they do not generate the required control power for important flying quality conditions. The chine strakes are most useful at high angles of attack which is not part of this flight regime.

The reader can summarize the remaining elements of the summary sheet, Figure 3.4.6-1, in a similar fashion. The rotating tail shows the overall best performance among the effectors. The reader is to keep in mind that only the baseline configuration had a vertical tail. For more details, see the data collected in Appendix B.
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>REQUIREMENTS SOURCE</th>
<th>Baseline no TV</th>
<th>Split Tail no TV</th>
<th>Chine Strakes no TV</th>
<th>Rotating Tail (TH = 20º/20º) no TV</th>
<th>Rotating Tail + Split Ailerons no TV</th>
<th>Rotating Tail + Split Ailerons with TV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal control in unaccelerated flight</td>
<td>MIL-F-8785C §3.2.3.1 MIL-STD-1797A §4.2.7.1</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
<td></td>
</tr>
<tr>
<td>Longitudinal control in maneuvering flight</td>
<td>MIL-F-8785C §3.2.3.2 MIL-STD-1797A §4.2.7.2</td>
<td>Level 3</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 3*</td>
<td>Level 3*</td>
<td>Level 3*</td>
</tr>
<tr>
<td>Lateral-directional oscillations Dutch roll</td>
<td>MIL-F-8785C §3.3.1.1 MIL-STD-1797A §4.1.11.7 §4.6.1.1</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Roll mode</td>
<td>MIL-F-8785C §3.3.1.2 MIL-STD-1797A §4.5.1.1</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Spiral mode</td>
<td>MIL-F-8785C §3.3.1.3 MIL-STD-1797A §4.5.1.2</td>
<td>Level 1</td>
<td>Fail*</td>
<td>Fail*</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
<tr>
<td>Turn coordination</td>
<td>MIL-F-8785C §3.3.2.6 MIL-STD-1797A §4.5.5.1 §4.6.7.2</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass</td>
<td>Pass*</td>
<td>Pass*</td>
<td></td>
</tr>
<tr>
<td>Roll control effectiveness</td>
<td>MIL-F-8785C §3.3.4 MIL-STD-1797A §4.5.2.1</td>
<td>Level 1</td>
<td>Level 1</td>
<td>Level 1</td>
<td>Level 1*</td>
<td>Level 1*</td>
<td>Level 1*</td>
</tr>
</tbody>
</table>

* Evaluated by Inspection

Figure 3.4.6-1 Supersonic Condition
Supersonic Analysis Condition
GW = 27,000 lbs
C.G. @ 38% MAC
Altitude = 30,000 ft
Supersonic Cruise Leading Edge

Figure 3.4.6-2 Sustained Load Factor at High Altitude - Supersonic Penetration
Figure 3.4.6-3 Longitudinal Control in Maneuvering Flight-Supersonic Condition

GW = 27,000 lbs
Alt. = 35,000 ft
CG @ 38% MAC
M = 2.0
3.5 Carrier Suitability Performance

The landing and takeoff carrier suitability assessment of three navalized versions of Model-24F were done using RPAS, MEATBALL and CAT2 analysis tools. RPAS is a Boeing product that was developed to provide a fully functional 6 degree of freedom simulation for testing, analysis and real time simulation in minimum time. MEATBALL is a 3 degree of freedom carrier approach performance program designed for the Navy by LTV Aerospace and Defense Company. All the carrier approach criteria studied were analyzed using either RPAS or MEATBALL and in some cases both were used and then compared. RPAS and MEATBALL are not capable of analyzing carrier launch criteria.

A conceptual design tool called CAT2 was used to estimate carrier launch wind over deck for the baseline and rotating tails configurations. It simplifies catapult launch by making approximations of landing gear and control system effects. The effect of nose wheel pitch off is accounted for and it estimates launch performance with minimum inputs. The same geometry, weights, force and moment coefficient data were supplied as applicable to each analysis tool.

The three configurations studied were the Navy baseline, a rotating tail version of the Navy baseline and the rotating tail configuration with split ailerons and thrust vectoring. The Navy Model-24F is a scaled-up version of the baseline Air Force Model-24F. The following table shows the differences between the two aircraft:

<table>
<thead>
<tr>
<th></th>
<th>Basic Model -24F</th>
<th>Navalized Model -24F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing Area ~ ft²</td>
<td>465</td>
<td>650</td>
</tr>
<tr>
<td>MAC ~ ft</td>
<td>17.408</td>
<td>20.583</td>
</tr>
<tr>
<td>Span ~ ft</td>
<td>31.98</td>
<td>37.82</td>
</tr>
<tr>
<td>Ixx ~ slug·ft²</td>
<td>22,000</td>
<td>33,000</td>
</tr>
<tr>
<td>Iyy ~ slug·ft²</td>
<td>85,000</td>
<td>175,000</td>
</tr>
<tr>
<td>Izz ~ slug·ft²</td>
<td>101,000</td>
<td>179,000</td>
</tr>
<tr>
<td>Landing Weight ~ lb.</td>
<td>25,000</td>
<td>31,950</td>
</tr>
<tr>
<td>Normal Approach Speed ~ kts</td>
<td>132</td>
<td>135</td>
</tr>
</tbody>
</table>

Table 3.5-1
The same aerodynamic database was used for all three Navy configurations. The Model-24F aerodynamic coefficient database is a combination of wind tunnel data and predicted estimates.

Ten landing maneuvers were assessed for all three configurations. Vision over the nose, pop-up, wave-off, longitudinal acceleration and flight path stability were evaluated using both MEATBALL and RPAS. Pitch control power, cross wind landing, roll performance, minimum control speed with one engine out, dutch roll frequency and damping for Level 1 flying qualities were all analyzed with RPAS. The criteria assessment was done using only RPAS for the thrust vectoring model. The assumptions made for all analyses were as follows:

<table>
<thead>
<tr>
<th></th>
<th>RPAS</th>
<th>MEATBALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTITUDE</td>
<td>600 FT</td>
<td>600 FT</td>
</tr>
<tr>
<td>ATMOSPHERE</td>
<td>STANDARD DAY</td>
<td>TROPICAL DAY</td>
</tr>
<tr>
<td>GLIDE SLOPE/MIRROR ANGLE - DEG.</td>
<td>-4°</td>
<td>-4°</td>
</tr>
<tr>
<td>PILOT RESPONSE TIME (WAVE-OFF)</td>
<td>0.7 SECONDS</td>
<td>0.7 SECONDS</td>
</tr>
<tr>
<td>CG LOCATION</td>
<td>38% MAC</td>
<td>38% MAC</td>
</tr>
<tr>
<td>LANDING GEAR</td>
<td>DOWN</td>
<td>DOWN</td>
</tr>
<tr>
<td>LE FLAPS</td>
<td>30°</td>
<td>30°</td>
</tr>
<tr>
<td>TE FLAPS</td>
<td>30°</td>
<td>30°</td>
</tr>
<tr>
<td>DIHEDRAL ~ ROTATING TAILS</td>
<td>20°/20°</td>
<td>20°/20°</td>
</tr>
</tbody>
</table>

Table 3.5-2

In MEATBALL, each analysis is initiated with the aircraft trimmed at 1.1 times the power-on stall speed. MEATBALL iterates to find the lowest approach airspeed which meets the specific maneuver requirement. There is an option to specify approach speed in MEATBALL for the pop-up and wave-off maneuvers. Unfortunately, the program did not always converge to a solution at the user specified speed. The trim speed is chosen by the user in RPAS. All RPAS runs were all done at an approach speed of 135 knots.
The pilot must see the carrier stern (waterline) in level flight while intercepting a 4 degree glide path at an altitude of 600 feet to meet the vision over the nose requirement. The nose geometry must be modified from its current pilot view angle of 15 degree to 19.2 degrees to meet this requirement.

The pop-up maneuver requires the aircraft be able to transition 50 feet above the original glide path within 5 seconds with no throttle movement. Both the baseline and the rotating tail configurations were analyzed in MEATBALL and RPAS for this maneuver. Both configurations pass the maneuver but the results between the two programs vary slightly because RPAS includes a 6 degree of freedom control system and a more detailed engine model. Figure 3.5-1 shows the RPAS result and Figure 3.5-2 contains the comparison between the MEATBALL and RPAS solutions. The thrust vectoring configuration was not evaluated for this maneuver or for wave-off.

In a wave-off, the arresting hook point altitude loss can not exceed 30 feet. The MEATBALL wave-off program terminates when the hook sink and glide slope angle changes sign. Figure 3.5-3 shows the RPAS results with varying wind over deck and Figure 3.5-4 contains the comparison between the MEATBALL and RPAS solutions at zero wind over deck. The RPAS solution does not meet the requirement for either configuration at zero knots wind over deck as shown on Figure 3.5-3. However, the wave-off requirement can be obtained with 20 knots wind over deck for both configurations. The MEATBALL result for the baseline just barely meets the requirement and fails badly for the rotating tails as drawn in Figure 3.5-4. The comparisons between the two analysis tools do not agree for the same reasons listed under the pop-up maneuver discussion.

A level flight acceleration of 5 ft/s² within 2.5 seconds of throttle movement is required to meet the longitudinal acceleration criteria. The baseline, the rotating tail and the rotating tail with thrust vectoring configurations passed this requirement by a large margin at an approach speed of 135 knots in the RPAS solution, see Figure 3.5-5. MEATBALL does not provide a time history only a single point result at the end of the 2.5 seconds. There is no user specified approach speed capability in MEATBALL for this maneuver. The program uses the lowest speed at which it can meet the requirement. At an approach speed of 104 knots for the baseline, MEATBALL assessed a longitudinal acceleration of 12.76 ft/s² after 2.5 seconds. The difference in
GW = 31,950 lbs Landing Flaps CG @ 38% MAC
Initial Trim Speed = 135 kts

Figure 3.5-1 Pop-up Maneuver - RPAS Simulation results
GW = 31,950 lbs Landing Flaps CG @ 38% MAC
Initial Trim Speed = 135 kts

Figure 3.5-2 Pop-up Maneuver - Comparison between RPAS and MEATBALL
Figure 3.5-5 Level Flight Longitudinal Acceleration
approach speed probably accounts for most of the difference between the two programs solutions. This requirement was not met using MEATBALL for the rotating tail configuration.

If an approach is made on the backside of the thrust required curve or on the unstable portion of the flight path stability curve, then $\Delta \delta \gamma/\delta v$ must be less than 0.05 degrees/knot. It is desirable to land at a speed where $\delta \gamma/\delta v$ is not neutral.

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>$\delta \gamma/\delta v$</th>
<th><</th>
<th>0.06 deg./kt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL 2</td>
<td>$\delta \gamma/\delta v$</td>
<td><</td>
<td>0.15 deg./kt.</td>
</tr>
<tr>
<td>LEVEL 3</td>
<td>$\delta \gamma/\delta v$</td>
<td><</td>
<td>0.24 deg./kt.</td>
</tr>
</tbody>
</table>

This guideline was analyzed in both RPAS and MEATBALL. Figures 3.5-6 and 3.5-7 contain the flight path stability results for the analyses. MEATBALL gives the minimum approach speed where the criteria are meet for each level. These points are plotted with the RPAS curves for the baseline and rotating tails configuration in Figure 3.5-6. Both configurations pass the criteria using either analysis tool. The MEATBALL points and the RPAS $\Delta \delta \gamma/\delta v$ curves for all three configurations are on Figure 3.5-7. The comparison of $\delta \gamma/\delta v$ for the baseline, rotating tails and rotating tails plus thrust vectoring are also plotted on Figure 3.5-7. The thrust vectoring configuration does meet the requirement and was not analyzed using MEATBALL.

The high angle of attack pitch recovery requirement of $\dot{\gamma} = -0.07 \text{ rad/sec}^2$ in 1 second and the NAVAIR Control Power Guideline that a nose-down pitch acceleration $\geq 0.2 \text{ rad/sec}^2$ be obtained within 1 second were analyzed using RPAS. Only the rotating tail thrust vectoring configuration met both criteria as shown on Figure 3.5-8. The baseline and rotating tails configurations fail to meet these criteria.

An aircraft must maintain a steady heading in sideslip for landing in a 90 degree, 30 knot cross wind. No more than 75% of maximum roll authority should be used to achieve landing success for this condition. Figure 3.5-9 shows the baseline configuration passes this requirement for angles of attack under 15.3 degrees. The rotating tails configuration also meets this requirement but only for angles of attack less than 11.9 degrees which is below the approach angle of attack of 12.7 degrees. The thrust vectoring configuration is able to perform this maneuver for all angles of attack analyzed. These results are displayed on Figure 3.5-10.
Figure 3.5-6 Flight Path Stability - Comparison between RPAS and MEATBALL
WEIGHT = 31950 LB CG @ 38% MAC ALT. = 600 FT LANDING FLAPS GEAR DOWN

Figure 3.5-7 Flight Path Stability - RPAS Comparison to baseline
Figure 3.5-8 Landing Approach Nose Down Pitch Acceleration - 22° Angle-of-Attack
Figure 3.5-9 30 Knot at 90° crosswind
DEFLECTION LIMIT FOR ROTATING TAIL AND SPLIT AILERONS: ± 30 DEG.

Figure 3.5-10: 30 Knot at 90° crosswind - Rotating Tails, Split Aileron with Thrust Vectoring
The expected roll performance for a carrier aircraft is as follows:

- 30° Bank Angle in 1.1 Second at α_{app}
- 20° Bank Angle in 1.1 Second at α_{app} plus 4°
- 10° Bank Angle in 1.1 Second at Maximum Angle of Attack

Roll performance was evaluated using the RPAS tool. The baseline is lacking the roll power to meet this requirement. The baseline barely passes the 10 degree bank angle requirement at 22 degrees angle of attack and fails the 20 and 30 degree requirements. Figure 3.5-11 shows the comparison of the baseline, rotating tails and thrust vectoring configurations time to bank performance. The rotating tails configuration does not meet any of the three criteria. The thrust vectoring model almost meets the 30 degree criteria and does meet the 20 or 10 degree criteria.

The dutch roll frequency, ω_{nd}, shall exceed 0.4 radians/second and the minimum damping, ζ_d, should be greater than 1.0 following a yaw disturbance. This maneuver was done in RPAS at an approach speed of 135 knots with a 3 degree beta release. None of the three configurations had difficulty meeting the dutch roll frequency as shown on Figure 3.5-12. The frequencies and damping terms associated with this plot are as follows:

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>ω_{nd} rad/sec</th>
<th>ζ_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2.32</td>
<td>0.771</td>
</tr>
<tr>
<td>Rotating Tails</td>
<td>2.187</td>
<td>0.796</td>
</tr>
<tr>
<td>RT + TV</td>
<td>2.068</td>
<td>0.723</td>
</tr>
</tbody>
</table>

The minimum control speed, V_{mc}, must be at least 5 knots below the powered approach speed with one engine out. The Model-24F baseline has only one engine. For this analysis, it was assumed Model-24F contained two engines located side by side located in the same inlet as the one engine configuration. Each engine center is 19 inches from the aircraft centerline. This analysis was performed using the RPAS simulation. Figure 3.5-13 contains the control surface deflections required to maintain control with one engine out. There is sufficient control with either the baseline or rotating tail configurations at 5 knots below the power approach speed of 135 knots.

This concludes the 10 landing maneuvers evaluated for this study.
GW = 31,900 lbs CG @ 38% MAC Landing Flaps Gear Down

TIME LIMIT

NOTE:
ROLL COMMAND INITIATED
AT TIME = 1 SEC. REQUIRED
TO ACHIEVE BANK ANGLE WITHIN
1.1 SECONDS OF ROLL COMMAND.

<table>
<thead>
<tr>
<th>CONFIGURATION</th>
<th>VAPP=130</th>
<th>VAPP=135</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>13.4</td>
<td>12.5</td>
</tr>
<tr>
<td>Rotating Tails</td>
<td>13.6</td>
<td>12.7</td>
</tr>
<tr>
<td>Thrust Vectoring</td>
<td>13.8</td>
<td>12.9</td>
</tr>
</tbody>
</table>

Figure 3.5-11 Carrier Suitability Roll Rate Summary
Landing Approach
GW = 31,900 LBS
ALT. = 600 FT
V_{a} = 135 KTS
CG @ 38% MAC

Figure 3.5-12 Dutch Roll Characteristics
Figure 3.5-13 \(V_{\infty} \) with Right Engine Out
Two takeoff criteria were estimated with the CAT2 program. The first states the aircraft center of gravity must not sink more than 10 feet off the bow of the carrier after a catapult launch. The second is the aircraft longitudinal acceleration should be greater than 0.065 g at the end of a catapult stroke. Figure 3.5-14 presents the time history results obtained from CAT2 analysis tool. The center of gravity does not sink below 10 feet off the deck at takeoff gross weight for either configuration. Level acceleration is greater than 0.065 g at the minimum end airspeed. The speed at launch is 157.4 knots for the baseline and 159.8 knots for the rotating tails configuration.

The original Model-24F was not designed for carrier use nor was it intended to fly without vertical tails. This study shows that none of the three configurations are acceptable for carrier operations. All the configurations would require geometric changes to the nose and cockpit for the vision over the nose criterion. The rotating tail configuration does meet most of the carrier suitability items evaluated, but, it needs thrust vectoring to meet the pitch down and roll rate requirements. A carrier suitable aircraft can be achieved by further modifying either the baseline or the rotating tails configurations by resizing the horizontal tails to meet the requirements where they currently fail. Resizing the tail surface will reduce the stabilizer deflection required to trim, provide more pitch down capability and increase the yaw and roll control available for roll performance.

Results are summarized in Figure 3.5-15
Critical Requirements Identified for Carrier Takeoff and Landing

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>SOURCE</th>
<th>ANALYSES METHOD</th>
<th>BASELINE</th>
<th>ROTATING TAILS</th>
<th>TV + ROTATING TAILS + SPLIT AILERONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Suit Pitch Control Power Requirements</td>
<td>High Angle of Attack</td>
<td>RPAS</td>
<td>FAILED</td>
<td>FAILED</td>
<td>PASS</td>
</tr>
<tr>
<td>High-α Pitch Recovery Requirement:</td>
<td>Nose Down Pitch Control Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q = -0.07 rad/sec² in 1 second</td>
<td>NAVAIR Control Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nose-down pitch acceleration ≥ 0.2 rad/sec² within 1 second</td>
<td>Guidelines 27 April 1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Must Maintain A Steady Heading In Sideslip For Landing In A 90°, 30-Knot Cross Wind. Use Lowest Approach Speed With No More Than 75% Of Maximum Roll Authority.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roll Performance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30° Bank Angle in 1.1 Second at αapp</td>
<td>NAVAIR Control Power</td>
<td>RPAS</td>
<td>30° FAIL</td>
<td>30° FAIL</td>
<td>30° FAIL</td>
</tr>
<tr>
<td>20° Bank Angle in 1.1 Second at αapp plus 4°</td>
<td>Guidelines 27 April 1993</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10° Bank Angle in 1.1 Second at Max. AOA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unofficial Navy Requirement is Bank Angle Achieved in 1 Second</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>mc</sub> at least 5 knots below minimum V<sub>PA</sub></td>
<td>NAVAIR Control Power</td>
<td>RPAS</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>Catapult ~ CG sink off bow < 10 ft, Level acceleration. at min. endairspeed (A/G) > .065 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visibility:</td>
<td></td>
<td>CAT2</td>
<td>PASS</td>
<td>PASS</td>
<td>Not Analyzed</td>
</tr>
<tr>
<td>Pilot must see carrier stern (Waterline) in level flight while intercepting 4° glide path at 600 ft altitude.</td>
<td>Carrier Suitability Testing Manual 30 Sept., 1994 Page 6-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Dutch Roll Frequency And Damping for Level 1</td>
<td>GPS 1794</td>
<td>RPAS</td>
<td>PASS</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>Minimum Frequency (ω<sub>bd</sub>) ~ 0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Damping (ζ<sub>d</sub>) ~ 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPAS: Beta Release = 3°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall Margin: V<sub>PA</sub> ≥ 1.1V<sub>s</sub> (power on)</td>
<td>Carrier Suitability Testing Manual 30 Sept., 1994 Page 6-38</td>
<td>MEATBALL</td>
<td>PASS</td>
<td>PASS</td>
<td>TV not working in MEATBALL</td>
</tr>
</tbody>
</table>

Figure 3.5-15a Critical Requirements for Carrier Takeoff and Landing
CRITICAL REQUIREMENTS IDENTIFIED FOR CARRIER TAKEOFF AND LANDING

<table>
<thead>
<tr>
<th>CRITERIA</th>
<th>SOURCE</th>
<th>ANALYSIS METHOD</th>
<th>BASELINE</th>
<th>ROTATING TAILS</th>
<th>TV + ROTATING TAILS + SPLIT AILERRONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop-Up ~ Able to transition 50 ft. above original glide path within 5 seconds. (No throttle movement). This speed is $V_{PA_{\text{min}}}$</td>
<td>NAVAIR Control Power Guidelines 27 April 1993, Carrier Suitability Testing Manual 30 Sept. 1994 Page 6:39</td>
<td>MEBTAL - PASS</td>
<td>$V_{PA} = 128.2$ kt.
Popup = 49.6 1t.</td>
<td>$V_{PA} = 127.9$ kt.
Popup = 50.04ft.</td>
<td>TV not working in MEBTAL</td>
</tr>
<tr>
<td>$\Delta \alpha$ allowable based on $1/2 \Delta n_{T}$ available at initiation of maneuver.</td>
<td></td>
<td>MEBTAL - PASS</td>
<td>$V_{PA} = 135$ kt.
Popup = 47.7 ft.</td>
<td>$V_{PA} = 135$ kt.
Popup = 47.7 ft.</td>
<td></td>
</tr>
<tr>
<td>Wave-Off: An arresting hook point altitude loss not to exceed 30ft. A time to zero sink speed ≤ 3 seconds with a longitudinal acceleration of 3.0 kts/sec.</td>
<td>Carrier Suitability Testing Manual 30 Sept. 1994 Page 6:74</td>
<td>MEBTAL - PASS</td>
<td>$V_{PA} = 120$ kt.
H-Sink = -29.27 ft.</td>
<td>$V_{PA} = 151.5$ kt.
H-Sink = -34.7ft.</td>
<td>TV not working in MEBTAL</td>
</tr>
<tr>
<td>Longitudinal Acceleration: Level flight acceleration of 5 ft/s² within 2.5 seconds of throttle movement.</td>
<td>Carrier Suitability Testing Manual 30 Sept. 1994 Page 6:36</td>
<td>MEBTAL - PASS</td>
<td>$V_{PA} = 135$ kt.
H-Sink = -30.7 ft.</td>
<td>$V_{PA} = 135$ kt.
H-Sink = -31.2 ft.</td>
<td>TV not working in MEBTAL</td>
</tr>
<tr>
<td>Flight Path Stability If approach is made on backside of thrust req. curve or on the unstable portion of the FPS curve, then $\Delta y/\delta V < .05 \text{ deg./kt.}$</td>
<td>MIL-F-8785C</td>
<td>MEBTAL - PASS</td>
<td>$V_{PA} = 104$ kt.
Accel = 12.76 m/s²</td>
<td>Did not meet criteria using MEBTAL</td>
<td>TV not working in MEBTAL</td>
</tr>
<tr>
<td>LEVEL 1 $\delta y/\delta V < 0.06 \text{ deg./kt.}$</td>
<td></td>
<td>RPAS: PASS for a V_{PA} range of 95 to 150 knots</td>
<td>Level V_{PA}</td>
<td>RPAS: PASS for a V_{PA} range of 101.5 to 150 knots</td>
<td>Level V_{PA}</td>
</tr>
<tr>
<td>LEVEL 2 $\delta y/\delta V < 0.15 \text{ deg./kt.}$</td>
<td></td>
<td>RPAS: PASS</td>
<td>Level</td>
<td>RPAS: PASS</td>
<td></td>
</tr>
<tr>
<td>LEVEL 3 $\delta y/\delta V < 0.24 \text{ deg./kt.}$</td>
<td></td>
<td>MEBTAL: 24950 lb. - PASS</td>
<td>Level V_{PA}</td>
<td>MEBTAL: Did not meet criteria using MEBTAL</td>
<td>MEBTAL: TV not working in MEBTAL</td>
</tr>
</tbody>
</table>

Figure 3.5-15b Critical Requirements for Carrier Takeoff and Landing
3.6 Summary of Performance Study

The three effectors studied were split ailerons, chine strakes, and a rotating tail concept. The handling qualities of the baseline Model-24F configuration with vertical tails was evaluated to provide a performance reference. The effectors were then evaluated individually with the vertical tail removed. Additional configurations made up of combinations of effectors, the rotating tail together with the split ailerons (vertical tail removed), the rotating tail together with split ailerons and thrust vectoring (vertical tail removed) were included in the study.

The performance of the effectors was evaluated against MIL-F-8785C and MIL-STD-1797A including a total of 56 flight conditions and flying quality items being evaluated for each configuration. The study was conducted with a flight controls system optimized for each configuration including the baseline. The same basic concept of total integrated control assets was used for all configurations. No control force criteria were evaluated as it is assumed that a tailored artificial feel system will be used.

The study used the Boeing RPAS system using the aerodynamic data base for the baseline Model-24F appropriately modified to include the effectors to be evaluated. Trims and time histories were run at the specific flight conditions chosen for the evaluation. The performance was evaluated with an operational flight control system as the tailless Model-24F configuration is unstable at aft center of gravity longitudinally for subsonic speeds and directionally at all speeds. The aerodynamic data base was limited in angle of attack to the range -4° to 22° and in sideslip to the range -10° to +10°. Simplified engine and mass models were used. Simplified actuator models were also used, however, rate and position limiting were included.

The rotating tail evaluation was conducted for a fixed dihedral ($\Gamma_H = 20^\circ/20^\circ$). The aerodynamic data base allows independent positioning of left and right sides of the tail. The inclusion of horizontal tail dihedral angle as a control variable results in complications for trim and control inputs requiring more resources to resolve than is available in this study. Additional wind tunnel testing is required to determine optimal angle settings for various flight conditions.

The rotating tail configuration, the baseline configuration with thrust vectoring, and the rotating tail with thrust vectoring configuration were evaluated for carrier suitability. To
approximate a potential Navy aircraft the wing area, span, mean aerodynamic chord, weights and inertias of the Model-24F were modified. However, the aerodynamic data base coefficient data were not modified nor was the flight control systems modified. The carrier suitability study concentrated on takeoff and approach. The Navy configuration was not evaluated for up and away flight conditions. The computer codes MEATBALL, CAT2 and RPAS were used for this evaluation with 13 carrier suitability items investigated. Unfortunately MEATBALL and CAT2 can not handle thrust vectoring. The RPAS program was used to duplicate some MEATBALL calculations and their comparisons are presented.

The Rotating Tail appears to be a viable concept being nearly as effective as the baseline Model-24F. The split ailerons and chine strakes are not viable concepts for this configuration since they produce too little yawing moment. There is just not enough control volume for split ailerons to be effective, and the chine strakes not effective at nominal angles of attack. Thrust vectoring improves overall performance which combined with the rotating tail can produce a tailless configuration with acceptable flying qualities at low thrust levels or with vectoring inoperative.

The findings are summarized in the Figure 3.6-1 below. The lateral-directional dynamics requirements failed badly for the aileron and the chine strake.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Level 1 or Pass</th>
<th>Level 2</th>
<th>Level 3</th>
<th>fail</th>
<th>% level 1 or pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline-no TV</td>
<td>45</td>
<td>3</td>
<td>3</td>
<td>5*</td>
<td>80%</td>
</tr>
<tr>
<td>Split Ailerons-no TV</td>
<td>17</td>
<td>3</td>
<td>0</td>
<td>36</td>
<td>30%</td>
</tr>
<tr>
<td>Chine Strakes-no TV</td>
<td>17</td>
<td>3</td>
<td>0</td>
<td>36</td>
<td>30%</td>
</tr>
<tr>
<td>Rotating Tail (T=20°/20°) no TV</td>
<td>43</td>
<td>2</td>
<td>0</td>
<td>8*</td>
<td>77%</td>
</tr>
<tr>
<td>Rotating Tail + Split Ailerons no TV</td>
<td>43</td>
<td>2</td>
<td>0</td>
<td>8*</td>
<td>77%</td>
</tr>
<tr>
<td>Rotating Tail + Split Ailerons with TV</td>
<td>48</td>
<td>1</td>
<td>0</td>
<td>5*</td>
<td>86%</td>
</tr>
</tbody>
</table>

*Majority due to aerodynamic data base limits

Figure 3.6-1 Flight Condition and Flying Qualities Items
4.0 Task 3 - Effector Integration Study

4.1 Effector Integration Overview
The integration aspects of innovative control effectors can significantly affect the results of any overall assessment of a given control device. When assessing the feasibility of a device, the ability of the designer to incorporate innovative control concepts into a design without significantly compromising other aspects of the design must be an achievable goal. Integration technologies may vary in relative importance for any given effector design, but the main players generally include actuation, structures (load path), weight, signature, cost/affordability, and reliability, maintainability, and supportability (RM&S). Any device with significant shortcomings in any of the above mentioned areas may present insurmountable problems for the designer and prevent incorporation into the design. For the devices of interest, the most significant challenge is to integrate the rotating horizontal tail concept so that the penalties associated with it do not offset any potential benefits. For this reason, much of the integration task will be focused on this effector.

The primary objective of this contract is to develop control effectors that will facilitate elimination of the vertical tails. Benefits in weight/range and RCS can be obtained by removing the vertical tails. Figure 4.1-1 summarizes the benefits of removing the vertical tails completely in terms of RCS and vehicle aerodynamic drag. For the baseline Model 24F vehicle, removing the vertical tails would provide a net weight improvement of 645 lbs including the removal of structure, LO treatment, and actuation systems. Additional benefits can also be obtained in terms of cost and RM&S by a reduction in overall part count. These benefits are offset by the addition of control effectors to the configuration. Using a concept such as the rotating horizontal tail may still provide a benefit in some technology areas.

4.1.1 Chine Strake Integration
The challenges to integrating this concept onto the baseline configuration include allowances for radar installations, the proximity to the cockpit area, the large angular motion from retracted to fully deployed positions and the location near the chine line. The problem of location on the forebody is critical to this type of effector because the closer the device can be deployed to the nose, the more effective it will be. Unfortunately, forward looking radar also covets this position and placing control
devices forward of the radar will have significant adverse effects on the performance of the radar. Moving the device location back from the nose along the chine line will reduce control effectiveness, and placing them alongside the cockpit will either displace other equipment best located near the pilot, or increase the volume in the cockpit area, impacting wave drag. The problem with the chine line itself is that of locating a hinge line that will still place the deployed surface close to the chine and meet any setback requirements to accommodate signature technology. This device significantly affected the forward sector signature characteristics which are summarized in Figure 4.5-1. As shown in Figure 4.1.1-1, the location selected for this effector compromises the aerodynamic performance in order to accommodate these integration concerns. Since the effect on performance in the flight regime studied was deemed to be significantly below desired capabilities for inclusion in future fighters, this concept was not fully studied beyond this conceptual integration.
4.1.2 Split Aileron Integration

In integrating the split ailerons onto the baseline vehicle, the major concerns were the thickness of the outboard wing and the actuation concept. Several actuation concepts were proposed, including a torque tube extended into the body, rotary actuators, and the design shown in Figure 4.1.2-1, a bank of linear actuators to deploy the surfaces. The torque tube concept had several potentially fatal flaws. The major problem was that the response characteristics required for this system to operate correctly would have required stiffening the tube, a sizeable weight penalty, and moving the aft spar forward to accommodate the tube, reducing the size of the spar box and again resulting in a weight penalty. However, this arrangement could be made to fit within the current wing surface definition. The rotary actuator concept had a serious flaw in that the hinge moment requirements resulted in an actuator with a diameter that was over twice that of the wing at the inboard aileron location. The bump fairing that would be required to accommodate this arrangement would create a significant "deadband" in the actuation of these devices and also increase aerodynamic drag considerably. The design chosen, the linear actuators, still required a significant fairing to provide the necessary clearance for the system. This fairing will reduce the effectiveness of this device but not as severely as the rotary concept. An additional 483 lbs. is required to integrate this concept onto the baseline vehicle, including allowances for additional structure and actuators. This device significantly affected the overall signature of this vehicle as shown in Figure 4.5-1.

Figure 4.1.2-1. Split Aileron Installation
4.1.3 Rotating Horizontal Tail Integration

The rotating horizontal tail also presents significant challenges to the designer to integrate this concept successfully onto the baseline vehicle. Two integration concepts were studied, the first concept included three rotary actuators to pivot the entire horizontal tail, and resulted in a weight increase of 1457 lbs., for a net increase (allowing for removal of the vertical tails) of 812 lbs. For illustrations of the early attempts to integrate the rotating tail, see Appendix D, Figure D-10. The second concept, shown in Figure 4.1.3-1, included a redesign of the internal pivoting arrangement and a single rotary actuator. This installation concept resulted in a net increase in vehicle weight of 72 lbs., a significant improvement over the first concept. The primary reason for this weight improvement is in the actuator design philosophy. The structure must still be designed to accept the ultimate design loads, but an actuator can be replaced when it reaches its design cycle life. When sizing a rotary actuator to take a load, the frequency of occurrence of that load significantly affects the actuator size and therefore weight. For the range of loads anticipated for this design, the sizing chart is presented in Figure 4.1.3-2. If the actuation system is designed to hold the load of 3,000,000 in-lbs for 8000 cycles, the actuators would have to weigh 572 lbs/side. If the actuators are sized to hold the design load one time, then the actuators can be reduced in weight to 250 lbs/side. This reduced size actuator could still accommodate a load of 1,000,000 in-lbs approximately 20,000 times. Designing to a philosophy allowing for periodic actuator replacement can result in significant weight benefits. For aircraft that have low utilization rates, or are infrequently operated at the ultimate design load for the actuator, significant benefits can be achieved by invoking this philosophy. Many advanced fighter designs are using this philosophy to improve overall system performance. A more detailed analysis of both of these integration concepts is included in Appendix D. The signature aspects of this effector are summarized in Figure 4.5-1.

Figure 4.1.3-1. Rotating horizontal Tail Installation
CONSTANT ACTUATOR SIZE

ASSUMPTIONS:
- 8,000 HOURS LIFE
- 8 g VEHICLE

Figure 4.1.3-2. Cycles vs. Hinge Moment
4.2 Actuation Study

The problems of actuating a device include consideration for the type of power source(s) available, the range, type, and rate of motion required, and the design load. Understanding the options available will allow the designer to select an actuation scheme which best fits his design. Various types of actuators are described in this section.

Power Source The form of power supplied to any of these actuators can be electrical, hydraulic, mechanical power-take-off (i.e. shaft from engine) or pneumatic. Present day fighter aircraft utilize distributed electrical and hydraulic-power systems. When required, mechanical power is generated at the location needed (i.e. not distributed) by conversion of power from the electrical or hydraulic systems. Pneumatic power systems have not found wide use or acceptance as a source of power for actuation of flight control surfaces found on fighter aircraft.

Pneumatic Power Reservoir-type pneumatic systems are usually utilized for "blow down" systems (e.g., landing gear extension for emergencies) or are utilized for powering of functions having low or short duration duty-cycle requirements. Hence, the reservoir-type of pneumatic system is not suitable for the duty-cycle requirements that are anticipated relative to the subject of ICE.

Bleed-air type pneumatic systems, which utilize bleed air from the engine, were not found to be acceptable because of reduced performance in the following areas:

Engine To maximize engine thrust, present day aircraft designers prefer to minimize or eliminate the use of bleed air by other systems. Pneumatic systems utilize a percentage of bleed air from the main engine powerplant for driving pneumatic systems. Hence, pneumatic systems represent a degradation of engine performance.

R&M Reliability and maintainability are degraded because of high-temperature operation and poor lubricating qualities of bleed air. These two characteristics work together to produce an erosive, wear-prone environment for pneumatic system components. Consequently, electrical and hydraulic systems are more reliable and require less maintenance than pneumatic systems.

Dynamics The dynamic response and stability of pneumatic systems are less than electrical or hydraulic systems because of the compressibility of air.
Hence, flutter requirements anticipated for flight controls would far exceed the capabilities of a pneumatic-driven system.

In summary, pneumatically-powered actuators were considered an unacceptable alternative to electrically or hydraulically-powered actuators.

Mechanical Power Distributed mechanical power (i.e., shaft) transmitted by the use of torque shafts and gear-boxes from the main engine powerplant was not considered a practical option for driving the subject ICE. The rationale include:

Packaging The physical envelope required for routing, placement, and operation of torque-shafts and gearboxes does not provide for physically compact system installations or acceptable systems integration within the small outer mold lines which are characteristic of fighter aircraft.

R&M The reliability and maintainability of these systems are less than the alternative power systems. The degraded R&M is primarily due to the reliability and servicing requirements associated with poorly accessible components such as torque shafts and couplings utilized in these mechanical systems.

In summary, mechanically-powered actuators driven by distributed mechanical systems are an unacceptable option for the tail mounted ICE application.

Electrical Power Any of the actuators listed in Figure 4.2-1 can be driven by the aircraft electrical power systems. The required power conversion is accomplished by one or more electrical motors which drive gearing elements that provide power to the actuator. Electrical actuators can be placed into the following three categories:

EHA Electrohydrostatic Actuators consist of a bi-directional, variable speed electrical motor, constant-displacement hydraulic pump, fluid, accumulator, valves, and a hydraulically powered actuator. Hence, the EHA is an actuator combined with a self contained hydraulic system. This self-contained hydraulic system operates with variable-pressure and variable-flow to efficiently match the load and rate requirements needed for moving an actuator to a commanded position.
<table>
<thead>
<tr>
<th>No.</th>
<th>Category</th>
<th>Power source</th>
<th>Output motion</th>
<th>Conversion device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hydraulic</td>
<td>Hydraulic</td>
<td>Rotary</td>
<td>Vane</td>
</tr>
<tr>
<td>2</td>
<td>EHA</td>
<td>Electrical</td>
<td>Rotary</td>
<td>Vane</td>
</tr>
<tr>
<td>3</td>
<td>Hydraulic</td>
<td>Hydraulic</td>
<td>Rotary</td>
<td>Helically-splined piston</td>
</tr>
<tr>
<td>4</td>
<td>EHA</td>
<td>Electrical</td>
<td>Rotary</td>
<td>Helically-splined piston</td>
</tr>
<tr>
<td>5</td>
<td>Hydraulic</td>
<td>Hydraulic</td>
<td>Rotary</td>
<td>Recirculating ball</td>
</tr>
<tr>
<td>6</td>
<td>EHA</td>
<td>Electrical</td>
<td>Rotary</td>
<td>Recirculating ball</td>
</tr>
<tr>
<td>7</td>
<td>Mechanical</td>
<td>Hydraulic</td>
<td>Rotary</td>
<td>Motor-driven planetary</td>
</tr>
<tr>
<td>8</td>
<td>EMA</td>
<td>Electrical</td>
<td>Rotary</td>
<td>Motor-driven planetary</td>
</tr>
<tr>
<td>9</td>
<td>Hydraulic</td>
<td>Hydraulic</td>
<td>Linear</td>
<td>Piston</td>
</tr>
<tr>
<td>10</td>
<td>EHA</td>
<td>Electrical</td>
<td>Linear</td>
<td>Piston</td>
</tr>
<tr>
<td>11</td>
<td>Mechanical</td>
<td>Hydraulic</td>
<td>Linear</td>
<td>Motor-driven ball-nut</td>
</tr>
<tr>
<td>12</td>
<td>EMA</td>
<td>Electrical</td>
<td>Linear</td>
<td>Motor-driven ball-nut</td>
</tr>
<tr>
<td>13</td>
<td>Mechanical</td>
<td>Hydraulic</td>
<td>Linear</td>
<td>Motor-driven ball-screw</td>
</tr>
<tr>
<td>14</td>
<td>EMA</td>
<td>Electrical</td>
<td>Linear</td>
<td>Motor-driven ball-screw</td>
</tr>
<tr>
<td>15</td>
<td>Mechanical</td>
<td>Hydraulic</td>
<td>Linear</td>
<td>Motor-driven roller-screw</td>
</tr>
<tr>
<td>16</td>
<td>EMA</td>
<td>Electrical</td>
<td>Linear</td>
<td>Motor-driven roller-screw</td>
</tr>
</tbody>
</table>

Figure 4.2-1. Electrical and Hydraulic Actuator Candidates

EMA
Electromechanical Actuators consist of a bi-directional, variable speed electrical motor, reduction gearing, brakes, clutches, and a mechanically-driven actuator. Hence, the EMA is an actuator and mechanical power system in one package.

IA
An integrated actuator consists of many components similar to those found in an EHA. Hence, the IA is an actuator combined with a self-contained hydraulic system. This system utilizes a unidirectional, constant speed motor in conjunction with a constant-pressure, variable-flow pump to generate hydraulic power for the actuator. This constant-pressure, variable flow hydraulic system is very similar in operation to the conventional hydraulic systems found in present day aircraft.

Only the EHA and EMA were considered as viable electrical actuation candidates for driving the rotating horizontal tail control effector. Generally, the utilization of integrated actuators in lieu of conventional hydraulically powered actuators does not provide for the significant benefits found by using EHA and EMA technologies. The rationale for excluding IA technology in favor of EHA and EMA technologies are:

Weight
The EHA and EMA provide a lighter weight solution than the integrated actuator.
Efficiency The EHA and EMA require less energy for positioning a load than an IA. The EHA and EMA output loads and rates provide a better match to required loads and rates for positioning of a load. Also, the EHA and EMA are on-demand systems as opposed to the continuous operating integrated actuator. Hence, the IA requires more energy during quiescent operation than an EHA or EMA.

Thermal The on-demand operation of the EHA and EMA generates less heat than the continuously operating integrated actuator.

Reliability Generally, the EMA is the most reliable of the three electrical actuators. However, special operating features (e.g., bypass, blowback, locking) require additional mechanisms such as clutches and brakes. Consequently, the reliability of the general EMA has been reduced to a level slightly higher than that of an EHA. Reliability of the EHA is somewhat higher than the IA. However, the IA may require more frequent servicing for replacement of fluid and seals.

Maintenance The EHA and EMA are each estimated to require less servicing than the integrated actuator because the more efficient, on-demand functioning results in less heat generation and less operational time.

Hydraulic Power Any of the actuators listed in Figure 4.2-1 can be driven by the aircraft hydraulic power systems. Some of these actuators directly utilize hydraulic power for operation and some require the use of a hydraulic motor to convert hydraulic power into mechanical shaft power. Subsequently, this mechanical power is utilized for driving the actuator.

Actuator Summary For the devices proposed in this study, mechanical actuation provides the best alternative to the aircraft designer. Pneumatic actuation schemes simply cannot provide the response characteristics necessary, and the electrical devices, while suitable for some applications to control devices, still create significant challenges to the designer because of electro-magnetic interference and actuator size constraints.
4.3 Carrier Suitability Requirements

A separate aircraft was defined for the USN carrier specific requirements. The primary requirements were: an approach speed goal of 135 knots; achieve the glide slope transfer or "pop-up" maneuver at this approach speed; and, meet the arresting engine limitations at "0" wind-over-deck. These design requirements resulted in a significantly larger aircraft for the USN analysis. Specifically, the baseline aircraft wing area was resized from 465 ft\(^2\) to 650 ft\(^2\) to meet the carrier specific design goals. Corresponding changes to the fuselage and subsystems are described below and indicated in the weight build up in Figure 4.3-3.

The USN carrier sized aircraft was determined by using the design charts shown in Figures 4.3-1 and 4.3-2. As shown in these charts, the required minimum wing area to meet the design goals is 650 ft\(^2\). This size allowed the USN version of the baseline vehicle to meet the approach speed requirement with a 10,000 bring-back payload. The pop-up and arresting engine requirements are also met with this larger vehicle.

In addition to the resizing, several additional requirements in terms of vehicle structural modifications were also required to meet the USN specifications, which are considerably different from the USAF versions. For example, to achieve a reasonable spotting factor, a wing fold mechanism was incorporated into the design to reduce the folded span to 25 feet. The single wheel nose gear was replaced by a dual tire arrangement, and the nose gear structure was strengthened to meet the catapult loads and the higher sink rate loads for landing. The overall airframe structure was also strengthened to meet the higher design takeoff and landing loads. In addition to the above, bladders were added to the fuel tanks and the USAF LO Inflight refueling (IFR) receptacle was replaced by a retractable USN IFR probe. These changes, and the accompanying weight penalties are summarized in Figure 4.3-3.
Figure 4.3-1. Approach Speed

Figure 4.3-2. Mark 7 Mod 3 Arresting Engine
<table>
<thead>
<tr>
<th>GROUP WEIGHT STATEMENT</th>
<th>USAF A/G WEIGHT (LBS)</th>
<th>Δ WT (USN DESIGN FEATURES) (LBS)</th>
<th>Δ WT (USN DES WTS & LD FACTOR) (LBS)</th>
<th>USN A/G WEIGHT (LBS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISSION: AIR-TO-GROUND</td>
<td>WING (AREA = 650 SQ. FT.)</td>
<td>2621 425</td>
<td>3046 -93</td>
<td>2553</td>
</tr>
<tr>
<td>MODEL: 120% SCALE MODEL</td>
<td>HORIZONTAL TAIL</td>
<td>750</td>
<td>750 -9</td>
<td>741</td>
</tr>
<tr>
<td></td>
<td>VERTICAL TAIL</td>
<td>396</td>
<td>396</td>
<td>396</td>
</tr>
<tr>
<td></td>
<td>BODY</td>
<td>5838 397</td>
<td>6235 -123</td>
<td>6112</td>
</tr>
<tr>
<td></td>
<td>MAIN GEAR</td>
<td>1087 274</td>
<td>1361 48</td>
<td>1409</td>
</tr>
<tr>
<td></td>
<td>NOSE GEAR</td>
<td>211 326</td>
<td>537 8</td>
<td>545</td>
</tr>
<tr>
<td></td>
<td>ARRESTING GEAR</td>
<td>0 184</td>
<td>184 8</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>AIR INDUCTION</td>
<td>764</td>
<td>764</td>
<td>764</td>
</tr>
<tr>
<td></td>
<td>ENGINE SECTION</td>
<td>201</td>
<td>201</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>SPECIAL FEATURE (RAM/RAS)</td>
<td>1256</td>
<td>1256</td>
<td>1256</td>
</tr>
<tr>
<td></td>
<td>TOTAL STRUCTURE</td>
<td>13124 1606</td>
<td>14730 -161</td>
<td>14569</td>
</tr>
<tr>
<td></td>
<td>ENGINES</td>
<td>4800</td>
<td>4800</td>
<td>4800</td>
</tr>
<tr>
<td></td>
<td>AMADS</td>
<td>197</td>
<td>197</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td>ENGINE CONTROLS</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>STARTING SYS. (INCL W/APU)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FUEL SYSTEM</td>
<td>633 66</td>
<td>699</td>
<td>699</td>
</tr>
<tr>
<td></td>
<td>TOTAL PROPULSION</td>
<td>5655 66</td>
<td>5721 0</td>
<td>5721</td>
</tr>
<tr>
<td></td>
<td>FLIGHT CONTROLS</td>
<td>727 6</td>
<td>733</td>
<td>733</td>
</tr>
<tr>
<td></td>
<td>APU</td>
<td>242</td>
<td>242</td>
<td>242</td>
</tr>
<tr>
<td></td>
<td>INSTRUMENTS</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>HYDRAULICS & PNEUMATICS</td>
<td>438 14</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>ELECTRICAL</td>
<td>515</td>
<td>515</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>AVIONICS</td>
<td>1598</td>
<td>1598</td>
<td>1598</td>
</tr>
<tr>
<td></td>
<td>FURNISHINGS & EQUIP</td>
<td>390</td>
<td>390</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>AIR CONDITIONING</td>
<td>563</td>
<td>563</td>
<td>563</td>
</tr>
<tr>
<td></td>
<td>ANTI-ICE</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>HANDLING EQ</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>TOTAL FIXED EQUIPMENT</td>
<td>4543 20</td>
<td>4563 0</td>
<td>4563</td>
</tr>
<tr>
<td></td>
<td>WEIGHT EMPTY</td>
<td>23322 1692</td>
<td>25014 -161</td>
<td>24853</td>
</tr>
<tr>
<td></td>
<td>CREW</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>CREW EQUIPMENT</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>OIL & TRAPPED OIL</td>
<td>125</td>
<td>125</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>TRAPPED FUEL</td>
<td>268</td>
<td>268</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>LAUNCHERS/EJECTORS</td>
<td>422</td>
<td>422</td>
<td>422</td>
</tr>
<tr>
<td></td>
<td>NON-EXP USEFUL LOAD</td>
<td>1030</td>
<td>0</td>
<td>1030</td>
</tr>
<tr>
<td></td>
<td>ROUND OFF</td>
<td>8 -2</td>
<td>6 -9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>OPERATING WEIGHT</td>
<td>24360 1690</td>
<td>26050 -170</td>
<td>25880</td>
</tr>
<tr>
<td></td>
<td>A/A WEAPONS</td>
<td>690</td>
<td>690</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>FUEL (JP-8)</td>
<td>17900</td>
<td>1690</td>
<td>1690</td>
</tr>
<tr>
<td></td>
<td>GROSS WEIGHT</td>
<td>44950</td>
<td>0</td>
<td>44950 1520</td>
</tr>
</tbody>
</table>

Figure 4.3-3. USN Baseline Weight Buildup
4.4 Thrust Vectoring Integration
The thrust vectoring study for this contract was focused on the integration and performance issues, and what gains could be achieved by incorporating thrust vectoring onto the baseline vehicle. The performance results are reported in the performance Section 3.0 of this report. This section addresses the integration issues.

Airframe-Nozzle Integration Integrating thrust vectoring onto the baseline vehicle was considered by looking at three different concepts. The thrust vectoring nozzle can be mounted directly onto the engine, the nozzle can be mounted directly to the airframe, or the nozzle can be structurally integrated with the airframe. Figure 4.4-1 illustrates each of these concepts and includes several figures-of-merit showing the relative merits of each of the concepts. As shown in the figure, each of these concepts exhibit its own strengths and weaknesses. For the engine mounted concept, reliability should be higher because of the lower part count. However, maintenance on this nozzle concept will require removal of the entire engine. For the airframe mounted concept, one advantage is that the nozzle can be removed without removing the engine and the engine can be removed and replaced without removing the nozzle. The structurally integrated (SI) nozzle has the advantage of offering potentially lower weight, but at a price. The SI concept will likely have a higher part count and therefore have lower reliability than the other concepts and maintainability will be more difficult.

Thrust Vectoring Nozzle Type Comparison. Another factor considered in the thrust vectoring (TV) study was the type of vectoring scheme to be used. Three vectoring concepts are shown in Figure 4.4-2 that include both yaw and pitch vectoring capability. The baseline Model 24F vehicle was originally designed with a Spherical Convergent Flap Nozzle (SCFN) that had pitch only thrust vectoring; however, this was not considered as part of the baseline aircraft for most of the performance studies herein.

For purposes of this Phase I ICE study, a brief evaluation of a 2-axis thrust vectoring system was assumed in combination with the "best" 2 effectors - namely the split ailerons and the rotating tail. The TV was limited to 30 degrees of vectoring angles, with a rate of 100 degrees/second. All of the above concepts can achieve these capabilities.
Figure 4.4-1. Thrust Vectoring Nozzle Mounting Concepts
• SCFN nozzle (pitch vectoring only)

• Clamshell nozzle

• Spherical convergent flap nozzle

• Triangular fluidic vectoring nozzle

Figure 4.4-2. Thrust Vectoring Nozzle Concepts
Thrust Vectoring Integration Evaluation In evaluating the concepts, several figures-of-merit were taken in account. Figure 4.4-3 shows the weight, cost, and range factor performance of the various concepts. These values are for airframe mounted nozzle concepts. In addition to the above, the relative merits of the four candidate configurations are summarized in Figure 4.4-4. These attributes have all been normalized so that the pitch only thrust vectoring concept was assigned a value of 1.0 for each of the technologies. Using a weighting factor for each of the attributes, and summing the indices, a relative preference and ranking was established for the four concepts. Each of these nozzle concepts has its own merits. The SCFN (pitch only) is the lightest and least complex, offering advantages in several areas. All of the pitch and yaw vectoring concept have a significant edge in maneuvering capability over the pitch only concept. As shown, the SCFN (pitch only) concept is preferred, with the Clamshell concept the preferred pitch and yaw vectoring concept. As shown in the figure, the clamshell concept has advantages over the other two-axis concepts in several areas.

<table>
<thead>
<tr>
<th>Figures-of-merit</th>
<th>SC FN pitch only</th>
<th>SC FN pitch and yaw</th>
<th>Triangular fluidic</th>
<th>Clamshell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozzle weight</td>
<td>1,186</td>
<td>1,253</td>
<td>1,730</td>
<td>1,270</td>
</tr>
<tr>
<td>Life-cycle cost ($1,000)</td>
<td>12,000</td>
<td>12,500</td>
<td>12,300</td>
<td>12,200</td>
</tr>
<tr>
<td>Range factor</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
</tr>
</tbody>
</table>

Figure 4.4-3. Thrust Vectoring Figures-of-Merit

The integration issue discussed here are for completeness only. Integration of thrust vectoring into the vehicle was not part of this study.
<table>
<thead>
<tr>
<th>Concept attributes (figures of merit)</th>
<th>Performance index</th>
<th>Maneuver index</th>
<th>Signature index</th>
<th>RMS index</th>
<th>Cost index</th>
<th>Vulnerability index</th>
<th>Risk index</th>
<th>Concept preference (I^d)</th>
<th>Concept preference (I^o)</th>
<th>Concept rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCFN pitch only</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.19</td>
<td>1</td>
</tr>
<tr>
<td>SCFN pitch and yaw</td>
<td>1</td>
<td>1.33</td>
<td>0.8</td>
<td>0.97</td>
<td>0.74</td>
<td>0.67</td>
<td>0.67</td>
<td>0.65</td>
<td>0.13</td>
<td>2</td>
</tr>
<tr>
<td>Triangular fluidic</td>
<td>1</td>
<td>1.33</td>
<td>0.4</td>
<td>0.92</td>
<td>0.64</td>
<td>0.33</td>
<td>0.33</td>
<td>0.64</td>
<td>0.11</td>
<td>3</td>
</tr>
<tr>
<td>Clamshell</td>
<td>1</td>
<td>1.33</td>
<td>1.0</td>
<td>0.97</td>
<td>0.74</td>
<td>1</td>
<td>0.67</td>
<td>0.92</td>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td>Importance (I^a)</td>
<td>0.20</td>
<td>0.10</td>
<td>0.15</td>
<td>0.10</td>
<td>0.30</td>
<td>0.05</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variability (V^b)</td>
<td>0</td>
<td>0.17</td>
<td>0.28</td>
<td>0.03</td>
<td>0.15</td>
<td>0.32</td>
<td>0.27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determinance (D^c)</td>
<td>0</td>
<td>0.02</td>
<td>0.04</td>
<td>0</td>
<td>0.05</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The attribute importance weights must add up to 1.
b. The variability is measured by the standard deviation of the numbers in each column.
c. The determinance is found by multiplying each importance weight by the corresponding standard deviation. A determinance score of 0 indicates a nondeterminant attribute, and the greater the determinance score, the more determinant the attribute.
d. Concept preference according to the importance weights is found by multiplying each concept’s attribute scores by the corresponding importance weights.
e. Concept preference according to the determinance scores is found by multiplying each concept’s attribute scores by the corresponding determinance scores.

Figure 4.4-4. Determinant-Attribute Model
4.5 Radar Cross Section Analysis

The Radar Cross Section (RCS) characteristics of the Model-24F configuration have been estimated using high fidelity computational electromagnetic methods. These characteristics have been calculated for several configurations, elevations, frequencies and polarization for the full range of azimuths. Since the main focus of this study was to determine the RCS characteristics of the control effectors, major RCS contributors such as the propulsion system were not included in the computational modeling. The results of this study are summarized in Figures 4.5-1 and 4.5-2 and included in Appendix C.

50% probability sector, 9.0 GHz, 0 elevation

<table>
<thead>
<tr>
<th></th>
<th>Forward sector -30 to +30</th>
<th>Aft sector 150 to 210</th>
<th>Side sector 60 to 120</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-POL V-POL</td>
<td>H-POL V-POL</td>
<td>H-POL V-POL</td>
</tr>
<tr>
<td>Baseline</td>
<td>-37.0 -30.0</td>
<td>-22.0 -22.4</td>
<td>-10.3 -11.7</td>
</tr>
<tr>
<td>No vertical tails</td>
<td>-40.4 -40.5</td>
<td>-23.0 -23.0</td>
<td>-11.7 -14.2</td>
</tr>
<tr>
<td>No verticals, horizontal tails @ +20° dihedral</td>
<td>-38.6 -39.3</td>
<td>-21.7 -22.9</td>
<td>-11.4 -13.3</td>
</tr>
<tr>
<td>No verticals, strakes deployed</td>
<td>-36.1 -36.5</td>
<td>-21.3 -22.3</td>
<td>-12.1 -13.9</td>
</tr>
<tr>
<td>No verticals, split ailerons deployed</td>
<td>-32.3 -26.8</td>
<td>-9.0 -13.1</td>
<td>-8.9 -6.8</td>
</tr>
</tbody>
</table>

Figure 4.5-1. Signature Comparison - 50%

96% probability sector, 9.0 GHz, 0 elevation

<table>
<thead>
<tr>
<th></th>
<th>Forward sector -30 to +30</th>
<th>Aft sector 150 to 210</th>
<th>Side sector 60 to 120</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-POL V-POL</td>
<td>H-POL V-POL</td>
<td>H-POL V-POL</td>
</tr>
<tr>
<td>Baseline</td>
<td>-31.5 -31.6</td>
<td>4.7 3.7</td>
<td>-1.1 -1.6</td>
</tr>
<tr>
<td>No vertical tails</td>
<td>-31.5 -34.1</td>
<td>-1.0 -1.5</td>
<td>4.0 1.2</td>
</tr>
<tr>
<td>No verticals, horizontal tails @ +20° dihedral</td>
<td>-31.1 -33.4</td>
<td>4.8 3.4</td>
<td>4.2 1.0</td>
</tr>
<tr>
<td>No verticals, strakes deployed</td>
<td>-20.3 -22.9</td>
<td>-1.0 -1.5</td>
<td>4.0 1.0</td>
</tr>
<tr>
<td>No verticals, split ailerons deployed</td>
<td>10.8 12.3</td>
<td>8.4 9.5</td>
<td>7.0 15.6</td>
</tr>
</tbody>
</table>

Figure 4.5-2. Signature Comparison - 96%
The computational analysis was performed using the ARBSCAT code to estimate the primary scattering components. This code uses equivalent current sources with input for RCS treatment based on measured data. The analysis shown here is for untreated configurations. The code can also make corrections for edge radii and wedge angle for an accurate representation of the total vehicle signature. Additional RCS contributions such as multi-bounce and cavities were analyzed using a 3-D ray trace, physical optics code, XPATCH. For the data shown, the effects of traveling waves have been ignored. However, contributors that affect the trade study, such as strake deployment doors and the trailing edge control surface gaps have been accounted for. The study was performed by analyzing each component separately and then adding the pieces using the RCS budgeting code PLTSUM to obtain the total vehicle signature.

The results of the RCS study are summarized in Figures 4.5-1 and 4.5-2. The data are presented for 0 degrees elevation, 9.0 GHz, both polarization's, for the five study configurations listed below:

1) Baseline configuration
2) Baseline with vertical tails removed
3) (2) with Horizontal Tails @ 20 degrees dihedral
4) (2) with nose strakes deployed
5) (2) with Split Ailerons deployed @ 45 degrees

Additional analysis for +30 and -30 degrees elevation, 2.0 and 16.0 GHz are included in Appendix C.
4.6 Summary of Integration Results

Incorporating a control effector into an existing design can have significant adverse consequences. Most tactical aircraft do not have the volume available to easily integrate additional systems onto the airframe without degrading performance in other areas. Accommodating innovative devices early in the vehicle design process can preclude integration concerns and result in acceptable design compromises. The devices investigated during this effort may offer significant advantages to future aircraft designers if the devices are included early enough in the design process to preclude many of the problems noted in the previous sections. A quick look summary is included in table 4.6-1.

<table>
<thead>
<tr>
<th></th>
<th>Split Aileron</th>
<th>Chine Strake</th>
<th>Rotating Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ Weight</td>
<td>483 lbs</td>
<td></td>
<td>72 lbs</td>
</tr>
<tr>
<td>Δ Signature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>3.7 V 8.1 H</td>
<td>4 V 4.3 H</td>
<td>13.7 V 8.1 H</td>
</tr>
<tr>
<td>Side</td>
<td>7.4 V 2.8 H</td>
<td>.3 V .4 H</td>
<td>7.4 V 2.8 H</td>
</tr>
<tr>
<td>Aft</td>
<td>9.9 V 14 H</td>
<td>.7 V 1.7 H</td>
<td>9.9 V 14 H</td>
</tr>
<tr>
<td>Structural Integration</td>
<td>Moderate</td>
<td>Extensive</td>
<td>Extensive</td>
</tr>
<tr>
<td>Actuation</td>
<td>Significant Fairing</td>
<td>Moderate Difficulty</td>
<td>Complicated</td>
</tr>
<tr>
<td>Reliability</td>
<td>Proven</td>
<td>Proven</td>
<td>Technology similar to other concepts</td>
</tr>
<tr>
<td>Subsystem Trades</td>
<td></td>
<td>Radar Operation/ Effector Location</td>
<td>Weight/Replacement Schedule</td>
</tr>
</tbody>
</table>

Table 4.6-1
5.0 Task 4 - Risk Assessment and Reduction Plan

Based on the results of the performance and integration efforts, a risk reduction plan has been proposed to minimize the risk of transitioning any of these concepts to an advanced development project. The major risk elements identified for each of the effector concepts were aerodynamic performance, the integration aspects and the signature contributions for each device. This section evaluates the performance and integration risks associated with these effectors and proposes additional efforts which could reduce the risk in incorporating these devices onto future aircraft. The risk assessment summaries in Figures 5.1-2 and 5.2-1 are based on the risk rating guide shown in Figure 5.0-1.

Factors in probability of failure

<table>
<thead>
<tr>
<th>Probability of failure level</th>
<th>Maturity factor</th>
<th>Complexity factor</th>
<th>Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Existing</td>
<td>Simple design</td>
<td>Independent of existing system, facility, or subcontractor</td>
</tr>
<tr>
<td>Minor</td>
<td>Minor redesign</td>
<td>Minor increase in complexity</td>
<td>Schedule dependent on existing system, facility, or subcontractor. Less than 1 month delivery slip.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Major change feasible</td>
<td>Moderate increase in complexity</td>
<td>Performance/supportability dependent on existing system, facility, or subcontractor. 1-3 months delivery slip.</td>
</tr>
<tr>
<td>Significant</td>
<td>Technology available, complex design</td>
<td>Significant increase in complexity</td>
<td>Schedule dependent on new system schedule, facility, or subcontractor. Greater than 3 months delivery slip.</td>
</tr>
<tr>
<td>High</td>
<td>Some research complete, never done before</td>
<td>Extremely complex</td>
<td>Performance/supportability dependent on new system, facility, or subcontractor. Delivery slip precludes use at IOC.</td>
</tr>
</tbody>
</table>

Factors in consequence of failure

<table>
<thead>
<tr>
<th>Impact level</th>
<th>Technical factor</th>
<th>Supportability factor</th>
<th>Cost factor</th>
<th>Schedule factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Minimal or no consequences</td>
<td>Minimal or no consequences</td>
<td>Budget estimates not exceeded</td>
<td>Negligible impact on program. Slight change compensated by available schedule slack.</td>
</tr>
<tr>
<td>Minor</td>
<td>Small reduction in technical performance</td>
<td>Small reduction in supportability performance</td>
<td>Cost estimates exceed budget by 1 to 5 percent</td>
<td>Minor slip in schedule (less than 1 month). Some adjustment in milestones required.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Some reduction in technical performance</td>
<td>Some reduction in supportability performance</td>
<td>Cost estimates increased by 5 to 20 percent</td>
<td>Small slip in schedule (1 to 3 months)</td>
</tr>
<tr>
<td>Significant</td>
<td>Significant degradation in technical performance</td>
<td>Significant degradation in supportability performance</td>
<td>Cost estimates increased by 20 to 50 percent</td>
<td>Development schedule slip in excess of 3 months</td>
</tr>
<tr>
<td>High</td>
<td>Technical goals cannot be achieved</td>
<td>Supportability goals cannot be achieved</td>
<td>Cost estimates increased in excess of 50 percent</td>
<td>Large schedule slip that affects segment</td>
</tr>
</tbody>
</table>

Figure 5.0-1. Risk Rating Guide
5.1 Aerodynamic Performance Risk Assessment

The performance risks are associated with the limited test database associated with each of these effectors, and the interaction with the airframe the device is intended to be installed on. Expanding the knowledge database for each of these effectors will significantly enhance the possibility of success in including any of these designs on future fighter concepts. The greatest potential for exploration is in the low speed high angle-of-attack region. Figure 5.1-1 shows the current configuration test database and the region of proposed testing that should enhance the understanding of these devices. Of particular interest is the post-stall flight region, where improvements in control technology could provide future aircraft with advantages in air combat.

The performance risk assessment for each of the final study effectors is summarized in Figure 5.1-2. For each of the selected devices the risk rating reflects the concerns inherent in the device. For the forebody nose strake, the geometry of the forebody can significantly affect the performance of the device. The ability to locate the device close to the nose will directly affect the resulting vehicle capability. The split ailerons, while posing little risk, have significant disadvantages that may pose problems when incorporated onto future aircraft. For low aspect ratio vehicles, performance of these devices at low speed could fall well below requirements. The rotating horizontal tails have not been explored throughout the entire flight envelope, and may need to be larger than originally anticipated in order to achieve the acceptable results throughout the entire flight envelope.
<table>
<thead>
<tr>
<th>Probability of failure</th>
<th>Consequence of failure</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nose strake</td>
<td>Moderate</td>
<td>Significant</td>
</tr>
<tr>
<td>Split aileron</td>
<td>Low</td>
<td>Minor</td>
</tr>
<tr>
<td>Rotating tail</td>
<td>Minor</td>
<td>Significant</td>
</tr>
</tbody>
</table>

Figure 5.1-2. Performance Risk Assessment
5.2 Integration Risk Assessment

The integration risk summary is shown in Figure 5.2-1. Because of the nature of each of the selected effectors, the integration risks vary considerably. For the forebody nose strake, placement of the device and accompanying systems could compromise the effectiveness of the antennas which are normally installed in the forebody. Accommodating the antennas could degrade the performance of the device to the point that it is not useful. For the split ailerons, on fighter aircraft the wing thickness outboard poses a significant challenge. Integrating actuators into the outboard wing will probably require a fairing which will adversely affect the drag and thereby the performance of the vehicle. Other installation concepts may also compromise the overall vehicle design by either thickening the wing or reducing the spar box chord. For the rotating horizontal tails, weight and balance could be a consideration, and the proximity to the wing trailing edge could also adversely affect performance.

<table>
<thead>
<tr>
<th></th>
<th>Probability of failure</th>
<th>Consequence of failure</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nose strake</td>
<td>Minor</td>
<td>Moderate</td>
<td>Resizing of actuators could be limited by volume constraints. Interference with radar could be problem.</td>
</tr>
<tr>
<td>Split aileron</td>
<td>Minor</td>
<td>Minor</td>
<td>Actuator size is a problem. Fairing likely required. Vehicle moments not well defined.</td>
</tr>
<tr>
<td>Rotating tail</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Hinge moments not well defined. Smaller actuator would help the integration problems.</td>
</tr>
</tbody>
</table>

Figure 5.2-1. Integration Risk Assessment
5.3 Risk Assessment and Reduction Summary
Additional wind tunnel testing of these effector concepts will reduce the risk in transitioning them to advanced development projects. Additional integration investigation on a more detailed level of these concepts will also reduce the risk in proposing these effectors as devices on future fighter aircraft. The Boeing model BMA-S-1798-6A shown in Figure 5.3-1 is a 5% scale model of the baseline configuration and accomplishing the additional proposed testing would significantly enhance the database for these effectors and reduce the risks inherent in incorporating these devices onto future aircraft. A description of this model is included in Appendix E.
6.0 - Concluding Remarks

The ICE contract has provided a focus for development and assessment of innovative controls technology that will be relevant to future fighter aircraft studies. The performance and integration efforts undertaken during this study have demonstrated that these devices have the potential for eliminating the vertical tails from future configurations.

The aerodynamic effectors chosen for this study have provided some insight into the performance enhancement capabilities of these devices and their potential for integration into the vehicle flight control system. By the judicious selection of a suite of control devices, and an advanced design control system, the full potential of innovative devices may be exploited.

The integration study has provided additional insight into the challenges associated with incorporating these candidate devices onto future fighter aircraft. The effectiveness of the devices are certainly configuration dependent and must be carefully integrated to achieve desired control power.

An effector such as the rotating tail may buy its way onto a vehicle only with sufficient integration design effort. The design philosophy will effect the relative weight cost thereby impacting the trade-off with other devices.

Retrofit to existing vehicles seems unlikely to have benefit, but incorporation into the design of new vehicles at an early stage offers serious potential. The trade-off between the agility of the vehicle and the observable requirements will be dependent on many factors such as weapon agility and operational strategies for future aircraft.

Aircraft for the Navy have stringent requirements that are best evaluated with a vehicle designed initially for carrier operations, but the estimates made by some scaling and aerodynamic data modifications as done here give reasonable indications of effectiveness. (Control lows)

Clearly thrust vectoring has a great potential for reducing or eliminating the vehicle tail (it is proven technology). Additional operational experience will give more design guidance and confidence.
Further exploration is required to provide confidence for application of new control approaches on weapons systems. The data bases need to be extended through wind tunnel testing of models, and computational methods for stability and control assessment must be matured.
7.0 REFERENCES

APPENDIX A

Summary of Candidate Control Effectors

This appendix contains descriptions, diagrams, and summary data for a number of candidate control effectors.

Figure A-1 Porous forebody
Figure A-2 Pneumatic forebody vortex control
Figure A-3 Nose yaw vanes
Figure A-4 Vortex flaps, differential
Figure A-5 Differential horizontal tail
Figure A-6 Differential canard deflections
Figure A-7 Pivoting wing tip fins
Figure A-8 Pivoting fins
Figure A-9 Differential leading edge flaps
Figure A-10 Seamless TEF and LEF
Figure A-11 Wing tip split panel flaps
Figure A-12 Wing leading edge blowing
Figure A-13 Circulation control (wing trailing edge blowing)
Figure A-14 Moving Chine/Strake
Figure A-15 Aftbody flap (upper and lower)
Porous Forebody

Primary control function
- Yaw and pitch control.

Benefits
- Improves yaw control at moderate and high alphas. This control is used to roll around the velocity vector.

Risks
- Operating phenomena not well understood. Supersonic characteristics are unknown. Limited database. Stealth may be poor and this concept may be difficult to integrate with radar.

- NASA Langley 12 foot tunnel
\[\alpha = 48^\circ, \beta = 0^\circ, x_p = 100\%, \phi_p = 6-12 \]

Figure A-1 Porous Forebody
Pneumatic Forebody Vortex Control

Primary control function
Yaw and pitch control.

Benefits
Improves yaw control at moderate and high alphas. This yaw control is used to roll around the velocity vector.

Risks
Limited success on chined forebodies. Unknown supersonic characteristics. Signature impact unknown and hard to integrate with radar.

Nose Yaw Vanes

Primary control function

Yaw and pitch control.

Benefits

Improves yaw control at moderate and high angles-of-attack. This control is used to roll around the velocity vector.

Risks

Stealth may be poor, integration with radar is difficult.

Figure A-3 Nose Yaw Vanes
Vortex Flaps, Split Inboard/Outboard, Symmetric/Asymmetric

Primary control function
- All axis – using combinations of inboard/outboard, symmetric and asymmetric.

Benefits
- Exploits features of leading edge vortex on swept wings.

Risks
- May not be effective at low angles-of-attack or supersonic region.

Figure A-4 Vortex Flaps, Differential
Differential Horizontal Tail

Primary control function
- Yaw and roll control.

Benefits
- Enhances roll capability, roll around the velocity vector.

Risks
- Large actuator range required. Complex control software problem.

Figure A-5 Differential Horizontal Tail
Differential Canard Deflections for Yaw Control

Primary control function
 Yaw and roll control.

Benefits
 Enhances yaw capability, yaw and roll around the velocity vector.

Risks
 Signature levels are higher.

- Effect of differential canard-panel deflection on model lateral aerodynamic coefficients

Pivoting Wing Tip Fins For Side Force

Primary control function
Side force.

Benefits
Exploit flat turns for heading and alignment agility.

Risks
Heavy, defeats concept.

Pivoting Fins for Side Force

Primary control function
Side force.

Benefits
Exploit flat turns for heading agility.

Risks
Heavy, defeats the concept (case shown is for a deflected pair of rudders – side force is shown).

Figure A-8 Pivoting Fins
Differential Leading Edge Flaps

Primary control function
Roll control.

Benefits
Improves roll control.

Risks
Not very effective for highly swept configurations; roll reversal occurs at angles-of-attack approaching stall, requiring a complete database of characteristics to define reversal effects.

Figure A-9 Differential Leading Edge Flaps
Seamless TEF and LEF Hinges

Primary control function
 L/D and stealth improvements.

Benefits
 Extrapolation of maw technology. Eliminates the seams associated with conventionally hinged flaps.

Risks
 4 bar linkages are heavy and complex.

Wing Tip Split Panel Flaps

Primary control function
Yaw control.

Benefits
Can be used to reduce/replace rudders or vertical fins. Good at all alphas. Effective throughout the entire flight envelope.

Risks
Supersonic characteristics not well known. Defeats stealth benefits when deployed.

Figure A-11 Wing Tip split Panel Flaps
Wing Leading Edge Blowing

Primary control function
Lift enhancement and roll control.

Benefits
Maintain attached vortex flow at high angles-of-attack.

Risks
Weight/system sizing penalties, interference with high-lift system.

- **ROLLING MOMENT**
- **DELAYED VORTEX SEPARATION**
- **BLOWING**
- **PLENUM**

(α = 50 DEG)

- **Rolling moments produced by differential blowing on a delta wing – as a function of blowing coefficient**

Reference: "Controlled Vortex Flows Over Forebodies and Wings", Roberts, et. al., 1990.

Figure A-12 Wing Leading Edge Blowing
Circulation Control (Wing Trailing Edge Blowing)

Primary control function
Lift enhancement and roll control.

Benefits
Increases wing circulation and lift at a given flight condition.

Risks
Weight penalty, integration with trailing edge flaps.

Figure 20 - Effect of Blowing on Longitudinal Characteristics of Configuration 9
($\delta_t = 45^\circ$, $\delta_n = 30^\circ$, $\delta_{n_0} = 10^\circ$, Fences, Tail-Off)

Moving Chine/Strake

Primary control function
Pitch and yaw.

Benefits
Improve yaw and pitch control at moderate to high angles-of-attack.

Risks
Stealth may be poor.

- Asymmetric full length deflections

- Chine deflection position comparison

- Lateral-directional control power of asymmetric chine deflections

Figure A-14 Moving Chine/Strake
Aftbody Flap (Upper and Lower)

Primary control function
Pitch control.

Benefits
Enhances pitch capability.

Risks
Signature, weight, volume required.

Figure A-15 Aftbody Flap (Upper and Lower)
APPENDIX B

Summary of Performance Results:

This appendix contains a summary of the information used to evaluate the candidate effectors from a stability and flight control performance standpoint:

Figure B-1 Longitudinal Control in Maneuvering Flight-Maximum Sustained Load Factor
Figure B-2 Longitudinal Control in Maneuvering Flight-Penetration Speed
Figure B-3 Longitudinal Control in Maneuvering Flight-Supersonic Condition
Figure B-4 Wave-Off Maneuver
Figure B-5 Air Combat Maneuver Corner Speed
Figure B-6 Maximum Sustained Load Factor
Figure B-7 Wave-Off Maneuver-Simulation Comparison
Figure B-8 Pop-Up Maneuver
Figure B-9 90 Degree ~ 30 Knot Crosswind
Figure B-10 Catapult Launch
Figure B-11 Flight Path Stability
Figure B-12 Carrier Suitability Roll Rate Summary
Figure B-13 Flight Path Stability
Figure B-14 90 Degree ~ 30 Knot Crosswind-Thrust Vectoring
Figure B-15 Dutch Roll Characterics
Figure B-16 Maximum Yawing Moment Coefficient Due to Controls
Figure B-17 Maximum Rolling Moment Coefficient Due to Controls
Figure B-18 V_{∞} with Right Engine Out
Figure B-19 Pop-Up Maneuver-Simulation Comparison
Figure B-20 Level Flight Longitudinal Acceleration
Figure B-21 Roll Control Effectiveness Landing Approach
Figure B-22 Roll Control Effectiveness Landing Approach-Thrust Vectoring
Figure B-23 Roll Rate Oscillations
Figure B-24 30 Degree Bank Control Surface Response-Ailerons, Strakes
Figure B-25 30 Degree Bank Control Surface Response-Rotating Tail
Figure B-26 30 Degree Bank Vehicle Response--Rotating Tail
Figure B-27 30 Degree Bank vehicle Response - Ailerons, Strakes
Figure B-28 2-g Coordinated Turn Entry Control Surface Response
Figure B-29 2-g Coordinated Turn Energy Vehicle Response-Rotating Tail
Figure B-30 2-g Coordinated Turn Entry Vehicle Response-Ailerons, Strakes
Figure B-31 Longitudinal and Directional Stability Levels
Figure B-32 Longitudinal Control in Maneuvering Flight
Figure B-33 Maximum Sustained Load Factor at Mid Altitude
Figure B-34 Maximum Sustained Load Factor at High Altitude-Subsonic
Figure B-35 Maximum Sustained Load Factor at High Altitude-Supersonic Penetration
Figure B-36 Maximum Sustained Load Factor-Penetration
Figure B-37 Dutch Roll Characteristics
Figure B-38 Low Speed Lift and Pitching Moment Coefficients
Figure B-39 Level Flight Longitudinal Acceleration
Figure B-40 Landing Approach Nose Down Pitch Acceleration
Figure B-41 Carrier Suitability Roll Rate Summary
Figure B-42 Sideslip Angle Capture
Figure B-43 Departure Stall-Roll Rate Time Constant
Figure B-44 Departure Stall-Roll Performance
Figure B-45 Power on Departure Stall-Lateral-Directional Dynamics
GW = 27,000 lbs
Alt. = 30,000 ft
CG @ 38% MAC
M = 0.9

Figure B-1 Longitudinal Control in Maneuvering Flight-Maximum Sustained Load Factor
Figure B-2 Longitudinal Control in Maneuvering Flight-Penetration Speed

GW = 27,000 lbs
Alt. = 1,000 ft
CG @ 38% MAC
$V_e = 600$ kts
Figure B-4 Wave-Off Maneuver
Subsonic Maneuver Leading Edge

GW = 27,000 lbs Alt = 15,000 ft Mach = 0.6 cg @ 38% MAC

Split Allerons

HORIZONTAL STABILIZER DEFLECTION (DEG)

TEU -5.

TED 15.

TEU 40.

U PPER SPLIT AILERON DEFLECTION (DEG)

TED 40.

LOWER SPLIT AILERON DEFLECTION (DEG)

TIME (SEC)

0 1. 2. 3. 4. 5. 6. 7.

Chine Strakes

HORIZONTAL STABILIZER DEFLECTION (DEG)

TEU -5.

TED 15.

TEU -10.

AILERON DEFLECTION (DEG)

TED 10.

CHINE STRAKE DEFLECTION (DEG)

TIME (SEC)

0 1. 2. 3. 4. 5. 6. 7.

2-g Coordinated Turn Entry - Control Surface Response

Figure B-5 Air Combat Maneuver Corner Speed
Take-Off/Landing Analysis Condition
GW = 25,000 lbs
C.G. @ 38% MAC
Altitude = 1,000 ft
Landing Flaps

Model - 24F - Capability in Coordinated Turns
Figure B-6 Maximum Sustained Load Factor
GW = 31,950 lbs CG @ 38% MAC $V_\text{AP} = 135$ kts
Pilot Delay = .7 sec.

Figure B-7 Wave-Off Maneuver-Simulation Comparison
GW = 31,950 lbs Landing Flaps CG @ 38% MAC
Initial Trim Speed = 135 kts

Figure B-8 Pop-Up Maneuver
Figure B-9 90 Degree ~ 30 Knot Crosswind
Figure B-10 Catapult Launch
Figure B-11 Flight Path Stability
Figure B-12 Carrier Suitability Roll Rate Summary
ROTATING TAILS, SPLIT AILERON WITH THRUST VECTORING

DEFLECTION LIMIT FOR ROTATING TAIL AND SPLIT AILERONS: ≤ 30 DEG.

Figure B-14 90 Degree ~ 30 Knot Crosswind-Thrust Vectoring
Figure B-15 Dutch Roll Characteristics
Figure B-16 Maximum Yawing Moment Coefficient Due to Controls
Figure B-17 Maximum Rolling Moment Coefficient Due to Controls
Figure B-18 V_{mc} with Right Engine Out
GW = 31,950 lbs Landing Flaps CG @ 38% MAC
Initial Trim Speed = 135 kts

Figure B-19 Pop-Up Maneuver-Simulation Comparison
Landing Approach

GW = 31,900 LBS ALT. = 600 FT Va = 135 KTS CG @ 38% MAC

LEVEL FLIGHT ACCELERATION REQUIREMENT:
5 FT/SEC² WITHIN 2.5 SECONDS

LONGITUDINAL ACCELERATION
(FT/SEC²)

ADVANCE THROTTLE TO 127

Baseline solution from MEATBALL
VPA = 104 kts (MEATBALL returns value at lowest possible speed
to meet requirement.)

TIME (SEC)

Figure B-20 Level Flight Longitudinal Acceleration
GW = 25,000 lbs Alt. = 1,000 ft $V_g = 132$ kts CG @ 33% mac

Figure B-22 Roll Control Effectiveness Landing Approach-Thrust Vectoring
Coordinated Turn Entry for Landing Approach

Figure B-24 30 Degree Bank Control Surface Response-Ailerons, Strakes
Coordinated Turn Entry for Landing Approach

Figure B-25 30 Degree Bank Control Surface Response-Rotating Tail
Coordinated Turn Entry Landing Approach
Figure B-26 30 Degree Bank Vehicle Response-Rotating Tail
Coordinated Turn Entry Landing Approach

Figure B-27 30 Degree Bank Vehicle Response - Ailerons, Strakes
Subsonic Maneuver Leading Edge

GW = 27,000 lbs Alt = 15,000 ft Mach = 0.6 cg @ 38% MAC

Baseline

Rotating Tail (20/20)

Air Combat Maneuver Corner Speed

Figure B-28 2-g Coordinated Turn Entry Control Surface Response
Air Combat Maneuver Corner Speed

Figure B-29 2-g Coordinated Turn Entry Vehicle Response-Rotating Tail
Air Combat Maneuver Corner Speed

Figure B-30 2-g Coordinated Turn Entry Vehicle Response-Ailerons, Strakes
Figure B-31 Longitudinal and Directional stability Levels
Air Combat Maneuver Corner Point

Figure B-32 Longitudinal Control in Maneuvering Flight
Maximum Sustained Load Factor Analysis Condition
GW = 27,000 lbs
C.G. @ 38% MAC
Altitude = 30,000 ft
Subsonic Maneuver Leading Edge

Model -24F Capability in Coordinated Turns
Figure B-34 Maximum Sustained Load Factor at High Altitude-Subsonic
Supersonic Analysis Condition
GW = 27,000 lbs
C.G. @ 38% MAC
Altitude = 30,000 ft
Supersonic Cruise Leading Edge

Model -24F Capability in Coordinated Turns
Figure B-35 Maximum Sustained Load Factor at High Altitude-Super Sonic Penetration
Penetration Speed Analysis Condition
GW = 27,000 lbs
C.G. @ 38% MAC
Altitude = 1,000 ft
Subsonic Cruise Leading Edge

Model -24F Capability in Coordinated Turns
Figure B-36 Maximum Sustained Load Factor Penetration
Landing Approach

GW = 31,900 LBS
ALT. = 600 FT
V_{e} = 135 KTS
CG @ 39% MAC

Figure B-37 Dutch Roll Characteristics
Horizontal and Vertical Tail On
Mach = 0.05
Data Source: LaRC 12 ft Wind Tunnel Test (Oct/Nov 1991)

Figure B-38 Low Speed Lift and Pitching Moment Coefficients
Landing Approach

GW = 31,900 LBS ALT. = 600 FT $V_a = 135$ KTS CG @ 35% MAC

LEVEL FLIGHT ACCELERATION REQUIREMENT:

5 FT/SEC² WITHIN 2.5 SECONDS

Baseline solution from MEATBALL $V_{PA} = 104$ kts (MEATBALL returns value at lowest possible speed to meet requirement.)

Figure B-39 Level Flight Longitudinal Acceleration
GW = 31,900 lbs CG @ 38% MAC Landing Flaps Gear Down

PITCH ACCEL (RAD/SEC^2)

0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6

TIME (SEC)
0.4
0.8
1.2
1.6
2.0
2.4
2.8

HIGH ANGLE OF ATTACK
NOSE DOWN PITCH CONTROL
REQUIREMENT:
-0.07 RAD/SEC^2 WITHIN 1 SEC

NAVAIR CONTROL POWER GUIDELINE:
-0.2 RAD/SEC^2 WITHIN 1 SEC.

INITIATE NOSE DOWN COMMAND AT TIME = 1 SEC.

Baseline
Rotating Tails
Thrust Vectoring

Maximum Data Base Angle of Attack
Figure B-40 Landing Approach Nose Down Pitch Acceleration
Figure B-41 Carrier Suitability Roll Rate Summary

NOTE: ROLL COMMAND INITIATED AT TIME = 1 SEC. REQUIRED TO ACHIEVE BANK ANGLE WITHIN 1.1 SECONDS OF ROLL COMMAND.
AIR COMBAT MANEUVER CORNER POINT

GW = 27,000 LBS
ALT. = 15,000 FT
MACH = 0.6
CG @ 38% MAC

Figure B-42 Sideslip Angle Capture
Figure B-43 Departure Stall-Roll Rate Time Constant
Figure B-44 Departure Stall-Roll Performance
Figure B-45 Power on Departure Stall-Lateral-Directional Dynamics
APPENDIX C

Summary of Signature Data

Configurations are summarized as:

1) Baseline
2) Baseline with vertical tails removed
3) 2) with horizontal tails @ 20 degrees dihedral
4) 2) with nose strakes deployed
5) 2) with split ailerons deployed @ 45 degrees

<table>
<thead>
<tr>
<th>Figure</th>
<th>Config.</th>
<th>Frequency ~ Ghz</th>
<th>Elevation ~ degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 9 16</td>
<td>-30 0 +30</td>
</tr>
<tr>
<td>C.1</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.2</td>
<td>2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.3</td>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.4</td>
<td>4</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.5</td>
<td>5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C.6</td>
<td>1</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>C.7</td>
<td>2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.8</td>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.9</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.10</td>
<td>2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.11</td>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.12</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.13</td>
<td>2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.14</td>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.15</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.16</td>
<td>2</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C.17</td>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

All figures include both horizontal and vertical polarization.
Baseline Configuration

9.0 Ghz 0.0 Degrees elevation

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>-37.0</td>
<td>-31.5</td>
</tr>
<tr>
<td>60.0</td>
<td>-10.3</td>
<td>4.7</td>
</tr>
<tr>
<td>150.0</td>
<td>-10.3</td>
<td>4.7</td>
</tr>
<tr>
<td>240.0</td>
<td>-22.0</td>
<td>-1.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>-38.3</td>
<td>-31.6</td>
</tr>
<tr>
<td>60.0</td>
<td>-11.7</td>
<td>3.7</td>
</tr>
<tr>
<td>150.0</td>
<td>-11.7</td>
<td>3.7</td>
</tr>
<tr>
<td>240.0</td>
<td>-22.4</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

Figure C-1
Baseline Configuration
Vertical Tails Removed
9.0 Ghz 0.0 Degrees elevation

Figure C-2
Baseline Configuration
Vertical Tails Removed & Aft Wings @ +20 Dihedral
9.0 Ghz 0.0 Degrees elevation

H-Pol

V-Pol

Figure C-3
Baseline Configuration
Vertical Tails Removed & Strakes Added
9.0 Ghz 0.0 Degrees elevation

H-Pol

V-Pol

Sector	P50	P96
-30.0 | 30.0 | -36.1 | -20.3
60.0 | 120.0 | -12.1 | 4.0
150.0 | 210.0 | -12.1 | 4.0
240.0 | 300.0 | -21.3 | -1.0

Sector	P50	P96
-30.0 | 30.0 | -36.5 | -22.9
60.0 | 120.0 | -13.9 | 1.0
150.0 | 210.0 | -13.9 | 1.0
240.0 | 300.0 | -22.3 | -1.5

Figure C-4
BaseLine Configuration

Vertical Tails Removed With Split Ailerons

9.0 Ghz 0.0 Degrees elevation

Figure C-5
Baseline Configuration

9.0 GHz 30.0 Degrees elevation

Figure C-6
Baseline Configuration
Vertical Tails Removed
9.0 Ghz 30.0 Degrees elevation

Figure C-7
Baseline Configuration
Vertical Tails Removed & Aft Wings @ +20 Dihedral
9.0 Ghz 30.0 Degrees elevation

Figure C-8
Baseline Configuration

9.0 GHz -30.0 Degrees elevation

H-Pol

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>30.0</td>
<td>-33.4</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
<td>-6.4</td>
</tr>
<tr>
<td>150.0</td>
<td>210.0</td>
<td>-6.3</td>
</tr>
<tr>
<td>240.0</td>
<td>300.0</td>
<td>-11.8</td>
</tr>
</tbody>
</table>

V-Pol

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>30.0</td>
<td>-26.8</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
<td>-8.6</td>
</tr>
<tr>
<td>150.0</td>
<td>210.0</td>
<td>-9.2</td>
</tr>
<tr>
<td>240.0</td>
<td>300.0</td>
<td>-10.0</td>
</tr>
</tbody>
</table>

Figure C-9
Baseline Configuration
Vertical Tails Removed
9.0 GHz -30.0 Degrees elevation

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>30.0</td>
<td>-33.8</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
<td>-10.9</td>
</tr>
<tr>
<td>150.0</td>
<td>210.0</td>
<td>-10.9</td>
</tr>
<tr>
<td>240.0</td>
<td>300.0</td>
<td>-16.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>30.0</td>
<td>-27.0</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
<td>3.9</td>
</tr>
<tr>
<td>150.0</td>
<td>210.0</td>
<td>3.9</td>
</tr>
<tr>
<td>240.0</td>
<td>300.0</td>
<td>-5.9</td>
</tr>
</tbody>
</table>

Figure C-10
Baseline Configuration
Vertical Tails Removed & Aft Wings @ +20 Dihedral
9.0 Ghz -30.0 Degrees elevation

H-Pol

V-Pol

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>30.0</td>
<td>-34.5</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
<td>-12.1</td>
</tr>
<tr>
<td>150.0</td>
<td>210.0</td>
<td>-12.2</td>
</tr>
<tr>
<td>240.0</td>
<td>300.0</td>
<td>-11.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>30.0</td>
<td>-21.8</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
<td>-10.0</td>
</tr>
<tr>
<td>150.0</td>
<td>210.0</td>
<td>-10.1</td>
</tr>
<tr>
<td>240.0</td>
<td>300.0</td>
<td>-13.2</td>
</tr>
</tbody>
</table>

Figure C-11
Baseline Configuration

2.0 GHz 0.0 Degrees elevation

Figure C-12
Baseline Configuration
Vertical Tails Removed
2.0 GHz 0.0 Degrees elevation

Figure C-13
Baseline Configuration
Vertical Tails Removed & Aft Wings @ +20 Dihedral
2.0 Ghz 0.0 Degrees elevation

Figure C-14
Baseline Configuration
16.0 Ghz 0.0 Degrees elevation

H-Pol

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>30.0</td>
<td>-41.0</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
<td>-11.7</td>
</tr>
<tr>
<td>150.0</td>
<td>210.0</td>
<td>-11.7</td>
</tr>
<tr>
<td>240.0</td>
<td>300.0</td>
<td>-24.0</td>
</tr>
</tbody>
</table>

V-Pol

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>30.0</td>
<td>-40.7</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
<td>-13.3</td>
</tr>
<tr>
<td>150.0</td>
<td>210.0</td>
<td>-13.3</td>
</tr>
<tr>
<td>240.0</td>
<td>300.0</td>
<td>-24.0</td>
</tr>
</tbody>
</table>

Figure C-15
Baseline Configuration
Vertical Tails Removed
16.0 GHz 0.0 Degrees elevation

Figure C-16
Baseline Configuration

Vertical Tails Removed & Aft Wings @ +20 Dihedral

16.0 Ghz 0.0 Degrees elevation

H-Pol

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>30.0</td>
<td>-41.6</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
<td>-13.2</td>
</tr>
<tr>
<td>150.0</td>
<td>210.0</td>
<td>-13.2</td>
</tr>
<tr>
<td>240.0</td>
<td>300.0</td>
<td>-24.7</td>
</tr>
</tbody>
</table>

V-Pol

<table>
<thead>
<tr>
<th>Sector</th>
<th>P50</th>
<th>P96</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30.0</td>
<td>30.0</td>
<td>-42.3</td>
</tr>
<tr>
<td>60.0</td>
<td>120.0</td>
<td>-14.2</td>
</tr>
<tr>
<td>150.0</td>
<td>210.0</td>
<td>-14.2</td>
</tr>
<tr>
<td>240.0</td>
<td>300.0</td>
<td>-25.3</td>
</tr>
</tbody>
</table>

Figure C-17
APPENDIX D

Summary of Analysis of Variable Dihedral Horizontal Tail Concept

This appendix contains a summary of the information used to integrate the variable dihedral horizontal tail. Included in the integration effort are the weight, structures and actuation sizing trades. The following figures are included:

- Figure D-1 Weight Buildup and Concept Comparison
- Figure D-2 Aft Configuration Features Comparison
- Figure D-3 Body Boom Weight - Fixed Spindle (baseline)
- Figure D-4 Body Boom Arrangement for Fixed Spindle
- Figure D-5 Horizontal Stabilizer Spindle Weight Comparison
- Figure D-6 Horizontal Stabilizer Spindle Sizing
- Figure D-7 Horizontal Stabilizer Spindle Loads Comparison
- Figure D-8 Horizontal Stabilizer Spindle Sizing Comparison
- Figure D-9 Fixed Spindle Mid Boom
- Figure D-10 Body Boom Arrangement for Variable Dihedral
- Figure D-11 Body Boom Arr. for Var. Dihedral - Concept 2
- Figure D-12 Rotary Hinge Torque Tube Arrangement
- Figure D-13 Curtiss-Wright Power Hinge Sizing Chart
- Figure D-14 Activation Cycles vs. Design Hinge Moment
WEIGHT BUILD-UPS - Comparisons

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>Base Vertical Fin Fixed Spindle WEIGHT -lb/vehicle</th>
<th>Variable Dihedral Concept 1 WEIGHT -lb/vehicle</th>
<th>Variable Dihedral Concept 2 WEIGHT -lb/vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERTICAL FIN STRUCTURE</td>
<td>398.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>· Vertical Fin Structure With LO Treatment</td>
<td>398.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>HORIZONTAL STABILIZER STRUCTURE</td>
<td>684.0</td>
<td>724.0</td>
<td>724.0</td>
</tr>
<tr>
<td>· Stabilizer Structure With LO Treatment Less Spindle</td>
<td>384.0</td>
<td>384.0</td>
<td>384.0</td>
</tr>
<tr>
<td>· Stabilizer Spindle</td>
<td>300.0</td>
<td>340.0</td>
<td>340.0</td>
</tr>
<tr>
<td>BODY STRUCTURE</td>
<td>750.0</td>
<td>768.7</td>
<td>735.2</td>
</tr>
<tr>
<td>· Fin - to - Body Attachment</td>
<td>150.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>· Body - Stabilizer Booms</td>
<td>600.0</td>
<td>768.7</td>
<td>735.2</td>
</tr>
<tr>
<td>FLIGHT CONTROL ACTUATION</td>
<td>201.0</td>
<td>1,368.3</td>
<td>676.8</td>
</tr>
<tr>
<td>· Rudder Actuation</td>
<td>51.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>· Stabilizer Actuation</td>
<td>150.0</td>
<td>150.0</td>
<td>150.0</td>
</tr>
<tr>
<td>· Variable Dihedral Rotary Actuation</td>
<td>0.0</td>
<td>1,218.3</td>
<td>526.8</td>
</tr>
<tr>
<td>HYDRAULICS</td>
<td>70.0</td>
<td>54.0</td>
<td>39.0</td>
</tr>
<tr>
<td>· Rudder Hydraulics</td>
<td>46.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>· Stabilizer Hydraulics</td>
<td>24.0</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>· Variable Dihedral Hydraulics</td>
<td>0.0</td>
<td>30.0</td>
<td>15.0</td>
</tr>
<tr>
<td>TOTAL WEIGHT</td>
<td>2,103.0</td>
<td>2,915.0</td>
<td>2,175.0</td>
</tr>
<tr>
<td>ΔWEIGHT FROM BASE</td>
<td>0.0</td>
<td>812.0</td>
<td>72.0</td>
</tr>
</tbody>
</table>

Figure D-1 Weight Buildup and Concept Comparison
BODY BOOM WEIGHT - Fixed Spindle

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>WEIGHT (lb/vehicle)</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• UPPER COVER</td>
<td>86.0</td>
<td>• Ti 6-4 Skins; tskins = 0.080 in to 0.125 in</td>
</tr>
<tr>
<td>• LOWER COVER</td>
<td>86.0</td>
<td>• Ti 6-4 Skins; tskins = 0.080 in to 0.125 in</td>
</tr>
<tr>
<td>• INBD WEB</td>
<td>55.7</td>
<td>• Ti 6-4 Skins; tskins = 0.080"</td>
</tr>
<tr>
<td>• INBD CHORDS</td>
<td>85.3</td>
<td>• Ti 6-4 Angle; Axx = 1.250 in²</td>
</tr>
<tr>
<td>• OTBD CHANNEL</td>
<td>54.6</td>
<td>• Ti 6-4 Channel; Axx = 1.600 in²</td>
</tr>
<tr>
<td>• FASTENING</td>
<td>36.8</td>
<td>• Allowance</td>
</tr>
<tr>
<td>FRAMES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• STA 618</td>
<td>15.0</td>
<td>• YF-22 Ratio</td>
</tr>
<tr>
<td>• STA 644</td>
<td>15.0</td>
<td>• YF-22 Ratio</td>
</tr>
<tr>
<td>• STA 669</td>
<td>15.0</td>
<td>• YF-22 Ratio</td>
</tr>
<tr>
<td>• STA 694</td>
<td>30.0</td>
<td>• YF-22 Ratio</td>
</tr>
<tr>
<td>• STA 704</td>
<td>30.0</td>
<td>• YF-22 Ratio</td>
</tr>
<tr>
<td>ATTACHMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• OTBD SPINDLE BEARING INST.</td>
<td>15.0</td>
<td>• YF-22 Ratio</td>
</tr>
<tr>
<td>• INBD SPINDLE BEARING INST.</td>
<td>12.0</td>
<td>• YF-22 Ratio</td>
</tr>
<tr>
<td>• STABILIZER ACTUATOR ATTACHMENT</td>
<td>8.0</td>
<td>• YF-22 Ratio</td>
</tr>
<tr>
<td>MISCELLANEOUS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Allowance</td>
<td>20.6</td>
<td></td>
</tr>
<tr>
<td>TOTAL BODY BOOM WEIGHT</td>
<td>565.0</td>
<td></td>
</tr>
</tbody>
</table>

*Figure D-3 Body Boom Weight - Fixed Spindle (baseline)"
Body Boom Arrangement For Fixed Spindle

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covers & Webs</td>
<td>Ti 6-4 Plate</td>
</tr>
<tr>
<td>Chords</td>
<td>Ti 6-4 Plate Or Extrusions</td>
</tr>
<tr>
<td>Frames</td>
<td>Ti 6-4 Plate</td>
</tr>
<tr>
<td>Fittings</td>
<td>Ti 6-4 Extrusions</td>
</tr>
<tr>
<td>Bearings</td>
<td>Steel</td>
</tr>
<tr>
<td>Stabilizer Spindle</td>
<td>Steel</td>
</tr>
</tbody>
</table>

Figure D-4 Body Boom Arrangement for Fixed Spindle
HORIZONTAL STABILIZER SPINDLE WEIGHT COMPARISON
FIXED vs VARIABLE DIHEDRAL SPINDLE

FIXED SPINDLE:

<table>
<thead>
<tr>
<th>STA</th>
<th>Δl</th>
<th>DIAo</th>
<th>DIAL</th>
<th>wall</th>
<th>Axx</th>
<th>WT/IN</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.9</td>
<td>5.0</td>
<td>5.32</td>
<td>4.96</td>
<td>0.178</td>
<td>2.873</td>
<td>0.827</td>
<td>4.5</td>
</tr>
<tr>
<td>29.9</td>
<td>14.1</td>
<td>5.32</td>
<td>4.90</td>
<td>0.207</td>
<td>3.322</td>
<td>0.958</td>
<td>40.5</td>
</tr>
<tr>
<td>44.0</td>
<td>3.0</td>
<td>5.32</td>
<td>2.68</td>
<td>1.318</td>
<td>16.554</td>
<td>4.784</td>
<td>13.7</td>
</tr>
<tr>
<td>47.0</td>
<td>20.0</td>
<td>5.15</td>
<td>2.68</td>
<td>1.233</td>
<td>15.157</td>
<td>4.380</td>
<td>55.3</td>
</tr>
<tr>
<td>67.0</td>
<td>0.0</td>
<td>3.50</td>
<td>2.68</td>
<td>0.410</td>
<td>3.980</td>
<td>1.150</td>
<td></td>
</tr>
</tbody>
</table>

BASIC SPINDLE

114.0 lb/side

SPINDLE ACTUATOR LUGS

12.0

SPINDLE TO BODY ATTACHMENT

14.0

MISC.

10.0

TOTAL PER SIDE

150.0 lb/side

TOTAL PER AIRCRAFT

300.0 lb/aircraft

VARIABLE DIHEDRAL:

<table>
<thead>
<tr>
<th>STA</th>
<th>Δl</th>
<th>DIAo</th>
<th>DIAL</th>
<th>wall</th>
<th>Axx</th>
<th>WT/IN</th>
<th>WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>38.0</td>
<td>4.1</td>
<td>6.50</td>
<td>6.07</td>
<td>0.217</td>
<td>4.283</td>
<td>1.238</td>
<td>7.0</td>
</tr>
<tr>
<td>42.1</td>
<td>4.1</td>
<td>6.50</td>
<td>5.73</td>
<td>0.386</td>
<td>7.414</td>
<td>2.141</td>
<td>13.4</td>
</tr>
<tr>
<td>46.2</td>
<td>13.9</td>
<td>6.50</td>
<td>4.75</td>
<td>0.876</td>
<td>15.477</td>
<td>4.473</td>
<td>61.4</td>
</tr>
<tr>
<td>60.1</td>
<td>20.0</td>
<td>5.15</td>
<td>2.68</td>
<td>1.233</td>
<td>15.157</td>
<td>4.380</td>
<td>55.3</td>
</tr>
<tr>
<td>80.1</td>
<td>0.0</td>
<td>3.50</td>
<td>2.68</td>
<td>0.410</td>
<td>3.980</td>
<td>1.150</td>
<td></td>
</tr>
</tbody>
</table>

BASIC SPINDLE

137.1 lb/side

SPINDLE ACTUATOR LUGS

12.0

SPINDLE TO TORQUE BOX ATTACHMENT

10.0

MISC.

10.9

TOTAL PER SIDE

170.0 lb/side

TOTAL PER AIRCRAFT

340.0 lb/aircraft

Figure D-5 Horizontal Stabilizer Spindle Weight Comparison
HORIZONTAL STABILIZER SPINDLE SIZING
Fixed & Variable Dihedral Spindles

REQUIREMENTS:

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>LIMIT</th>
<th>ULTIMATE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HINGE MOMENT @ Side of Boom</td>
<td>1,971,200. In lb</td>
<td>2,956,800. In lb</td>
<td>Per J. DAWDY(8/15/95) & W. PRICE(8/30/95)</td>
</tr>
<tr>
<td>SHEAR LOAD @ Side of Boom</td>
<td>74,105. lb</td>
<td>111,158. lb</td>
<td>From HM @ SOB & Geometry</td>
</tr>
<tr>
<td>TORSION @ Side of Boom</td>
<td>181,199. In lb</td>
<td>271,798. In lb</td>
<td>Per J. DAWDY(8/15/95) + 5% MAC Load Offset</td>
</tr>
</tbody>
</table>

GEOMETRY & MATERIAL:

<table>
<thead>
<tr>
<th>ITEM DESCRIPTION</th>
<th>Fixed Sp'd</th>
<th>VD Sp'd</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPINDLE DIAMETER @ Attach Bearings</td>
<td>5.32 in</td>
<td>6.50 in</td>
<td>Estimate</td>
</tr>
<tr>
<td>SPINDLE DIAMETER @ Side of Boom</td>
<td>5.15 in</td>
<td>5.15 in</td>
<td>Exceeds Drawing t/c @ SOB by Δt = 0.65"</td>
</tr>
<tr>
<td>HI-STRENGTH STEEL i.e., ARAMET 100, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TENSION ULTIMATE - Ftu</td>
<td>240,000. psi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPRESSION YIELD - Fcy</td>
<td>-240,000. psi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHEAR ULTIMATE - Fsu</td>
<td>180,000. psi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DENSITY</td>
<td>0.289 lb/in3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure D-6 Horizontal Stabilizer Spindle Sizing
HORIZONTAL STABILIZER SPINDLE LOADS COMPARISON
FIXED (FIX SPD) vs VARIABLE DIHEDRAL (VD SPD) SPINDLES

Fix SPD Ultimate Shear Diagram

Fix SPD Ultimate Moment Diagram

Vd SPD Ultimate Shear Diagram

Vd SPD Ultimate Moment Diagram

Figure D-7 Horizontal Stabilizer Spindle Loads Comparison
HORIZONTAL STABILIZER SPINDLE SIZING COMPARISON
FIXED vs VARIABLE DIHEDRAL SPINDLE

FIXED SPINDLE

FWD

DIOuter = 5.32 in
DIInner = 4.91 in
Ax = 3.32 in²
WT / IN = 0.93 lb/in

VARIABLE DIHEDRAL SPINDLE

DIOuter = 5.32 in
DIInner = 4.91 in
Ax = 3.32 in²
WT / IN = 0.93 lb/in

DIOuter = 3.50 in
DIInner = 2.98 in
Ax = 3.98 in²
WT / IN = 1.15 lb/in

DIOuter = 6.00 in
DIInner = 5.30 in
Ax = 6.73 in²
WT / IN = 2.14 lb/in

DIOuter = 6.00 in
DIInner = 5.30 in
Ax = 6.73 in²
WT / IN = 2.14 lb/in

DIOuter = 6.00 in
DIInner = 5.30 in
Ax = 6.73 in²
WT / IN = 2.14 lb/in

DIOuter = 5.15 in
DIInner = 4.66 in
Ax = 2.66 in²
WT / IN = 0.83 lb/in

DIOuter = 6.50 in
DIInner = 6.07 in
Ax = 4.26 in²
WT / IN = 1.24 lb/in

Figure D-8 Horizontal Stabilizer Spindle Sizing Comparison
FIXED SPINDLE MID BOOM

GEOMETRY (INPUTS):

- OUTER DIAMETER = 5.316 in
- INNER DIAMETER = 0.000 in
- WALL THICKNESS = 0.207 in

APPLIED LOADS (INPUTS):

- BENDING MOMENT - $M = 860,425, \text{ in lb}$
- AXIAL LOAD - $P_{axial} = 4,000, \text{ lb}$
- SHEAR LOAD - $V = 172,085, \text{ lb}$

APPLIED STRESSES (CALCULATED):

\[
\begin{align*}
(M \times c) + I_{xx} + (P_{axial} + A_{xx}) &= 212,273, \text{ psi} \\
(V + (A_{xx})) + (T + (2 \times Rave^2 \times \pi \times \text{wall})) &= 84,031, \text{ psi}
\end{align*}
\]

SECTION PROPERTIES (CALCULATED):

\[
\begin{align*}
A_{xx} &= 3.315 \text{ in}^2 \\
I_{xx} &= 9.58 \text{ lb} \times \text{in} \\
I_{pol} &= 21.671 \text{ in}^4 \\
P_x &= P_y = 1.808 \text{ in} \\
P_{pol} &= 2.557 \text{ in} \\
d/t &= 25.74 \\
D_{outer} &= 5.316 \text{ in} \\
D_{inner} &= 4.903 \text{ in} \\
\text{wall} &= 0.207 \text{ in} \\
c+I_{xx} &= 0.245 \text{ in} \\
\text{MARGIN OF SAFETY} &= 0\%
\end{align*}
\]

MATERIAL PROPERTIES (INPUTS):

- TENSION ULTIMATE - $F_{tu} = 240,000, \text{ psi}$
- COMPRESSION YIELD - $F_{cy} = -240,000, \text{ psi}$
- SHEAR ULTIMATE - $F_{su} = 180,000, \text{ psi}$
- DENSITY = 0.269 lb / in^3
- MATERIAL = STEEL

Figure D-9 Fixed Spindle Mid Boom
Body Boom Arrangement For Variable Dihedral

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covers & Webs</td>
<td>Ti 6-4 Plate</td>
</tr>
<tr>
<td>Chords</td>
<td>Ti 6-4 Plate Or Extrusions</td>
</tr>
<tr>
<td>Frames</td>
<td>Ti 6-4 Plate</td>
</tr>
<tr>
<td>Fittings</td>
<td>Ti 6-4 Extrusions</td>
</tr>
<tr>
<td>Bearings</td>
<td>Steel</td>
</tr>
<tr>
<td>Stabilizer Spindle</td>
<td>Steel</td>
</tr>
<tr>
<td>Blade Seals</td>
<td>Gr/Ep Laminate</td>
</tr>
<tr>
<td>Moveable Fairing Skin</td>
<td>H/C With Gr/Ep Faces; Nomex Core</td>
</tr>
<tr>
<td>Fairing Channels</td>
<td>Gr/Ep Laminate</td>
</tr>
<tr>
<td>Rotary Hinge Actuators</td>
<td>Steel</td>
</tr>
<tr>
<td>Rotary Hinge Torque Tube</td>
<td>Steel</td>
</tr>
</tbody>
</table>

Figure D-10 Body Boom Arrangement for Variable Dihedral
Body Boom Arrangement For Variable Dihedral - Concept 2

<table>
<thead>
<tr>
<th>Item Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covers & Webs</td>
<td>Ti 6-4 Plate</td>
</tr>
<tr>
<td>Chords</td>
<td>Ti 6-4 Plate Or Extrusions</td>
</tr>
<tr>
<td>Frames</td>
<td>Ti 6-4 Plate</td>
</tr>
<tr>
<td>Fittings</td>
<td>Ti 6-4 Extrusions</td>
</tr>
<tr>
<td>Bearings</td>
<td>Steel</td>
</tr>
<tr>
<td>Stabilizer Spindle</td>
<td>Steel</td>
</tr>
<tr>
<td>Blade Seals</td>
<td>Gr/Ep Laminate</td>
</tr>
<tr>
<td>Moveable Fairing Skin</td>
<td>H/C With Gr/Ep Faces; Nomex Core</td>
</tr>
<tr>
<td>Fairing Channels</td>
<td>Gr/Ep Laminate</td>
</tr>
<tr>
<td>Rotary Hinge Actuators</td>
<td>Steel</td>
</tr>
<tr>
<td>Rotary Hinge Torque Tube</td>
<td>Steel</td>
</tr>
</tbody>
</table>

Figure D-11 Body Boom Arr. for Var. Dihedral - Concept 2
Rotary Hinge Torque Tube Arrangement

Figure D-12 Rotary Hinge Torque Tube Arrangement
DATA PER CURTISS-WRIGHT POWER HINGE DESIGNERS' HDBK

TOOTH STRESS CYCLES PER REVOLUTION

TORQUE CAPACITY PER RUNNING INCH

ROTARY ACTUATOR FATIGUE CURVE

ACTUATOR WEIGHT PER RUNNING INCH

ACTUATOR LENGTH TO DIAMETER LIMITATION

ACTUATOR STIFFNESS PER RUNNING INCH

Figure D-13 Curtiss-Wright Power Hinge sizing Chart

206
APPENDIX E

Boeing Model-24F and Wind Tunnel Model 1798
Geometry Characteristics

This appendix contains the geometry characteristics of the Boeing Model-24F vehicle and of the associated Wind Tunnel Model 1798 in the following figures:

- Figure E-1 Boeing Model-24F Full Scale Geometry
- Figure E-2 3-Viewing Drawing - Model 1798
- Figure E-3 Wing Planform Geometry - Model 1798
- Figure E-4 Horizontal Tail Geometry - Model 1798
- Figure E-5 Vertical Tail Geometry - Model 1798
<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>WING</th>
<th>HOR. TAIL (OUTBD BL47)</th>
<th>VER. TAIL (TRUE EACH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA - REF, FT2</td>
<td>465</td>
<td>63.55</td>
<td>37.79</td>
</tr>
<tr>
<td>ASPECT RATIO - REF</td>
<td>2.20</td>
<td>2.52</td>
<td>1.06</td>
</tr>
<tr>
<td>TAPER RATIO - REF</td>
<td>.13</td>
<td>.34</td>
<td>.64</td>
</tr>
<tr>
<td>SPAN - TRUE, FT</td>
<td>31.95</td>
<td>6.33</td>
<td>6.32</td>
</tr>
<tr>
<td>ROOT CHORD - REF, IN.</td>
<td>308.5</td>
<td>90.06</td>
<td>87.42</td>
</tr>
<tr>
<td>TIP CHORD - REF, IN.</td>
<td>40.7</td>
<td>30.37</td>
<td>56.08</td>
</tr>
<tr>
<td>MAC - THEOR REF, IN.</td>
<td>208.85</td>
<td>65.15</td>
<td>72.91</td>
</tr>
<tr>
<td>DIHEDRAL, DEG</td>
<td>-9</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>SWEEP - LE/TE, DEG</td>
<td>47.5/-17.0</td>
<td>47.5/17.0</td>
<td>42.78/27.13</td>
</tr>
<tr>
<td>1/4 MAC - REF FUS STA</td>
<td>454.11</td>
<td>697.48</td>
<td>635.00</td>
</tr>
<tr>
<td>T/C - ROOT/TIP, %</td>
<td>4.5/3, T/C²=K</td>
<td>5/3</td>
<td>5/3</td>
</tr>
<tr>
<td>TAIL VOL COEFF - ¯C/4- ¯C/4</td>
<td>.159</td>
<td>.077</td>
<td></td>
</tr>
</tbody>
</table>

Figure E-1 Boeing Model-24F Full Scale Geometry
3 - VIEW DRAWING
MODEL 1798

0.05 Scale Model of Configuration -24F

Wing Reference Geometry:

Sref = 1.1625 ft²
b = 19.17 in.
MAC = 10.44 in.
AR = 2.2
\(\Gamma \) = .9°
\(\Lambda_d \) = 47.2°

1/4 MAC Location:
MS 22.706
BL 3.57
WL 6.758

Figure E-2 3-View Drawing - Model 1798
WING PLANFORM GEOMETRY
W1 AND W1.1
MODEL 1798

0.05 Scale Model of Configuration -24F

PLAN VIEW

NOTE: DIMENSIONS GIVEN IN MODEL SCALE INCHES

Figure E-3 Wing Planform Geometry - Model 1798
HORIZONTAL TAIL GEOMETRY
H1
MODEL 1798

0.05 Scale Model of Configuration -24F

TRUE VIEW

- Pivot Location MS 34.935
 BL 2.35
 WL 6.942

Both horizontal tails pivot around an axis swept 6° from the pivot point.

NOTE: DIMENSIONS GIVEN IN MODEL SCALE INCHES

Figure E-4 Horizontal Tail Geometry - Model 1798

212
VERTICAL TAIL GEOMETRY
V1
MODEL 1798

0.05 Scale Model of Configuration -24F

TRUE VIEW

S_{REF} = 0.0912 \text{ ft}^2 \text{ each}
b_{\text{True}} = 3.8485 \text{ in.}
AR = 1.1275
MAC = 3.694
\Gamma = 62^\circ
1/4 MAC Location MS 31.75

Bl 2.336
WL 9.278

NOTE: DIMENSIONS GIVEN IN MODEL SCALE INCHES
MEMORANDUM FOR: Defense Technical Information Center/OMI
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218

FROM: Det 1 AFRL/WST
Bldg 640 Rm 60
2331 12th Street
Wright-Patterson AFB OH 45433-7950

SUBJECT: Notice of Changes in Technical Report(s) (see below)

Please change subject report(s) as follows:

The following have all been approved for public release; distribution is unlimited:

AFWAL-TR-83-3072, AD B935 265
WRDC-TR-90-3081, AD B 166 585
WL-TR-96-3043, AD B12 813 OK STA
WL-TR-96-3094, AD B212 367
WL-TR-97-3059

JOSEPH A. BURKE, Team Leader
STINFO and Technical Editing
Technical Information Division