<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB209063</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEW LIMITATION CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO</td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution authorized to DoD only; Specific Authority; 11 Apr 96. Other requests shall be referred to Commander, Army Medical Research and Materiel Command, Attn: MCMR-RMI-S, Fort Detrick, Frederick, MD 21702-5012.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAMRMC ltr dtd 21 Apr 97</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
GRANT NUMBER: DAMD17-95-1-5063

TITLE: Symposium on Human Health and Global Climate Change

PRINCIPAL INVESTIGATOR: Valerie Setlow, Ph.D.

CONTRACTING ORGANIZATION: National Academy of Sciences
Washington, DC 20418

REPORT DATE: March 1996

TYPE OF REPORT: Final Proceedings

PREPARED FOR: Commander
U.S. Army Medical Research and Materiel Command
Fort Detrick, Frederick, MD 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to DOD only
(Specific Authority, 11 Apr 96). Other requests for this
document shall be referred to Commander, U.S. Army Medical
Research and Materiel Command, ATTN: MCMR-RMI-S, Fort Detrick,
Frederick, MD 21702-5012.

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.
Symposium on Human Health and Global Climate Change

Title and Subtitle

Symposium on Human Health and Global Climate Change

Author(s)

Valerie Setlow, Ph.D.

Performing Organization

National Academy of Sciences
Washington, DC 20418

Funding Number

DAMD17-95-1-5063

Distribution/Availability Statement

Distribution authorized to DOD only (Specific Authority, 11 Apr 96). Other requests for this document shall be referred to Commander, U.S. Army Medical Research and Materiel Command, ATTN: MCMR-RMI-S, Fort Detrick, Frederick, MD 21702-5012.

Abstract

(Maximum 200)

Subject Terms

Vector-Borne Infectious Diseases, Non-Vector, Heat Stress, Skin Cancer, Cataracts, Immune Suppression, Food Production, Nutritional Health, Water Quality, Air Pollution

Number of Pages

70

Price Code

Limited

Standard Form 298 (Rev. 2-89)
Prepared by ANSI Std. 239-18
296-102
Acknowledgments

The Conference on Human Health and Global Climate Change that is the subject of this summary was the product of a collaborative effort between the Institute of Medicine, the National Science and Technology Council (NSTC), and the National Research Council’s Board on Atmospheric Sciences and Climate, Board on Sustainable Development, and Polar Research Board. It would not have been possible without the concerted efforts and contributions of many individuals and organizations. The conference planners and organizers are listed in Appendix B, including the NSTC Working Group, the sponsoring agencies, the IOM/NAS Steering Committee, and the responsible staff. The conference speakers, background paper authors, and session chairs deserve special recognition and thanks for their efforts and are listed in Appendix C. The approximately 300 conference participants were an important part of this activity, especially in stimulating discussion, providing ideas, and developing the strategies that were the products of the individual working group panels. These individuals are included in the list of conference registrants in Appendix C.

Of particular note, Eric Chivian, Bob Shope, and Mary Wilson are acknowledged for their contribution in both raising and discussing these issues with Vice President Albert Gore, Jr., in the formative stages of the conference’s development and for their participation in the conference itself. We also would like to acknowledge Vice President Gore for his initiative in requesting that this conference take place, and for his contribution as a participant and speaker.
Contents

EXECUTIVE SUMMARY .. 1

BACKGROUND AND OVERVIEW ... 2
 Greenhouse Warming, 5
 Ozone Depletion, 6

POTENTIAL HUMAN HEALTH EFFECTS OF GLOBAL CLIMATE CHANGE...................... 7
 Infectious Disease, 8
 Vector-Borne Infectious Diseases, 8
 Non-Vector-Borne Infectious Diseases, 9
 Direct Effects, 9
 Heat Stress, 9
 Skin Cancer, Cataracts, and Immune Suppression, 12
 Indirect Effects, 13
 Food Production and Nutritional Health, 13
 Fresh Water Quality and Quantity, 13
 Air Pollution and Allergens, 13
 Weather Disasters and Rising Sea Level, 14
 Social and Demographic Dislocations, 14

POLICY IMPLICATIONS ... 15
 Panel Reports, 15
 Global Surveillance and Response, 16
 Disease Prevention, 17
 Education for the Medical and Public Health Communities, 19
 International Cooperation, 22
EXECUTIVE SUMMARY

Observed changes in the Earth's climate over the past 100 years appear to be consistent with theoretical models of greenhouse warming, according to the participants in a recent scientific conference on Human Health and Global Climate Change, cosponsored by the National Science and Technology Council (NSTC) and the Institute of Medicine (IOM). These models suggest that, without major changes in environmental policy, we could expect to see even greater changes in global climate over the next 100 years. These changes could produce alterations both in physical systems (e.g., higher temperatures, heavier rainfall, and rising sea level) and in ecosystems (e.g., forests, agriculture, marine ecologies, and the habitats of various insects and animals). In addition to the global changes associated with greenhouse warming, a continuing depletion of stratospheric ozone would increase the amount of ultraviolet radiation that reaches the Earth’s surface, causing increased rates of skin cancer, cataracts, and immune suppression.

The focus of concern to the conference participants was the substantial risks to human health, including both direct risks (e.g., death in heat waves or floods, skin cancer) and indirect risks (e.g., changes in food production or the distribution and incidence of vector-borne diseases) that are believed to be associated with changes in global climate. The indirect risks appear to be the most difficult to cope with, particularly those posed by emerging and reemerging infectious diseases such as cholera, malaria, dengue fever, and Hantavirus. These risks are of particular concern in regions and populations that are already vulnerable due to crowding, malnutrition, poor sanitation, and political or economic instability.

The general agreement that emerged during the conference was that changes in the global climate could pose significant risks to human health. Much remains to be done to clarify the exact linkages between human activities, global climate change, and human health, but the lack of complete data should not be used as an excuse for inaction. Instead, the precautionary principle should apply: If the risk to public health is great, even if there is uncertainty, both policy and action should be biased in favor of precaution.

In discussing the policy implications of global climate change for human health in the United States and the international community, participants identified a number of actions that should be

1The conference was held at the National Academy of Sciences on September 11–12, 1995, and was attended by more than 300 people (see Appendix C).
taken, including (a) the creation of a global surveillance and response network; (b) increased coordination among nations and scientific disciplines; (c) multidisciplinary research on the links between global climate change and human health; (d) improved environmental health training for health professionals; and (e) an outreach program to inform and educate the public about the effects of global climate change on human health. In the face of current fiscal constraints, these efforts must be based on identifying and linking together existing activities, facilities, organizations, and funding agencies.

BACKGROUND AND OVERVIEW

In October 1994, following a meeting with concerned scientists and medical experts (Eric Chivian, Bob Shope, and Mary Wilson), Vice President Gore asked the Office of Science and Technology Policy (OSTP) and the Council on Environmental Quality (CEQ) to organize a conference on the potential human health risks posed by global climate change, and strategies to address them—such as global health surveillance, public outreach, and education. Members of the NSTC, OSTP and CEQ formed a working group to develop a preliminary agenda for the conference and later requested that the IOM join in planning, organizing, and conducting the conference. (Appendix A presents a list of the sponsoring agencies, the IOM steering committee, and conference organizing staff.)

The purpose of the conference was twofold:

1. To bring together a diverse, interdisciplinary group of experts to address the potential effects of global climate change and ozone depletion on the current and future incidence of disease, heat stress, food and water supplies, and air pollution; and

2. To discuss initial strategies for improving research and development (R&D), global health surveillance systems, health care and disease prevention, medical and public health community education, international cooperation, and public outreach.

It is important to note that the focus of the conference was human health. Presenting evidence of whether or not global climate change is, has, or will occur, was not the primary focus. Participants were asked rather to work within an “if/then” type of scientific exercise: If global climate change occurs, what are the potential adverse human health effects and what strategies should be developed to address them?

The first day of the two-day conference was filled with scientific presentations and a plenary discussion on the current state of knowledge about global climate change and its potential risks for human health (see the agenda, Appendix B), including a presentation by Vice President Gore (see Box 1). On the second day, participants discussed health policy implications and potential intervention strategies in a series of panels. Each panel's findings were presented and discussed by the conference participants in a final plenary session. Approximately 300 scientists, health care providers, policymakers, academicians, federal and state officials, industry representatives, and others attended the conference and participated in developing the strategies (see Appendix C).
The Interplay of Climate Change, Ozone Depletion, and Human Health

Excerpts from Vice President Al Gore’s remarks at the Conference on Human Health and Global Climate Change, September 11, 1995

... I’ve spoken before about the radical changes that have occurred in our environment just in my lifetime. As is often the case, when a fundamental change takes place, one can’t point to a single causal factor to explain it. In this case, I’ve come to believe that this radical change in the relationship between civilization and the Earth has come about because of the confluence of three factors at the same time, the first being the population explosion, which is now adding the equivalent of one China’s worth of people every ten years. The second change is the scientific and technological revolution, which has dramatically magnified the average impact that each of the billions of people on Earth can potentially have on the Earth’s environment. And the third factor, the most subtle in some ways but the most important in other ways... there has been a change in thinking about our duty to consider the future consequences of our present actions and a sometimes willful assertion that we can’t possibly have any meaningful impact on the Earth’s environment, therefore we shouldn’t think about it much less worry about it or study it in detail. Together, these three elements have combined to produce what scientists, what some of you would call a discontinuity: a fundamental change in the relationship between human civilization and the earth.

There is a scientific consensus on the most salient issues, a revisionist few not withstanding: we know that human activities are causing the atmospheric concentrations of greenhouse gases to increase dramatically in the atmosphere. Carbon dioxide has increased nearly 30% since the industrial revolution, methane has more than doubled, and nitrous oxide has gone up by 15%. We also know that the current trends are leading to an even more rapid accumulation of greenhouse gases and that, as this trend continues, the concentration of greenhouse gases will continue to mount. Now in addition to the greenhouse gases, human activities have increased the atmospheric concentrations of sulfate aerosols — the key ingredient in acid rain — especially over industrialized areas in the Northern Hemisphere.

In just the last century, the Earth’s temperature has risen by about a half a degree Centigrade or one degree Fahrenheit. The nine warmest years this century have all occurred since 1980. There are plenty of other measures — from the tree-ring record to the record in land-based glaciers — that all demonstrate that the current period is by far the hottest that we have been able to measure. And the evidence is getting ever stronger that this warming now under way is not due to natural variability, but to human activities.

The real question is: "What will happen in the future?" Without climate change policies that limit global emissions of greenhouse gases, there is no doubt that the Earth’s climate will change. It’s not a question of will it change, it is a question of when, by how much, and where. The question of when is now being answered. It has already begun to change significantly. And the best evidence is consistent with a prediction that, in the lifetimes of people now living, we will commit the world to an increase of up to 3 and 4 degrees Centigrade — up to 8 degrees Fahrenheit. The scientists warn us that change is coming.

How will global warming affect us? There are clearly profound implications at the regional level for food security, water supplies, natural ecosystems, loss of land due to sea level rise, and human health. A temperature increase of 2 to 8 degrees Fahrenheit is projected to double heat-related deaths in New York City, and triple the number of deaths in...
Chicago, L.A. and Montreal. And an increase of 8 degrees Fahrenheit may be correlated
with an increase in the heat/humidity index of 12 to 15 degrees. The very young, the
elderly, and the poor will be the ones most at risk. So will those with chronic cardiovascular
and respiratory diseases. The past summer's stunning number of deaths in Chicago -- a
reported over 500 in just a few days -- make these hypotheses all too real.

Changing temperatures and rainfall patterns are predicted to also increase the spread
of infectious diseases. Insects that carry disease organisms may now move to areas that were
once too cold for them to survive. These new breeding sites and higher temperatures may
also speed reproduction. Diseases we had hoped were just a memory in this country are
suddenly a renewed threat. Cholera is resurgent in our hemisphere. After years of being
contained in much of the world, Dengue Fever has returned to countries that had not seen
the disease in 50 years. Malaria, too, is a global concern, and some of the new strains are
more troubling than any that have been seen. Malaria already infects several hundred million
people each year — mainly in the Tropics. But this July, for the first time in 40 years, more
than 100 people contracted malaria in a Russian city. And besides the return of old diseases,
there are new ones to the U.S. scene, such as the hantavirus in the Southwest.

But, unfortunately, ignoring the news does not make it better. Closing your eyes to a
problem doesn't make it vanish. You can't simply wish ozone holes away. So it astounds
me, in light of all the data that has been collected over the years, that some are once again
challenging the fact that there is ozone depletion. And what's even more amazing is that
some people are listening. Ladies and gentlemen, we have an extraordinary international
consensus: we have thousands and thousands of atmospheric measurements linking manmade
CFCs to global ozone depletion.

We all know that depletion of the ozone layer increases the amount of UV-B radiation
that reaches the Earth. And so now we have to confront the fact that the observed depletion
of ozone of 5-10% in summertime, when people are outdoors a lot, will increase
non-melanoma skin cancer in fair-skinned populations by about 10-20%.

In addition, there will be an increase in the incidence of cataracts and other eye
lesions, and cataracts are already the third largest cause of preventable blindness in the U.S.
These numbers would be much higher yet were it not for the success of the Montreal
Protocol. We must not forget though, that even with that world-wide action, it will be until
the middle of the next century before the ozone layer recovers.

Well, for the past 25 years, the United States has been committed to the bipartisan
effort to protect the environment... President Clinton has... fought to make sure that the
United States is at the forefront of a global environmental movement. We're striving to
return greenhouse gas emissions to 1990 levels by the year 2000. We're striving to convince
others to make as much progress as is possible. We're engaged in international negotiations
to address this global problem. We're helping to develop treaties not only for the protection
of our own nation, but for the health and welfare of the world community of which we are a
part. We know that science is essential to our understanding of global problems.

Ladies and gentlemen, the role of the scientific community in articulating clearly the
best accepted understanding of what we know and what we can say with sufficient confidence
to enable the American people to take prudent measures to safeguard our future is absolutely
critical.
SUMMARY OF THE PROCEEDINGS

GREENHOUSE WARMING

Without the naturally occurring "greenhouse effect," Earth would be too cold to sustain life as we know it. The greenhouse effect results from water vapor, carbon dioxide, and other trace gases in the atmosphere that trap solar heat as it is reradiated from the Earth's surface. The net effect is to keep the planet about 33°C (60°F) warmer than it would be otherwise. In the past century, however, human activities have added substantially to this effect by releasing additional greenhouse gases into the atmosphere, primarily through combustion of fossil fuels. Carbon dioxide concentrations have increased nearly 30 percent, nitrous oxide about 15 percent, and methane approximately 100 percent. The principal source of the emissions that produce the atmospheric concentrations has been the burning of fossil fuels (coal, oil, and gas), although agriculture and deforestation contribute a share.

There is a growing consensus in the scientific community that the increase in greenhouse gases has contributed to a warming of the earth's surface by between 0.3° and 0.6°C (0.5° and 1.1°F), on average, over the past 100 years (see Figure 1). In some regions, particularly in the industrialized areas of the Northern Hemisphere, this warming has been masked by increased concentrations of air pollutants such as sulfate aerosols, which reflect solar radiation (and thus serve to counterbalance, in part, the warming that might be seen otherwise). Nevertheless, the nine warmest years in this century have occurred since 1980, and there is considerable evidence to support this warming trend (see "References and Further Reading," p. 28): decreases in Northern Hemisphere snow cover and Arctic sea ice, the retreat of glaciers in all of the world's mountain ranges, and a measurable rise in average sea level—10 to 25 centimeters (4 to 10 inches) over the past 100 years—mainly due to thermal expansion of water.

While emissions of greenhouse gases will certainly continue in the future, the exact amounts will depend on population growth, economic development, energy technologies, and policy variables. Nevertheless, according to the participants, it seems reasonable to expect that global emissions of carbon dioxide will rise in the short term from the current level of approximately 6 billion tons of carbon per year, to between 8 billion and 15 billion tons per year in 2025, and could range from 5 billion to 36 billion tons per year by 2100. This would mean that atmospheric concentrations of carbon dioxide—which were 200 parts per million (ppm) during the last ice age and about 280 ppm in preindustrial times—could rise from today's 350 ppm to anywhere from 500 to 900 ppm by 2100.

The scientific community has growing confidence in the ability of computerized general circulation models to predict the climate impacts of such changes in greenhouse gases. These models, which provide an increasingly good fit between theory and observation of past global climate changes, indicate that, in a world with approximately twice the current concentration of carbon dioxide, the global mean temperature will increase by 1° to 4°C (2° to 7°F), with significant regional variations (e.g., somewhat less warming in the Northern Hemisphere due to air pollution). Average evaporation will also increase, and hence average precipitation, again with regional variations (more rain in some places, especially in winter, less rain in others, especially in summer). Sea level will rise by another 15 to 90 centimeters (6 to 35 inches) over the next 100 years.
Participants noted that the impact of such changes on natural and human systems will be mixed. Increased carbon dioxide concentrations would have a “fertilizer” effect for some plants, but not for others, leading to changes in natural plant communities and ripple effects on animal species. Overall, the balance would probably be tilted in favor of “weedy” species—those with higher rates of reproduction and dispersal—to the detriment of biological diversity. Tropical forest communities will be affected, and there will probably be some die-off in boreal forests as well. Temperature-related changes in the oceans will affect the world’s coral reefs and ocean fisheries. Global agricultural production may be unchanged, although increased production in northern latitudes might be offset by decreases in tropical regions where many populations are already malnourished. Coastal populations may be dislocated by changes in sea level, and there will likely be increased numbers of other “ecological refugees” as well.

Ozone Depletion

A thin layer of ozone high in the atmosphere (the stratosphere) protects life on earth, shielding the surface by absorbing much of the ultraviolet radiation from the sun. However, surface ozone (in the lower atmosphere or troposphere) is a major component of urban smog and can also serve as a

FIGURE 1. Variations in average global temperature over the past 20,000 years and predictions for the next century. (McMichael, 1993)
SUMMARY OF THE PROCEEDINGS

greenhouse gas; the protective ozone layer resides some 10 to 40 kilometers, or 6 to 25 miles, above the Earth’s surface. Solar energy recombines diatomic oxygen (O₂) into triatomic ozone (O₃); these molecules are broken down to O₂ by naturally occurring compounds containing nitrogen, hydrogen, and chlorine; and the cycle begins again. In the past 50 years human activities have added millions of tons of ozone-depleting chemicals to the atmosphere, primarily through the widespread use of chlorofluorocarbons (CFCs) in refrigerators, spray cans, foam insulation, and cleaning compounds.

In theory, these ozone-depleting chemicals rise up in the atmosphere and destroy the ozone layer faster than it is naturally restored. Indeed, in 1985, researchers reported dramatic declines in ozone concentrations over Antarctica during the southern spring. This seasonal “hole” in the ozone shield has grown larger and appeared earlier in subsequent years. Many other factors might contribute to these findings, including sunspot cycles and the isolation and extreme cold of the Antarctic weather system, but CFCs and other ozone-depleting compounds were clearly implicated.

More recent measurements have confirmed that ozone depletion is in fact a global phenomenon, although it is less acute in the tropics and more pronounced toward the poles, particularly in the Southern Hemisphere. At present there is a 5 to 7 percent ozone depletion over the United States during the summer, when people are most likely to be outdoors; about 11 percent over southern temperate areas; and more than 50 percent over Antarctica. Every 1 percent decrease in ozone can lead to a 2 percent increase in nonmelanoma skin cancer. This phenomenon is expected to continue for the next decades, despite international efforts to ban CFCs and to phase out other ozone-destroying compounds. Peak ozone depletion will occur around the turn of the century; recovery is expected to occur over the following 50-year period.

POTENTIAL HUMAN HEALTH EFFECTS OF GLOBAL CLIMATE CHANGE

Conference participants noted that the anticipated human health risks caused by global climate change will not be localized; instead, they will occur on a large scale, impinging on entire populations. In addition to increasing the familiar, direct effects of climate (i.e., extreme weather events such as heatwaves and floods), global climate change will also involve a variety of indirect risks arising from the disturbance of natural systems (e.g., the ecology of infectious diseases, food production, and fresh water supplies). Forecasting these risks is a complex, uncertain task, and encompasses a long time horizon. (Box 2 summarizes a pair of presentations on El Niño as an analogue for long-term global climate change.)

The health effects of global climate change span a continuum from direct to indirect, as shown in Figure 3. In the long run, the indirect effects of disturbing natural systems may have greater cumulative impacts on human health, and most of those impacts will be adverse. As summarized in the most recent assessment of the United Nations Intergovernmental Panel on Climate Change (IPCC, 1995) and by various speakers during the first day of the conference, the most likely and most serious health risks and health effects of global climate change and ozone depletion would be adverse changes in the following:

2 The 1995 Nobel Prize for Chemistry was awarded to Molina and Rowland for this research.
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

- heat stress;
- skin cancer, cataracts, and immune suppression;
- vector-borne infectious diseases;
- non-vector-borne infectious diseases;
- food production and nutritional health;
- water quality and quantity;
- air pollution and allergens;
- weather disasters and rising sea level; and
- social and demographic dislocations.

Infectious Disease

Climate influences the distribution, frequency, types, and severity of infectious diseases in humans. The interaction between climate and infectious diseases derives from the impact of climate on infectious organisms (such as bacteria and viruses), on the human host, and on vectors and reservoir hosts and their ecosystems. Climate change can increase the probability of contact between humans and infectious organisms.

Vector-Borne Infectious Diseases

Temperature and rainfall influence the abundance and distribution of insect vectors and animals—one source of infectious diseases in humans. Global climate change is likely to affect the geographic distribution of animals and insects and could expand transmission of infectious diseases carried by mosquitoes (e.g., malaria, dengue, and yellow fever) and other vectors, such as ticks, sandflies, and fleas. Altered distributions of vectors are likely to involve expansion of vector-borne diseases into new geographic areas and populations and disappearance from other areas. For a vector-borne disease to persist in an area, climatic conditions must support a complex interaction that may involve plants, animals, insects and human activities.

Extreme events, such as flooding and hurricanes, that lead to displacement of populations into crowded, temporary shelters, or movement into previously uncleared lands, could also contribute to an increase in vector-borne infections.

Vector-borne diseases are already a major cause of illness and death in tropical countries, where 2.4 billion people are at risk from malaria and 1.8 billion from dengue fever (see Table 1). The numbers of people at risk from these and other diseases will increase with warmer temperatures and humidity, particularly because these changes are occurring simultaneously with changes in human behavior that increase the dangers of infectious disease—most notably international travel, population growth, rapid urbanization, poor sanitation, and changes in land-use patterns that increase habitat or bring humans in contact with insect or rodent vectors. Climate-related migrations could also contribute to the dissemination of previously localized diseases. Several vector-borne diseases have been increasing rapidly in recent years, including some that were previously considered to be under control, such as dengue fever and malaria. Strong support for public health programs both domestically and internationally would help to reduce this risk.
SUMMARY OF THE PROCEEDINGS

Non-Vector-Borne Infectious Diseases

Changes in water temperature and the resulting proliferation of aquatic microorganisms would tend to increase the range and severity of cholera and other food- and water-related diseases that can cause epidemics of diarrhea and dysentery. Cholera epidemics are typically associated with seacoasts and rivers, for instance, where the cholera organism, *Vibrio cholerae*, survives by sheltering under the mucous coating of tiny invertebrates called copepods. These hosts, in turn, respond both to water temperature and to nutrients (fertilizer, wastewater) in stream runoff. Researchers are currently evaluating the connection between water temperature, coastal currents, algal blooms, and subsequent outbreaks of cholera like those in Peru in 1991 and Bangladesh in 1992.

Higher temperatures contribute to faster reproduction by disease organisms. Rates of genetic mutation also increase in times of stress. Furthermore, disease-causing organisms are remarkably resilient and can respond rapidly to changes in the physicochemical environment. Climatic and other environmental changes are contributing to the selection and emergence of genetic strains that are resistant to drugs and other controls.

Direct Effects on Human Health

Heat Stress

An increase in average temperature would probably be accompanied by an increase in the number and severity of extreme heatwaves in some areas. This would cause an increase in illness and death, particularly among the young, the elderly, the frail, and the ill, especially in large urban areas. Climate change would exacerbate an already large urban heat island effect that exists in many large cities. In fact, heat-related mortality may prove to be the largest direct health threat from global climate change. The deaths of 708 people that were attributed to a heatwave in Chicago in the summer of 1995 may be an extreme example, but it serves as a possible indicator of what might occur if climate change scenarios are correct.

Mid-latitude cities that experience irregular, but intense, heatwaves appear to be most susceptible—cities like St. Louis, Washington, D.C., and New York. Tropical and subtropical cities seem to be less susceptible, in part because populations have acclimatized to the regularity of hot weather (although a 1995 incident in New Dehli indicates the susceptibility of tropical populations as well). People in mid-latitude cities might also acclimatize, and air-conditioning can mitigate perhaps 25 percent of heat-related mortality (while also requiring increased energy and refrigerant use, thereby increasing greenhouse gas emissions). In addition, summer mortality increases might be partially offset by declines in winter mortality. However, much of the research points to a substantial increase in weather-related mortality under climate change conditions. Despite these uncertainties, there is a clear need to develop an adequate warning system to alert the public and government agencies when oppressive air masses are expected—extended periods of extreme high temperature, light winds, high humidity, and intense solar radiation.
TABLE 1 Major Tropical Vector-Borne Diseases and the Likelihood of Change of Their Distribution with Climate Change

<table>
<thead>
<tr>
<th>Disease</th>
<th>Vector</th>
<th>Population at Risk (million)</th>
<th>No. of People Currently Infected or New Cases per Year</th>
<th>Present Distribution</th>
<th>Likelihood of Altered Distribution with Climate Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaria</td>
<td>Mosquito</td>
<td>2,400*b</td>
<td>300–500 million</td>
<td>Tropics/Subtropics</td>
<td>+++</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>Water Snail</td>
<td>600</td>
<td>200 million</td>
<td>Tropics/Subtropics</td>
<td>++</td>
</tr>
<tr>
<td>Lymphatic Filariasis</td>
<td>Mosquito</td>
<td>1,094*c</td>
<td>117 million</td>
<td>Tropics/Subtropics</td>
<td>+</td>
</tr>
<tr>
<td>African Trypanosomiasis</td>
<td>Tsetse Fly</td>
<td>55*d</td>
<td>250,000–300,000 cases/yr</td>
<td>Tropical Africa</td>
<td>+</td>
</tr>
<tr>
<td>Dracunculiasis (Guinea Worm)</td>
<td>Crustacean</td>
<td>100*</td>
<td>100,000/yr</td>
<td>South Asia/Arabian Peninsula/Central-West Africa</td>
<td>?</td>
</tr>
<tr>
<td>Leishmaniasis</td>
<td>Phlebotomine Sand Fly</td>
<td>350</td>
<td>12 million infected, 500,000 new cases/yr</td>
<td>Asia/Southern Europe/Africa/ Americas</td>
<td>+</td>
</tr>
<tr>
<td>Onchocerciasis (River Blindness)</td>
<td>Black Fly</td>
<td>123</td>
<td>17.5 million</td>
<td>Africa/Latin America</td>
<td>++</td>
</tr>
<tr>
<td>American Trypanosomiasis Bug (Chagas' disease)</td>
<td>Triatomine</td>
<td>100*</td>
<td>18 million</td>
<td>Central and South America</td>
<td>+</td>
</tr>
<tr>
<td>Dengue</td>
<td>Mosquito</td>
<td>1,800</td>
<td>10–30 million/yr</td>
<td>All Tropical Countries</td>
<td>++</td>
</tr>
<tr>
<td>Yellow Fever</td>
<td>Mosquito</td>
<td>450</td>
<td><5,000 cases/yr</td>
<td>Tropical South America and Africa</td>
<td>++</td>
</tr>
</tbody>
</table>

NOTE: + = likely, ++ = very likely, +++ = highly likely, and ? = unknown.

BOX 2. El Niño: Analogue for Long-Term Global Climate Change?*

J. Michael Hall
Director, Office of Global Programs, National Oceanic and Atmospheric Administration
and
Paul Epstein
Harvard Medical School

The El Niño southern oscillation (ENSO) may represent an analogue not only for larger-scale global climate change and its consequences, but also for the steps that might be taken to monitor and respond to global climate changes that threaten human health. Prevailing winds in the tropics create a pool of warm water in the western Pacific Ocean, a region that drives much of the atmospheric heating that controls the world's weather. Periodically, however, the trade winds relax or even reverse themselves, releasing this pool of warm water and setting in motion changes in water temperature, sea level, and coastal currents off South America that—because they happen around Christmas—are known by the name of "El Niño." This oscillation in atmospheric and ocean conditions, which normally happens every 3 to 7 years, causes not only the collapse of ocean fisheries in the eastern Pacific, but also characteristic changes in the weather in other regions, including drought in northeastern Brazil and increased precipitation in the southeastern United States (see Figure 2).

The international scientific community has linked a huge network of ocean buoys and remote-sensing satellites to observe and study the dynamics of the ENSO phenomenon. Interdisciplinary research and analysis have led to the creation of multisector models that can predict the occurrence and effects of these changes. The ENSO forecasts made by these models are already reliable enough to support major policy decisions. In both Peru and Brazil, for example, governments are making decisions about which crops to plant, and how many acres to cultivate, based on 12-month forecasts of ENSO-related rainfall. More research and refinement will be needed before these predictive models will be useful in regions outside the tropics and in sectors other than agriculture, including public health. Nevertheless, this predictive approach to short-term ENSO changes may have major relevance to the study of long-term changes in the global climate.

ENSO-related algal blooms off Peru, for instance, are part of what appears to be a global epidemic of algal blooms caused in part by warmer oceans everywhere. These blooms represent "environmental reservoirs" for microbes, such as *Vibrio cholerae*, the cause of cholera in humans. Similarly, insect and rodent populations also have increased following the mild, wet winters associated with El Niño, and this can have serious impacts in areas where these animals act as pests in agriculture or as vectors for diseases such as malaria and Lyme disease. Consequently, the ability to understand and anticipate the relations between global climate changes, environmental responses, and threats to human health may have significant value in developing early warning systems to protect vulnerable populations. Multidisciplinary, multisectoral research to develop reliable indicators could have extremely broad benefits for public health.

*Excerpts from a special briefing at the Conference on Human Health and Global Climate Change, September 11, 1995.
Skin Cancer, Cataracts, and Immune Suppression

Ozone depletion can have both direct and indirect effects on ecological systems and human health. Increased exposure to ultraviolet radiation (especially UV-B) can have harmful effects on photosynthesis (on land and sea), with potentially disruptive impacts on food production and the stability of ecosystems. The most important direct human health effect would be an increase in nonmelanoma skin cancers, especially in fair-skinned populations. Such cancers are already a major problem in the United States, with about 1 million new cases per year. Furthermore, current models suggest a two percent increase in incidence for every one percent decrease in stratospheric ozone.

The current scenario for phaseout of CFCs predicts a 25 percent increase in skin cancer by 2050 at 50°N latitude, relative to the 1980 incidence. Melanoma is a less frequent but far more deadly skin cancer, whose relationship to UV-B exposure remains uncertain. Both types of skin cancer have a long lag time between exposure and disease; the effects of increased UV-B may not be seen until after 2050. Increased UV-B can also be expected to increase the frequency of cataracts, which can lead to blindness in all populations. Current estimates indicate a 0.3 to 0.6 percent increase in new cataract cases for every 1 percent decrease in stratospheric ozone. Ozone depletion may also contribute to the frequency, severity, and duration of some infectious diseases due to ultraviolet's ability to suppress the immune system. There are many uncertainties about the effect of UV-B on immune responses, although it appears that neither pigmentation nor sunscreens offer effective protection.
Indirect Effects on Human Health

Food Production and Nutritional Health

Global climate change would have mixed effects on the productivity of agriculture, livestock, and fisheries. In tropical and subtropical areas, global climate change may lead to droughts, flooding, and the emergence of new plant diseases, decreasing food production in many areas where food supplies are already insecure. Meanwhile, crop productivity may increase in other regions, mostly in the higher temperate latitudes such as Canada, Siberia, and Patagonia. However, agricultural projections are strongly dependent on assumptions about technological advances and patterns of consumption.

Over 800 million people are chronically undernourished today, particularly in the developing world, and malnutrition is an underlying cause of childhood mortality. With further population growth, malnutrition may increase the vulnerability of these populations to endemic diseases and epidemics. Some areas may need to change crops, planting practices, and diet, further increasing vulnerability during the period of transition. Such regions might be helped by advance warning of conditions that might cause crop failures.

Overall, models project the world may be able to produce enough food to feed future populations. However, changes in regional patterns of production could be significant, and in the long term, nutritional security can only be ensured through education and training, higher incomes, favorable market mechanisms, political stability, and population controls.

Fresh Water Quality and Quantity

Great spatial and temporal variability characterize water availability. Climate change may exacerbate such variations. Today 1 billion people lack access to clean and abundant drinking water, and even more are without adequate sanitation. Adjustments to water shortages can be managed where physical infrastructure (reservoirs, pipelines, and canals) and water management institutions exist. Increasing populations dependent on limited sources served by isolated systems are at more risk. Landscapes may erode or stabilize as precipitation alters vegetative cover, thus affecting runoff and transport of sediment and pollutants.

Air Pollution and Allergens

The same industrial processes that produce greenhouse gases will also produce increased urban air pollutants, and they too can pose major health risks. Levels of fine particulates (from fossil fuels and wood smoke) and ozone (from photochemical reactions) are known to be associated with higher levels of hospital admissions for respiratory diseases. Fine particulates also appear to be associated with admissions for heart disease and with general mortality. In the United States, where air pollution is relatively low compared with Mexico City and some Asian cities, it nevertheless contributes to 70,000 excess deaths and 1 million additional hospitalizations annually. In the future, as
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

global increases in energy production lead to higher levels of particulates, and increases in temperature and ultraviolet radiation accelerate the reactions that produce ozone and other secondary pollutants, the health effects of air pollution on a global scale could be staggering. Higher temperatures and humidity may also lead to higher concentrations of plant pollen and fungal spores that cause allergic disorders such as asthma and hay fever.

Weather Disasters and Rising Sea Level

El Niño is associated with increased rainfall and floods in some regions. Long-term climate change over the entire planet may result in an increase in extreme weather events, such as droughts, floods, and cyclones. These events could increase the number of deaths and injuries and the incidence of infectious diseases and psychological disorders, as well as causing indirect effects through food shortages and the proliferation of disease vectors.

A 40-centimeter rise in sea level would approximately double the number of people who are currently exposed to flooding each year in areas like Bangladesh. It could also contribute to the loss of coastal and delta farmland, as in Egypt, and to the destruction of food supplies. Rising sea level also increases the vulnerability of coastal cities, low-lying areas, and small islands to damage during storms.

Social and Demographic Dislocations

Global climate change would alter patterns of employment, wealth distribution, and population settlement throughout the world. Physical conflicts might also arise over depleted environmental resources such as farmland, surface water, and coastal fisheries. Biodiversity would also be affected (see Box 3). The greatest destabilizing effects would likely be experienced in areas of

FIGURE 3. Ways in which global climate change may affect human health. (Adapted from IPCC, 1995)
SUMMARY OF THE PROCEEDINGS

Africa which are already highly vulnerable. At the same time, populations may be moving out of tropical and coastal areas and into cooler wilderness areas where they will be exposed to new and unfamiliar health threats.

From another point of view, the difficulty of responding to global climate change lies in the rapid pace of the change—the projected rate of change is greater than has occurred on earth in the past 10,000 years. Although it appears that some of the global climate changes may be dealt with by the industrial world, adaptation will be more difficult in the developing world. The pace of global climate change may be complicated by an inadequate pace of institutional change.

POLICY IMPLICATIONS

At the end of the first day of the conference, presentations were made on potential policy implications for health surveillance, disease prevention, and health professional education. In addition, a special address was made by Brian Atwood, administrator of the Agency for International Development, on “Implications for International Cooperation” (see Box 4). These presentations served as background and introduction for the breakout and working group panel discussions that occurred on the second day; information from those presentations has been integrated into the panel reports that follow.

Panel Reports

The second day of the conference was organized around six concurrent breakout and working group panels that considered the policy implications of global climate change and human health. The six panels were: (1) Global Surveillance and Response, (2) Disease Prevention, (3) Education for the Medical and Public Health Communities, (4) International Cooperation, (5) Research and Development Needs, and (6) Public Outreach and Risk Communication.

These panels were asked to work from the assumption that global climate change would occur, and that its impacts on human health would be more or less as described in the foregoing discussion. Working from that assumption, the panels were charged with addressing the question, “What do we do about it?” That is, what strategic actions could, and should, be taken to anticipate adverse health effects before they occur and to reduce or mitigate those effects when they do occur? In addition, the panels were asked to identify both short-term (1 to 5 years) and long-term (5 to 25 years) strategies.

The following summaries reflect the individual group chairs’ sense of the participants’ discussion in their respective working groups, further illuminated by the material presented in plenary sessions on the preceding day.
The emergence of new diseases and the reemergence of familiar diseases represent a serious threat to many regions and, indeed, in a shrinking world, to the entire human species. In the future, therefore, it will be critical to have in place an integrated, worldwide surveillance and response mechanism for emerging infectious diseases. The purpose of such a system would be to shorten the time between the detection of the first case and the implementation of effective measures for treatment, prevention, and control. To the degree possible, therefore, it should also include surveillance for the various changes in climate and environment that may provide early warning signs of the possible outbreak of disease.

The vital elements of such a system are (a) a rapid and comprehensive communications network; (b) accurate, reliable, laboratory-based diagnosis capabilities in host countries or regional centers; and (c) a mechanism for rapid response. The functioning of this system would also be aided by heightened cooperation among national and international health organizations. In the end, the creation of an integrated, worldwide system to monitor the occurrence and emergence of disease could become the most important international health policy initiative of the twenty-first century.

The breakout panel reported that the most important problem in this area is the creation and maintenance of a critical mass of multidisciplinary expertise. Short-term strategies to address this problem include personnel exchanges, cross-training, and the establishment of a Vice Presidential Fellowship Program. Long-Term strategies include the encouragement of multidisciplinary training at all levels of relevant fields.

The panel also endorsed earlier reports calling for the creation of an international consortium to address climate-related issues. One difficulty in doing this is the need for political will and interagency and global coordination. A short-term strategy would be to compile an inventory of existing resources and facilities that might become part of the effort, including sites and projects studying the environment and climate that could provide remote-sensing data and other indicators for health surveillance. There was no consensus on which agency should serve as the focal point for this coordination within the United States, although the Centers for Disease Control and Prevention, the NAS, the IOM, and the interagency Committee on International Science Engineering and Technology (part of NSTC) were offered as candidates. There was agreement, however, that the United States could not carry out this mission alone; it will be necessary to work with the resources, facilities, and institutions of other countries and international organizations.

Finally, the importance of global surveillance and response was discussed as being critical to national security because military forces might need to be deployed to virtually any area of the world on short notice. Knowledge of emerging diseases and their potential impact on military operations is of great importance in the preparation of countermeasures to avoid such threats, reduce their impact, and provide a rapid response to outbreaks.

1Dr. Ruth Berkelman, deputy director, National Center for Infectious Diseases, Centers for Disease Control and Prevention, cochaired this panel and summarized their discussion and findings.
SUMMARY OF THE PROCEEDINGS

Strategies (see also Table 3).

Short-term strategies:
- Create and maintain a critical mass of multidisciplinary expertise.
- Commission the NAS or the IOM to conduct a study of the problem.

Long-term strategies:
- Encourage multidisciplinary training at all levels of relevant fields.

Disease Prevention

The reemergence in the Americas of infectious diseases that had been controlled in the past, such as cholera, plague, and dengue, as well as the emergence of new infectious agents, such as Hanta and Guanarito viruses, E. coli:0:157, and cryptosporidia, have had a direct impact on health policy and prevention efforts. Over the past several years, governmental and nongovernmental organizations have been working closely to modify health policy to place more emphasis on disease prevention. A major concern of these efforts are the changing dynamics of disease transmission, which are influenced by migration, land use, and environmental degradation.

Many lines of action are being examined as ways to prevent diseases. One requirement for any response will be flexible management within the health sector closest to the vulnerable population to allow it to adapt to changing patterns of disease. In addition, the wide impact of infectious diseases such as AIDS requires a policy of increased intersectorial cooperation—that is, there must be fluid and open communication and management of health problems among health, environmental, and agricultural sections, supported by competent research that is based on careful policy analysis. Participants believed that policy reform, combined with broad public support gained by effective use of the mass media, will allow us to confront the health problems caused by global climate change and environmental degradation.

Policies for disease prevention and control usually involve three responses: (1) removal of the hazardous exposure, (2) early detection (and investigation of the occurrence of diseases), and (3) treatment and control measures, such as prophylactic therapy. Primary prevention might include vaccinating children or draining stagnant pools where mosquitoes breed. In dealing with the health effects of global climate change, however, it would require preventing and even reversing greenhouse warming itself. This kind of “preprimary” or “primordial” prevention would be desirable but was beyond the scope of this conference. Nevertheless, there are still many actions that might be taken to mitigate the health effects of global climate change, especially in terms of anticipating what those effects will be and which populations are most at risk.

Secondary prevention involves surveillance and early screening—the collection, analysis, and dissemination of pertinent data—and tertiary prevention involves responses—plans and facilities for rapid diagnosis and effective treatment to keep a disease from progressing. Secondary and tertiary

Dr. Jonathan Patz, research associate, Johns Hopkins School of Public Health, cochaired this panel and summarized their discussion and findings.
Altered levels of greenhouse gases like CO₂ constitute an important environmental change by themselves in addition to those changes driven by the altered levels. Field studies of the effects of elevated CO₂ on natural communities are limited at this point. Bert Drake's two-species marsh community at the Smithsonian Environmental Research Center—the longest running field experiment—shows that plants with a C₄ photosynthetic pathway (e.g., a sedge) have a definite competitive edge over C₃-pathway species (e.g., a grass). Within a group of C₄ or C₃ plants, however, it is not possible to predict in advance how various species will respond to higher levels of CO₂. An initial study of part of a tree subjected to 2 months of elevated CO₂ in a Panamanian rainforest led to yellowing of its leaves and reduced photosynthesis. It appears that the excessive accumulation of carbohydrates inhibits photosynthesis, with consequent high irradiation stress, photodamage, and loss of chlorophyll. The rest of the tree seems incapable of drawing off the excess photosynthates. This is, of course, different from a tree experiencing a CO₂ increase occurring over years and decades or a tree that grows up in a high-CO₂ environment.

Of course, climate change will include not only CO₂ elevation but also changes in temperature regimes, rainfall, and other hydrological patterns. There are almost no field experiments yet that combine more than a single one of these factors. Nonetheless, it is clear from the above findings that it is a mistake to think of elevated CO₂ alone as a benign fertilizing factor for plants. Rather, it is important to recognize that elevated CO₂ and associated climate change will instigate a cascade of effects that will ripple through natural communities with hard-to-envision epidemiological consequences.

Paleoecological evidence relating to climate change during glacial/interglacial swings indicate rates of dispersal for plant species, especially trees, that are much slower (1/10th) than those projected by climate models. It is simply not known whether species could move faster. In addition, it is well known in North America and Europe, and to a lesser extent in the less studied tropics, that biological communities disassembled during those climate changes and different species moved at different rates and in different directions. Ultimately, species assembled in communities of different composition. The implications for epidemiology are difficult to envision, although worrisome.

Climate change, whether human or naturally driven, will take place in landscapes that have been highly modified by human activity. This will dramatically lower opportunities for dispersal and consequently generate considerable extinction of species—that is, a reduction in biological diversity.

What are the implications for human health? It is hard to be precise and to provide a lot of detail. Nonetheless, an abundance of changing relationships between species will undoubtedly affect epidemiology. Some changes, of course, may be beneficial, but the balance are likely to be detrimental because weedy species such as white-tailed deer will be favored over nonweedy species. It seems reasonable to anticipate epizootics and epidemics without any precedents.

In addition, loss of biodiversity will impoverish the potential of biotechnology to contribute to the wealth of nations and will similarly diminish the potential of the life sciences to contribute to human health, wealth, and well-being.

"Excerpts from a special briefing at the Conference on Human Health and Global Climate Change, September 11, 1995."
SUMMARY OF THE PROCEEDINGS

Prevention strategies are needed in most if not all nations. However, the creation of a global surveillance and response capability will require unprecedented international collaboration, including a softening of the traditional boundaries between sectors, agencies, and nations. Nongovernmental organizations and the media also have an important role to play in educating the population, without frightening them, and possibly changing some of their more destructive behaviors (see “Public Outreach and Risk Communication,” p. 24).

The breakout group recommended that prevention activities focus on anticipatory, rather than reactionary measures. It identified six priority areas that overlap and incorporate those of other breakout groups:

1. targeted, integrated surveillance that focuses on transitional zones and vulnerable populations;
2. changes in medical education that incorporate environmental health into curriculum and board exams;
3. international cooperation through information sharing and surveillance networks;
4. methodological research to evaluate prevention and intervention programs and to identify vulnerable populations, transition areas, and other risk factors;
5. public education and outreach aimed at policymakers as well as vulnerable populations, especially children and the elderly; and
6. public health infrastructure to conduct (a) research and (b) vaccine and exposure reduction programs.

Strategies (see also Table 3).

Short-term strategies:
• Compile an inventory of existing resources and facilities to study the environment and climate that could provide remote-sensing data and other indicators for health surveillance.

Long-term strategies:
• Refocus or develop the public health infrastructure.

Education for the Medical and Public Health Communities

Despite increasing evidence that global climate change and ozone depletion may have serious consequences for human health, there is little understanding, both among policymakers and the public, of the extent of this potential threat. Physicians and public health professionals should be central figures in helping to promote an understanding of the health effects associated with climate change.

Dr. Max Lum, director, Office of Health Communications, National Institute of Occupational Safety and Health, cochaired this panel and summarized their discussion and findings.
change, but they are by and large uninformed about the topic, as their education does not, in general, cover the relationship of global environmental change to human health.

Physicians, nurses, and other health professionals have a vital role to play in responding to the health effects of global climate change. At present, however, physicians do not receive adequate training in occupational and environmental medicine, much less in the medical problems arising from global climate change, such as tropical diseases appearing in temperature zones. In the United States, for example, although two-thirds of medical schools include occupational and environmental health in their curricula, the average student receives only 6 hours of exposure to these subjects over 4 years of study. The situation is somewhat better in schools of public health. Yet for both medical and public health students in the United States there is essentially no time available in the curriculum to address the potential human health consequences of global climate change. For most professionals their principal source of information on global environmental health are articles in the scientific literature and conferences sponsored by nonprofit organizations.

The breakout group agreed that health professionals should play a critical role in addressing the health effects of global climate change. The central questions panelists posed were (a) what do health professionals already know, (b) what do they want to know, and (c) what should they know. As a short-term strategy, the group recommended that the IOM and NAS conduct a study to identify core competencies and training mechanisms in the area of human health effects of global climate change, similar to a recent IOM study of environmental medicine (1995).

Global climate and health issues should be incorporated into medical board exams, reflecting the importance of this subject for the training of physicians. The IOM and NAS might also broker efforts to promote faculty development in this area and to create centers of excellence in medical schools that would develop curricula in human health and global climate change. The group also recommended conducting a study to identify existing government and industry programs that protect workers from the effects of ultraviolet exposure. Such an activity could also increase awareness of the hazards of stratospheric ozone depletion.

These efforts should be coordinated with those of professional, educational, and public service organizations. Health professionals should also help in developing educational materials and in presenting information to policymakers and the general public to help increase understanding of the health implications of environmental policies. These efforts should include the special needs of populations such as migrant workers and minorities that might not have adequate access to health care information. In the long term, it will be important to monitor the effectiveness of these and other programs and, more importantly, to disseminate their results.

Strategies (see also Table 3).

Short-term strategies:
- Have the IOM or NAS conduct a study to identify core competencies and training mechanisms in the area of global environmental health, similar to a recent IOM study of environmental medicine.
- Identify and study existing government and industry programs designed to protect workers from the effects of exposure to the sun.
BOX 4. Implications for International Cooperation

Brian Atwood
U.S. Agency for International Development

By working closely with our developing country partners, the U.S. Agency for International Development is able to facilitate the subtle but critically important changes that raise awareness of the threats of climate change and help to shape preventative and responsive measures. Our work has informed other donors and encouraged them to invest in solutions we need. Developing countries in particular are on the precipice of global environmental change. They soon will be the leading source of greenhouse gas emissions, and the resulting climate change will take a heavy toll on their crowded coastal areas and fragile ecosystems. The extraordinary biological wealth of these countries is already threatened by poorly planned development that undercuts the natural capital they and we need for the future.

Energy consumption and one of its unwelcome by-products, pollution in the form of carbon emissions, are growing fastest in developing countries and in countries whose economies are in transition. Developing countries are also experiencing rapid rates of deforestation and ecosystem degradation, which eliminates a primary sink for greenhouse gases. For example, over the last decade, 154 million hectares of tropical forests, equivalent to more than three times the land area of France, have been lost to other uses. The rate of that loss of biomass, especially in developing countries, is alarming.

The resulting environmental degradations and misuse of natural resources create opportunities for new diseases, or old ones, to take hold. We use the phrase "emerging diseases," yet for millions of people the new viruses have already emerged, and they have already claimed the lives of loved ones. The word "emerging" simply does not convey the urgency we sense. Only yesterday we were convinced that science had overcome the assault of these infectious diseases. Advances in antibiotic drugs, vaccines against childhood diseases, and improved sanitation technology all seemed to be winning the day. The incidence of polio, whooping cough, and diphtheria were declining. Fast-acting antibiotics reduced the threat of meningitis and bacterial pneumonia. But we now know that our euphoria was premature. We did not take into account the extraordinary resilience of infectious microbes, which have a remarkable ability to evolve, adapt, and develop resistance to drugs. Thus, diseases that were once thought to be under control have reemerged. There are many of these reemerging diseases, and they just do not appear only in the developing world nowadays. We find them in New Mexico, in Minnesota, in Virginia, and in New York. Around the world there is a resurgence of cholera, malaria, and yellow fever, often in drug-resistant forms. And of course, there is HIV and AIDS.

We believe that global problems must be resolved at the local level. We know that these efforts must be aided by new breakthroughs in science and technology. Investment in research is essential if we are to keep up with the effects of ecological change. The battles we must fight against new microbes, new forms of crop blight, the spread of desertification, new forms of pestilence, and the rapid population growth make research more important than ever. We face a dynamic, rapidly accelerating set of new challenges, yet we are at risk of falling desperately behind the curve, as the changes we inadvertently introduce run far ahead of our resources and our knowledge base. Research is not like tap water. It cannot be turned off and on again without serious consequences. To be successful in these efforts,

BOX 4. Continued

governments must continue their support of the scientific community. This will require considerable efforts by federal agencies, by our university partners, and by nongovernmental organizations. The private sector is our natural partner. However, it does not cover the entire spectrum of research.

It is dangerous to assume that the unfettered hand of Adam Smith will lead to the investments we need to deal with international health and environmental threats to the United States. That will require a coherent and cost-effective foreign assistance program backed by sound policies and global cooperation. We are uniquely placed as a nation to help the rest of the world meet these challenges. Our quality of life in the next century will be determined in large measure by how we meet the global challenges of today. Science and technology give us the tools we will need to meet the challenges of tomorrow.

Long-term strategies:
- Monitor the effectiveness of these and other programs and, more importantly, disseminate their results.
- Incorporate questions about climate-related health issues on medical board examinations.

International Cooperation

Global climate change is believed to cause a wide variety of deleterious effects including desertification, changes in agricultural patterns, and disease. These effects are both direct and indirect, and the causes may be either natural or manmade. To the extent that global climate change and its impacts are influenced by human activity, methods must be found to mitigate, adapt to, or respond to them. The U.S. government is obligated to exercise leadership at home and abroad to ensure that responses are appropriate and timely.

Every human being is vulnerable to the effects of global climate change, but the citizens of developing countries and regions face the most immediate dangers. In those areas, both climatic change and the need for responses to it may be greatest, but the available resources for addressing them is most limited. Clearly, the preventive and responsive measures we use to deal with global climate change and its effects must involve every affected person and operate society-wide.

The breakout panel reported that many of the necessary systems and networks for international cooperation are already in place—the United Nations Environmental Programme, the World Health Organization, UNICEF, and networks of collaborating centers. What is required is improved coordination among existing systems to place the health effects of global climate change on their respective agendas and to ensure a two-way flow of information among them. The panel found a particular need to improve the links between agencies and organizations that conduct climate forecasting, health planning, health surveillance, and the implementation of health programs.

\[6\]

Dr. Rudi Slooff, Division of Environmental Health, World Health Organization, cochaired this panel and summarized their discussion and findings.

22
SUMMARY OF THE PROCEEDINGS

One short-term strategy would be to incorporate health effects monitoring and reporting into existing global climate change activities, such as the Framework Convention on Climate Change program and the United Nations-sponsored “Climate Agenda.” Another strategy would be to look for the health effects of global climate change in the information already gathered for the ongoing U.S. Country Study Program. These efforts will be ineffective, however, unless they are accompanied by increased efforts to provide relevant information to national and international policymakers.

In the long term, the panel recommended that global climate change and health issues be incorporated into sustainable development planning, not only by individual nations, but also by the World Bank, the United Nations Development Program, the Food and Agriculture Organization, and similar organizations. By the same token, health and climate planning should be broadened to include related environmental issues such as biodiversity. This, in turn, requires that stakeholders have better access to the information gathered, analyzed, and disseminated by the global surveillance system discussed by other breakout panels.

Strategies (see also Table 3).

Short-term strategies:
- Incorporate health effects monitoring and reporting into existing global climate change programs.
- Look for the health effects of global climate change in the information already gathered for other programs.

Long-term strategies:
- Incorporate global climate change and health issues into sustainable development planning, not only by individual nations, but also by the World Bank, the United Nations Development Program, the Food and Agriculture Organization, and similar organizations.
- Broaden health and climate planning to include environmental issues such as biodiversity.

Research and Development Needs

Rather than enumerate the many specific research topics that need to be addressed, the breakout panel emphasized the need for an integrated, interdisciplinary R&D program that will encourage collaboration among experts and organizations from a wide range of fields and disciplines. Achieving this will probably require a concerted effort to overcome the boundaries that currently separate scientific disciplines, research institutions, budgetary programs, funding agencies, and international sponsors. In the United States, for example, funding would probably come from a consortium of federal agencies rather than from a series of small, fragmented programs.

The research problems addressed by this program should include climatic variations that already pose health risks, as well as future effects of global climate change.

7 Dr. David Rall, foreign secretary, Institute of Medicine, cochaired this panel and summarized their discussion and findings.
Strategies (see also Table 3).

Short-term strategies.
In the short term, the panel proposed that the program undertake pilot projects involving case studies that integrate three sets of variables:

1. infectious diseases (e.g., cholera, dengue, malaria, and Lyme disease);
2. mechanisms of susceptibility (e.g., UV-B and immune suppression, fine particulates, and cardiovascular or pulmonary disease); and
3. global change drivers that might exacerbate or mitigate these problems (e.g., population growth, economic development, and urbanization).

Possible models for these case studies are the Technical and Scientific Assessment and the United Nations Intergovernmental Panel on Climate Change. The case studies themselves could be performed by international organizations, by private groups, or by the IOM or NAS.

Long-term strategies.
The long-term goals of this program would be to identify and address gaps in current knowledge, and to disseminate and apply the lessons learned from the case studies.

Public Outreach and Risk Communication

Despite a wealth of scientific studies and technical information, the general public is not well informed on the relationship between global climate change and human health. Several participants made the analogy to the difficulties of informing the public about the dangers of nuclear war: Such information is highly technical, far removed from the common experience, disconcerting to contemplate, and often undermined by a vocal opposition. As a result, the first step in any outreach campaign would be to assess the information (and disinformation) that is already available to determine what further steps might be appropriate.

The breakout panel endorsed the principles of risk communication that are embodied in the 10-step strategy outlined in Table 2. The primary long-term goals of this strategy are (1) involving the public by encouraging awareness and discussion, and (2) building bridges between the medical and environmental communities. In both cases, the panel recommended working through existing networks and infrastructures, initially targeting opinion leaders but making use of the full range of formal and informal intermediaries to reach broader audiences—not only churches and newspaper editors, for example, but also Boy/Girl Scouts and television weathermen, as well as medical associations, senior citizens’ associations, and schools.

Dr. William Farland, director, National Center for Environmental Assessment, Environmental Protection Agency, cochaired this panel and summarized their discussion and findings.
TABLE 2. Developing a Risk Communication Strategy for Global Climate Change

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Review background information. (What messages are already out there?)</td>
</tr>
<tr>
<td>2</td>
<td>Set communication objectives. (What do we want to accomplish?) Example: Increase public awareness about the public health implications of global climate change.</td>
</tr>
<tr>
<td>3</td>
<td>Analyze and segment target audiences. (Whom do we want to reach?) Example: Construct communications based on audience attitudes.</td>
</tr>
<tr>
<td>4</td>
<td>Develop and pretest message concepts. (What do we want to say?)</td>
</tr>
<tr>
<td>5</td>
<td>Select communication channels. (Where do we want to say it?)</td>
</tr>
<tr>
<td>6</td>
<td>Create and pretest messages and products. (How do we want to say it?)</td>
</tr>
<tr>
<td>7</td>
<td>Develop a promotion plan. (How do we get it used?)</td>
</tr>
<tr>
<td>8</td>
<td>Implement communication strategies and conduct a process evaluation. (Let’s do it!)</td>
</tr>
<tr>
<td>9</td>
<td>Conduct outcome and impact evaluations. (How well did we do?)</td>
</tr>
<tr>
<td>10</td>
<td>Feedback to improve communication effectiveness. (Where do we go from here?)</td>
</tr>
</tbody>
</table>

Strategies (see also Table 3). The panel identified the following short-term action items, which might serve as the foundation for long-term efforts:

- Identify, contact, and infuse existing networks with health concerns related to global climate change. Use these networks as a feedback mechanism to find out what further information the public wants or needs.
- Distill the information generated by the present conference for dissemination through journal articles, editorials, op-ed pieces, targeted brochures, public service announcements, informational videos, or a home page on the World Wide Web.
- Establish a volunteer group or forum to continue the communication activities suggested or actually begun during the present conference.
- Develop a response capability to counter disinformation.
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

SUMMARY OF PRIORITIES AND STRATEGIES

Participants voiced a clear message throughout the conference: Changes in global climate would pose substantial risks to human health, both in the near and long-term. They also hoped that their efforts would help mobilize opinion and action toward the implementation of strategies that would occur as far “upstream” as possible.

Conference participants identified and described a number of actions that could be taken to address these potential threats. These strategies are summarized in Table 3 and share certain common threads:

- identify and work with existing resources, facilities, networks, and information;
- encourage greater coordination and collaboration among relevant organizations, disciplines, nations, and funding agencies;
- create from these institutions and funding sources an integrated worldwide network for surveillance and response to indicators of global climate change and emerging diseases;
- support multidisciplinary research to determine linkages among global climate change, food production, and human health;
- provide appropriate training for researchers and health professionals, including the creation of centers of excellence and the enhancement of faculty; and
- establish information and outreach programs.
<table>
<thead>
<tr>
<th>Implications for:</th>
<th>Short-Term Strategies</th>
<th>Long-Term Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global surveillance and response</td>
<td>Create and maintain a critical mass of multidisciplinary expertise.</td>
<td>Encourage multidisciplinary training at all levels of relevant fields.</td>
</tr>
<tr>
<td></td>
<td>Commission the National Academy of Sciences (NAS) or the Institute of Medicine (IOM) to conduct a study of the problem.</td>
<td>Refocus or develop the public health infrastructure.</td>
</tr>
<tr>
<td>Disease prevention</td>
<td>Compile an inventory of existing resources and facilities to study the environment and climate that could provide remote-sensing data and other indicators for health surveillance.</td>
<td></td>
</tr>
<tr>
<td>Education for the medical and public health communities</td>
<td>Have the IOM or NAS conduct a study to identify core competencies and training mechanisms in the area of global environmental health, similar to a recent IOM study of environmental medicine.</td>
<td>Monitor the effectiveness of these and other programs and, more importantly, disseminate their results.</td>
</tr>
<tr>
<td></td>
<td>Identify and study existing government and industry programs designed to protect workers from the effects of exposure to the sun.</td>
<td>Incorporate questions about climate-related health issues on medical board examinations.</td>
</tr>
<tr>
<td>International cooperation</td>
<td>Incorporate health effects monitoring and reporting into existing global climate change programs.</td>
<td>Incorporate global climate change and health issues into sustainable development planning, not only by individual nations, but also by the World Bank, the United Nations Development Program, the Food and Agriculture Organization, and similar organizations.</td>
</tr>
<tr>
<td></td>
<td>Look for the health effects of global climate change in the information already gathered for other programs.</td>
<td>Broaden health and climate planning to include environmental issues such as biodiversity.</td>
</tr>
<tr>
<td>Research and development (R&D) needs</td>
<td>Create an integrated, interdisciplinary R&D program that would encourage collaboration among experts and organizations from a wide range of fields and disciplines. Such a program would undertake pilot projects involving case studies that integrate (a) infectious and other diseases; (b) mechanisms of susceptibility, and (c) global change drivers that might exacerbate or mitigate these problems.</td>
<td>Identify and address gaps in current knowledge, and disseminate and apply the lessons learned from the case studies.</td>
</tr>
<tr>
<td>Public outreach and risk communication</td>
<td>Establish a volunteer group or forum to continue the communication activities identified and discussed at this conference.</td>
<td>(a) Involve the public by encouraging awareness and discussion, and (b) build bridges between the medical and environmental communities.</td>
</tr>
</tbody>
</table>
REFERENCES AND FURTHER READING

The interested reader can find more detailed information about the topics covered by this conference by referring to the following publications:

SUMMARY OF THE PROCEEDINGS

APPENDIX A

National Science and Technology Council (NSTC) Sponsoring Members, Interagency Working Group, Institute of Medicine (IOM) Steering Committee, and Staff

NSTC SPONSORING MEMBER AGENCIES

Centers for Disease Control and Prevention
Environmental Protection Agency
National Aeronautics and Space Administration
National Institutes of Health
National Oceanic and Atmospheric Administration

National Science Foundation
Pan American Health Organization
U.S. Department of Agriculture
U.S. Department of Defense
U.S. Department of Energy
U.S. Global Change Research Program
U.S. Agency for International Development

NSTC INTERAGENCY WORKING GROUP

Maurice Averner, Advanced Life Support, Life and Biomedical Sciences and Applications Division, National Aeronautics and Space Administration, Bethesda, MD
Lois Beaver, Office of External Affairs, Food and Drug Administration, Rockville, MD
Rosina Bierbaum, Environment Division, Office of Science and Technology Policy, Executive Office of the President, Washington, DC
Jim Buizer, Office of Global Programs, National Oceanic and Atmospheric Administration, Silver Spring, MD
Dennis Carroll, Office of Health and Nutrition, Agency for International Development, Washington, DC
Jack C. Chow, Division of International Relations, Fogarty International Center, National Institutes of Health, Bethesda, MD
Robert Corell, Geosciences Division, National Science Foundation, Arlington, VA
Jackie Dupont, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD
Elaine Esber, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD
Gary Evans, Office of the Secretary, U.S. Department of Agriculture, Washington, DC
Mike Finley, Office of External Relations, Pan American Health Organization, Washington, DC
Karen Gallegos, Office of Global Programs, U.S. Department of State, Washington, DC
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

Luiz Galvao, Division of Health and Environment, Pan American Health Organization, Washington, DC
Mary Gant, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, MD
Ann Grambsch, Climate Change Bureau, Office of Policy, Planning, and Evaluation, Environmental Protection Agency, Washington, DC
Duane Gubler, Vector Borne Infectious Diseases Division, Centers for Disease Control and Prevention, National Center for Infectious Diseases, Fort Collins, CO
Debbie Hanfinan, Science Division, Office of Science and Technology Policy, Executive Office of the President, Washington, DC
Col. Jerry Jaax, United States Army, Medical Research and Materiel Command, Ft. Detrick, MD
Carla Kappell, Office of Energy, Environment, and Technology, Bureau of Global Programs, Field Support, and Research, Agency for International Development, Washington, DC
Hiram Larew, Office of Policy and Evaluation, Agency for International Development, Washington, DC
Orville Lavander, Nutrient Requirements and Functions Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD
Alexandra Levitt, Office of Science, Technology and Health, U.S. Department of State, Washington, DC
Ed Malloy, Office of Science, Technology, and Health, U.S. Department of State, Washington, DC
Patrick McConnon, Centers for Disease Control and Prevention, Atlanta
Mike McCracken, U.S. Global Change Research Program, Washington, DC
Roscoe M. Moore, Development Support and African Affairs, Office of International Health, U.S. Department of Health and Human Services, Rockville, MD
Jonathan Patz, Johns Hopkins School of Public Health, Environmental Protection Agency, Office of Policy, Planning, and Evaluation, Climate Change Division, Washington, DC
Karen Peterson, Division of International Relations, Fogarty International Center, National Institutes of Health, Bethesda, MD
Hernan Rosenberg, Office of External Relations, Pan American Health Organization, Washington, DC
David Sandalow, Council on Environmental Quality, Executive Office of the President, Washington, DC
Joel Scheraga, Climate Change Bureau, Office of Policy, Planning, and Evaluation, Environmental Protection Agency, Washington, DC
Artie Shelton, Office of Allergy, Immunology and Oncology, U.S. Department of Veterans Affairs, Washington, DC
Phillip L. Sims, Agriculture Research Service, U.S. Department of Agriculture, Beltsville, MD
Anthony Socci, U.S. Global Change Research Program, Washington, DC
Macol Stewart, Office of Global Programs, National Oceanic and Atmospheric Administration, Silver Spring, MD
Col. Ernie Takafuji, U.S Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD
APPENDIX A

Beth Viola, Council on Environmental Quality, Executive Office of the President, Washington, DC

Robert Watson, Environment Division, Office of Science and Technology Policy, Executive Office of the President, Washington, DC
Catherine Woteki, Science Division, Office of Science and Technology Policy, Executive Office of the President, Washington, DC

INSTITUTE OF MEDICINE/NATIONAL ACADEMY OF SCIENCES STEERING COMMITTEE

David P. Rall (Chair), IOM foreign secretary, and director (Retired), National Institute of Environmental Health Sciences, Washington, DC
Eric Barron, Earth System Science Center, Pennsylvania State University, University Park, PA; Board on Atmospheric Sciences and Climate
Deborah Cotton, assistant professor, Infectious Disease Unit, Massachusetts General Hospital, Boston; Board on Health Sciences Policy
Philip J. Landrigan, Ethel H. Wise, professor and chairman, Department of Community Medicine, Mount Sinai School of Medicine, New York City; Board on Sustainable Development
Diane M. McKnight, U.S. Geological Survey, Water Resources Division, Boulder, CO; Polar Research Board

INSTITUTE OF MEDICINE/NATIONAL ACADEMY OF SCIENCES STEERING COMMITTEE

Bill Colglazier, executive officer, National Academy of Sciences, National Research Council
Linda DePugh, administrative assistant, Division of Health Sciences Policy, Institute of Medicine
Human Health and Global Climate Change, Division of Health Sciences Policy
Karen Hein, executive officer, Institute of Medicine
John Perry, staff director, Board on Sustainable Development, National Academy of Science
Loren Setlow, director, Polar Research Board, National Academy of Sciences
Valerie Setlow, director, Division of Health Sciences Policy, Institute of Medicine
Kenneth Shine, president, Institute of Medicine
William Sprigg, director, Board on Atmospheric Sciences and Climate, David
David Westbrook, manager, Federal Contracts, National Academy of Sciences
National Academy of Sciences

32
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

OFFICE OF SCIENCE AND TECHNOLOGY POLICY

Rosina Bierbaum, senior policy analyst
Jack Gibbons, assistant to the president for science and technology
Brett Orlando, intern
Jason Randall, intern
Robert Watson, associate director for environment
Conference Agenda

Conference on Human Health and Global Climate Change
The National Science and Technology Council, the Institute of Medicine, and the National Academy of Sciences

September 11–12, 1995

National Academy of Sciences
Main Auditorium
2101 Constitution Avenue, N.W.
Washington, DC 20418

AGENDA

MONDAY, SEPTEMBER 11, 1995

7:30–9:00 a.m. REGISTRATION

9:00–9:10 a.m. WELCOMING REMARKS

Kenneth I. Shine, M.D.
President, Institute of Medicine

John H. Gibbons, Ph.D.
Assistant to the President for Science and Technology

9:10–9:50 a.m. PANEL I: OVERVIEW

Kenneth I. Shine, M.D. (Chair)
President, Institute of Medicine

The Science and Impacts of Climate Change and Ozone Depletion
Robert Watson, Ph.D.
Associate Director for the Environment, Office of Science and Technology Policy, Executive Office of the President

Climate Change and Human Health Risks
Anthony McMichael, Ph.D.
Professor of Epidemiology, London School of Hygiene and Tropical Medicine

9:50–10:10 a.m. QUESTION AND ANSWER SESSION

10:10–11:10 a.m. PANEL II: CLIMATE CHANGE AND INFECTIOUS DISEASES
Mary E. Wilson, M.D. (Panel Chair)
Assistant Professor, Harvard University

Vector-Borne Diseases
Duane Gubler, Sc.D.
Centers for Disease Control and Prevention

Marine Ecosystems
Rita Colwell, Ph.D., M.S.
President, American Association for the Advancement of Science

Emerging and Reemerging Diseases
Steven Morse, Ph.D.
Assistant Professor of Virology, Rockefeller University

11:10-12:00 p.m. QUESTION AND ANSWER SESSION
12:00-12:30 p.m. LUNCH (Provided in the Great Hall)
12:30-1:00 p.m. SPECIAL BRIEFING

El Niño: Analogue for Long-Term Climate Change
J. Michael Hall, Ph.D.
Director, Office of Global Programs, National Oceanic and Atmospheric Administration

Paul Epstein, M.D., M.P.H.
Harvard Medical School

1:00-1:30 p.m. PANEL III: DIRECT HEALTH EFFECTS FROM CLIMATE CHANGE AND OZONE DEPLETION

Terri Damstra, Ph.D. (Panel Chair)
Deputy Director, National Institute of Environmental Health Sciences

Climate Change and Heat Stress
Larry Kalkstein, Ph.D.
Professor of Geography, University of Delaware

Ozone Depletion and Its Health Effects: Skin Cancer, Cataracts, and Immune Suppression
Margaret Kripke, Ph.D., M.A.
Professor and Chairman, University of Texas M.D. Anderson Cancer Center

1:30-2:00 p.m. QUESTION AND ANSWER SESSION
APPENDIX B

2:00–2:45 p.m. PANEL IV: INDIRECT HEALTH EFFECTS OF CLIMATE CHANGE

Andrew Haines, M.D. (Panel Chair)
Professor of Primary Care, University of London Medical School

Impacts on Nutritional Health
David Oot, Ph.D.
Director, Office of Nutrition and Health, United States Agency for International Development

Impacts on Fresh Water Quality and Quantity
Reds Wolman, Ph.D., M.A.
Professor of Geography, Johns Hopkins University

Impacts on Air Quality
Joel Schwartz, Ph.D.
Professor of Environmental Epidemiology, Harvard University

2:45–3:15 p.m. QUESTION AND ANSWER SESSION

3:15–3:30 p.m. COFFEE BREAK

3:30–4:00 p.m. SPECIAL ADDRESS

Implications for International Cooperation
Mr. J. Brian Atwood
Administrator, United States Agency for International Development

4:00–4:30 p.m. INTRODUCTION OF KEYNOTE SPEAKER

John H. Gibbons, Ph.D.
Assistant to the President for Science and Technology

KEYNOTE ADDRESS
The Interplay of Climate Change, Ozone Depletion, and Human Health
Albert Gore, Jr., Vice President of the United States

4:30–5:15 p.m. PANEL V: POLICY IMPLICATIONS

Anne Solomon, M.P.A. (Panel Chair)
Deputy Assistant Secretary for Science, Technology and Health, Department of State

Implications for Global Health Surveillance and Response
Stephen Joseph, M.D., M.P.H.
Assistant Secretary for Health Affairs, Department of Defense

Implications for Disease Prevention
Sir George A.O. Alleyne, M.D.
Director, Pan American Health Organization
Implications for Education in the Medical and Public Health Communities
Eric Chivian, M.D.
Chair, Physicians for Social Responsibility

5:15–5:45 p.m. QUESTION AND ANSWER SESSION
5:45–6:00 p.m. WRAP UP, INSTRUCTIONS FOR THE NEXT DAY
6:00 p.m. ADJOURN
6:15 p.m. RECEPTION—GREAT HALL

TUESDAY, SEPTEMBER 12, 1995

7:00–8:00 a.m. CONTINENTAL BREAKFAST-NAS GREAT HALL
8:00–9:00 a.m. BREAKOUT SESSION COCHAIRS CONVENE TO DISCUSS GOALS AND STRATEGIES
9:00–9:15 a.m. MORNING PLENARY

Charge to Breakout Groups
Bernard Goldstein, M.D. (Chair)

9:15–12:30 p.m. BREAKOUT GROUP SESSIONS

GROUP 1: IMPLICATIONS FOR GLOBAL HEALTH SURVEILLANCE AND RESPONSE

Ruth Berkleman, M.D. (Government Cochair)
Deputy Director, National Center for Infectious Diseases, Centers for Disease Control and Prevention
Demisse Habte, M.D. (Nongovernment Cochair)
Director, Centre for Health and Population Research

GROUP 2: IMPLICATIONS FOR DISEASE PREVENTION

Sheila Newton, Ph.D. (Government Cochair)
Coordinator for Environment, Disease Prevention and Health Promotion, Department of Health and Human Services

Jonathan Patz, M.D., M.P.H. (Nongovernment Cochair)
Johns Hopkins University
GROUP 3: IMPLICATIONS FOR EDUCATION OF THE MEDICAL AND PUBLIC HEALTH COMMUNITIES

Max Lum, Ed.D., M.P.A. (Government Cochair)
Director, Office of Health Communications, National Institute of Occupational Safety and Health

Bernard Goldstein, M.D. (Nongovernment Cochair)
Chair, Department of Environmental and Community Medicine, Robert Wood Johnson School of Medicine

GROUP 4: IMPLICATIONS FOR INTERNATIONAL COOPERATION

Rafe Pomerance (Government Cochair)
Deputy Assistant Secretary for the Environment and Development, State Department

Rudi Slooff, Ph.D. (Nongovernment Cochair)
Division of Environmental Health, World Health Organization

GROUP 5: IMPLICATIONS FOR RESEARCH AND DEVELOPMENT NEEDS

Robert Corell, Ph.D. (Government Cochair)
Chair, Subcommittee on Global Change Research and Development, United States Global Change Research Program

David P. Rall, M.D., Ph.D. (Nongovernment Cochair)
Foreign Secretary, Institute of Medicine

GROUP 6: IMPLICATIONS FOR PUBLIC OUTREACH AND RISK COMMUNICATION

Bill Farland, Ph.D. (Government Cochair)
Director of National Center for Environmental Assessment, Environmental Protection Agency

Thomas Malone, Ph.D. (Nongovernment Cochair)
Director of Sigma Xi Center's Human Development Program

12:30–1:00 p.m. LUNCH (PROVIDED IN THE GREAT HALL)

1:00–1:30 p.m. SPECIAL ADDRESS

Biodiversity, Climate Change, and Human Health
Thomas Lovejoy, Ph.D.
Counselor to the Secretary for Biodiversity and Environmental Affairs, Smithsonian Institution
1:30–3:30 p.m. CLOSING PLENARY

Bernard Goldstein, M.D. (Plenary Chair)
Chair, Department of Environmental and Community Medicine,
Robert Wood Johnson School of Medicine

Breakout group Cochairs report on strategies for addressing potential health effects of
global climate change developed during their discussions.

3:00–4:00 p.m. OPEN DISCUSSION

4:00 p.m. ADJOURN
APPENDIX C

Speakers, Authors, Chairs, and Conference Registrants

SPEAKERS

George A.O. Alleyne
Director
Pan American Health Organization

J. Brian Atwood
Administrator
United States Agency for International Development

Eric Chivian
Physicians for Social Responsibility

Rita Colwell
President
American Association for the Advancement of Science

Terri Damstra
Acting Deputy Director
International Programs
National Institute of Environmental Health Sciences

Paul Epstein
Harvard Medical School

John H. Gibbons
Assistant to the President for Science and Technology

Bernard Goldstein
Director
Environmental and Occupational Health Sciences Institute
UMDNJ-Robert Wood Johnson Medical School

Albert Gore, Jr.
Vice President
United States of America

Duane Gubler
Director
Division of Vector Borne Infectious Diseases
Centers for Disease Control and Prevention

Demisse Habte
Director
Centre for Health and Population Research

Andrew Haines
Professor of Primary Care
University of London Medical School

J. Michael Hall
Director
Office of Global Programs
National Oceanic and Atmospheric Administration
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

Stephen Joseph
Assistant Secretary for Health Affairs
U.S. Department of Defense

Larry Kalkstein
Department of Geography
University of Delaware

Margaret Kripke
Department of Immunology
Anderson Cancer Center

Thomas E. Lovejoy
Secretary for Biodiversity and Environmental Affairs
Smithsonian Institution

Max Lum
Associate Director for Health Communications
National Institute for Occupational Safety and Health

Anthony McMichael
Department of Epidemiology and Population Science
London School of Hygiene and Tropical Medicine

Steven Morse
Associate Professor
Rockefeller University

David Oot
Director
Office of Nutrition and Health
United States Agency for International Development

Ari Patrinos
Associate Director
Office of Health and Environmental Research
U.S. Department of Energy

David Rall
Foreign Secretary
Institute of Medicine

Joel Schwartz
Associate Professor
Environmental Epidemiology Program
Harvard University School of Public Health

Kenneth I. Shine
President
Institute of Medicine

Rudi Slooff
Division of Environmental Health
World Health Organization

Anne Soloman
Deputy Assistant Secretary of Science Technology and Health
U.S. Department of State

Robert Watson
Associate Director for the Environment
Office of Science and Technology Policy
Executive Office of the President

Mary E. Wilson
Assistant Professor
Harvard University

M. Gordon “Reds” Wolman
Professor of Geography
Johns Hopkins University
APPENDIX C

AUTHORS

John M. Balbus-Kornfeld
Assistant Professor of Medicine
George Washington University

Hiram Larew
Policy Specialist
Agency for International Development

Ann Bostrom
School of Public Policy
Georgia Institute of Technology

Jonathan A. Patz
Research Associate
Johns Hopkins School of Public Health

Eric Chivian
Assistant Clinical Professor
Department of Psychiatry
Harvard Medical School

Warren T. Piver
Adjunct Professor
National Institute of Environmental Health Sciences

Paul R. Epstein
Professor
The Cambridge Hospital
Harvard University Medical School

Marla Salmon
Director
Division of Nursing
Department of Health and Human Services

Duane Gubler
Director
Division of Vector Bourne Infectious Diseases
Center for Disease Control and Prevention

Rudi Slooff
Division of Environmental Health
World Health Organization

James A. Harrell
Deputy Director
Office of Disease Prevention and Health Promotion
Public Health Service

Tim Tinker
Health Education Specialist
Agency for Toxic Substances and Disease Registry
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

CHAIRS

Ruth L. Berkleman
Deputy Director
National Center for Infectious Disease
Centers for Disease Control and Prevention

Robert W. Corell
Subcommittee on Global Change
Research and Development
U.S. Global Change Research Program

Terri Damstra
Acting Deputy Director
International Programs
National Institute of Environmental
Health Sciences

William H. Farland
Director
National Center for Environmental
Assessment
Environmental Protection Agency

Bernard D. Goldstein
Director
Environmental and Occupational Health
Sciences Institute
Robert Wood Johnson Medical School

Demisse Habte
Director
Center for Health and Population Research

Andrew Haines
Professor of Primary Health Care
University College of Middlesex

Max Lum
Director
Office of Health Communications
National Institute of Occupational
Safety and Health
Thomas F. Malone

Founding Director
The Sigma Xi Scientific Research Society

Sheila A. Newton
Coordinator for the Environment
Office of Disease Prevention and Health
Promotion, Public Health Service

Jonathan A. Patz
Research Associate
Johns Hopkins School of Public Health

Rafe Pomerance
Deputy Assistant Secretary for
Environment and Development
U.S. Department of State

David P. Rall
Foreign Secretary
Institute of Medicine

Kenneth I. Shine
President
Institute of Medicine

Anne K. Solomon
Deputy Assistant Secretary for
Science, Technology and Health
U.S. Department of State

Rudi Slooff
Division of Environmental Health
World Health Organization

Mary E. Wilson
Assistant Professor
Harvard University
CONFERENCE REGISTRANTS

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization and Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philip H. Abelson</td>
<td>American Association for the Advancement of Science</td>
</tr>
<tr>
<td>Judith Bale</td>
<td>National Research Council</td>
</tr>
<tr>
<td>Ruth L. Berkleman</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>Frank Addvinold</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>John M. Balbus-Kornfeld</td>
<td>George Washington University</td>
</tr>
<tr>
<td>David Bernstein</td>
<td>Universal Healthwatch</td>
</tr>
<tr>
<td>Sir George A.O. Alleyne</td>
<td>Pan-American Health Organization</td>
</tr>
<tr>
<td>William Bancroff</td>
<td>U.S. Army Medical Research and Materiel Command</td>
</tr>
<tr>
<td>Brent Berwager</td>
<td>Center for Health and Population Affairs</td>
</tr>
<tr>
<td>Arlene F. Anderson</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>David Banks</td>
<td>American Petroleum Institute</td>
</tr>
<tr>
<td>Rosina Bierbaum</td>
<td>Office of Science and Technology Policy</td>
</tr>
<tr>
<td>Neil Anderson</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>Eric J. Barron</td>
<td>Pennsylvania State University</td>
</tr>
<tr>
<td>Eugene W. Bierly</td>
<td>American Geophysical Union</td>
</tr>
<tr>
<td>Sherrod Anderson</td>
<td>U.S. Department of Transportation</td>
</tr>
<tr>
<td>Gerald S. Barton</td>
<td>National Oceanic and Atmospheric Association</td>
</tr>
<tr>
<td>David Blockstein</td>
<td>Institute for the Environment</td>
</tr>
<tr>
<td>Joan L. Aron</td>
<td>Johns Hopkins School of Hygiene and Public Health</td>
</tr>
<tr>
<td>James R. Beall</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>Paul M. Bloom</td>
<td>Tufts University</td>
</tr>
<tr>
<td>J. Brian Atwood</td>
<td>Agency for International Development</td>
</tr>
<tr>
<td>Lois Ann Beaver</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>Fred Blosser</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>Maurice Averner</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>Melinda A. Beck</td>
<td>University of North Carolina</td>
</tr>
<tr>
<td>Genia D. Bohrer</td>
<td>National Institute of Environmental Health Sciences</td>
</tr>
<tr>
<td>J. Brian Atwood</td>
<td>Agency for International Development</td>
</tr>
<tr>
<td>Sue Bachtel</td>
<td>Office of Science and Technology Policy</td>
</tr>
<tr>
<td>Dan Becker</td>
<td>Sierra Club</td>
</tr>
<tr>
<td>Siobhionn B CDILLION</td>
<td>Institute of Medicine</td>
</tr>
<tr>
<td>Sue Bachtel</td>
<td>Office of Science and Technology Policy</td>
</tr>
<tr>
<td>Yvette Benjamin</td>
<td>Institute of Medicine</td>
</tr>
<tr>
<td>D. James Baker</td>
<td>National Oceanic and Atmospheric Association</td>
</tr>
<tr>
<td>Gershom Bergeisen</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>John Borazzo</td>
<td>Agency for International Development</td>
</tr>
<tr>
<td>National Oceanic and</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>Ann Bostrom</td>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td>Name</td>
<td>Affiliation</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Colin L. Bradford, Jr.</td>
<td>Agency for International Development</td>
</tr>
<tr>
<td>Lynn Bradley</td>
<td>Association of State and Territorial Health Officers</td>
</tr>
<tr>
<td>David Brandling-Bennet</td>
<td>Pan American Health Organization</td>
</tr>
<tr>
<td>Bryna Brennan</td>
<td>Pan American Health Organization</td>
</tr>
<tr>
<td>Mary J. Brooks</td>
<td>Greencool</td>
</tr>
<tr>
<td>Allen Buckingham</td>
<td>American Association of Retired Persons</td>
</tr>
<tr>
<td>Jim Buizer</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>Joy E. Carlson</td>
<td>Children's Environmental Health Network</td>
</tr>
<tr>
<td>Gregory R. Carmichael</td>
<td>Center for Global and Regional Environment</td>
</tr>
<tr>
<td>Fran Carr</td>
<td>Agency for International Development</td>
</tr>
<tr>
<td>Michael D. Carr</td>
<td>U.S. Department of Interior</td>
</tr>
<tr>
<td>Willine Carr</td>
<td>Grantmakers in Health</td>
</tr>
<tr>
<td>Dennis Carroll</td>
<td>Agency for International Development</td>
</tr>
<tr>
<td>James C. Cecil</td>
<td>The Pentagon</td>
</tr>
<tr>
<td>D.W. Chen</td>
<td>Health Resources and Services Administration</td>
</tr>
<tr>
<td>Shouquan Cheng</td>
<td>University of Delaware</td>
</tr>
<tr>
<td>Mary Ann Childs</td>
<td>Universal Healthwatch, Inc.</td>
</tr>
<tr>
<td>Eunyoung Chung</td>
<td>U.S. Agency for International Development</td>
</tr>
<tr>
<td>Christopher Chyba</td>
<td>Princeton University</td>
</tr>
<tr>
<td>Eric Chivian</td>
<td>Harvard University Medical School</td>
</tr>
<tr>
<td>David L. Clark</td>
<td>University of Wisconsin, Madison</td>
</tr>
<tr>
<td>Emery T. Cleaves</td>
<td>Geological Society of America</td>
</tr>
<tr>
<td>Daniel G. Colley</td>
<td>Centers for Disease Control and Prevention</td>
</tr>
<tr>
<td>Rita R. Colwell</td>
<td>University of Maryland</td>
</tr>
<tr>
<td>Nugent Conn</td>
<td>Liberty Tree Alliance</td>
</tr>
<tr>
<td>Elizabeth Cook</td>
<td>World Resources Institute</td>
</tr>
<tr>
<td>Leslie B. Cordes</td>
<td>Agency for International Development</td>
</tr>
<tr>
<td>Anthony Cortese</td>
<td>Consortium for Environmental Education in Medicine</td>
</tr>
<tr>
<td>Robert W. Corell</td>
<td>U.S. Global Change Research Program</td>
</tr>
<tr>
<td>Lisa Cruz-Avalos</td>
<td>Nurse Consultant</td>
</tr>
<tr>
<td>Owen Cylke</td>
<td>Tata Energy and Resources Institute</td>
</tr>
<tr>
<td>John Daly</td>
<td>Agency for International Development</td>
</tr>
<tr>
<td>Terri Damstra</td>
<td>National Institute of Environmental Health Sciences</td>
</tr>
<tr>
<td>David Danzig</td>
<td>Sierra Club</td>
</tr>
</tbody>
</table>
APPENDIX C

Frances R. Davidson
U.S. Agency for International Development

Meg Doskin
Physicians for Social Responsibility

Tom Eng
U.S. Senate

Paul R. Epstein
Harvard University
Medical School

Tudor T. Davies
Environmental Protection Agency

Thomas F. Downham II
American Academy of Dermatology

Dawn Erlandson
Friends of the Earth

Joe Davis
Environmental Health Center

Robert Drew
American Petroleum Institute

Christine Ervin
U.S. Department of Energy

Molly Davis
U.S. Agency for International Development

Bernadette Dunham
American Veterinary Medical Association

Elaine C. Esber
Food and Drug Administration

Edward C. DeFabo
George Washington University

Col. Michael A. Dunn
Office of Assistant Secretary of Defense Health Affairs

Ruth A. Etzel
Centers for Disease Control and Prevention

Henrietta DeGroot
U.S. Department of Transportation

Christine Durbak
World Information Transfer

Gary R. Evans
U.S. Department of Agriculture

Linda DePugh
Institute of Medicine

Robert Eagelman
Population Action International

William H. Farland
Environmental Protection Agency

Dennis J. Devlin
Exxon Biomedical Sciences, Inc.

Anthony S. Earl
Center for Clean Air Policy

Kevin Fay
International Climate Change Partnership

Angela Phillips Diaz
Office of Science and Technology Policy

Sylvia Edgerton
University of Nebraska

Warren Ferster
Space News

Vanessa Dixon
American Association of Retired Persons

William E. Easterling
University of Nebraska

Ralph Ted Field
National Association of Physicians for the Environment

Andrew Dobson
Princeton University

James A. Edmonds
Pacific Northwest Laboratory

George Fisher
John Hopkins University

Jordana Dolowich
Council on Environmental Quality

Laura Efros
Office of Science and Technology Policy

Gary B. Ellis
National Institutes of Health

46
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

Lora E. Fleming
University of Miami

Martha Geores
University of Maryland

Robert H. Gray
University of Michigan

Dana A. Focke
U.S. Department of Agriculture

Brigitta Gerwen
Netherlands National Institute of Public Health

Gina C. Green
The Nature Conservancy

Loren B. Ford
Environmental Protection Agency

Herman Gibb
Environmental Protection Agency

Harry L. Greene II
Massachusetts Medical Society

Michael Fosberg
U.S. Department of Agriculture, Forest Service

John H. Gibbons
The White House

Nancy Greenspan
Environmental Network

Marvin Frazier
U.S. Department of Energy

Lewis E. Gilbert
Columbia University

Priscilla C. Grew
University of Nebraska, Lincoln

Kenneth Frederick
Resources for the Future

William H. Glaze
University of North Carolina

Francesca T. Grifo
Center for Biodiversity and Conservation Museum of Natural History

Clifford J. Gabriel
American Institute of Biological Sciences

Patricia Glick
Sierra Club

John T. Grupenhoff
National Association of Physicians for the Environment

Ashok Gadgil
Lawrence Berkeley National Laboratory

Lynn R. Goldman
Environmental Protection Agency

Duane J. Gubler
 Centers for Disease Control and Prevention

Steven K. Galson
Environmental Protection Agency

Bernard D. Goldstein
University of Medicine and Dentistry of New Jersey and Robert Wood Johnson Medical School

Audrey Haar
Coal and Synfuels Technology

Mary M. Gant
National Institute of Environmental Health Sciences

Robert Gordon
Institute of International Education

Craig Haas
Environmental Protection Agency

David Gardiner
Environmental Protection Agency

Anne Grambsch
Environmental Protection Agency

Demisse Habte
Center for Health and Population Research

Bronson Gardner
Global Climate Coalition

Erick Gray
Universal Healthwatch, Inc.
APPENDIX C

Andrew Haines
University College of Middlesex

Scott A. Hajost
International Union for Conservation of Nature and Natural Resources-U.S.

Davie Hales
Agency for International Development

J. Michael Hall
National Oceanic and Atmospheric Administration

Scott B. Halstead
U.S. Navy

Todd Halvorsen
National Institute of Environmental Health Sciences

Mark Hammond
British Embassy

Mark Handel
National Research Council

Deborah Hanfman
Office of Science and Technology Policy

William R. Harlan
National Institutes of Health

Lowell T. Harmison
Gallary House

James A. Harrell
Public Health Service

Robert Harris
National Aeronautics and Space Administration

Polly Harrison
Institute of Medicine

John K. Hartsock
University of Maryland

Peter I. Hartsock
National Institute on Drug Abuse

Joseph Huang
Scientist

Abraham Haspel
U.S. Department of Energy

Cheryl A. Hayden
American Academy of Dermatology

Raymond Hayes
Howard University College of Medicine

Karen Hein
Institute of Medicine

Merrill Heit
U.S. Department of Energy

Roger C. Herdman
Office of Technology Assessment, U.S. Congress

Beth Hileman
Chemical and Engineering News

Eric Holdsworth
Global Climate Coalition

Rachel M. Hopp
Hopp and Associates

William H. Hooke
National Oceanic and Atmospheric Administration

Sarah Horrigan
Office of Management and Budget

Thomas Hourigan
U.S. Agency for International Development

Sharon Hrynkow
National Institutes of Health

Drusilla Hufford
Environmental Protection Agency

Jeffrey A. Hunker
U.S. Department of Commerce

S. Taseer Hussain
Howard University

Craig Hyams
Naval Medical Research Institute

Noreen A. Hynes
Peace Corps

Donald J. Igo
U.S. Department of Transportation

Carrie Ingalls
Institute of Medicine
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

Richard J. Jackson
Centers for Disease Control and Prevention

Sally Kane
Council of Economic Advisers

Katharine Kripke
Stanford University

Paul F. Jamason
University of Delaware

Thomas R. Karl
National Climatic Data Center

Margaret Kripke
M.D. Anderson Cancer Center

Christer T. Jansen
University of Turku, Finland

Eileen Kennedy
Center for Nutrition Policy and Promotion

Jon Kusler
Association of Wetland Manager

Nyka Jasper
U.S. Agency for International Development

Charles Kennel
National Aeronautic and Space Administration

Sandra L. LaFevre
Reinsurance Association of America

Jim Jensen
U.S. Agency for International Development

John L. Kermond
National Oceanic and Atmospheric Association

Carol Lancaster
Agency for International Development

James Jessleman
Academy for Educational Development

Katherine Kirkland
Association of Occupational and Environmental Clinics

Stephen Landry
Agency for International Development

Stephen C. Joseph
U.S. Department of Defense

Thomas M. Kirlin
American Petroleum Institute

Hiram Larew
Agency for International Development

John R. Justus
Library of Congress

Heidi M. Klein
National Association of City and County Health Officials

Daniel Lashof
Natural Research Defense Council

Peter R. Jutro
Environmental Protection Agency

Edward Knipling
U.S. Department of Agriculture

Sharon LeDuc
Environmental Protection Agency

Laurence S. Kalkstein
University of Delaware

Andrei P. Kozlov
National Institutes of Health

Alexander Leaf
Harvard University Medical School

Carla Kappell
Agency for International Development

Tim R. Kramer
U.S. Department of Agriculture

Joel M. Levy
National Oceanic and Atmospheric Administration

John Kallos
Columbia Business School

Kalee Kreider
Ozone Action

Timothy P. Kanaley
Institute of Medicine
APPENDIX C

Elizabet Lindgren
Natural Resources
Management Institute
Stockholm University

Andrew Lewis
U.S. Department of State

Steven A. Lloyd
Johns Hopkins University

Ken Locklin
A.T. International

David C. Logan
Mobile Oil Corporation

Janice Longstreth
Waste Policy Institute

Ronald D. Lorton
U.S. Department of State,
Bureau of Oceans and
International Environmental
and Scientific Affairs

Thomas E. Lovejoy
Smithsonian Institution

Max Lum
National Institute for Occupational Safety and Health

William H. Lyerly, Jr.
Agency for International Development

Diana MacArthur
Dynamac Corporation

Michael C. MacCracken
U.S. Global Change Research Program

Thomas F. Malone
The Sigma Xi Scientific Research Society

Adam Markham
World Wildlife Federation

Joyce M. Martin
Environmental Protection Agency

W. J. Martens
University of Limberg,
Netherlands

DaCosta Mason
American Association of Retired Persons

Donald R. Mattison
University of Pittsburgh

Lisa May
Aurora Flight Sciences

Nancy Maynard
National Aeronautic and Space Administration

Michael McCally
Mt. Sinai Medical Center

Catherine E. McDermott
Grantmakers in Health

Alan McDonald
American Academy of Arts and Sciences

Al McGartland
Environmental Protection Agency

Anthony McMichael
Department of Epidemiology and Population

Gary McNeil
Council for Environmental Quality

L.H. Meredith
U.S. Global Change Research Program

Kathleen Michels
Agency for International Development

Alan Miller
Center for Global Change

Alvin J. Miller
National Oceanic and Atmospheric Association

Irving Mintzer
Center for Global Change

Curtis Moore
Curtis Moore Associates

Roscoe M. Moore, Jr.
Office of International Health

Jennifer Morgan
Climate Action Network

Wayne A. Morissey
Library of Congress

Robert T. Morris
Medical College of Wisconsin

Steven Morse
Rockefeller University
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

Harry Moses
U.S. Department of Energy

Susan Norwood
U.S. Department of Energy

Countess Alicia Paolozzi
National Association of Physicians for the Environment

Richard Moss
Intergovernmental Panel on Climate Change

Edward W. Novak
Army Environmental Policy Institute

John Passacantantino
Ozone Action

Jeryl L. Mumpower
Rockefeller College

Christine O’Brien
Environmental Protection Agency

Ari Patrinos
U.S. Department of Energy

Robert K. Musil
Physicians for Social Responsibility

James J. O’Brien
Florida State University

Jonathan A. Patz
Johns Hopkins School of Public Health

Charles E. Myers
National Science Foundation

Robert O’Keefe
Health Effects Institute

David Pelletier
Cornell University

Carolyn Needleman
Bryn Mawr College

Tara O’Toole
U.S. Department of Energy

Michele Pena
Climate Institute

Elvia E. Neibla
U.S. Department of Agriculture, Forest Service

Ellen Odgen
Agency for International Development

John S. Perry
National Academy of Sciences

Henry Newhouse
National Oceanic and Atmospheric Administration

David Oot
Agency for International Development

Jonathan Pershing
U.S. Department of State

Sheila A. Newton
U.S. Department of Health and Human Services

Michael Oppenheimer
Environmental Defense Fund

Anne C. Petersen
National Science Foundation

Claudia Nierenberg
National Oceanic and Atmospheric Administration

Brett Orlando
Office of Science and Technology Policy

Karen Peterson
National Institutes of Health

Frances P. Noonan
George Washington University School of Medicine

Joseph V. Osterman
Defense Research and Acquisition

Annie Petsonk
Environmental Defense Fund

Michael Northrop
Rockefeller Brothers Fund

Horst Otterstetter
Pan American Health Organization

Paul B. Phelps
Science Writer

Winfred M. Phillips
University of Florida
APPENDIX C

Rick Piltz
U.S. Global Change Research Program

Warren T. Piver
National Institute of Environmental Health Sciences

Rafe Pomerance
U.S. Department of State

Andrew Pope
Institute of Medicine

Jessica Popple
The World Bank

Glenn Prickett
Agency for International Development

Ronald H. Pulliam
National Biological Service

Ata Qureshi
Climate Institute

David P. Rall
Institute of Medicine

Jason Randall
Office of Science and Technology Policy

Stephen Rattien
National Research Council

Susan V. Raymond
New York Academy of Sciences

Leslie A. Real
Indiana University

Debbie Reed
U.S. Department of Agriculture, Office of the Secretary

Mickey Reed
Cannon House Office Building

Walter V. Reid
World Resources Institute

John Reilly
U.S. Department of Agriculture

David Rejeski
Office of Science and Technology Policy

Robert Repetto
World Resources Institute

Donald L. Rheem
E. Bruce Harrison Company

Richard Richels
Electric Power Research Institute

Courtney Riordan
Environmental Protection Agency

Michael Rodemeyer
U.S. House of Representatives

Julie Roque
Office of Science and Technology Policy

Norman J. Rosenberg
Battelle-Pacific Northwest Laboratories

Arthur Rosenfeld
U.S. Department of Energy

Herbert S. Rosenkranz
University of Pittsburgh

Joshua Rosenthal
Fogarty International Center

Reva Rubenstein
Environmental Protection Agency

Philip R. Russell
Johns Hopkins University

Alfred J. Saah
Johns Hopkins University

Marla Salmon
U.S. Department of Health and Human Services

Joel Saltz
University of Maryland

Haleh V. Samiei
Association for Women in Science

Kim Sanzo
Center for International Environmental Law

Joel D. Scheraga
Environmental Protection Agency

Ellen Schmidt
Greenpeace International
APPENDIX C

Fred Swader
U.S. Department of Agriculture

Lisa Swann
Environmental Defense Fund

William H. Swartz
Johns Hopkins University

Guanri Tan
University of Delaware

Paulo Fernando Teixeira
Pan American Health Organization

David Thomassen
U.S. Department of Energy

Margo Thorning
American Council for Capital Formation

David Tejadd-De-Rivero
Pan American Health Organization

Tim Tinker
Agency for Toxic Substances and Disease Registry

Steen Tinning
Fredericksberg Hospital

Maria Livia Tosato
Embassy of Italy

Dennis W. Trent
Food and Drug Administration, Center for Biologics Evaluation and Research

Robert J. Tuccillo
Office of Management and Budget

Waimar Tun
Center for Health and Population Research

David Unnewehr
American Insurance Association

Rosario Val
Pan-American Health Organization

Bob Vallario
U.S. Department of Energy

Ann Van Dusen
Agency for International Development

Basil Vareldzis
Agency for International Development

David Verbel
Biometrics Research Institute

Romana Vysatova
Domestic Policy Council

Robert B. Wainwright
Centers for Disease Control and Prevention

Jane Wales
Office of Science and Technology Policy

Tom Waltz
World Bank

Tracy M. Walton, Jr.
National Medical Association

Bud Ward
National Safety Council

Kathryn Washburn
U.S. Department of the Interior

Elizabeth Festa Watson
Chemical Manufacturers Association

Jeffrey Watson
Royal Society of Canada

Robert T. Watson
Office of Science and Technology Policy

Peyton Weary
University of Virginia Hospital

Randall Wentzel
U.S. Army

Carol Werner
Environmental and Energy Study Institute

William E. Westermeyer
National Research Council

William White
Environmental Protection Agency

Carol E. Whitman
U.S. Department of Agriculture
The reemergence in the Americas of infectious disease that had been controlled in the past, such as cholera, plague, and dengue, as well as the emergence of new infectious agents, such as Hanta and Guanarito viruses, E. coli:O:157, and cryptosporidia, have had a direct impact on health policy and the prevention of disease. Over the past several years, governmental and nongovernmental organizations have been working closely to modify health policy in order to place more emphasis on disease prevention. A major concern is the changing dynamics of disease transmission, which is influenced by migration, land use, and environmental degradation. Many lines of action are being perused to prevent infectious diseases. One requirement is flexible management within the health sector, which is close to the population and that can adapt to the changing patterns of disease. In addition, the wide impact of infectious diseases, such as AIDS, mandates a policy of increased intersectorial cooperation. There must be fluid communication and management of health problems among the sectors of health, environment, and agriculture, supported by competent research based on policy analysis. It is believed that policy reform, combined with broad public support gained by effective use of the mass media, will allow us to confront the health problems caused by climate change and environmental degradation.

J. BRIAN ATWOOD

Climate change is believed to cause a wide variety of deleterious effects, including desertification, change in agricultural patterns, and disease. The effect is both direct and indirect; the causes may be either natural or manmade. To the extent that climate change and its impacts are influenced by human activity, methods must be found to mitigate, adapt, or respond. The U.S. government is obligated to exercise leadership at home and abroad to ensure that responses are appropriate and timely.

Who is at risk? Every human being is vulnerable but the citizens of developing countries and regions face the most immediate dangers. In those nations, climatic change and the
necessary responses may be greatest, but available resources are most limited. Clearly, the preventive and responsive measures we employ to deal with climate change and its effects must involve every affected person and operate society-wide.

ERIC CHIVIAN, M.D.

Despite increasing evidence that climate change and ozone depletion may have disastrous consequences for human health, there is a little understanding, among policy-makers or the public, of the extent of the possible threat to human life. Physicians and public health professionals should be central figures in helping to promote this understanding, but they are by and large uniformed, as their education does not in general cover the relationship of global environmental change to human health. This presentation shall look at the role of the medical and public health communities in global environmental issues, such as climate change and ozone depletion, and shall address the growing need for their education and involvement.

RITA R. COLWELL, Ph.D

The origin and cyclical nature of cholera has intrigued scientists and public health officials, Robert Koch postulated environmental origins of cholera, but proof was not established until the tools of molecular biology and immunology were available. Work on environmental aspects of cholera during the past 20 years has revealed an association of Vibrio cholerae with zooplankton and marine and estuarine systems. Furthermore, the capability of V. cholerae to enter a dormant, that is, viable but nonculturable state, has offered an explanation for the inability to isolate it between epidemics. With fluorescent monoclonal antibody and gene probes, coupled with PCR amplification, it has been possible to detect and monitor V. cholerae in the environment. Furthermore, it has been shown that plankton blooms are correlated with increased incidence of V. cholerae. Studies carried out in Bangladesh provided the link between cholera outbreaks and plankton populations. Studies in progress, employing satellite imagery, will permit retrospective and prospective analyses of marine plankton and the cholera outbreak in Latin America during 1991-1992. The El Niño event appears to be closely associated with this cholera outbreak. Perturbations of the marine ecosystem may be the key to the erratic, cyclical nature of cholera epidemics.
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

STEPHEN C. JOSEPH, M.D., M.P.H.

Global surveillance is critical to national security and plays a vital role in the mission of the Department of Defense (DoD). Military forces can be deployed to virtually any area of the world on short notice; knowledge of emerging diseases and their potential impact on military operations greatly assist us in preparing countermeasures to avoid such threats, reduce their impact, and provide a rapid response to outbreaks. At present, three things need to be accomplished. First, DoD—using existing resources—will establish a surveillance and response capability in its overseas laboratories. Second, along with other U.S. government agencies, DoD will link international and host-nation training of field epidemiologists and researchers to existing DoD laboratories, creating regional networks. Third, U.S. government agencies in international partnerships need to establish a functional surveillance system on the Internet, of which PROMED is an excellent early prototype.

LAURENCE KALKSTEIN, Ph.D.

Direct weather impacts, such as heat waves, have a profound effect upon human health; during unusually hot conditions, deaths from all causes can rise over 50 percent above average levels. The elderly, poor, and very young appear disproportionately stressed. The impact of climate change could exacerbate the situation, as more extreme hot weather, and a greater frequency of oppressive air masses could cause the number of heat-related deaths to rise significantly. Although developing nations could suffer inordinately, it is quite obvious that extreme heat can cause havoc in American cities, as evidenced by the recent Chicago heat wave.

There are a number of unanswered or disputed questions involving the impact of climate change on mortality and morbidity. Will increasing winter warmth compensate somewhat for hotter summers by decreasing winter mortality? What will be the impact of increasing accessibility to air conditioning? Would many of the people who die of excess heat represent deaths that would have occurred shortly afterward, regardless of the weather? What is the acclimatization potential of the population if future temperatures rise? Can excessive deaths be mitigated with the development of watch/warning systems that provide the appropriate agencies with advance notice about impending dangerous weather conditions? Finally, how does the combination of hot weather and air pollution contribute to increasing human mortality, and what are the implications of a global warming on weather or pollution impacts?

MARGARET L. Krippke, Ph.D.

The amount of ultraviolet-B radiation in natural sunlight is dependent on the concentration of ozone in the atmosphere. A reduction in ozone will increase the amount of UV-B radiation reaching the earth's surface. Even a small increase in UV-B radiation is likely to
have important consequences for human health. Although a small amount of UV-B is necessary for production of vitamin D, excessive exposure causes squamous and basal cell skin cancers and contributes to the incidence of melanoma skin cancer. Ocular changes that lead to certain types of cataract are also a consequence of excessive exposure to UV-B radiation. UV-B radiation can also interfere with the body's immune system; this constitutes one of the most potentially dangerous effects of UV-B because of the possibility that immunity to infectious diseases may be compromised. Unfortunately, too little is known about the immunology consequences of UV-B radiation to make predictions about the impact of ozone depletion on human diseases.

ANTHONY J. McMICHAEL, M.D., Ph.D

Three things about this topic need emphasis: scale, context, and uncertainty. First, the anticipated health risks are not of a localized kind; they are of large scale, impinging at population level, and transcending national boundaries. Second, the risks are not just "more of the same" (more heatwaves, air pollution, etc). Rather, they would arise substantially via indirect pathways (by disturbance of natural systems, e.g. the ecology of infective agents, food production, and freshwater supplies). Third, forecasting them entails complexity, uncertainty, and a long time horizon. It is tempting to focus on the more familiar risks; increased deaths from heatwaves (especially in the very young, frail, and elderly), trauma from floods and storms, and—from stratospheric ozone depletion—more cases of skin cancer. However, in the long term, sustained changes in climate and in climate-dependent natural systems (particularly if also subjected to other environmental or ecological stresses) would result in: (a) altered patterns of infectious diseases, especially vector-borne diseases (malaria, dengue, etc); (b) some regional declines in food production; and (c) population displacement (rising seas, declining agriculture, food shortages, and weather disasters) and its many public health consequences. Combinations of mobile infections, malnutrition, and social stress—especially in displaced and migrating groups—could amplify the health impacts of climate change.

STEPHEN S. MORSE, Ph.D

"Emerging infectious diseases" are those that are newly appeared in the population or are rapidly increasing their incidence or geographic range (e.g., HIV/AIDS, cholera in South America and Africa, and Ebola in Africa, and Hantavirus pulmonary syndrome and Lyme disease in the United States). Most emerging infections are caused by pathogens that are present in the environment but are newly introduced into humans, often from another species as a result of changing ecological or environmental conditions that increase the chance of human contact, or are infections that were once geographically isolated but now have an opportunity to reach larger human populations. Climate may often be a factor. For example, with Hantavirus pulmonary syndrome in the southwestern United States in 1993, the virus probably was long present in local rodent populations, but unusual local weather conditions led to an exceptionally
large rodent population, with greater opportunities for people to come in contact with infected rodents (and, hence, with the virus); the weather anomaly itself may have been due to large-scale climatic effects. Human population movements, which can introduce remote infections to a large population, also are often a factor in the emergence of disease. The mass movement of workers from rural areas to cities, largely driven by economic conditions, can allow a previously isolated infection to reach larger numbers of people (this probably happened with HIV). Climate changes, by potentially decreasing productivity of local rural agriculture, could accelerate this migration. As a final example, epidemiologists have long documented a close relationship between climatic conditions and epidemics of childhood bacterial meningitis (which can also spread globally by travel) in parts of Africa where the disease naturally occurs.

JOEL SCHWARTZ, Ph.D

Increases in temperature in the Northern Hemisphere will result in increased demand for air conditioning, and hence increased emissions from electric power generation, which are the major source of fine particles in much of North America. Increased temperature will also lead to increased ozone formation. While the degree of pollution resulting from climate change is relatively unclear, the effects of particulate air pollution and ozone are becoming increasingly clear. Increased particulate air pollution is associated with increased risk of mortality, decreased life expectancy, and increased hospital admissions for heart and respiratory illness. Ozone is associated with increased hospital admissions for respiratory illness. The magnitude of these risks can now be quantified.

ROBERT E. SHOPE, M.D.

Some probable effects of global warming are (a) an increase in temperatures especially at night, (b) greater warming in polar than in tropical latitudes, (c) an increase in the frequency of tropical storms, (d) loss of forests, and (e) migration of humans and their domestic animals north in the Northern Hemisphere. These changes will affect the health of people and animals, especially through increased numbers and efficiency of arthropod and rodent vectors of disease.

Vector-borne diseases such as dengue, St. Louis encephalitis, Lyme disease, yellow fever, malaria, and Rift Valley fever, as well as bat rabies and Hantaviruses, will be affected. These diseases have in common an ecological component such that climate limits their distribution. Most occur in tropical areas and have either a mosquito, tick, or wild animal as part of their cycle. In many cases the infectious agent multiplies better in the reservoir at high ambient temperature, and often the vector depends on ample rainfall to thrive.

In the case of Lyme disease, climate influences both the infectious agent and the hosts that maintain the life-cycle of the vector. Dengue is a tropical virus disease transmitted by Aedes mosquitoes. This disease, with warming, appears to be moving northward to the U.S.-Mexican border.
The Earth's climate is predicted to change because human activities are altering the chemical composition of the atmosphere. The buildup of greenhouse gases—primarily carbon dioxide, methane, nitrous oxide and chlorofluorocarbons (CFs)—is changing the radiation balance of the planet. The basic heat-trapping property of these greenhouse gases is essentially undisputed. However, there is considerable scientific uncertainty about exactly how and when the Earth's climate will respond to enhanced greenhouse gases. The direct effects of climate change will include changes in temperature, precipitation, soil moisture, and sea level. Such changes could have adverse effects on ecological systems, human health, and socioeconomic sectors.

Accumulation of CFCs in the upper atmosphere has already led to world-wide depletion of the ozone layer and an ozone hole in springtime over Antarctica. Ozone filters out harmful ultraviolet radiation and keeps it from reaching the Earth's surface. Recent international agreements to phase out CFCs are beginning to show results; we now expect peak depletion to occur about the turn of the century, and the ozone layer should recover over the next several decades.

Ozone depletion and climate change are complex problems that will affect the economy and the quality of life for this and future generations. The lag time between emission of the gases and their impact is on the order of decades to centuries; so too is the time needed to reverse any effects. Thus, decisions in the nearterm will have long-term consequences.

The geologic record provides clear evidence of climatically induced changes in the quantity and quality of fresh-water on the globe. Major fluctuations in climate, in the last 10,000 years and before, have resulted in the creation and demise of lakes and river systems. Temperature perturbations of only a few degrees have also been accompanied by significant increases in the frequency of floods, and similar flood events are associated with El Niño oscillations in some regions. Increasing seasonal runoff at some locations in the United States may be associated with a warning trend during this century, but the record is not consistent. Climate change influences water quality directly and indirectly; directly through changes in water temperature and associated chemical and biochemical phenomena (e.g. dissolved oxygen, algae), and indirectly through alterations of vegetation and the erosional process on land. Sediment yield and accompanying organic and inorganic constituents may alter the quality of ambient flow and the characteristics of the habitat. Human impacts acting on both landscape and climate are often inseparable from the variable behavior of natural processes.
CONFERENCE ON HUMAN HEALTH AND GLOBAL CLIMATE CHANGE

DAVID OOT, Ph.D.

More than 800 million people, or 15 percent of the world's total population, are food insecure. They lack the economic and physical access to adequate food to meet their dietary needs and to lead healthy and productive lives. Inadequate food consumption is a primary cause of malnutrition along with infection and poor health. For 1993, the UN reports that over 34 percent of all preschool children in developing countries are malnourished. From recent research we know that protein energy malnutrition (PEM), even in its mild-to-moderate forms, contributes to 56 percent of child deaths in 53 developing countries. The terrible burden of PEM on child survival is even greater when the toll of hidden hunger due to micronutrient deficiencies—especially of Vitamin A, which leads to blindness; of iron, causing anemia; and of iodine deficiency, which leads to impaired mental performance.

Projections through 2020 suggest an increasing number of malnourished people, especially in South Asia. Estimates for the numbers of additional people at risk of hunger range from a conservative 100 million to around 360 million by the year 2060. Cereal prices were estimated to increase dramatically from 25 to 125 percent, with profound implications for the net purchasers of food, the poor. The differential and negative impact in the developing world has implications for the range and types of actions that need to be taken to address the health and nutrition consequences.

—Early warning and famine mitigation;
—Institutional strengthening in developing countries to predict and respond to environmental and related emergencies;
—Development assistance to vulnerable countries for promoting and refining adaptive measures to improve food production and income generation;
—Increased emphasis on basic health and nutrition services including family planning;
—Focused and coherent approaches to effective utilization of US food resources targeted to the vulnerable; and
—Global action and leadership to advance scientific knowledge and its application.

ADDITIONAL ABSTRACT OF CONFERENCE PRESENTATIONS

J. Michael Hall, Ph.D., and Paul Epstein, M.D., M.P.H.

During the past 15 years scientists have made dramatic progress in predicting the El Niño-Southern Oscillation (ENSO) phenomenon and related seasonal to interannual climate variability in many critical areas of the globe, particularly in the tropics and subtropics, where the ENSO signal and impacts are strongest. Current ENSO-forecasting capabilities can predict climate trends for many affected regions of the world with a lead time of up to 1 year. Accurate and timely forecasts allow policymakers to mitigate the potentially devastating economic
impacts of ENSO by adapting planning processes to short-term climate fluctuations. The ability to anticipate an upcoming anomalous wet or dry period is already being used by decisionmakers in several tropical countries. Past successes in climate forecasting and impacts modeling in the agriculture and hydrology sectors have set the stage for a new line of investigation and application in the health sector.

El Niño events—producing warmer and wetter years periodically in regions around the world—may be associated with upsurges of cholera and other water-borne diseases, new appearances of harmful algal blooms, disease events across taxa in the marine environment, outbreaks of malaria and dengue fever, and the abundance of rodents as pests and pathogen vectors. Multidisciplinary application centers integrating climate forecasting with ecological and social information can provide early warning for multiple sectors including hydroelectric energy, water resources management, and agriculture ("Famine Early Warning Systems"). With additional investigation, the potential exists to extend these application efforts to human health ("Health Early Warning Systems"). While climate circumscribes the distribution of many disease vectors, extreme events may determine the timing of outbreaks.

In considering El Niño as an analogue for long-term climate change, lessons can be learned from effects on extreme events: changes in droughts, floods, and minimum and maximum temperatures. Study of the linkage between ENSO and health is beginning to reveal important threshold effects and provide tools for predicting the impacts of global climate change that can be tested and perfected on verifiable timescales. The significance of ENSO may be greater still, as some scientists believe that global climate change may be experienced in large part through changes in climatic extremes and climate variability. For some diseases, changes in climatic extremes may be even more important than changes in average temperature and average precipitation.
MEMORANDUM FOR Administrator, Defense Technical Information Center, ATTN: DTIC-OCP, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for Grant Number DAMD17-95-1-5063. Request the limited distribution statement for Accession Document Number ADB209063 be changed to "Approved for public release; distribution unlimited." This report should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Judy Pawlus at DSN 343-7322.

FOR THE COMMANDER:

[Signature]

GARY R. GILBERT
Colonel, MS
Deputy Chief of Staff for Information Management