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SOME EFFECTS OF COMPRESSIBILITY ON THE FLOW THROUGH FANS AND TURBINES 
By W. PEEL and H. T. EPSTEIN 

SUMMARY 

The laws of conservation of mass, momentum, and energy are 
applied to the compressible flow through a two-dimensional 
cascade of airfoils. A fundamental relation between the ulti- 
mate upstream and downstream flow angles, the inlet Mach 
number, and the pressure ratio across the cascade is derived. 
Comparison with the corresponding relation for incompressible 
flow shows large differences. 

The fundamental relation reveals two ranges of flow angles and 
inlet Mach numbers, for which no ideal pressure ratio exists. 
One of these nonideal operating ranges is analogous to a similar 
type in incompressible flow. The other is characteristic only of 
compressible flow. 

The effect of variable axial-flow area is treated. Some impli- 
cations of the basic conservation laws in the case of nonideal 
flow through cascades are discussed. 

INTRODUCTION 

In the endeavor to obtain high pressure rise from axial- 
flow compressors, the operating speeds have been increased 
in recent years to compressibility speeds. The precise extent 
of validity at these speeds of the incompressible-flow methods 
of design of axial-flow compressor blading appears not to 
have been considered heretofore. 

In this paper, which describes results of a theoretical 
investigation made at the NACA Cleveland laboratory during 
1944 and 1945, the extent of validity is determined in the 
isentropic case by applying the compressible-flow laws to the 
ultimate upstream and downstream flow conditions in a 
two-dimensional cascade of airfoils. The resulting equations 
relating the pressure ratio across the cascade, the flow angles, 
and the inlet Mach number are compared with the corres- 
ponding incompressible-flow relations. 

The results apply to both fan-type and turbine-type cas- 
cades. Although compressible-flow relations are generally 
used in the design of turbine cascades and, less generally, 
in the design of fan cascades, it is thought that the compact 
form of the results presented herein will render them more 
easily applicable than the other methods now in use. 

SYMBOLS 

The following symbols are used in this report: 
A       flow area perpendicular to axial direction 
cf        specific heat at constant pressure 
M      Mach number of flow 

static pressure 
gas constant 
entropy 
cascade spacing 
temperature 
velocity in »-direction 
velocity in y-direction 
resultant velocity; also mean velocity 
»-direction (tangential) force per blade per unit span 
y-direction (normal) force per blade per unit span 
ratio of specific heats 
angle of flow measured from axial direction 
density 

P 
S 
S 
s 
t 
u 
V 

w 
X 
Y 
7 
\ 
P 
Subscripts: 
1 upstream of cascade 
2 downstream of cascade 
s         stagnation 

VELOCITY-DIAGRAM RELATIONS FOR COMPRESSIBLE 
CASCADE FLOW 

GOVERNING EQUATIONS 

Consider the ultimate upstream and downstream compress- 
ible-flow conditions, or the velocity diagram, for the cascade 
of airfoils representing a fan or a turbine-blade arrangement 
(fig. 1).   The conservation laws applied between the up- 

FIOURE 1.—Two-dlmanslonsl cascade. 
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stream section and the downstream section where the flow 
is assumed to be uniform and to pass through equal areas are: 

Continuity 

PlVt = PiV2 (1) 
Energy- 

Momentum 
(2) 

(3) Normal, y-direction: — =pi—Pi+PiV*— p%vt2 

s 

Tangential, ar-direction: —=pi»i(«i—u?)  • s 

In addition, there is the gas law 

p=PRt 

and the isentropic relation 

Pi    \Pi/ 

(The assumption of the isentropic exponent y prevents the 
direct application of the results to fan or turbine blading. It 
appears, however, that use of a suitable polytropic exponent 
n?^7 allows direct application in many cases.) 

Substitution of equations (1), (5), and (6) in equation (2) 
yields the fundamental relation between the flow angles Xi and 
\t, the pressure ratio ptlpi, and the inlet Mach number Mi: 

(4) 

(5) 

(6) 

cos X. 
cos X2 w (7-DM* ^    -1 (7) 

For the case of incompressible flow, the expression cor- 
responding to equation (7) may be derived from the equations 
corresponding to (1) and (2); namely 

Continuity (incompressible): Vi=vt 

Bernoulli (incompressible): #i + o PiWil=Pr\"n PW*' 

The result is 

——=  /l      r   (Pi    l) cos Xa   "V      TMJ
2
 VJ»!      / 

in which the substitution 

M,2 

pi 

(8) 

(9) 

(10) 

(ID 

has been made for comparison with the compressible-flow 
relation (equation (7)). Equation (10) may also be derived 
as the limiting form of equation (7) when the specific-heat 
ratio 7 approaches infinity. (The incompressible fluid may 
be regarded as the limiting form of a_compressible perfect 

fluid in which the velocity of sound -v T approaches infinity. 

Inasmuch as p and p remain finite, y must become infinite.) 

GRAPHICAL REPRESENTATION OF EQUATIONS 

For a given inlet Mach number ML and pressure ratio 
Ptlpi, equation (7) shows that the flow angles Xi and X2 are 
not specified but only their cosine ratio. A plot of the cosine 
ratio cos Xt/cos X» against the flow deflection X2—Xj, with 
Xi or X2 as a parameter (fig. 2), illustrates the possible indi- 
vidual flow angles and deflections for a given cosine ratio. 
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FIGUKE 3.—Relation of compressible Sow angles to pt/pi for various Inlet Mach numbers. 
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The flow angles Xi and Xj may be visualized as the stagger 
angles of the tangents to the camber line of the cascade 
blading at the leading edge and the trailing edge, respectively. 
For low-speed flow, at least, and for shock-free entry, this 
correspondence is approximately valid for cascade solidities 
of the order of unity (solidity=blade chord/blade spacing) 
and increases in validity with the solidity. 

The contours representing equation (7) are shown in figures 
3 and 4. Several of the contours of figures 3 and 4 are com- 
pared with the corresponding contours in the incompressible 
case (equation (10)) in figures 4 and 5. 
COMPARISON   OF   COMPRESSIBLE   AND   INCOMPRESSIBLE   EQUATIONS 

The comparison between the compressible and incompres- 
sible equations (figs. 4 and 5) reveals considerable differences 
except in the pressure-rise range (p2/Pi)>l at low inlet Mach 
number (ilft<0.4). Outside this range consider, for exam- 
ple, the determination of the blade camber of a high-solidity 
pressure-rise cascade designed to operate at an inlet-flow 
angle of 45°, an inlet Mach number of 0.80, and a pressure 
ratio of 1.2. (Camber is defined as the difference in angle 
between leading-edge and trailing-edge camber-line tangents. 
Camber therefore approximates Xt—Xj for high-solidity 
cascades.) By the incompressible contour ili"i=0.8 in figure 
5 and by use of figure 2, the camber should be 26.9°. Accord- 
ing to the compressible curve, on the other hand, the camber 
should be 9.4°, or 65 percent smaller. If the inlet Mach 
number is increased to unity, the results are: 
Incompressible camber, degrees     1L 8 
Compressible camber, degrees       L 5 

As an example of the differences between compressible and 

incompressible flow in the case of a pressure drop through the 
cascade, assume Xi=0°, Mi=0.80, and Pi(pi=0.7. Then 
from figures 2 and 5 
Incompressible-flow deflection, degrees     39. 3 
Compressible-flow deflection, degrees     13. 1 

Thus, the effect of compressibility in the normal operating 
range of moderate pressure ratios is to lower substantially 
the required flow deflection for a given pressure ratio. 

On the other hand, for given flow angles, that is, given 
cos Xi/cos Xa, figure 4 shows that for normal compressor 
operation, (cosXi/cosXaXland (ps/i?i)>l, the compressible 
pressure ratio increases with the inlet Mach number Mi 
at a greater rate than the incompressible pressure ratio. 
For example, if cos Xi/cos X2=0.8 in normal compressor 
operation and il/i=0.8, the incompressible pressure ratio is 
1.16 and the compressible pressure ratio is 1.27. 

FURTHER DISCUSSION OF THE COMPRESSIBLE CASE 

The surface representing the fundamental equation (7) is 
the locus of all possible isentropic -(loss-free) operating 
conditions of the cascade and no others. Thecontourprojec- 
tions of this surface show that certain ranges of operating^ 
conditions are unattainable in isentropic flow; thus, in figure 
5, there is no inlet Mach number Mr to correspond to cosine 
ratios cos Xjcos Xj and pressure ratios ps/Pi in the plane 
regions AOB and COD. 

The reason for such nonideal regions can be seen by analogy 
with the incompressible case. The incompressible Afi con- 
tours entirely exclude the first and the third quadrants, 
relative    to    point    O    as    origin.    Consider    the    case 
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(cos Xi/cos M> 1 • Inasmuch as the exitangle Xa is greater than 
the entrance angle Xi, the exit tangential-velocity component 
is greater than the entrance tangential-velocity component. 
Because the axial velocity is constant, a pressure drop 
(Pi/Pi)^! is required in accordance with Bernoulli's 
theorem, and the operation point for (cos Xi/cos XO^l cannot 
lie in the first quadrant but must lie in the second quadrant. 
Similarly, operating points for (cos Xi/cos Xa)>l must He 
in the fourth quadrant. The partial overlapping of the 
compressible-flow curves into the first and third quadrants 
is due to the influence of compressibility on the axial com- 
ponent of velocity. 

Another type of nonideal region is shown in figure 4. For 
fixed (cos Xi/cos Xa)>l, an isentropically impossible range 
of inlet Mach numbers exists, which increases with cos Xi/cos Xs. 
At cos Xi/cos X2=l.l, for example, the excluded 
Mi range is 0.695<Mi<1.37. This type of nonideal range 
is not present in the incompressible case shown as tne 
dashed curves of figure 4. The lower limiting inlet Mach 
numbers of this range correspond to maximum flow through 
the cascade, for, because cos Xi/cos Xa is constant along each 
curve in figure 4, the maxima of Mi also correspond to the 
maxima of Mx (cos Xi/cos Xa). For a given high-solidity 
cascade, Xj varies only slightly as the inlet conditions are 
varied; therefore, Jl/i cos X1? which is proportional to the 
flow through the cascade, is likewise a maximum at these 
points. This particular limiting Mach number is indepen- 
dent of the blade-shape details and, hence, of the ratio of 
minimum flow area to inlet area. 

If a cascade is designed to operate in an isentropically 
impossible region, presumably much greater losses, caused 
by flow separation and shock waves, will occur than would 
be encountered at an ideally permissible operating point. 
Such nonideal designs appear to be not at all unusual on the 
basis of incompressible-flow theory. 

Of considerable interest is the fact that, at the maxima 
and the minima of all cos Xi/cos Xj contours, the exit Mach 
number M2 is unity, which may be shown as follows: The 
maxima and the minima of the cos Xi/cos Xa contours in figure 
4 correspond to the maxima of the Mi contours in figure 3. 
The loci of these maxima are indicated in both figures. The 
condition for maximum cos Xi/cos X» along an Mi contour is 
obtained by differentiation of equation (7) as 

•»+1 \f cosXi/gsYlT" 
1 cos X2    XPi) 

The downstream Mach number M2 

(12) 

M,= 
Pi 

IT Pi 

(13) 

can now be written, with the aid of equations (1), (2), (5), 
and (6), as 

cos Xi Mi 
•*r COS X3 
M*= 3*- 

a Pi\2y 
Pi/ 

(14) 

Substitution of equation (12) in equation (14) yields the 
desired result, namely, M2=l. In the limiting case Mi=0, 
equations (12) and (7) show that 

/cos XA       = ^ 
\COS \2/Mi-0 

This limiting pressure ratio is the same as the critical 
pressure ratio for local Mach number of unity in one- 
dimensional compressible flow. 

Points to the right of the maximum on an Mt contour 
(fig. 3) correspond to subsonic exit conditions M2<1; 
whereas points to the left of the maximum correspond to 
supersonic exit conditions M2> 1. In figure 4 the subsonic 
exit region is to the right of the locus of maxima and minima 
and the supersonic exit region to the left. The proof is as 
follows: From general principles, the ideal continuous flow 
through a cascade is reversible; that is, equation (7) remains 
valid if the subscripts 1 and 2 are interchanged. This 
validity may also be shown directly by substitution of 
equation (14) in equation (7) to eliminate Mi. Consequently, 
the exit Mach number M2 can be determined from the 
curves that represent equation (7); thus, in figure 3, the exit 
Mach number M2 for the operating conditions Mi, p2/pi, and 
cos Xi/cos Xj is obtained by interpolation from the M contours 
at the point for which the coordinates are the reciprocal 
quantities pi!p2 and cos Xa/cos Xi. This reciprocal relation, 
applied to the loci of the maximum points on the Ml contours 
(fig. 3), yields the MI=1 contour (where now Mi=M1), by 
the proof previously given; therefore, the reciprocal relation 
applied to a point to the right of a maximum yields a point 
in the subsonic region relative to the M\=l contour and 
vice versa. 

VARIABLE AXIAL-FLOW AREA 

In many multistage compressors and turbines, the axial- 
flow area is continuously varied in order to maintain the 
axial-flow velocity constant. The effect of a change in 
axial-flow area through a cascade can be very simply taken 
into account in the preceding analysis. The equation of 
continuity (equation (1)) is now 

or 
PiViAi=paVüA2 

PiV1a=p2v2 

(15) 

(16) 

where At and A2 are the axial-flow areas upstream and down- 
stream, respectively, of the cascade, and 

4l 
"A2 

(17) 

The only change required in the fundamental equation (7) 
is that the flow-angle parameter cos Xi/ cos Xs be replaced by 
a (cos X^cos X2). 
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ENERGY RELATIONS FOR CASCADES 

If the isentropic relation (equation (6)) is dropped, equa- 
tions (1) to (5) relate ultimate conditions on each side of a 
cascade within which losses may occur. The equations may 
also be regarded as relating conditions across two sides of a 
line of discontinuity separating two regions of uniform flow, 
with the force densities X/s, Yfs acting on the fluid along the 
discontinuity. The oblique shock wave in supersonic flow 
represents the special case in which X/s=Y/s=0. 

Without the isentropic relation there is, of course, no longer 
a unique dependence of the flow-angle ratio cos Xt/cos X2 

on the pressure ratio pi/pi and the inlet Mach number Mi. 
(See equation (7).) Equations (1) to (5), however, yield 
information concerning the relation between the pressure 
ratios that might actually occur, the forces on the blade, 
and the losses in the cascade. ••• Suppose, for example, that 
a high-solidity compressor cascade were designed for a certain 
ideal operating point. ' The ideal forces on the blades could 
be calculated from equations (3) and (4). In the actual 
flow the pressure ratio would be less than the ideal value. 
The flow angles, however, because of the high solidity, could 
be expected to remain nearly unaltered. On the assumption 
of an ideal flow-angle ratio and a smaller than ideal pressure 
ratio, the actual blade forces could be computed by equa- 
tions (3) and (4). The vector difference between the actual 
resultant force and the ideal resultant force is a difference 
force caused by friction and shock-wave losses. The corre- 
sponding stagnation-pressure loss or, equivalently, the 
entropy increase across the cascade, can also be calculated. 

An example of the type of computation just outlined fol- 
lows: Among other tilings, it Will be shown that the difference 
force is neither at right angles to the ideal resultant force nor 
in the direction of the mean relative flow. Although, as 
will be shown, the incompressible equations predict that the 
difference force is always in the axial direction, the compressi- 
ble equations show that this is far from being the case. 

The losses in cascade flow between an ultimate upstream 
and an ultimate downstream uniform-flow condition may be 
expressed in terms of the actual static-pressure ratio pt/pi 

and the density ratio pa/pi as follows: In the downstream 
condition, the ratio of stagnation pressure #,,2 to static pres- 
sure jpt is isentropically related to the corresponding tempera- 
ture ratio as 

-l 

\P2/ U 

Similarly, in the upstream condition, 

( 
P,,l\ y _!« 
Pi) k 

If the preceding two equations are^divided, remembering 
that £,,i=f,,s because no energy is supplied from the outside, 
and if pressure and density are substituted for temperature 
by the gas law, tbere results 

2*?_ ®T (18) 

In isentropic flow, equation (18) reduces, of course, to 
p,.i=p,,\. In an actual flow p,fi is less than p,,\ corres- 
ponding to an entropy increase St—Si, given ;by the well- 
known formula 

Si-S1=Rlog.pf 
Pi* 

(19) 

Substituting the nonnal velocity ratio vtjVi into equation (18) 
yields, by the continuity equation (1), 

P;i_ 
2>..i or©: 7-1 

(20) 

The normal velocity ratio p»/t>i can bo expressed in terms of 
the static-pressure ratio p%\p\y the inlet Mach number Mi, 
and the cosine ratio cos Xt/cos X2 by equations (1), (2), and 
(5).   The result is 

fl2- 1       '-    P2 

Lv 
1'+2(7-1)M1

2^4T1L= 
w COS2Xa 

(7-1) il/,s 

also 

Ui      V2 Vi tli 

tan X2 Vi 
tan Xi Vi (22) 

The expressions (3) and (4) for the blade forces may be 
written in nondimensional form as 

X^-g-^WX^-l) (23) 

X 
sp 

As examples of the use of the preceding equations, losses 
aDd blade forces for a pressure-rise and a pressure-drop cas- 
cade have been computed and the results are listed in table I. 
For both cases an inlet Mach number of unity was assumed 
with inflow and outflow angles of 55° and 45°, respectively. 
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These flow angles, though, possible for pressure rise, are im- 
possible for pressure drop by incompressible-flow theory 
(under the condition of constant axial-flow area assumed 
here). The ideal quantities were first calculated and then 
for the loss case, new pressure ratios were assumed, which 
yielded the stagnation-pressure losses shown. It will be 
noted that the static-pressure ratio of 0.5, which yields a 
stagnation-pressure ratio of 0.942 in the pressure-drop case, 
is greater than the ideal static-pressure ratio. In incom- 
pressible flow it would have to be lower. 

<-~y 

(a) Pressure rise. 
(b) Pressure drop. 

FIGUEE 6.—Typical cascade forces and velocltlre. 

The cascade-flow angles and forces are illustrated in figure 
6. The resultant force I, the difference force d, and the mean 
velocity w bear no simple directional relation to each other. 
Because, in incompressible flow (under the conditions of 

constant axial-flow area assumed here), ü2/CI=1 and, in high- 
solidity cascades, U^/TM. remains unchanged from the ideal case 
by equation (22), it is evident from equations (3) and (4) 
that only the static pressure can change in going from the 
ideal to the loss case. The incompressible difference force 
must therefore be in the axial direction. This conclusion 
for the incompressible case was reached in reference 1 by 
another method. The losses in high-speed cascade flow must 
evidently  be  considerably  influenced  by  compressibility 
effects. 

CONCLUSIONS 

1. For inlet Mach numbers less than 0.4 in the normal 
operating range of an axial-flow pressure-rise stage, the 
relations for compressible and incompressible flow yield 
very nearly the same results. For larger inlet Mach numbers 
the discrepancies become considerable. 

2. The compressible equations show the existence of 
nonideal operating ranges, which are not indicated by the 
incompressible equations. Conversely, certain operating 
ranges, which are excluded by the incompressible equations, 
are possible according to the compressible equations. 

3. In certain ranges of the flow angles, two possible pres- 
sure ratios are predicted for given inlet Mach numbers and 
flow angles. 

ALRCKAFT ENGINE RESEARCH LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

CLEVELAND, OHIO, August 1, 1945. 
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TABLE I-LOSSES AND BLADE FORCES FOR CASCADES IN 
COMPRESSIBLE FLOW 

IXl=65°; X. =450;M1=1] 

Pressure rise Pressure drop 

Ideal With 
losses Ideal With 

losses 

L522 
1 
0.315 

-0.103 

00 

»1.4 
a 860 
0.290 

-a 307 

JL17 

0.«1 
1 

-0.1« 
0.19» 

m 

»0.5 
0.942 

-0.111 
0.192 

7.68 

Stagnation pressure ratio, p.,tlp,.i-  
Tangential forcr, X/i pi  
Normal force, YJtpi  
Batlo of resultant force to difference 

force   

• Assumed valnes. 
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is derived.   Comparison with the corresponding relation for incompressible flow shows large 
differences.   The fundamental relation reveals two ranges of flow angles and inlet Mach numbers, 
for which no ideal pressure ratio exists.  One of these nonideai operating ranges is analogous 
to a similar type in compressible flow.  The other Is characteristic onW to compressible flow. 
The effect of variable axial-flow area is treated.   Some implications of the basic conservation 
laws in the case of nonideal flow through cascades are discussed. 
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