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Abstract

This Lecture Series will present and discuss the scientific problems of modem mathematical simulation of gas turbine engines
and their components.

Some peculiarities of complex multicomponent and multidisciplinary models for whole flow passages of bypass gas turbine
engines, core, multistage compressors and turbines, and other engine components will be studied.

Solutions of steady and unsteady problems are given using high efficiency monotone numerical methods and the theoretical
bases of these methods are presented.

Many practical results of aerodynamic and thermostress simulations for engine components are shown. These results are
compared widely with experimental data for accurate verification of developing computational codes.

This Lecture Series, endorsed by the Propulsion and Energetics Panel of AGARD, has been implemented by the Technology
Cooperation Programme.

Abrégé

Ce cycle de conférences présente et expose les problemes scientifiques posés par les modeles mathématiques des
turbomoteurs et de leurs organes.

La conférence étudiera certaines particularités des modeles complexes multicomposants et multidisciplinaires de toute la
partie de I’écoulement des moteurs 2 turbine, des modéles de compresseur 4 plusieurs étages, de turbines a plusieurs étages et
d’autres composants.

Les solutions des problémes stationnaires et instationnaires, qui sont obtenues 4 P’aide des méthodes numériques
monotoniques et les bases théoriques de ses méthodes sont présentées.

Bon nombre de résultats de simulations aérodynamiques et de contraintes thermiques des moteurs et des composants sont
présentés. Ces résultats sont comparés avec des données expérimentales pour la vérification des codes numériques
développés.

Ce cycle de conférences est p;ésenté dans le cadre du Programme de Coopération Technologique (NACC/PfP), sous I’égide
du Panel de Propulsion et d’Energétique de ' AGARD.
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Introduction and Overview

Prof. M. Ja. Ivanov,
CIAM (Central Institute of Aviation Motors)
2, Aviamotornaya St.,
Moscow, Russia, 111250

Introduction

Gas turbine engines development is directed at
thermodynamic cycle parameters growth and the
improvement of efficiency, capability and economy. For
example, in advanced aircraft gas turbine engines in
comparison with modern engines the specific weight
will be 1.5+2 times less and the efficiency will be 30+40
% better. The gas temperature in combustion chambers
of advanced engines must increase by 300 to 400
degrees. The design of these engines demands detail
understanding of physical processes in all components
and whole engine. Key fundamental enabling
technologies include advances in mathematical
modeling and computational tools. The long time and
high cost of gas turbine engines design may be
decreased essentially by wide application of numerical
gas dynamics, heat transfer, strength and burning
processes simulations.

Until recently, the use of aumerical simulation in
gas turbine technology development was limited mainly
by analysis and recommendations for improving the
characteristics of individual engine  components.
Examples include isolated blade rows or stages of fans,
compressors and turbine, intakes, nozzles and others.
The current level of development and practical
application of gas turbine components simulation is
presented, for example, in the observed papers [1-5].
Based on this level of achievement, the next phase of
mathematical modeling will certainly include simulation
of whole gas turbine engines or large multicomponent
parts (as example, model of aircraft turbofan total flow
passages [6]).

The next development phase will also involve
solving closely related multidisciplinary problems for
individual components of gas turbine engines. In such
problems simulation will include simultaneously
acrodynamics, heat-transfer, thermal-stressed,
combustion processes, and so forth. Here the typical
problem may be the thermal-stressed state of a high
temperature turbine rotor, where the external viscous
flow near blades, the internal cooling air flow into
blades, thermal and stressed state of blades are solved
simultaneously [7].

An examination of the current state of fluid
dynamics computational methods may reveal trends for

the immediate future in this field. The present move
seems to be toward a transition to monotone
conservative high order accuracy methods for
integration of Euler and Navier-Stokes equations, which
describe ideal and viscous gas flows. As a typical
example, we can indicate AGARD Lecture Series
No.140 [8], which contains 3D computational
techniques applied to internal flows in propulsion
systems up to the middle 1980s. There were widely used
numerical schemes of non high order of accuracy (the
first and the second orders). The second order accuracy
methods give oscillated solutions in regions of great
parameter gradients. In present the Lecture Series only
monotone high order accuracy methods are a lied to
solutions of internal flow problems in propulsion
systems.

Foundation for the theory of the monotone
difference schemes were laid down by the Russian
scientist S. K. Godunov in the late 1950s and the first
stage of their development was presented in monograph
[9]. Lately the term "TVD schemes" (Total Variation
Diminition schemes) has been used to designate the
monotone difference schemes. In the next lecture we
present a more strict class of following methods, which
satisfy additional conditions [5]. Highly accurate
conservative difference methods now form the basis for
constructing many effective algorithms and codes that
solve practical internal and external aerodynamic
problems.

In order to determine the advantages and
shortcomings of the computational algorithms and codes
being developed, it is necessary to test their
serviceability and make careful comparisons with
experimental data using standard model problems. Such
verification must accompany any publication of
numerical results and codes. Below we'll present this
verification for all developing computational techniques.

Another factor affecting numerical simulation is the
progress and widespread use of high efficient
supercomputers.  Until  recently  computational
techniques development was constructed mainly by the
availability of the efficient computational tools that, as a
rule, are concentrated in large scientific research centers
that grant only limited access. But the growing
availability of highly efficient minicomputers, as well as
personal computers and work stations with the latest

Paper presented at an AGARD Lecture Series on
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personal computers and work stations with the latest
RISC processors, allows us to consider new possibilities
in the development and application of numerical
simulation without the need for resorting to
supercomputers centers.

The achieved progress of numerical simulation and

computer development allows to consider the
mathematical modeling of gas turbine engines from the
new positions. The gas turbine engine simulation gets
on initial stage to obtain the large information for
engine performances on steady and transient regimes.
The steady regimes simulation includes
thermodynamics cycle calculations, the equilibrium
running line prediction, the flow passage design and the
definition of thrust-ecconomic, mass and cost
characteristics. The transient regimes simulation
includes the definition of times and performances of
unsteady process (start, acceleration, throw off and oth.)
by given regulation laws. The depth and completeness of
gas turbine engine components presentation and
interaction define the level of corresponded
mathematical model. Conditionally the followed gas
turbine simulation levels (table 1) can be defined.
The zero level corresponds to description of engine
parameters and performances with help of tables, formal
approximations and statistic dependencies. This level
presents interest only for problems, where gas turbine
engines have been included as one of subsystem for
more complex system (for example, for performance
investigation of whole aircraft).

The first level corresponds to 1D description of
connections between engine components and engine
geometry with help of integral balances of mass flows,
powers, etc. Here it's worth to differ steady and unsteady
models. Steady models of the first level simulation were
presented in monographs [10,11] and papers [12,13].
Simple unsteady models of the first level were described
also in papers [12,13]. More accurate unsteady models
based on Euler equations with turbomachines
presentations as active and passive whirl discs were
considered in papers [14-16].

The second level corresponds to 2D description of
the connections between engine components and engine
flow passage. A few models must be defined in more

details. One of them is the flow passage model on S,
surface (as the traditional turbomachinery definition).
This model bases on unsteady averaged along circular
direction 2D Euler equations includes real effects of
viscous losses, leakages and a selection of blowing out
of cooling air as source terms in the right parts of

equations. Another is the flow passage model on 31

circular surface in various thickness layer, base also
on unsteady averaged along radial direction 2D Euler

equations with the same real effects. The second
level of gas turbine engine simulation included
the similar models on S, and S, surfaces,

The levels of gas turbine engine mathematical models

3D - Navier-Stokes with

averaging in axial clearances

0 level

//%////; s
II level
III level

3D - Euler without any
averaging

3D - Navier-Stokes
without any averaging

Table 1




averaged along circular and radial direction.

The third level corresponds to 3D description of the
connection between engine components and engine flow
passage. It bases on the integration of Euler and Navier-
Stokes equations. Here there are differed the just more
simple models with circular direction averaging on one
surface in the middle of axial clearances between
neighborhood rows and the most complex full 3D
unsteady models.

Detail descriptions of the second and third levels
models are presented in this lecture series. It's worth to
emphasize, that up to present time the prediction of
performances designed gas turbine engines based on the
zero or the first levels models and were not very
accurate. Therefore some number of experiment engines
must be produced for investigating performances before
certification and production (this number can be up to
10 and more). Wide using of high levels mathematical
model on initial stages of new engine design allows
sufficiently to reduce the time and cost of new engine
development and, in particular, to reduce the number of
experiment engines up to a few (two or three). The high
level models must accompany the all life of new engines
(included design, certification, serious production, any
modification and exploitation).

Central Institute of Aviation Motors (CIAM) has
valuable experience and high level scientific staff for
solving complex aerodynamics, heat transfer and
strength problems for any components of high
temperature aircraft gas turbine engines. Wide use of
modern computational technologies allows us to get
high efficiency of engine components and whole engine.

Overview

The lecture series illustrates the numerical
simulation peculiarities, mentioned above in this
introduction. The series may be divided conditionally in
two parts. The first part (the lectures 2 through 5) has a
more theoretical character. It describes the bases of
theory for monotone high accuracy CFD methods and
formulates some important problems of gas turbine
engine process simulation. The second part (the lectures
6 through 10) presents many typical results of solution
2D and 3D gasdynamic and heat transfer problems,
connected with gas turbine engine design.

The next lecture (by Prof. M. Ja. Ivanov, Dr. V. G.
Krupa and Dr. R. Z. Nigmatullin) presents some
important questions of theory for highly accurate
monotone CFD methods. There Conditions for
definition of monotone, TVD and following difference
schemes are considered . Some details for high order of
accuracy and implicit scheme's construction are
described. At the end of this lecture numerical results
illustrate possibilities of applied difference methods.

In the third lecture (Dr. V. G. Krupa and Prof. M.
Ja. Ivanov) there a detailed description of developed
method for integration 3D Navier-Stokes equations,
averaged by Reynolds is presented. Two differential
equations turbulence model is used. Some test solutions
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of 2D and 3D viscous flow problems are presented for
verification of numerical codes.

The fourth lecture (by Dr. R. Z. Nigmatullin and
Prof. M. Ja. Ivanov) describes the mathematical models
of flow passages for gas turbine engines and its

components of various levels. First two-dimensional S1

and S, models are presented and famous features of

numerical algorithms are discussed. Then 3D approach
with averaging in angular direction in the middle of
axial gaps is considered.

In the fifth lecture Dr. V. K. Kostege presents
simulation of multidisciplinary  problems for
thermostress state of high temperature cooled turbines.
The steady and unsteady temperature fields are
calculated in results of solution conjugate heat-hydraulic
tasks for blade (quasi-3D model), for disk (2D model)

-and whole cooled rotor (3D model). Thermostress

problems are solved by Finite Element Method for real
complex geometry of turbomachine components.

As mentioned earlier the second part of this Lecture
Series presents many practical results of numerical
simulation of gas dynamics, heat transfer and stress.
problems for gas turbine engine design.

Dr. R. Z. Nigmatullin delivers his lecture as a
review of the different applications of 2D and 3D model
of flow passage's simulation in  multistage
turbomachines, whole core and other multicomponent
problems.

Dr. V. G. Krupa presents the results of viscous
turbulent flow simulation in turbomachine components.
He emphasizes the treatment of boundary conditions,
grid generation and turbulence modeling. Results of 2D
and 3D viscous cascade flow and stator -- rotor
interaction are presented. Numerical results are widely
compared with available experimental data.

Dr. V. K. Kostege will deliver two lectures on a
subject of application and verification of the
multidisciplinary model of thermostress state for the
cooled turbine rotor and stator components. Presented
code package allows to carry out cooling system
optimization and comparison of alternate cooling
systems on design stages of high temperature gas
turbine engines.

The last lecture presents the perspective problems of
gas turbine engine simulations. Some review of
perspective CIAM's researches in aeropropulsion
systems is considered. In particular, the Computer
Turbojet Test Technology based on aeroengine high 3D
level simulation is presented. Some results for a big
steam turbine are described. This lecture contents also
the conclusion of Lecture Series.
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On the CFD monotone high accuracy methods

by

Prof. M. Ja. Ivanov, Dr. V. G. Krupa, Dr. R. Z. Nigmatullin
CIAM (Central Institute of Aviation Motors)
2, Aviamotornaya St.,
Moscow, Russia, 111250

Abstract

Some theoretical fundamentals of monotone high
accuracy methods are presented. The conditions for the
construction of monotone, total variation diminishing
(TVD) and following difference schemes are described.
The peculiarities of high accuracy and implicit methods
design are given. The typical results of numerical
solutions illustrate the principal features of developed
computational techniques.

truncation error
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Nomenclature

time

space coordinate

convection speed
determined function

value of determined function
on the cell boundaries

flux function

value of function f on the cell
boundaries

pressure

velocity

Mach number

time step

space step

coefficient of difference
equation

relationship of differences
limiting functions
parameter of limiting function
Courant number
parameters, characterizing
approximation accuracy in X
direction

parameters, characterizing
approximation accuracy in /
direction

amplification factor

phase angle

J - cell number in X direction
q - current index
Superscripts
n - number of solution layer in ¢
direction
-+ - parameters from the left and

right cell boundaries

Introduction

Computational fluid dynamics (CFD) offers one of
the most promising engineering tools for the design and
development of aircraft, missiles, turbomachinery,
propulsion systems etc. With the current maturity of
CFD development the reader can get acquainted full
enough, for example, from recently published
monographs [1,2] and reviewed papers, contained in the
special issues of Journal "Aerospace America" [3,4].
These publications present in detail the CFD
achievements of foreign researchers (from West Europe
and North America), but the. CFD development in
Russia is considered just shortly. Below we'll try to
present a few Russian papers, which contain interesting
results of effective monotone and high accuracy CFD
methods development.

The theory of monotone difference methods for fluid
dynamics equations solution started from the pioneering
work of Russian scientist S. K. Godunov in the late
1950's [5,6]. The first stage of their development and
wide application was presented in detail in the
monograph, published in Russian in 1976 [7] and in
French in 1981 [8]. The famous original properties of
Godunov's method were not only monotonicity, but
conservativeness (shock capture method) and procedure

Paper presented at an AGARD Lecture Series on
“Mathematical Models of Gas Turbine Engines and their Components”, December 1994.
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of arbitrary " discontinuity break down" (the analogy of
Rieman problem). The last procedure allows to follow
closely the local flow structure on each cell boundary.

The other perspective direction of CFD difference
methods became the construction of nonlinear difference
scheme. Ones of the first works in this direction were
the papers [9,10]. In these papers the limiting functions
were introduced for the conservation of qualitely right
behavior of numerical solutions.

The high order of accuracy CFD methods were
developed in papers [11,12], where the idea of the
Runge-Kutta methods construction was used.

Compact difference schemes on minimum points
support were considered in papers [13,14].

We would like to describe in more detail the papers,
in which monotone difference schemes were developed.

The original Godunov method used the piecewise
constant parameters distributions into each cell of grid.
This method has only the first order of accuracy. The
realization of a more accurate variant of the Godunov
method with the piecewise linear parameters
distributions into cells was proposed at the first by V. P.
Kolgan and published in the paper [15]. This difference
scheme has the second order of accuracy for space
variables. In the paper [15] also the "minimum
derivatives principal" was applied, that gave the
nonlinear scheme with the simple limiting functions.
The concept of the limiting functions (as the flux
limiting) was independently advanced in the works
[16,17], which are known very well to CFD researchers.

The monotone second order accuracy schemes were
developed also in papers [18,19].

The total variation diminishing (TVD) difference
schemes, introduced by A. Harten [20], became very
popular CFD tool in the last decade. The general
conditions for the constructions of TVD schemes have
been stated and proved in paper [21]. These conditions
are similar to the conditions of monotonicity.

The modification of Godunov's method with the
piecewise parabolic parameter distributions into cells
was developed by P. Gollela and P. Woodward [22]. The
implicit variants of Godunov's method with the
piecewise linear and parabolic parameters distributions
into cells for integration Euler and Navier-Stokes
equations were considered in papers [23,24].

The paper [25] describes the method with the
piecewise cubic parameters distributions into cells for all
independent variables.

This lecture presents some peculiarities of effective
CFD method construction. It's worth to emphasize the
main features of these modern numerical methods. They
are based on finite difference schemes, which are:

1)conservative
2)monotone
3)following

4)high order accuracy
5)implicit

Conservative schemes allow to apply the shock
capture technique for discontinuous flow simulations:
monotone schemes transform any monotone difference
functions into monotone functions; the schemes with the
following property select the physically relevant

solution; high order accuracy schemes allow to use
coarser grids in comparison with lower order accuracy
schemes; implicit schemes eliminate restrictions for
steps of integration.

The numerical codes using described effective
methods allow to solve many engineering problems on
wide spread computers of middle class of efficiency.

1. Monotone, TVD and following difference

methods (the linear case)

In order to present the essentials of the methods let
us begin with a simple linear convective equation,
written here as follows

ou  ou
—+a—=0 a=const >0 (L.D)
o ox

where u is unknown function of (x, #) and a is a

convection speed. This is a typical first-order hyperbolic
equation and an initial value problem of this equation
has initial condition

u(x,0) = uy(x) —00 < X <00

We have for (1.1) along the characteristic lines

dx du

a=— —=0 u=const 1.2
i dr 2

Using (1.2) it's easy to see that if u,(x) is
increasing monotonically, then

u(x;,t)<uy(x;) for 120 (1.3)
and if #,(x) is decreasing monotonically, then

u(x;,1)2ug(x;)  for 120 (1.4)

where Xx; = jh , h - the space step, j - the point

number.
A general two-level explicit scheme for equation
(1.1) can be written as

ml _ n
uit = Zch”j+q (1.5)
g=-

which has 20+ point support, and

n_ n+l __ ( )
uj~u(xj,t) u;” =ul\x;,t+1),

where 7 - the time step.
An implicit scheme may have the same form (1.5)
if solved relatively to unknown mesh function u}’“ [5].

Russian scientist S. K. Godunov presented
convenient a criteria of monotonicity preserving
schemes [5,7] :




The difference scheme (1.5) transforms any given
monotone function into a monotone function with the

same growth direction if and only if all coefficients C,

are non negative

¢, 20 (16)

Proof. Let ¢, 20 and #; is monotone function.
For example it's increasing monotonically, i.e. for all j

Au;' = u;7+1 - u;? > 0. Then

ntl _ on+l o on+l _
AT =ul Uy

Qo Y

_ n _ n —

- Z Cqlljrg+1 Z Cqllj+q
9=-Q q=-Q

Q
= Z Cq (u;"+q+1 - u;+q) =

= Y cAuf, >0 (L7

The sufficient condition has been proved. The necessary
condition follows from the next example. Let

g < 0 and
uj'7 =1 for j>gq,

uJ" =0 for j<gq,

Then

n+1 n+l n+l
= - = <
Au‘?o g+l uqo qu <0

and monotonicity of numerical solution will be
destroyed. This completes the proof of monotonicity
preserving criteria.

It's well known also for solution (1.1) that the total

variation
%FX (1.3)
x .

TV (u(t)) < TV (u(t,)) (1.9)

for £ >1,

TV(u)=T

can't increase with time, i.e.

The idea of scheme design with total variation
diminition was proposed by A. Harten [20].
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The discrete total variation is\

(1.10)

)= |
j

A finite difference scheme is called Total Variation
Diminishing (TVD) scheme, if it satisfies a discrete
version of (1.9), that is

V@™ <TV (u)) (1.11)

For the linear case TVD schemes identify to
monotone schemes [20]. In the next section it will be
shown also for the nonlinear case, that the TVD
conditions are the same as the conditions of
monotonicity.

Now we consider more strict class of "following"
schemes [25], which satisfy the conditions (1.3), (1.4).
There conditions for discrete functions are rewritten as
follows

n+l n
ui™ <uj (1.12)

for monotone increasing discrete functions  with

Au7l 20 and

uit > uf (1.13)
for monotone decreasing discrete functions with
Au? <0.

If for difference scheme the relations (1.12), (1.13)
are fulfilled, then the scheme is following .

We will obtain the conditions for following schemes
for equation (1.1), when these schemes are written in
the form (1.5) and conservative form (in the next
section). Previously it has been emphasized that the

coefficients o in (1.5) are obviously not arbitrary and

have to satisfy a certain number of consistency
conditions, following from approximation requirements
and depending on the order of accuracy (see, for
example, [1] ). The first of consistency condition under
the form

(1.14)

is obtained easily from the requirement that the function
u =const should be a solution of (1.5). Thus the
scheme (1.5) can be written as

Q
ntl _ on n__.n
uj _uj Zcq(uj ”J’+q)
q9=—Q

(1.15)




2-4

For monotone increasing discrete function u;’

(Au} > 0) the condition (1.12) leads in the case of
scheme (1.15) to

Y
¢, (u;.’—u;'+q) >0 (1.16)
0

q==

We can see that (1.16) will be satisfied if and only if

¢, 20 for -0<qg<0
(1.17)

¢, <0 for 0<qg<Q

From (1.6) and (1.17) we obtain the necessary and
*sufficient conditions for monotone following schemes in
the form (1.5) as follows
c,=0 for 0<g<Q
(1.18)

c; 20 for -0<q<0

For monotone decreasing discrete function from the
condition (1.13) we have the same results (1.18). Hence,
a two-level explicit linear monotone following schemes
for equation (1.1) can be written also as upwinding
schemes

-1
n+l __n n__n
u;” =u; Ech(uj Uig) 1.19)
g==

with ¢, >0, or

-1 -1
ntl _ .n__ -
uit =uj- e, D Au =
q=—Q p=q

-1 P
=u]'.'— Z Au;’w Zcq =

p=-Q q=-Q

=u) - >.c, M, (1.20)

»
with &, = D ¢, >0.
q=-Q
As a typical examples the three widely known two-

level explicit schemes for equations (1.1) are presented.
They can be interpreted also as the inverse methods of

characteristics using the exact solution (1.2) with linear

or parabolic interpolation over u;’ values.

Courant-Isaacson-Rees Scheme [26]. It's written in
the form (1.15) as

ntl _ on n
u” =ul - CVuj,
where C = at/ h - the Courant number. For stability of

this scheme mustbe 0 < C < 1.

This scheme is following monotone scheme. The
original first order Godunov type scheme for equation
(1.1) has the same form (1.21). In the characteristic

Vuj =u;—u, (1.21),

interpretation it uses the linear interpolation over u]”

and %, values.
Lax Scheme [27]. 1t can be written

w = +%(1 ~C)Au] —%(1 +C)Vu,  (1.22)

I
This is monotone non-following scheme. It uses the

linear interpolation over %, and u;’ﬂ values.
Lax-Wendroff Scheme [28]. It has the form

W =ul+ —;— c(Cc-1au) - %C(C +1)Vu! (1.23)

This scheme is non-following and non-monotone

scheme. It uses the parabolic interpolation over ul'.’_1 ,u;‘

n
and u,, values.

These examples accent, in particular, the difference
of monotone and following schemes.

We would like to emphasize that the conditions
(1.6) for monotone schemes and (1.18) for monotone
following schemes are necessary and sufficient
conditions, therefore these conditions get too strict
limitations. For example, in the S. K. Godunov's
pioneering work [5] was shown that it's impossible to
construct the linear monotone scheme with higher
order of accuracy than first order. In this connection we
consider in more detail the sufficient conditions, which
are more convenient for practical construction of
following conservative difference schemes (including
the nonlinear schemes).

2. Monotone and following nonlinear schemes

The scalar nonlinear conservation law in one space
dimension

ou ()
o oOx

presents a simple enough model that already contains
the phenomena of shock wave formation and expansion
fans. It describes wave propagation at a speed

=0 @.1)



and can be written

ou . \ou
— —=0 2.2
5 g, @2

As for (1.1) the solution u(x,t) is a constant along

the characteristic lines a@ = dx /df. They can't intersect
which provides the formation of shock waves. We have
also the properties (1.3) or (1.4) for monotone
increasing or decreasing solutions.

Suppose that equation (2.1) is approximated by a
conservative scheme (finite volume scheme), which for

cell with number / (Fig.1) can be written as:
ntl _ .on T
w=u—2(Foy-Fy) ey

where the numerical flux functions F; £y are

approximations of the fluxes across the cell boundaries
at X,y

The following difference scheme must satisfy the
conditions

F,2F,, (2.4)

J

for monotone increasing mesh function with Au; >0
or

FiysSFy 2.5)

J

for monotone decreasing mesh function with Au < 0.

In the original monotone Godunov's scheme [5-7]
the values are supposed to be the flux values taken
from the exact solutions of the initial value problems
defined by piece wise constant data between each cell
boundaries.

For the scalar conservation law (2.1) we define

tA
o — - — — — — —
r f;'.m
" 1
: > 1
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AU )a,., 20
f(U;‘:«%)’aﬁyz <0

where U Ji.t y are the values of function % on the right

Fy= @.6)

J

and on the left from boundary x Y corespondently. In

the case a(u) > 0 equation (2.3) can be written as

uy" =uj —%[f(U}+%)—f(U}-%)] @7

or, defining

M)A,y
U- ., ~U- +% -k
a = h A 2.8)

of _ .
(5) Uiy = Uiy
J

obtain
ntl _ _.n T - -
u —”f“;"f(Un%‘Uf—%) 29

The following scheme (2.9) in our case satisfies the
conditions

U;+% 2 U;_% (2.10)
for monotone increasing mesh function with Au;.' >0
and

Uiy<sU_, (.11

for monotone decreasing mesh function with Au;’ <0.

Define the boundary values at first as the explicit
formula

s

M x

Fig. 1 . Computational cell of finite volume scheme in the 1D cascade
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- o n..n
Uj+%—u],+Aujuj 2.12)
Here the limiting function
H;‘ = u(r]il’rjn>rjrf+l)
(2.13)

no_ n n
r = Vu; /Auj

can depend on various numbers of difference

relationships rj". For difference schemes in the

following chapters the function IJ; depends on one, two
or three (as in (2.13)) difference relationships rj”. Some

limiting functions u;'. for a few concrete nonlinear

schemes are presented in section 3 of this lecture.
Inserting the boundary values (2.12) into scheme
(2.9) we have

ntl __ n T n nan
u; —uj+;ajVuj)»j (2.14)

where

N =140 1] - W 2.15)

For monotone increasing discrete function Au;' >0 the

condition (2.10) leads to (in our case a; >0)

X, 20 2.16)
As we'll see below the inequality (2.16) defines the
limiting coefficients for nonlinear difference schemes.
Estimating the mesh function behavior on a new
level Aul" =]} — " for the scheme (2.14) we
have

n+l _
Au =

n T n n T
= Auj(l—;amxj+l)+z(Fj+% —Fj_%) 217
Considering the equation (2.17) with the relation (2.4)
we obtain the criteria of monotonicity for following
explicit difference schemes:

Following explicit difference scheme (2.14) is
-monotone scheme if

‘[ nAn
Zajkj <1 (2.18)
Jorall jand n.

The relation (2.18) defines the limit for the time
step T and is a stability condition (together with (2.16))

for the linear variant of the scheme (2.14).

We consider also the implicit difference scheme in
the form (2.9), when the cell boundary values are
defined as

n+l  n+l

- _ g ntl
Ui,y =4 +Aulp 2.19)
In this case instead of (2.14) and (2.17) we have
un+l _ un . lan+lvun+1)\n+l 220
T i (2.20)

T
1+—a™\ A =
h J J J

J J

= Au? +%(F.+% —F.ﬁ%) (2.21)

The stability condition for the linear variant of

implicit scheme (2.20) is (for @' > 0)

AT 20 (2.22)

In this case we have from (2.21) that scheme (2.20)
is a monotone scheme.

Having summarized our considerations we can
formulate the next criteria:

Following stable schemes (2.14) and (2.20) are
monotone schemes.

We want to emphasize once more the relations
(2.16), (2.18) and (2.22) are very convenient for practice
using when we construct the concrete following

schemes.

Now we'll show the identity of monotone and TVD
schemes with various coefficients

The general two-level difference scheme with
various coefficients are presented in the same as (1.5)
form as:

(2.23)

where coefficients Cq( /) must also satisfy the first of
consistency condition (see (1.14))

Q
e lj)=1 2.24)
q=-0Q
Rewrite (2.23) using (2.24) in the form
. Q
L (])(u;’ —u;?+q) (2.25)
q=-0

and further




p=0
1 e P
== 3 —u,) 2, () +
p==0 g=-Q
0-1
+Z( ]+p+1 J+},) ZC
»=0 q=p+1
0-1
=uy - yc ()M, @26
p=—Q
where
P
z,(j)=Dcj), for -Q<p<-1
q=-¢
and

Q
= Zcq(.j)’ for 0<p<Q

g=p+1
n —ah "
Au1‘+p = Ui pa Ujip

It's not difficult to get sufficient monotone
conditions for nonlinear difference scheme in the form
(2.26). Following the proof of the Godunov
monotonicity preserving criteria, presented in previous
section, we consider the monotone increasing mesh

function ] (with Au7 > 0) and define difference

n+l _  n+l n+l __
Auj =uj, —u; =

Mto

]+1

]+p+1
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U - Zc (j)Au?, , =

= Au! ——EQ_I( j+DAul,,

g,(j)]pul, , +

+8 (A, @27)

B Z[ Cp1 (+1)-

p=-Q+1

which must be non negative for monotone scheme.
Consider (2.27) we'll obtain the next sufficient
conditions of monotonicity

2, (j+1)<0
c,(j)2e,,(j+1),  p=le.Ol
1-2,(j+1)+5,(j) 20

for all j. The conditions (2.29) may be rewritten in
form

c,(ze,(j+D)2.22,(j+0-1)=0

(2.30)
o()2-c(j-1)2.2-¢,,(j-0+1)=0
z,(j+1)-50() <1,

for all j. If coefficient C, ( j) doesn't depend on

solution, then these conditions are also necessary. We
can obtain the proof of the necessarity the same way as
it was obtained by S. K. Godunov (sece the previous
section).

The conditions (2.30) are exactly the same as was
obtained for TVD schemes by A. Jameson and P. Lax in
[21]. This is the confirmation of the identity of
monotone and TVD schemes.

For semidiscrete schemes in a form

(2.31)

the conditions of monotonicity have also the form
(2.30) without the last inequality, from which we can get
the stability condition for an explicit schemes (2.26).
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3. Following nonlinear high order accuracy schemes

We would like to construct now following monotone
high order accuracy schemes for integration of equation
(2.1). For approximation (2.1) and (2.2) the difference
formulas (2.7) and (2.9) are used.

Into each cell we consider piecewise polynomial

distributions of function #(,?) in the form

n

u(x,t,) =] +v(x—xj)(%) +

j

+m(x—xj.)4(§2) 3.1
;

where 7, @, / and © are parameters, defining below
an accuracy of space derivatives. Using the same
identification for discrete differences

Ay =uly, —uf, Vui =u} —u_, (3.2)
and approximate relations
(@) ~ (A + V)
Ox ; 2h
u) 1 " "
(gx—z‘J R«’h—z(Au] —Vllj) (3.3)
7

3 n
(ﬂ) ~ ZIS—(Au}’ -2Vu] + Vu;.’_l)

a4u g 1 n n n n
(&TJ N ;F(Au " =3 3V - Vi)

J

it's not difficult to obtain for an explicit scheme

- _.n, O n
U]-_,_% —llj +EAuj+l+

+%(4v+4(p +2\|1—30))Au;' +

+%(4v—4(p~4\u+3co)Vu;' +

2y -0
T Vul,. (3.4)

The next values of parameters

v=1, ¢o= 13, \uz—%, m:—% (3.5)

get for given cell the approximations of  space
derivative Ou/Ox up to the fifth order of accuracy

+

O(hs). For variable value @ the order of accuracy

decreases to the fourth, for variable values y and ® -

to the third, for variable @, Wy and ® - to the
second.

Now obtain conditions of monotonicity for
following difference schemes, which have the
approximation of space derivative with order of
accuracy from the second to the fifth.

We consider for relation (3.4) the modificate values
of differences

Vu'!
~n __ n — J
Auj; = Aujx(rj), r,= o
f
Vu’
~ _ j+l
ity = Au;ﬂ%(r ,-+1), T =7 (3.6)
A
uj+1

. " 1 \% 7
Vu}’-1=Vuf-xX(ﬁ} Ha =
X

where x(r) is a limiting function and rewrite
T s
U~+% = uj +EAMI+1 +

J

1
+G(4v+4(p +2y 30 ) Al +

+Ilg(4v—4(p—4\y+3c0)Vﬁj'.’ +




2y —o
16

+

Vi, =u + A, 3.7
Here

W= 116‘[(0 X(rj+1)/rj+l +

+(4v+4(p +2y - 3m)x(rj) +

+H4v-49 -4y +30 )x(i}rj +
r.
J

1
+2y-o )rjr]._lx(r) =

j-1
l‘lj(rj+l>rj>rj—1)

We have the difference scheme in the form similar to
(1.26)

n+l _ n_:c_ nan
u; =u; hajVujkj (3.8)

where
n _ n n_ . n
No=1+p7 ) -,
It can be shown (see, for example, [24]), that the
conditions (1.34) or (2.17) are fulfilled, if the limiting
function (7) has the form

0,r<0
%(r)=4br,0<r< % 3.9

l,rz%
where 1<b<h

max*
We present the examples of a few difference
schemes. For the scheme with piecewise linear

distributions of function #(X,?) into cells (v=1,

o=y=0=0), b, =3, value of Courant number
C=at/h<0.5.

The Godunov scheme with piecewise linear
distributions of functions into cells was published first
in 1972 year by V. Kolgan [15]. Realized in this work
"the minimum derivatives principal" have the limiting
function (3.9) with b=1. The Godunov scheme with
piecewise parabolic distributions of functions into cells
was realized in the work by P. Colella and P. R.

29
Woodward [22] and was published in 1984. For this
scheme (with v=1, ¢ = var,y =@ = 0), the value
boax = (3 - (p) / (1 - (p), and the Courant number
C£4/(5—(p+(1+(p)b).

For a convenient description of limiting functions
we use also the "minmod" operator, which is given by

min mod(a,b) =

_ sign(a) + sign(b)

=L ORI

(3.10)

The "sign" operator sigrn(a) denotes "sign of a" and is

therefore £1.

In the case of previous scheme with piecewise
parabolic distributions into cells for the modificate
values of differences in (3.7) we have

Adi" = min mod(Au?, bVu!)
3.11)

Vi" = min mod(Va!,bAu’)

The explicit scheme with piecewise cubic

distributions into cells (with v=1, o= 13,

\y=—23, ® =0) has

bmax:%> Csl/(l+%+%)

and

A& = min mod(Au?,6Va?)

Vii! = min mod(Vu}',bAu;?) (3.12)

Vi, = min mod(Vu,'»'_, ,4Vﬁ;)

The explicit scheme with parameter values (3.5) has

b =391, Csl/(1+2%+1y60)

and relations (3.6) in the form
~n __ : n n
A#} = min mod(Auj ,quj)

= min mod(Au;'H ,8Al~’;)

A"

. (3.13)

Vii! = min mod(Va, bAu?)

Va7, = min mod(Vu/’.'_1 , lyz Vﬁj’.’)
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The value b in (3.11) - (3.13) is taken usually as
b_ .

max

Here we would like to show also that a detailed
consideration of limiting functions is presented in the
paper [29], a construction of high order accuracy
schemes for hyperbolic equations is described in the
paper [30-33].

Additional publications on this question up to 1987
we can see in the references of the monograph [1].

4. Construction of implicit following schemes.

For producing an adequate numerical solution we
must use a mesh with very fine spacing in the regions
with the extreme parameter gradients (in boundary
layers, shock waves and others). In these regions the
aspect ratio of the cells may be so large and suffer both
losses of accuracy and rate of convergence and give
very strict limit on time step value for explicit schemes.
The present section considers the construction of
implicit schemes, which are unconditional stable for any
Courant number value (for the linear case).

Let us begin from the very spread two-level implicit
scheme for equation (2.1) in the form (see, for example,

(34

ntl _ n n+l n
u+0(§£) +(1_0)(1) -0 @1
T ox ; ox /.

J

a n

Here (—f~ is the discrete approximation of the value
Ox J

df /Ox in a point with j and #, o is a parameter. For

c=0.5 the scheme (4.1) has the second order of
accuracy.
For the lincar function f(u)=au and

corresponding linear difference scheme we have

N ou\
u" = \e”® (—) =u"G(6) 4.2)
J ax ; J

Inserting the relations (4.2) into scheme (4.1) we
obtain the amplification factor in the form

1-(1-0)Z
" l+oZ
Z=171,+iZ (4.3)
Z, = CRe[G(0)], Z, = CIm[G(8)], C = -‘;’1‘—

For "following" difference schemes the relations
(1.12) and (1.13) lead to the condition

Z,20 “4)

forall 0 (as earlier we consider the case a > 0).
It may be shown that implicit "following" schemes
with 0 >0.5 are unconditionally stable schemes

(/<)

Next we'll construct an implicit "following" scheme
with third order of accuracy in time, which is
unconditionally stable. Previously we would like to
emphasize that the simplest way for third order scheme
construction may be not successful. For example, the
one parameter implicit three-level scheme with the third
order of accuracy in the form

1(35—2u;+2 - 30—2u;,)+
4 4

T
n+2 n+l
+l(c— l){@i} +{Q’_} +
4 ox |} . ox ) .

J J

n
+l(o+l) Ty 4.5)
4 ox J
is unconditionally stable scheme. With & = —2/3 we

have the Adam's type scheme, with ¢ = o0 we have the
Simpson type scheme.

The amplification factor A for scheme (4.5) is
defined from the relation
(3o -2)+(c-1)Z]¥* +4(1+02) -
~(36+2)+(c+1)Z=0 (4.6)

The analysis of this equation is complex enough,
therefore we consider the limited case Z =00 , when

roots are
—26 +43c% +1

A, =
b2 c-1

or if 0 #0 one of these roots is more then 1, that

follows from inequality

l—20’i\/3(‘52 +1|

max|7y1,2‘ = max‘ >

c-1 ’"

2lo]+1 S o]
o1 -

> +1>1




Same way we can shown for 6 =1 or ¢ = 0.

Hence, the third order accuracy schemes (in time
direction) in the form (4.5) aren't unconditionally stable
schemes for any linear approximation of space
derivative. More than three time levels for
approximation give us complex numerical algorithms,
which demand essential growth of computer memory
and speed.

For construction of unconditionally stable third
order schemes we apply the idea of recalculation
(similar to the Runge-Kutte's methods).

One parameter two step three time level schemes in
the form

AL/ z}"“‘“‘;z 7",
(1+a)r 2o ; 2ox),

@7

+

n+l n ntl+a
ui™ —uj 1 o *
T 6a(a+l) oxJ,

n+l n
+3a+l{z} N 300 +2 {g} o
60, | ox 6(a+1) | &x

J J

have the third order of accuracy in time direction, where

o. is nonnegative parameter. At the first step we define

n+l+o

value ] t=(n+1+a)t

(the predictor step), at the second step we define value

on the time level

u}'“ on the next time level # = (77+1)7 (the corrector

step). By that the scheme (4.7) demands approximately

two time more calculations, then the scheme (4.6).
Spectral stability analysis of scheme (4.7) leads to

amplification factor

1+ AZ+BZ’
1+ A4,Z+B,7*
2 2
A1:3oc +1, B]:_Ba +2a+1
60 12a
2 2
A2:3oc +6a+1, B2=3a +40+1
60 12a
We have

=
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14C,Zy + CyZ2 +Cy22 +CZy(22 +22)+ B (22 + 22)
14C,Z, +C,Z2 +C, 22 +CyZy(22 +27)+ B (22 + 22)’

C =24, C,=A4"+2B
C,=A-2B, C,=24B,
C,=24,, C,=4; +2B,
C,=A>-2B,, C,=24,B,

For o > 0 the value |7»| <1 scheme (4.6) is
unconditional stable (|A]| <A, IBJ <B,
A’ -2B, = A} —2B,). For . < 0 we can show, that

]?»I >1 for large enough Z.

Is similar to (4.7) a family of two parameters third
order accurate schemes (oo and f are positive
parameters) presented.

n+leo n nti+o n
u"—~li"—+c{@i} +(1—c){%} =0

(1+a)t Ox ), p
B+1
P 438
Y PP @9
n+l+ n B+1 n+l+a n
u"" = u] +&‘:€(”j l _”j)
n+l_ n n+1+p
YW L {Qf— +
T 6p(B+1) lox/,

+3B+1{gf_}’” .

3B+2 {Qf_}"_o
6B lox, -

6(p+1) | ox

J

The schemes (4.8) with § >0 are unconditionally

stable (for Z, > 0), because they are similar to schemes
(4.7) in the linear case.

5. Numerical examples.

An examples of application of "following" high
order accuracy methods to integration of linear
convective equation, Euler and Navier-Stokes equations
are shown in this section. The choice of model problems
demonstrates typical peculiarities of developed methods
and codes. In particular, the results for linear convective
equation illustrate the high order of accuracy methods.
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Then the results for 2D and 3D Euler equations
demonstrate the quality of shock and rare wave solutions
and some other properties. At the end of section two
test problems for a steady and unsteady viscous laminar
flow are solved using Navier-Stokes equations.

Figure 2 and 3 show test results for the model
convective problems

Ou Ou
—+—=0 6.1
ot 0Ox

where
u(x,0) = sin x, -1<x<1

with periodical boundary conditions and using uniform
grids. This results have been obtained by A. Kozerod for

the authors’ request. The truncation error € from space
size h is presented for the time ¢ = 1. The value € is

defined for the norm /,

1 ;
€= (5 .Hu —u, 2dx) (5.2)

-1

where #, is the exact solution of problem (5.1). The
space derivatives for all cases are calculated with the
third order of accuracy, without using the limiting
functions (the solid lines) and using the limiting
functions in form (3.9) (the dotted lines). The index 1
relates to the implicit scheme (4.1) with ¢ =1 (the first
order of accuracy by #), the index 2- to the scheme (4.1)
with ¢ = 0.5 (the second order of accuracy by f ) and
the index 3 - to the scheme (4.6) for the oL = 0.5 (the
third order of accuracy by ¢ ). Figure 2 presents results

T
for the Courant number C = p =1, figure 3 - for the

Courant number C = 2.5. We can see the logarithm €

depends on the logarithm A linearly with the angle
tangent 1, 2 and 3. If we use the limiting functions the
accuracy of the scheme (4.6) is only two times more
then the accuracy of the second order scheme. When the
Courant number is C = 2.5 (figure 3) the errors of time
derivative approximation have the great role and the
accuracy of the scheme (4.6) has the third order (with or
without the limiting functions).

A second example for demonstration of accuracy
concerns a 2D transonic turbine cascade. Figure 4
illustrates the constant entropy error lines in percents %
for first (1), second (2) and (3) third order schemes. We
can see very small level of errors for high order scheme.
For this case the mesh contains 57 X 10 cells, the exit

Mach number M, =0.8.
The impressive capability of developed schemes is
demonstrated by some solutions of inviscid and viscous

problems. The first results of this series present 2D and
3D inviscid flows.

Fig. 5 illustrates transonic shock flow results in
model symmetric cascade under angle of attack 10°.
Here the H-type mesh with 158 x 40 cells is used. Exit

Mach number is M, = 0.73 . Mach constant lines on
pressure and suction sides are presented. Dotted lines

are sonic lines.
Fig. 6 shows free underexpanded axisymmetric jet

with value n=p,/p, =2 and the exhaust Mach

number M =2. The computational grid contains 40

cells and is connected with the boundary jet. The
pressure constant lines are. given with interval

Ap = 0.04. We want to emphasize the good resolution
of a shock and rarefraction waves, moch better then for

the first order accuracy method [7,8].
The next results demonstrate the supersonic flow

with the initial Mach number M, =3 (x, = 0) into a
channel (fig.7). Here also we can see very good
monotone solution near shocks and other waves.

The 3D inviscid supersonic shock solution between
two intersected wedges (the leading edge ~angle

y =12.2%) with initial Mach number M, =3.17 is
shown in fig.8. In this case we have self-similar solution
with Mach shock deflection, which is presented as

pressure contour lines with Ap =0.07. A Cartesian

mesh had 30x 30 cells (in the plate X =const).
This result demonstrates good 3D shock resolutions.

Now we present the 2D results of the two models
viscous problems solutions, using Reynolds's averaging
Navier-Stokes equations. These problems involve a
steady axisymmetric flow of air first in a constant-area
cylindrical duct, then through a reverse-flow angled
orifice, and finally into the atmosphere as a free jet, as
depicted in Fig.9. Two parameters differential turbulent
model (¢—@®) is used [35]. Computational mesh
contains 80 x 60 cells. Fig.9 presents velocity constant
lines with interval AV = 0.03. Velocity value relates
to stagnation sound speed value. Fig. 10 presents
streamline contours. The mass discharge coefficient
equals 0.615.

The last viscous 2D problem is an unsteady shock
and symmetric wedge interaction, as depicted in fig.11.
The wedge has a base dimension of 56 c¢cm and the
symmetric leading and trailing wedge angle are 45
degrees. Fig.11 and 12 illustrate constant density
contours at = 60 and 87 microseconds. In these time
moments the solutions have automodeling type. Here the
algebraic Baldwin-Lomax turbulent model is used [36].
The mesh contains 90x 70  cells. The two last
solutions were presented as special benchmark problems
on Canadian CFD Conference in June 93.

Results, which are presented in this lecture
demonstrate a good possibility of developed numerical
methods for calculation steady and unsteady flow of
inviscid and viscous gas in the wide range of velocity




(for deep subsonic, transonic, supersonic and hypersonic
speed).

The next lectures contain many illustrated material
for solution of various practical problems of gas turbine
engines and its components design and verification of
computational codes.
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Evolution of solution error £ with space mesh size.

Courant number C=1.

1 - the first order scheme;

2 - the second order scheme;

3 - the third order scheme;

solid lines - without the limiting functions;
dotted lines -  with the limiting functions.
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Evolution of solution error & with space mesh size.

Courant number C=2.5.

1 - the first order scheme;
2 - the second order scheme;
3 - the third order scheme;

solid lines - without the limiting functions;
dotted lines - with the limiting functions.
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Fig. 4 The constant entropy error lines for 2D Fig. § Transonic shock flow in 2D symmetric
transonic turbine cascade: cascade under angle of attack 10°.
the mesh 57x10, The exit Mach number - 0.73.
the exit Mach number - 0.8. Mach constant lines.

1 - the first order scheme;
2 - the second order scheme;
3 - the third order scheme.




Fig. 6 The free underexpanded axisymmetric supersonic jet.
The pressure constant lines picture,

Initial Mach number M, =2, p,/p, =2

_— i T
[4
Fig. 7 Supersonic flow into 2D channel. Inlet Mach number M, = 3.
Fig. 8 The inviscid supersonic shock solution between

two intersected wedge.

The pressure contour lines.

Leading edge angle ¥ = 12.2°, the initial
Mach number M, =3.17.
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Fig. 9 Axisymmetric free - jet flow.
Velocity constant lines with interval AV = 0.03.

Fig. 10 Axisymmetric free - jet flow.
Streamline contour. Mass discharge coefficient 0.615




]

Fig. 11 Unsteady shock/symmetric wedge interaction.
Constant density contour at £ = 60 microsecond.

ﬁu,yéf» _ .
Dl ! v ¥ ¥ 2 -1

Fig. 12 Unsteady shock/symmetric wedge interaction.
Constant density contour at f = 87 microsecond.
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Solution of Navier-Stokes equations using high accuracy monotone schemes

by

Dr. V. G. Krupa, Prof. M. Ja. Ivanov
CIAM (Central Institute of Aviation Motors)
2, Aviamotornaya St.,

Moscow, Russia, 111250

Abstract

Numerical monotone methods for integration of the
Reynolds averaged Navier-Stokes equations are
presented. These methods employ finite volume
formulation, implicit high-order accuracy —Godunov
type scheme and two-equation (§— @ ) turbulence
model, based on integration up to the wall. To illustrate
of the typical peculiarities of these methods the
computations of viscous flows in curvilinear ducts,
around 2D airfoils and 3D shock-wave boundary layer
interaction are considered. Available experimental data
are used for verification of the computed results.

Nomenclature

A ,B,C,D-  Jacobian matrices
E F.G- mass, momentum and energy fluxes
/ - identity matrix
J - transformation matrix
M - Mach number
Re - Reynolds number
Pr - Prandtl number
T - temperature
U - conservative variables
k - turbulent kinetic energy
p - pressure
t - time
v - relative velocity
(z,r,0)- cylindrical coordinates
v - specific heats ratio
&,n,0)- general curvilinear coordinates
€ - turbulence energy dissipation
A - bulk viscosity coefficient
u - molecular viscosity coefficient
[o] - density
Tex, Tars thp >

viscous shear stress
Tres Trps T

Q - angular velocity
Superscripts
n - denotes time level
A - denotes quantities in generalized
coordinates

Subscripts

i.j,k - denotes quantities in the centers of
computational cells

&,ng - denotes differentiation in &,M and {

directions, respectively.

Introduction

At present time a large number of numerical
methods for the solution of Navier-Stokes equations
have been developed [1,2]. We would like to indicate
shortly some of these methods. One of the widely used is
the Beam and Warming approximate factorization
scheme [3]. An implicit method of MacCormack [4]
based on a bidiagonal solution technique has been also
applied successfully to solve fluid dynamic problems.
The multistage Runge-Kutta time-stepping scheme with
multigrid technique developed by Jameson et al. [5,6]
for Euler equations has been extended to 2D and 3D
Navier-Stokes equations [7,8].

Most of these methods represent non-dissipative
approximations of the convective terms and frequently
display oscillations in the neighborhood of shocks. To
suppress (but mnot completely eliminate) these
oscillations artificial dissipative terms have to be added.
In  practice, it needs a "tuning” of dissipation
coefficients. Also, these methods have time-step
restrictions due to either factorization errors or explicit
structure of the scheme and demonstrate rather low
convergence to steady-state solution.

The construction of accurate and reliable methods
for solving Navier-Stokes equations can be done on the
basis of high-order accuracy monotone schemes. One of
the first monotone schemes was originally proposed by
Godunov [9]. The method uses a piecewise constant
distributions of parameters in each cell and a procedure

Paper presented at an AGARD Lecture Series on
“Mathematical Models of Gas Turbine Engines and their Components”, December 1994.
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of arbitrary discontinuity breakdown (exact solution of
Riemann problem at cell boundary). The method is
conservative, have good shock-capturing properties and
closely simulates wave propagation at each cell. The
method was widely used for computation of inviscid
flows [10], however, its application to solve Navier-
Stokes equations has long been restricted because of
the first order accuracy. Extension of the method to the
second order accuracy in space has been carried out in
[11]. To satisfy the conditions of monotonicity piecewise
linear distributions of parameters were restricted to
'minimum derivatives values principle'. More recently,
closely related to this method a family, of so-called
high-accuracy TVD schemes [12-15] has been
developed for Euler equations. These schemes are
second or higher order accurate, capture discontinuities
with high resolution and need no artificial dissipation.
Up to now, a large number of Navier-Stokes solvers,
based on TVD formulation , have been developed for
computation of external and internal viscous flows (see,
for example,[16-23]).

In this lecture, using ideas of the previous lecture,
the numerical method for solving  Navier-Stokes
equations is discussed. The method is based on the
implicit monotone second and third order accuracy
Godunov-like scheme. The Reynolds averaged Navier-
Stokes equations closed by two-equation turbulence
model are written in the conservation-law form
generalized curvilinear coordinate system. The main
ideas of explicit Godunov scheme - principle of
monotonicity and procedure of arbitrary discontinuity
break-down are used. Piecewise parabolic distributions
of the parameters over cells of the computational grid
are used in order to increase the order of approximation
[13,24]. The scheme is written in delta form [3]. The
implicit operator is constructed taking into account the
sign of the eigenvalues of the Jacobian matrix [25]. To
avoid time-step restrictions due to factorization, the
unfactored implicit operator is inverted using Gauss-
Seidel line method. Extension of algorithm to third-
order accuracy in time is also presented.

The Navier-Stokes solvers are the necessary tools
for prediction of viscous effects in the aerodynamic
design. Applications of the present numerical method to
turbomachinery problems will be presented in the next
lectures. In this lecture some numerical examples are
considered. The computed results include turbulent
flows in curvilinear ducts, over 2D airfoil and 3D shock-
wave boundary layer interaction. Accuracy of the
methods is estimated by comparison with available
experimental data.

1. Governing Equations

Reynolds-averaged Navier-Stokes equations in a
cylindrical (x,7, @) system of coordinates rotating with

angular velocity Q are:

F-F,
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Here, t stands for time , p - for density, . p- for

pressure, / for temperature; v, ,v, , Vv are the

®
physical components of the relative velocity vector along
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X, r and @ axes; ;. and W, are the molecular and
turbulent  viscosity coefficients, A =-—(2/3)p
Pr,=0.72 and Pr,=0.9 are Prandtl numbers;

y =14 is the specific heat ratio, and Re is the

Reynolds number.
The system (1.1) has been written in dimensionless
form: the components of the relative velocity vector v

have been divided by the characteristic value V. , the
density by p,, , the pressure by pme2 , temperature by

V./C, ( C, is the specific heat at a constant

pressure), and the linear dimensions by the

characteristics length L.

The turbulent viscosity coefficient [, is calculated

using the two-equation (q—m) model of turbulence

[26]; the quantities ¢ and @ are related with the kinetic
energy of turbulence A and the dissipation ratio €:
g=k "2 o =g/ k. In dimensionless form (g divided
by V,, @ byV, /L) the system of equations of the

(q - (D) model in rotating cylindrical system of
coordinates has the form :
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Here, d, is the distance along normal to the wall. The
values of the constants entering into (1.2)as follows:

C,=0.09, C,=0.045+0.405D, C, =0.92

a=00065 Pr,=1, Pr,=13.

2. Numerical Method

We will now describe the main features of
numerical methods construction with reference to the
example of system (1.1); for (1.2) the difference scheme
is similarly constructed.

The initial system of equations (1.1) is written in
the new curvilinear coordinates

E=E(x,r,0), n=n(x,r,0),=C(x,r,0),

retaining the divergent form:

a() aF aG 0k,
—_ =K 2.1
ot T Ton &

U=U/J, (e, F+e,G+e E)lJ

G=(nF+nG+nE)lJ,

E=(F+(G+CENI,  K=KIJ

The metric coefficients which appear in (2.1) are
expressed using the formulae

£, =1(ro,~ro,), N = (R0 —£9,),

¢, =J(rp, ~re.), n,=J(xg,—x7),

é/ :‘/(xgq)n _rn(pq)’ nr :/(‘rz(pg_xg(pg)a

C.:r = /(an)c _‘réq)w'])r
éw = j(xnrc —xérn)’
Co = (2, — Z,r;)

_ a0
o(x,r,0)

We shall use the generally accepted indications
when constructing the difference scheme: a superscript
n refers to the instant of time ¢ = 17T, where T is the
time step, while integer subscripts refer to the value of
the function at the center of a computational cell, and
two integers and a single half-integer refer to the value
of the function at a cell boundary. Writing (2.1) at the

(n+1) - th time step, we carry out linearization with

respect to the values at the 77 7A time step (see [ 3 ).
We will write the resulting difference scheme in a form
that is convenient for using the iterative Gauss-Seidel

method along a line £,C =const

(AE = An=AC =1).

(/1+HA +A +V B -V B +C" +C -
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nonv
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ani,j,k = fi,j,k - fi,j~l,k

where p is the number of the "internal” iteration. The
Jacobian matrices in (2.2) have the form:

oF, .. . ' e
A=Zb=A-A = SALS] - S,A;S,
oG . o . e
B=—/=B-B =S, A8 - S,A; S,
ok, . . ‘e e
C=20=C"=C =SAS, - S,AS;
&=Ly, A, =% B, =D
2 aU, au,

c -k p_ ok

ou ou

Here, A,,A, and A, are diagonal matrices

composed of the eigenvalues of the matrices A,B and

C; |A| is a matrix composed of the absolute values of

A; S, S, and S, are transformation matrices

leading to the diagonal form. The splitting of the Jacobi
matrices and the use of upwinding (in accordance with
the sign of the eigen -values) differences [ 25 ] enable
one to increase the stability of the difference scheme.

The quantities U™ (for known Z;; ) arc found from
the system (2.2). The direction around the computation
domain was chosen as follows: for each fixed value of
i (starting with 7=1) we calculated the values of

AU

ik k=12, k__ ; we then passed on to the

s Mmax »

new layer (7 +1).
The matrix of the operator on the left side (2.2) has
a block ( dimensions 5x5) tridiagonal form, and its

(determination of AU?

inversion ik

J=L12,....,/ ., { and k fixed) is carried out by
means of a three-point matrix sweep. In the case of
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periodic (in j) boundary conditions for the inversion of
the matrix it is necessary to use cyclic sweep formulae.

The method of calculating of right side of Z; k1S
described in detail in [ 27 ]. The space derivatives in the
viscous terms are approximated by central differences
with second-order accuracy. The "inviscid" terms are
calculated in terms of the flux vectors on the cell

boundaries (the derivatives with respect to & and { are
similarly calculated, accordingly , we will drop the
indices / and K ):

on ). An
To calculate the flux vectors, we use piecewise
parabolic parameter distributions satisfying  the
condition of monotonicity (for linear system) [ 3,24]:

~ n "n "n
[GGJ _ Gj+1/2 - ijl/z

t

_ . 1+e o 179
Ui =U] +S{——4—AW/+—?4—V ,-],
1-e

4
AW, = minmod(AW,,6VW,),

+ n 1+(p A7 A7
Uj—l/z = U/’ -sn[TVW/ + AW/]

VW, =minmod(VW,,bAW,)

AW, =S]'A U7, VW, =S,V U7

1<b<bh

xy <0

, 0
min mod (x,y) = { yl) x>0

sign(x) min(|x

)

+

where U}, are the values of U” on the right and left

of the face of the cell with number j+1/2,
respectively, and in the # A time layer. From the

. . .
values of U},,, and U, using the procedure for

solving the problem of the breakdown of an arbitrary
discontinuity [9,10], we calculated the major quantities

from which the fluxes Gj+1/2 are computed. This

method of approximation does not require the
introduction of terms with artificial dissipation and
makes it possible to obtain stable solutions with second
order accuracy.
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3. Third-order accurate in time integration scheme

The method presented in Sec. 2 is a second order
accurate in space (third-order accuracy can be achieved
in one-dimensional uniform grid) and first-order
accurate in time. Accuracy in time may not be crucial
for the computation of steady-state solution by time-
dependent method, but for computation of unsteady
flows it may be desirable to increase the order of
approximation in time. In this section we will describe a
third-order accuracy in time scheme for integration of
Navier-Stokes equations. Our consideration will be
restricted to system of 2D Navier-Stokes equations;
extension to 3D dimensions and turbulence model
equations is quite straightforward.

A main attention will be focused on the
approximation in time, the approximation of stationary
part of equations being assumed to be known. In
particular, the fluxes at cell boundary can be computed
by formulae of Sec. 2.

The 2D Navier-Stokes equations in a moving,

coordinate system & =E&(x,y,t), m=n(x,y,t)
take the form (x,y - Cartesian coordinates):

oU oF oG
— 4 —+—==0 3.1
ot o om

U=u/J, F=QEU+EF+E,G)/J,
G = (U +n,F+n,G)/J,

F:F/—_F\.n G:GI_GV

p pu 0
2
+
ve|PU LR 2| PP R o] T
pv puv T,
e (e+p)u A,
pv 0
T
Gi: pzuv 7(}v"__i "
pv +p Re| 7,
(e+p)v A,
ut +v?
e =p( )+ W=u, +u,,
2 vy—1

R

Pr Pr, Pr,
where
To =(A+2Wu +Av, 1 =1, =p(v, +u,),
T, =(A+2u)v, +Au,,
& =J(, Y —yoX) & =y, &, = -0,
M= J(YeX, =Xy ), M = —Jye, My = 0%
J=&m, -g,m,
From the considerations given in Sec. 4 of [28] we

can now present a family of the third-order accuracy in
time schemes for Eq. (3.1) (& - parameter)

0.n+'l+a _ Un 1 1
L My Zre 70 =0, 32
T 2 2 G2

(\].it';l B ﬁ:j _ 3a+]1 000 ——1—— o
T 6a 6a(at1)
3a+2
3at2 4 .
6(a+1) -
where
Zi‘ = E+1/2,j — Fi~1/2,j + Gi,j+l/2 - Gi,j—l/Z
i AE A

Third order approximation in time of scheme (3,2),
(3.3) can be justified by expansion in Taylor series at

t =(n+1)7. The scheme (3.2), (3.3) for linear scalar
case is unconditionally stable if &>0 provided that
approximation of the space derivatives satisfies some
conditions [28]. Note that discretization, based o the
piecewise parabolic distribution (2.3), meet these
conditions.

The solution at (72+1) th time level can be found
after two steps: at first (predictor) step we obtain values
U™ (U™* can be treated as a approximate

solution at = (n+1+ @) 1), at second (corrector) step

we obtain the solution at the next time level.

Eq. (3.2), (3.3) represent a set of nonlinear
equations. To solve this system some iterative approach
can be used. In the present paper iterative technique is
based on Newton method. For sake of brevity, we
consider Eq. (3.2); iterative process for (3.3) is
constructed similarly.




Assume U™™*? js an approximation to U"*'"%,
when p=0,U""**? =", Having written (3.2) for
U™*%PY e carry out linearization with respect to the
values """ ®? [3,29]. The resulting difference scheme

can be write in the following form (AE = An=1),
1 . _
[/+—2~‘E(V§A -AA - V.AA +
+V,.B" -A B —AnVnBV]AUi’,’;”“”’ =

Jatltop _ fyn
U;; vy,

i 1 1
=-1[ . +§(Z,f;f P+Zl)] B4
where
“rntl+ap _ rn+l+apH _ prn+lp
AU'i,j - Ui,j Ui,j
oF, ok,

A= =S (A - DS = AT -AT A =

A ~

oG, oG
B=Ji-5 (A" -A)S =B*-B, B, = 5
50~ A, au,
Values  AU[/"*”  can be found from the

solution of the linear system (3.4). The iterations are
performed until the right-hand side of (3.4) is driven to
Zero.

In present method the inversion of implicit operator
in left-hand side of (3.4) has been carried out by Gauss-
Seidel line method. This approach described in detail in
Sec. 2.

4. Computed Examples.

Now we will present some computational results
obtained by this numerical method.

A steady-state solution was obtained by the time
dependent method. The scheme parameters were

@=1/3 and b=10__ . Typical value of the Courant
number (constant for each cell) was CFL=50-100. The
solution was assumed to be stationary if the initial value
of residual had decreased by 3.5-4 orders of magnitude.
Algebraic Badwin-Lomax turbulence model [30] and

two-equation (¢ — @) turbulence model [26] were
employed..

Figures 1 - 3 show the results related to the flow in
an axisymmetric U - duct, which was experimentally
investigated in [31] . Computational grid consisted of
122x82 nodes (fig. 1). The flow parameters used in
calculations corresponds to the experimental conditions:
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M,, =0.0925, Re, =10°. Figure 2 shows the
comparison of the static pressure distributions between
measured data and the present computations. Skin-
friction results are compared in fig. 3. Note, that
Baldwin-Lomax model indicates large separation
regions both on the inner and outer duct walls while

(q—co) model predicts relatively small separation

region on the inner wall at © ~ 180°.
Computed results [36] for viscous flow with swirl in
a swan necked annular interstage duct are shown in fig.

4 - 6. Calculations were made for P, =1 atm,

Re, =2-10° and swirl angle B = 20°. Figure 4 shows
constant pressure contours. The comparisons of
computed skin friction coefficient (nondimensionalized
by edge dynamic pressure at inlet) and total pressure
distribution with experiment [32] are shown in fig. 5
and fig. 6.

Figures 7- 9 show results of transonic RAE 2822
airfoil calculations [37] compared with experimental
measurements [33]. Computational grid consisted of
192x62 nodes is shown in fig. 7. Calculations were

performed for M, =0.73, Re=6.5-10°nd angle

of attack at 3.19°. The computed surface pressure
coefficient and  skin  friction  coefficient |
nondimensionalized by edge dynamic pressure, are
shown in fig. 8a and fig. 8b correspondently. In front of
the shock computed results agree very well with
experiment, but behind the shock skin friction for both
turbulence models is not properly predicted. Computed
Mach contours are shown in fig. 9.

Fig. 10 and 11 show the computed surface pressure
distributions [37] in comparison with experiment [34]
and Mach contours, respectively, for an NACA 0012

airfoil at M_ =0.799, Re=9-10° and angle of

attack at 2.26°. Large difference in the shock location
between Navier-Stokes and Euler solutions (fig.9) is
caused by strong viscous-inviscid interaction.

Figures 12 - 15 are related to the 3D numerical
simulation [38] of inclined shock wave interaction with
boundary layer on a cylinder. Computations grid
consisted of 61x35x34 nodes (fig. 12). The free-stream

Mach number was assumed to be equal to M_ =2.95,

the Reynolds number Re =1.45-10" m™'. Algebraic
Baldwin-Lomax turbulence model was used in this case.
Experimental oil-flow patterns [35] and computed
surface limiting velocity vectors are shown in fig. 13.
Measured and predicted static pressure distributions on
the surface of the cylinder in the planes of symmetry

¢ =0 and ¢ =180° are shown in fig. 14. Fig.15
shows the comparison of the lines of constant static

pressure in the plane of symmetry @ = 0° between

measured data and the present computation. The
calculated distribution reproduces the structure of the
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flow quite well, including the system of the incident and
reflected shocks.

Developed method allows to obtain a quite accurate
solutions of the test problems on medium size grids. In
the next lecture we will present the application of this
method to solution of practical problems in
turbomachinery.
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The mathematical models of flow passage for gas turbine

engines and their components

y
Dr. R. Z. Nigmatullin, Prof. M. Ja. Ivanov
CIAM (Central Institute of Aviation Motors)
2, Aviamotornaya St.
Moscow, Russia, 111250

Abstract

Mathematical models for gas turbine engines and
installations components flow passages based on real 3D
geometry of all components of flow passage in particular
on spatial shape of blades are considered.

The models are based on numerical solving of
unsteady Euler equations and so it allows to simulate
some unsteady transitional functioning regimes of
engines and installations together with steady ones. The
models take into consideration the viscous losses,
leakages in axial gaps and tip clearances, cooling air
injection and selection.

The first level mathematical models are based on

2D steady and unsteady methods on S, and S,
surfaces. Some features of numerical algorithms based
on these methods are considered.

The second level models are based on 3D
approaches anywhere in computational domains
excluding the middles of axial gaps between
neighboring blade rows where for the simplification of
the problem the averaging in angular direction is
fulfilled.

Nomenclature
t - time
zZ,r,Q - cylindrical coordinates
€,n,¢ - curvilinear coordinates
o€ O
€,,E,,...- partial derivatives —, % .
0z or
o - angular velocity of rotor
uv,w - velocity vector components in
cylindrical coordinate system
P - density
P - pressure
e - total energy per volume
€ - specific internal energy
T - temperature

€,,C, - specific heats at constant pressure,
volume

m - density of sources of mass

1,11, - dissipative forces components

h - specific enthalpy

s - specific entropy

v - velocity vector

R - gas constant

Introduction

Gas turbine engines and installations development
depends to a great extent on the successful solution of
problems of flow passage aerodynamics which may be
fulfilled by numerical simulations using modern
powerful computers. Experience of design gained at
present time showed the urgent necessity of wide
employment of mathematical tools of high complexity
(2D and 3D steady and unsteady models). These models,
accounting real flow passage geometry, viscous losses,
leakages in axial gaps and tip clearances, selection and
injection of cooling air are considered in the present
lecture.

The lecture begins with the description of 2D

approaches based on the consideration of S, and S,

surfaces. The method of such type seems to be first
considered in [1]. Mainly the approaches based on
streamfunction (or vorticity -  streamfunction)
formulation or streamline curvature procedures were
employed [1-8].

The method described here arises from work [9] and
is based on solving of averaged in angular direction
time dependent Euler equations. Some differences are
that the basic equations are written in the another form
and the conditions at the boundaries between
axisymmetrical flow and bladed domains are
considered. (The importance of the consideration of
such type of conditions was noted in [10]). This method
was widely used in design and investigation of engines
and installations of a number of firms (see also, [16],
[17]). It has some advantages of noted methods, among
them there is the possibility of simulation of some

Paper presented at an AGARD Lecture Series on
“Mathematical Models of Gas Turbine Engines and their Components”, December 1994.
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unsteady phenomena, lacking of problems in cases
shock waves are present in flow or in transonic flow
regimes where the steady equations change character
from elliptic to hyperbolic, the possibility of further
development of these methods by including viscous
terms.

Then an approach, based on using 3D Euler
equations is considered. In the middles of axial gaps the
averaging of parameters in angular direction is fulfilled
with conservation of mass, momentum and energy
fluxes. Right hand sides of these equations include the
terms that describe viscous losses effects, cooling air
injection, leakages, etc. Similar approaches were
considered, for example, in [11-12].

Some important details and features of the

algorithms are presented in appendices A (for S, -

approach) and B (for 3D one).

The capabilities of described mathematical solvers
are demonstrated by some examples of flow fields
calculations in flow passages of aviation gas turbine
installations.

1. Formulation of the problem

The typical flow passage of aviation gas turbine
engine in meridional plane (z,r) is shown in fig.1

(the domain ABCD, including core EFGH and by-

pass duct F/JG ). Either whole flow passage or some of
its components may be considered. The initial data are:
full 3D geometry of flow passage (including blades,
nozzles, etc.), angular velocities of rotors, specific fuel
consumption and heat of combustion, air cooling
scheme. It is supposed also that gas leakages are known.
The boundary conditions include total parameters
(pressure, temperature) and velocity  direction
distributions at inlet AB and static pressure at outlet

CcD .

Depending on the location in the flow passage
either the absolute cylindrical coordinate system (stator
regions) or relative one (rotor regions) will be used.

Gas turbine engine components flows will be
considered using Euler equation with right hand source
members for accounting of viscous losses, blowing in
and blowing out of cooling air, leakages, etc. In
cylindrical coordinates (Z,r,¢) the conservative form

of these equations is:

0 (. 0 (5. 0(m.l0m_ 7
S )+ (rF)+ = G)+7%( H)=ha

p pu
pu pu’ +p
U=|pv| F=FWU)=| puv
pw puw
e ((e+p)u
pv
puv
G=GW)=|pvi+p|
pvw
(e+p)v
pw
puw
H=HWU)=| pw |
pw’ +p
(e+p)w
rm
rmV, +1,

V. +f +p+plw+or)

=
il

rmV, +f, —pv(w+20r) - er%

aw
rmH’ +o’r*pv—ripw—
dat

p - is density, u,v,w - relative velocity components in
cylindrical coordinate system, @ - angular velocity of
relative frame of reference, P - static pressure.

The (1.1) system is closed by state equations:

p=pRT 12)

e= p[e(r) + %(u2 +v +w’ )] 13)




where 7 - absolute temperature, € - specific internal
energy:

.
€= JC,(r)dr+80,CV >0

T
The function S(T) may be specified using the

dependence ¢, on I (or ¢,=¢,+R on T).

(V,,V,,V,) -cooling air velocity components (at the
cooling locations) in the reference frame.

H'- total enthalpy of cooling air in the same frame
of reference. It was supposed for simplicity that the
cooling air is the same gas, as the main flow, but with
different parameters (total pressure, temperature) and
hence the state equations (1.2), (1.3) also take place for
this air.

Cooling air injection, which really is fulfilled
through slots, is modeled by spatial distributed mass
sources with density /77. The distribution of /7 in space
is defined using the cooling air mass rates at different
places of flow passage. In some cases ( for example , in

S, and S, formulations) the density /M may be
distributed by the next way. For each kind of air
injection with number 7:1</ </ (for example, for a
number of perforation slots) it's specified a spatial
distributed function o; , where o, is a mass 8m, of
injected air in infinitesimal volume 8 V' divided by the

mass Om, of "primary" gas in this particle &V
("primary" gas is onc that goes from some inflow

section). The distribution of o; may be easy fulfilled

using a stream function (in two-dimensional cases).
Then mass concentration of cooling air of injection

with number / is

: i=1..,1

¢ =——-" H—,
I+a,+..+a,

1 >

Mass concentration ¢, of "primary" gas may be
obtained from the equation:

e +...+¢, =1
Using the conservation of primary gas mass:

2 (1pey) + = (uc,) + 2 (rpve, ) +

+’1"'a_(’pwco) =0
r op

together with the equations (1.1) it is easy to obtain the
expression for rm

4.3

. du, o,
rm=rpc¢, -—d—t—+...+7 , (1.4)

0
where —=—+
at ot

substantial derivative.

The setting of rm by expression (1.4) is very
convenient because there is no difficulty in defining the

0
+v—+w

0
u_
0z Or rog

functions o; ( when the stream function exists). Also it
is easy to approximate the derivatives in (1.4) so that the
increasing of total mass flow rate will be achieved
without any losses and errors (e.g. if we add 2% of air
to main flow, then mass rate at the exit will exactly 2%
more than at the inflow section). The approach
described above may be applied also for taking off the
air.

The terms (fz £, fq,) are included in (1.1) for

accounting of viscous losses effects.
If we set:

(£.£.£)=-

z>'r g

—\u,v, w) (1.5)
v +vi+w? (
then using (1.1) one may derive the equation:

ds 1
T —=rm{H —-h——\V>+V>+V? )+
7%l L )

+%[(Vz —u)2 +(V, —V)2 +(V<p —W)z]}+l®

where h =&+ RT - specific enthalpy, - specific
entropy.

Using (1.4) one may obtain another form of this
equation:

/
fPT%= rpCoZ{H} _h_%(vj V] +Vg)+
i=1

e (AR O AR |

where parameters V,,V, .V, and H' with index i are

z3" r»
corresponded to kind of air injection with number 7 .

According to these equations entropy changes due
to changing of mixture temperature, losses in mixing
process, etc.

Aterm @ in (1.5) is used for simulation of viscous
losses effects. Let ¢ be a prescribed entropy growth
(from some initial point to current one) due to viscous
losses. The function G must be spatially distributed in
accordance with the notions of the locations of entropy
growth (e.g. near solid walls, trailing edges etc.). The
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values of these losses must be defined using either
experimental data or empirical correlations or boundary
layers calculations.

Then one may put

ao
O=pT —, 1.6
p e (1.6)

d
where ;’; is substantial derivative and may be

approximated by any way.
Governing equations (1.1) are solved using a body
fitted coordinate transformations:

£=¢(z,r,0),
n=n(z7,0), (1.7)
C:C(zﬁr’(P)‘

The system (1.1) may be rewritten in the next
conservative form

o(rU
A7) (e )
+%(§(Fﬂz+§n,+ﬁ%‘t’]w])+

0 h
GC( (FQ +GC +H-= C )) 7 (1.8)

(g, m.6)
&(z,r,0)

where J = ,and terms &,,&, ... denote

1% 6&
the partial derivatives —,—

oz’ or’
For modeling transient operations in engines one must
add also the equations describing the acceleration of
each rotor:

o 0)
J—=M,-M_+M, (1.9

dt
where M is torque and suffixes £,¢ and f refer to
turbine, compressor (fan), corresponding to this rotor
and other sources of torque (for example, forces, using

for the initial acceleration of rotor), J, is the polar
moment of inertia of the rotor.

The solution of unsteady system (1.8) (maybe,
together with (1.9)) even for a number of stages of the
turbine or compressor is a very expensive task. For the
applications it's sufficient in many cases to use some
"averaging" procedures. Two types of such averaging

will be considered. The first type corresponds to S, and

32 surfaces formulations, when the equations (1.8) are

averaged and more simple 2D equations are obtained.

In another approach the full system (1.8) is solved
and the flow parameters are averaged only on some
surfaces located in the middles of axial gaps between the
neighboring vanes and blade rows. (See, for example,
[11], [12], [16], [17]).

2. Axisymmetrical S,-surface formulation

At the beginning of the 50-th Wu [1] (see also [2-
8]) suggested a method of solving 3D inviscid flow
equations in turbomachinery by solving 2D problems on
two families of surfaces .S, and S, . This method is
widely used in design applications because it requires
small computational efforts compared with 3D methods.
An S, - approach described below rises to work [9].

Governing equations that describe gas flows in hub-

to-shroud S,- surface may be obtained from 3D ones

ecither by averaging in angular direction or by
considering the flow between two close stream-surfaces.

Gas flows are considered in channel restricted by
two solid surfaces and containing blade rows (stators
and rotors). The computational domain may be divided
into sub-domains of two kinds.

The flow between neighboring rows (in axial gaps)
is assumed to be axisymmetrical. One may derive the
equations describing gas flows in these sub-domains

from (1.8) supposing: (=0,

& =M, =0,

a7 )25 e

o(ri= =~ h
+5n—(7(Fnz +Gn,)) =5 @y

The governing equations in bladed sub-domains
may also be considered as a special case of common

equations (1.8). Let (E,,n,C) be such curvilinear
coordinates that the surfaces defined by equations

C =const are stream-surfaces located between two
neighboring blades. Then the equation takes place:

uCz+v§,+w—1r—Qo =0 .2)




———

A blockage factor in angular direction may be
defined by the relation:

k=1/C, (2.3)

It's supposed that functions z(é,n,co),

r(&,m,,), o(&,1,¢,) at the corresponding value

{=C, arcknown that is the stream-surface { =G,
is given.

Then one may choose two different ways. The
approach used in [9] corresponds to the choice of other

coordinates (E,, 1’]) satisfying the relation
Eo=T,=0 24)

Then: Z, =1, = O,q)C =Kk,

LA s rkr
J (A J "
i =-rkz,, &—"’ =0
J b J
Me — rkz , me rkz,, Il“l =0 (@5
o ¥
,C.lz:,.ri r'ﬂ ’Cr:__rz‘: zTI
J e o, 9. 0,
Go _[Ze
J R on
The equation (1.8) with accounting of (2.2) leads to
form:
o(rU) o(ri= =
—— |+ == + +
+2[L(Fn, +6n)|=2+h. o
J J
where

45

The terms

ofr of(r of1
55(7‘92} a—c(7c’)’ 52(7%)

are naturally calculated using the identities:

9_(/@}_@(@_:}3(&}0
&\ ) m\s ) als)
5Pl )5)-
&\ )\ )&

()25 =G)
2= ZF |4+ =| =]=0.
e\ J on\ J oc\ J

The equations system (2.2), (2.6) serves for finding of

1 2.7
7

unknowns:U and QB .
78

This approach has the following shortcoming. One

0
may show using (2.2), (2.6) that (—a%) depends on

op

.. 0p
derivatives ——,—.
o€ om
(2.6) then this system would be written in
nonconservative form which may cause some difficulties
in trans- and supersonic flow calculations with strong
discontinuities.
One may overcome this difficulty by choosing

0
So if one excludes (—'q) in
oC

coordinates (&,n) so that instead of (2.4) the next
relations will take place:
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£.0.+EL 48, =0,
2.8)

1
n,C, +n,C, +;-2-nq,C<,, =0

That is the surfaces & =const and (= const

are orthogonal, and the surfaces 1 =const and

C = const are also orthogonal.
Then instead of (2.6) one obtainsa system:

o(rU\ 0(r(= = =1
A7) 2l e )

o(r(= = 1
L P, +Gn, +H - =
= (j( n, +Gn, + rnq,))

+h

(2.9)

1

<>

where as before

and

ofr ofr o0f(1

AF ——Cz > A _Cr)a_(_Cq>)

oc\Js> ) e\t fac\y
are calculated using (2.7). Metric coefficients may be
found by equations:

r zZ 2 I I
ol 5| S|t N
/ ,%; n J/ @, Oy

,cr:_zi Z11 _C_gpzzé z“
J ¢ O, , / o
r%/z = ’(Pc(’n _’zkc’(p")’
,_i/r = —I'([)C(Z11 ~erCz(I)ﬂ)’
&7 thro (2,6, - r.L.),
_rrl]{_ = -—I'(pc(ré - erCr(pé)’
m

—j,' =P, (ze; - I'szZ(PC),

1—’1/2 = —-fkf([)c(z§cf - rECZ)’

The system (2.9) together with (2.2) serves for

: 7 op
defining of U and :36 . It was the approach that

was used in the computations. Note that the equations
describing flow fields in axisymmetrical subdomains
and in bladed ones are different and so at the boundaries
of these subdomains it is necessary to consider special
conditions (see Appendix A).

The approach described here and based on solving
of unsteady Euler equations allows to obtain stable
solutions (at sub-, trans- and supersonic conditions in
absence or presence of shock waves) as well as modeling
of some wunsteady phenomena in multistage
turbomachines.

3. 81 - surface flows calculations formulation.

Together with S, surface one also considers a
blade-to-blade surface 31- The projection of this surface
on the meridional plane (z,r) coincides with the

projection of S, surface streamline. It is supposed that

this S, surface obtained by rotating of the streamline is
a stream surface.




The governing equations on S, surface may be
obtained from (1.8) using some special curvilinear
coordinate (£,M,(). Let the surfaces 1= const be
stream-surfaces; then one may consider an orthogonal

coordinates system (m,n,(p). These coordinates are

related with cylindrical ones by equations:

m= m(z,r), n= n(z,r),(p =¢ and it will be
supposed that the coordinate 72 is arc length along the
meridional projection of the S, surface:n = 1,.

Then along S, (after a choice of the direction of

increasing of ™) the following relations will take

place:
a(m,n,(P) :b-1’ m,=z, n, __5,,_,
oz,r,0) b

r,=bz,,z, =-br, 2. +r’ =1,

n m m>“m

where b is Lamé parameter corresponding 1 (the
layer thickness). Considering the superposition of
transformations

(z,r,0) > (m,m,0) > (£,1,0)

one may derive the formulae (along S, ):

% = [b(mgnp,; ‘mc“"é)]_l

-c(5) 5-45)
J J J  "\UJ

r
3.D
m, :zmrzb(i), Ny =0,
r J
@:%@g) égﬁ@&)
J J J "
g m m
'.'/(L bm;; ','%_:rb(Pga ,CT:—rbq);

Using the identities

SAAEs

2 (%) 2 (m).2(%)-2
oEN\ J on\ / o\ J ) J

aéq,) a[nq,)
— |22 =] 2|+
s\ 1) am\ J
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Mo
— w=0, (32
EARE

2[5}
oc\ J

replacing second and third equations of (1.8) by their

linear combination (multiplying 2d by z,, and 3d by 7,,
and adding) the new system may be obtained instead of

(1.8):

o0 oF oH
—t—t—=
ot

ot og

where

<
1]
~

h, (3.4)
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atl

ol

>
1l

p(w tmr)z G)rm +p{-§g(—m) +§g—(%)}
3 ,

pU(w +2cor)(_r_) -

y r,
cozer(

r
r

rm

e= p|:8+—;—p(U2 +w2)},

U=uz, +vr,.

For accounting of viscous losses one may use either
dissipative forces (similar to (1.5)) or add viscous terms
to (3.4), ([13]). In the last casc one must replace the

term /; in

G, = AdivV + Zu(

(3.4) by ﬁ+5/./, where

b =(0,b,,b,,b,) .

Let

NI

\‘f‘
N——
+
3T
N
\\g“
N———’
| — |
X

)

bk |\ J J )|b &g
Then

b, = —r—(cmmﬁ,m+0mw1§¢):|+
r

o\r 1
+&|:7 (GmmCm +Gm<p ;C.up)] -

Rl
-
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cwp=xme+2p(éjféf)%%+(§})%%]+

2 ,
A =-§ L (Stokes hypothesis),

U — eddy viscosity, K — coefficient of thermal

conductivity.

Some examples of using of S, - surface approach
are presented in figures 2, 3, 4. Fig. 2 shows an example
of calculation of inviscid flow through the turbine rotor
cascade (at r = var, b = var). The calculations of
such type, that take very small computational times,
may be used for estimation of shock wave losses and,
maybe, deviation angles (in absence of extended
separation regions).

An example of inviscid unsteady calculation of flow
through a turbine stage (at low rotor speed) is shown in

4.9

fig. 3. The function 7 = r(m) and b= b(m) were

obtained using steady solution on S, - surface.

The approach with included viscous terms may be
used for estimation of deviation angles and viscous
("profile") losses. An example of viscous calculation
(with algebraic Baldwin-Lomax turbulence model [18])
is presented in fig.4 (at r = const and b = const).

4. 3D approach with averaging in the middle of
axial gaps.

In this approach the gas flow within each blade row
is modeled by full 3D Euler equations (1.8) . At the
section located approximately in the middle of the axial
gap the averaging of parameters in angular direction is
fulfilled, and what is more, it is required that mass,
momentum and energy fluxes through the "ring" from
r to r+38r are the same for both sides of this
section. (It is evident that one may calculate these
fluxes either in absolute or in relative frame of
reference: if they are equal in one frame then it will be
true also in another frame of reference). The averaged
flow parameters at this section are also the results of the
solution.

5. The formulation of viscous problem on S, surface.

The described S, - approach may formally be

developed by adding viscous terms. For completeness let
us now write corresponding equation system for
"bladed" regions (in axisymmetrical domains the
equations may be obtained from usual 3D ones by

setting: 56— =0).
¢

Instead of (2.9) we consider a system:

o(rU olr(= = o1
E(T)+5€[7(F§’+Ga'+h’7i“’ﬂ+

where U ,F,G,H h hayethe same sense as in
(1.1), /_7] is the same as in (2.9) , the metric
coefficients are calculated by (2.10),

b =(0,b,,b,,b,.b,)".
Let
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. o v w
Gy = AdivV +2u7y§ —2u772y3 +

+2u(1)[u51 +vE, +wE, ]
r

Then:

b o|r 1
—}2— = ggl:j(czzéz +0-zr§r +Gz(p ;&q>):l+
olr 1
+% 7 G,,N, +0,M, +Gz<p ;qu) _GZ;CEI
b o|r 1
_]3- aéli (Grzg +GrrE.; +C r%ﬂ*
+_6_ -r—(c +o6, M, +0 1 ) e g
an J 12"z palp p rnq; J

b olr 1
_Ji = —a-g[j(cwéz +0,&, +GW—,—§¢H+

or | S
+a 7 ()'q]z‘l’]z'f'()'(p,‘r],'f‘(f)'(p‘PFT'l(p +—j——0'

b_ofrf o1,  or, 10Tl
oz or ropr’?

r 1
+7U czz&z +Ger.>r +GC 5 Fécp)"'

1
4 csrz&z +Grrér +G/(p 7&47)-'-

1
w O-(QZEJZ +0(prér +G(p(|) Féw)]-i-

al
+__
on

r 1
+7U G, M, +Gzrrlr +Gz(p ‘;n@)“‘

,
ez ¢ o ra(pr

+—w

r
J

r 1
+7v(c,znz +0,M,+6, ;n¢)+

1
0<pznz + qun, +0cp(p ‘;qu, )]

Here:

Ql_(i) . OT mz_T
oz \r)l J 66 J om|

ar (1)(@ or  m, T
or \r)| 0&, J o]

10T _ ()&ar ny oT
r oo J o J on|

Letalso: A=AdivV — Oy

du, v, ow
% Y2 o A o >
ou ov ow

C 2 37 4 >
Mon e o

C1:'Y]

w 4
D:_Y2Y3 _—Y§7
r r

)

[ar oT 10T 1 )
K—MN,+tK—"n, +K— —My |+




sl 7k ()

w v
+Y,— =27, __'YaD]
r r

Then:
c,, = AdivV +
J _r&, ou m, ou 2
2ul = || =22 —+ &2 |-y;A+2y,B,
+ H(r)_ J & 7 &nil Y1 Y16
G, =AdivV +
NE ov mov| ,
2| — || 2 —+—"L—{-v;A+2y,B,,
H(r)_ J % J &n] Y2 Y20,
owzldiv\7+
N\ &, 0w n, ow v
+2u(;)[7¢6—§+7‘PE]+2H;‘—Y§A+2Y3B3,
JNrE,0v m,ov
=0, =N = —+—Z—+
c72r Orz H(r)[ / 65, / 611

ou . ou
+f§, a_&+”r—j—‘a_nj]"71'YzA"'YzBl +YlB2’

N LA
» =% =M ) T 5 T o

, Ow , Ow
+"r.é/"”5g+mj—’—a1—1:|—7173’4+7331 +7,B;,

J\ &, ow m, ow
v S E T
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€, 0v M, v w
et o TR Y ATYE 1B,

J 6 J on
where
divV = /12 r&’u+ré’v+&’—“’w +
r )l éE\ J J J
+i m‘u+r—nLv+&w ,
on\ J J J

2 .
A=-— 3 [t - (Stokes hypothesis),

W= Hgm +Hy,, - eddy viscosity,

K =K, tK,,, - coefficient of thermal conductivity.
The equations (5.1), (2.2) are system for defining of

unknowns: U and [Z—Z)

6. Numerical methods.

All described problems are based on unsteady Euler
or Navier-Stokes equations. These equations may be
solved by methods presented in previous lectures.

Let us briefly recall the main features of used
numerical schemes. These are monotone implicit
schemes of second or third order accuracy in space and
time. The implicit operator was used which allows to
solve the linear systems of equations by scalar three
diagonal solvers. The boundary conditions were treated
implicitly. In unsteady calculations additional "internal”
iterations were used. And in all cases the exact solution
of Rieman problem was used at the cell boundaries
(high order Godunov's scheme).

7. Some numerical examples.

Here a few examples of application of described
methods are presented.

First example is a flow through cooled high
pressure 1 - stage turbine (fig.5). 3D approach with
averaging in the middles of axial gaps was used in the
calculations. The cooling air injection effects were
simulated by distributed sources of mass, momentum
and energy. Viscous losses values obtained from the
experiments with single vane were used for stator and
some simple empirical estimations were taken for rotor.
Used computational grid in meridional plane is
presented in fig.5. The calculated distribution of
isentropic velocity coefficient (some function of static
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pressure) along radius in axial gap is shown in fig .6
(solid line). Experimental results of design office are
marked by squares. Fig.7 shows a distribution of exit

absolute flow angle (90° corresponds to axial flow).
Solid line is calculated result, a line with squares are
experimental data. Some features of calculated line near
tip region are connected with tip clearance losses which
were accounted using some 2D - surface calculations
at tip section of rotor blade. Measured and calculated
mass flow rate and turbine power were in good
agreement.

Another example is a calculation of gas flow
through fan with mid-span shroud, low pressure
compressor and by-pass duct (fig.8a,b). The results
obtained by 3D approach are presented in figures 8-12.
Fig.9 shows pressure contours in meridional plane (at
suction side for rotors and pressure side for stator
blades), fig.10 shows them at hub section and fig.11 at
tip section. Fig.12 shows experimental (solid line) and
calculated (squares) fan characteristic.

The gas flow through almost the same geometry
(but without blade mid-span shroud) was also calculated

using S, - approach. Used computational grid is shown

at fig.13. Calculated pressure contours and stream-lines
are presented at figures 14, 15. It is evident from fig.14,

that used S, - approach allows to calculate flows with
strong shock waves.

An example of steady flow calculation for bypass
engine core is presented in figures 16, 17. The
combustion process was modeled by sources of mass,

heat. The S, - approach was used in this calculation.
Fig.17 also shows good resolution of strong

discontinuities on S, - surface.

This lecture contains main problem formulations
and main features of used approaches. Some other detais
and other numerical examples will be considered later
(in lecture 6).

APPENDIX A

Arbitrary discontinuity breakdown at the boundary
between axisymmetrical subdomain and bladed one.

As it was mentioned above, the equations describing
gas flows in bladed subdomains and in axisymmetrical
regions are different (see egs. (2.1), (2.9)). What is
more, small perturbances propagate in these subdomains
with different velocities. Indeed, in bladed regions local
acoustic perturbances propagate in the direction

perpendicular to grid lines & =const with the

velocities L4 a, where @ - sound speed,
[
g

o(5)+(5)

&

——) are calculated by

and the quantities (

formula (2.10 ). In axisymmetric subdomains the

U

perturbances propagate with the velocities —2+a
Ce
where (,%’ ),(éf) are calculated by ( 2.5 ), and

&

—Z = 0. It reflects in common the physics of the flow.

It is evident from above that, first, these boundaries
are in common case the discontinuity surfaces and,
secondly, it is necessary to set sufficient number of
boundary conditions at these surfaces which depends on
number of coming and leaving perturbances. In other
words it is necessary to consider an arbitrary
discontinuity breakdown problem at these boundaries.

Let us first consider the boundary corresponding to
leading edges. A treatment of the boundary conditions
means that the usual arbitrary discontinuity breakdown
procedure must be replaced by the special one described
below.

£ = (ﬁy ,,5' ,TCPJ, where the metric

calculated by (2.10), and

coefficients  are

f:(f&z ré’, ) where Ez—

and & are found

J J
by (2.5). Let also N = i 'C"‘ Ce c, be the
J T
unit vector normal to stream-surface ( = const
G
i ,&,—9— are obtained by (2.10 ). All
J 7 ]

parameters are related to boundaries of consideration. If
it is necessary the corresponding right or left limit is
used. The parameters at the bladed side will be marked
by index 1 and the parameters at the axisymmetrical




subdomain will be marked by index 2. "Large" left and
right parameters (at both sides of the surface) will have
the indices "L " and "R" .

It's convenient to consider "leading triangle” drawn

at fig. 1A (it is easy to prove that three vectors &, X ,N
lie on one plane)
This triangle may
be corresponded to

some real
"triangle" in blade-
2 to-blade space.

(Vector M is not
necessarsiy

perpendicular to &

and so the models
with right blockage

factor values k # 1
may be considered). Let T be the unit vector which is

A Fig. 1A

orthogonal to E and X. Then the T- projection of

velocity vector ¥V may be eliminated from the next
considerations because of the equations:

(\—/; -?) = (\7L ‘f) = (\7,? -f). So below the vector
will be considered without its T - component. (If ¥ is

the initial velocity vector, then V= V; - (\70 -f)f).

— —\2
? (VR E.»)
Let first — < 1,———— <1, where 4 is sound

2
a; ag -¢

speed, Cé =(EE) Then used in the present work

relations at the leading edge surface may be written in
the form:

_\(7-x)-(7-%)
p. - p, +(pa) - - : =0,
Pr =P, _(62)(pl_ _pz) =0 (A2)
vz . (3)_
LVL— Lci x=V,- 2(:§ x
__\(Ve-g)-V-¢
{pR—pl—(pa)(R )C(l =0 (a3)

where A is specific enthalpy and § is specific entropy.

The first equations (Al) are "conservation laws".
Note that the momentum equation (which must include
the reaction of the area AB with normal unit vector
M) in (Al) s replaced by the equation of
conservation of entropy. It prevents the entropy rise at
the leading edges. (The momentum equation also takes
place here with some reaction of area AB).

The second equations (A2) are relations through
the wave which propagates to the left of the boundary. (It
is supposed here that gas flows from the left to right and

(7, -%)

the "axial" velocity component is subsonic,
X

which usually takes place. If gas flows in the opposite
direction then the surface is considered as the trailing
edge boundary, see below). For simplicity these relations
are written in linear (acoustic) form, in real algorithms
it is necessary to use exact formulae for either shock or
expansion wave running to the left.

The equation (A3) is the relation across the waves
running to the right.

_— —\2
. (7
If the relations —L2 <1, —S——<1 arevalid
L Cr G

then the solving of equations system (A1)-(A3) has no
difficulties. Indeed, expressing the parameters with

index "R" from (Al), (A2) through p, (and also
through given parameters with subscript "2") one may

(7€)

Ce

prove that | pp —(—55) is increasing

function of p,. Therefore one may, for example,
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beginning from some greatest value

o) 2

X

decrease p;

(which is equal see (A2))

until (A3) is true. But it may occur during the

decreasing of p, that one of the inequalities

—\2
v} (VR )
—% < 1,-——5— < 1 will be broken.
a, a - ci
2
Let the relation —L <1 isbroken. Then the system
aL

(A1) is replaced by system:

2
2 c; 2 2 :
!
S, =8,
where the parameters with superscript " ' " are

connected with ones without the superscript with the
shock wave relations. (This is the case of "detached”
shock waves).

— —\2
(VR Ea)
Another case, when the inequality ———— < lis
ag - C;
broken, is more difficult. In this case the equation (A3)
must be thrown out and it is necessary to replace it by
another o There are two alternative equations. The first

corresponds to the choked regime, when p, = p, is

found from the relation :

Another relation denotes that mass flow rates from
the left and from the right are equal (that is, the right

and left "areas” are equal). Let k = Cé / (f . E) ("left
blockage factor"). Then this relation may be written:
— _\2 — —\2 —  —\2
-2 =(V &) +(-N) -2

Using (A 2) one may transform it to the equation:

2)
C.Z'
- ! (v, z) = (V,-N) |a5)
1- k2 c, (x-N)
1+ —
r (z-N)
c;

This value of the pressure P, being found using
(A1), (A2), (A4) (or (AS5) instead of (A4)) will be

= ,c:),_ , etc.)

It is the equation giving the largest value of P,
which is chosen from the alternative equations

marked by [:5 ; - (In this case also ;:)R

=a, and (A4) (and so

~ = (‘713 : E)z
p, = max(pL ,pL) together with: ————21).
az -C;

Consider now what happens if the wave propagating
to the left (and corresponding to relations (A 2)) stops
and begins to run to right.

If it is a shock wave then one may choose the
parameters with index "L"  being equal to the
parameters with subscript "2". At the case of expansion
wave according the left wave front speed the parameters
with index "L " either are equal to parameters with
index "2" or are bound with them by expansion wave

(v, -x) |

— = @, . The third
x

equation of (Al) is thrown out. To these two equations

relations under the condition:

(v, 2

one may add (A3) while a, . If the last
C
4
condition is broken, then two alternative equations may
be considered instead of (A3) (similar to the case:

[

(V)
a,).

x Ct’;

=0, and P, = P,. The




condition that gives the largest value of P, is chosen

(¥ -8)

(while: > dg ). In any case the equations are

: VR i
easy solved relatively the unknown .
c
&

If gas begins to flow backward then leading edge
boundary is considered asatrailing edge one. The
conditions describing this case are the next.

Let

V-
ptr_p2+(pa)(2 ),
CI
”n 1 ”n
P’ =Pyt (p"-p,),

and p" be obtained from equations:

AT+ (7)< A,
s(p". ") =s(p",T""),

pII
pHR

where 7" =

(by other words, p"" is total

pressure corresponding to p”,p”,V"). Then at the
"leading edge" gas
begins to flow
backward if and

only if p'> p"" .

Let us now
consider the trailing
edge boundary.
Similar to leading
edge case one may
define "trailing edge
triangle"  (fig.2A).
Let £ be a unit
vector which lies on
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the plane of the vectors .i',é,lv (they are similar to
ones in the leading edge case) and satisfies the
condition: (.27:— é)-@ =0.

Let its direction be the same as on fig.2A. It is
convenient further to consider all vectors in the

coordinate system with basis —é— ,/V . {One may exclude
c
4

the T - direction from the consideration similar to
leading edge case).

Let:

- =u, (V-/V)zv,
(Z'é =o>0
Ce

(we have chosen such direction of ? ),

)=, N,

k= l—Y—B. The value A’ may be defined as "left
o

blockage factor". The parameters at the right side of the
boundary surface will be denoted further without the
index "R".

Let us consider first the case when ¢, <@, ("left"
flow is subsonic) and (u2 +V2) <a’ ("right" flow

without the component (\7 . f)% is also subsonic).

Then the relations at the boundary surface used at
the present work are the next:

[p(ku +yv) = Py,
s=s,

%

1 A6
h+5(u2+v2)=ly+%u£2 (49

~p(ku +yv)(au+pv)+op = (pLuL2 +pL)a
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V=V,
pa
p- (F2) (ku+vyv) =
k* +v?
(A8)
pa
= pl —%(kul +'YV1)
+Y

The first, second and fourth equations of (A6) are
mass, energy and momentum conservation laws. (The

momentum equation for the direction orthogonal to l
is not included to (A6) because it serves only for the
defining of reaction of the area AB. This force is
supposed here to be orthogonal to AB). They are
unsufficient for the trailing edge case. So the equation of
entropy conservation is added. Note that the number of
equations (A6) is more than similar one of (Al). It is
because the number of running away characteristics is
more than it takes place for the leading edge.

Two first equations of (A7) are relations for the
wave propagating to the left, and (AS8) is the relation for
the wave running to right. They are written in acoustic
form, but the precise form of these equations were used
in algorithms. There are not any difficulties in using
these nonlinear equations because the system (A6),
(A7), (A8) is solved by iterations.

Finally, as recalled in (A7), v, =Vv, =0.

Some notes about solving of the system (A6), (A7),
(A8). For this the solving of (A6) is key task. Let us
consider a function

f(p) = p(ku +yv)(ow+Bv)ap,

where p, U,V are expressed by p and parameters with

index "L" using first three equations of (A6).
Then one may obtain the formula:

uk+vyv

or (Bu-av)k+v?) 1

op  yu—kv ok +y ) |
op , . .
where @ = 5‘; is sound speed (with omitted

index "R"). It is evident from (A 9) that if vector V lies

within the angle being formed by vectors € and 7
then £ is monotone function of p. Considering the

extreme cases, when V is collinearto & orto £ , one
may show that in one case f is no more than

(p Ul Ep, )OL and at another f is no less than this
value. And so the system (A6) always has the only
solution relative parameters with subscript "L" ( when
u? +vi<ad).

Further one may reason similar to leading edge
case. Supposing the value of p, tobe known one may

find other parameters with subscript "L" , then solve
the system (A 6) and at last prove the condition (A 8).

So p, may be decreased beginning from some largest
value until (A8) is satisfied.

But during the decreasing of p, one of the
relations: U, <@, or v +vi <a® may be
broken.

At the first case the wave running to the left
(precisely speaking its left front) and corresponding to
relations (A 7) has zero speed.

1t is either shock wave or expansion wave.

If it is shock wave then other

p, =P,,U, =U,,p, = p, take place instead of
(A7) and one of the equations (A 6) must be excluded.

relations:

The second equation S =S, is excluded if under this

condition the inequality §> S, is true, otherwise the
fourth relation must be ecliminated (this is the
requirements of the second law of thermodynamics).

If the corresponding wave is an expansion wave

then one must differ two cases. If ¥, <@, then the
parameters with subscripts "L" and "2" are bound by

expansion wave relations under the condition:t/, =@, .

And if u, 2@, then the values of parameters with
subscripts "L" and "2" are equal. In the both cases the

fourth equation of (A6) is thrown out.
So the case is considered, when during the

decreasing of p, therelation ¥, = @, is broken.

Let now the condition: u* +v? <a? is first

broken. And so the relation &’ +vi=a’ is
fulfilled. This is the case when the flow is choked
"behind the throat". Starting from this moment the
values of the parameters with index "L" are constant

and correspond to condition: 2 +v? =a*. And the
fourth equation of (A6) is excluded in this case.

Thus all cases are considered. (The conditions of
appearing of opposite directed flows are similar to the
conditions at the leading edges. In this case the "trailing
edge" boundary must be considered as "leading edge "
one). )




If the fourth equation of (A6) is excluded then the
solving of system (A6) and (A8) do not meet any
difficulties.

Let us consider the system (A8) and (A6) with
excluded second equation of (A6). For simplicity the
case of perfect gas with constant specific heats in a ratio

¢, /Cv =« will be supposed. (In common case the

obtained below formulae will be used in some additional
iteration process using the relation:

K

s P )
k-1 p

Let: G=ou+PBv,v=Bu—oav. The system
may be led to quadratic equation relative the v . The
final formulae are:

5h=c,8T =

7., .2 2 T _ 7.3
A:l k:::y + & X (kﬁ ya) kzly +
(pa) P | k=1 pyy (pa)
 L1a’(kB-ya)
2 pu;
’2 2
—%[DLUHPL—A]NM#M)
1, (p@)
B=——a’(kB-ya) ; +
k-1 pLu;
s K YKy By YR Ay
k-1 (55) Py (5_) l
(0 +p,U
(pL Pe L)“(kU1+YV1) ,
Py,
2
co_X_ (:,22 k::szl 0‘(:"’L+‘7’LUL)_(kul+le) «
x—1piu (Pa) Pl
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X W(PLUZ +h, _pl)+(ku1 +YV1) +

2
k2 2
[ ; (pLuf +p, —pl)+(kul +v, )ji
+Lg -
2 SH

Having calculated V' , one may find p:

(kB - yor) -
2 2 2
NLSE L@

(pa) pLu,

p:

+alu, —(ku, +yv,)

W+a2 ,

then & :

and, at last, p,u,v:

o= PLY,
od+ (kB —yo)v’
u=ald+pv,v=Ba-av.

As described here and wused in calculation
procedures at the "internal" boundaries have the
property that "subsonic" and "supersonic" cases are
corresponded onc to another. It denotes that at the
continuous charging of values of parameters "1" and "2"
fluxes at the boundaries also vary continuously
(including the case when a shock wave comes to the
boundary).
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Note that instead of the fourth equation of (A6) any
other model may be used. For example, if flow deviation
angles are known (as some semi-empirical functions of
other parameters), one may use them in (A6). The
general scheme of reasoning will be almost the same,
only same formulae will vary (and even become more
simple).

APPENDIX B

The averaging of 3D flow parameters at the middle
of axial gaps with conservation of mass, momentum
and energy fluxes

As it was mentioned during the 3D gas flows
calculations in multistage turbomachines the averaging
of parameters in angular direction at the middle of axial
gaps was fulfilled. On the one hand this guarantees the
existence of steady solutions, on the other hand it allows
to consider only one blade-to-blade channel for each

blade row.
The surface which is used for averaging will be
called "surface of averaging”. It is the right boundary

& =const of "left" blade row and the left boundary
& =const for the "right" one. The computational
grids used in the present work have the property that the

"grid surface” 1) = const are rotation surface located
between hub and shroud.

On the surface of ave:raging:E_,(p =0 .Let

It is sufficient to consider the case, when the grid
surfaces T = const are continuous at the surface of
averaging.

Let the parameters with index "1" be right hand
limits and with "2" the left ones. They are calculated
using piece-wise parabolic distributions of characteristic
variables.

"Large" values of parameters which are used to
form the fluxes at all boundaries will be marked by
subscripts "L" and "R" (respectively for left and right
side parameters).

The averaging of parameters fulfilled under the
requirement that for any ring part of the surface placed
from 7 to r+3r mass, momentum and energy fluxes
are equal for both sides of surface of averaging. This
condition can be written in the next form (for each 7 ):

2n 2z

[(pu,), éd0 = [(puy), C do

0 0

27 2n

f(pUi + p)l_Egd(P = J(pUi +p) Edo
0 0

2= 2n

where:
2n
A= jl:puk{h+%(l/: +uf +w2)}] &,
0 R

Let us define (for each radius) some "equivalent”

axisymmetrical flow with parameters R U,V W P
which realize the averaging procedure. The "average"
influence of right domain to left one and inversely is
performed through this flow.

"Large" values of parameters (with subscripts "L"
and "R") are found from the exact solution of Riemann
problem (this procedure is used separately for each cell):

Uy = U,

W, =w,

{PL=P; +(pa)’ (g —1,,)=0 (B2)
p.-ps—(0?) (o, ~p,)=0

"

P —P—(pa) (ukL _Uk) =0

Up =U,

we=W

{PR_P*"(PG),’:(U/(R_U/():O (B3)
pe—P-(a?) (pe-R)=0
pe-pi-(pa)" (4, -U,,) =0




It is supposed in (B2) and (B3), that gas flows
from the left to right and the flow is "axially" subsonic
which usually takes place. (If this condition is broken
for some cells then one must replace these equations by
corresponding others in accordance with Riemann
problem solution). As earlier these equations are written
in linear (acoustic) form for simplicity. Really the exact
equations were used for shocks and expansion waves.

There are five unknowns R, U,,U, ,W,P in
equations system (B1) (with account of (B2), (B3)).

Two of them U, and W are found immediately, and
the Newton method is used for solving of other 3
equations.

Some notes on the averaging procedure used.

If the flow for both sides of the surface is
axisymmetric then as it is easy to see the parameters
R,UV W P are usual "large" ones, which are used
in forming of fluxes. That is:

pL =pR :R:ULZUR:U
etc. In other words in this case the averaging procedure
is trivial.

If the flow is "axially" supersonic then instead of
(B2) the equations will take place:

P =Pl = Uy, v, =Vy, W, =W,,0, =P,
and instead of (B3):
pp=Ru,=U,v,=V,w, =W, p, =P

Then it is evident from (B 1) that the flow with

parameters R UV W P is obtained from the flow
with parameters with subscript "2" by averaging in
angular direction with conservation of mass,
momentum and energy.

Finally, if flows for both sides of the surface are
slightly perturbed uniform axisymmetric flows then one

may consider a linear problem with "freezed"

coefficients replacing the flux vector

FU)=AU)U by A(UNU . where

(70 =const s /uniform axisymmetric  flow
oF (0)

is Jacobi matrix). Reasoning

(AU) = —=
ou

similar to supersonic case and considering "plane
waves" it is easy to find that considered averaging
conditions are "non reflecting”" ones and "Riemann
invariants” are averaged in angular direction.

These notes show that used averaging procedure is
quite "natural”.

Note that this procedure allows also easy construct
"mixed" models of flows in multistage turbines and
compressors, when in some blade rows the flow is

calculated by 82 - approach and in others by 3D
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method. Such method of calculation may be useful, for
example, during the design of some separate blade row
or stage when the influence of other stages can be
accounted by more simple and less expensive way. It is
evident that for this "mixed" model the averaging
procedure remains the same as for fully 3D case. This
model may be useful also for some unsteady
simulations.

In conclusion note also that the procedures
described at appendixes A and B show the
convenience of using of numerical schemes based on
Godunov's scheme, with use the exact solution of the
Riemann problem.
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Meridional plane of the computational flow passage of bypass gas turbine engine.
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Calculation of inviscid flow through the turbine cascade at S -surface (dotted line is a result of solving

of full potential equation [14] ).
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Fig. 3. Unsteady stator and rotor interaction at S;-surface (inviscid calculation ).
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Fig. 4. Viscous flow through turbine cascade (circles - experimental data of [15] ).
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Fig. 5.

Computational grid (at meridional plane ) for cooled 1 stage high pressure turbine.
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Fig. 7. Exit absolute velocity angle distribution for high pressure turbine.
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Fig. 8a. 3D computational grid for fan with blade mid-span shroud and low pressure compressor (meridional
section).

Fig. 8b. Computational grid for the fan with blade mid-span shroud and low pressure compressor (hub
section).




Fig. 9. Pressure contours at some meridional section.

Fig. 10. Pressure control at hub section.
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Fig. 11. Pressure contours at tip section.
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Fig. 12.

Fan characteristic (solid line - experimental data, squares - calculated results ) and gasdynamic
stability line.
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Pressure contours.
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Fig. 15. Stream lines.

Fig. 16. Computational grid for the bypass engine core.

Fig. 17.

Pressure conours for bypass engine core in meridional section.
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Simulation of multidisciplinary problems for the thermostress state of cooled
high temperature turbines

by
Dr. V. K. Kostege, V. A. Halturin, Dr. V. G. Sundurin
CIAM (Central Institute of Aviation Motors)
2, Aviamotornaya St.,

Moscow, Russia, 111250
Abstract 1%
OE pV . gasdynamic functions
Numerical models for the thermostress state analysis ParVer
of turbine rotor elements are discussed. Steady and e(M=p/p;
unsteady temperature ficlds are calculated and result in R - gas constant
solution of conjugate heat and hydraulic problems for T - friction tension
blades (quasi three-dimensional model) for disk (two-
dimensional model) and for the whole cooled rotor (three- Subscripts
dimensional model). A lot of attention is given to mass .
. ; . a - ambient
flow calculation in blade passages and turbine W ) wall
circumferential disk cavities. They are determined by
. X . con - contact
using experimental data for pressure loss and generalized time moment
dependencies for friction and heat transfer coefficients on m } m ome
pe e - finite element
stators and rotors surfaces. W } rotation
On external blade surfaces the boundary conditions t t
. . . . - otal
are defined from the solution of two-dimensional and d } disk
three-dimensional gas dynamics problems and corrected ® } circular
from experimental data base for film cooling. The
thermostress state is calculated by a finite element method .
Introduction

for realistic geometry using common equations of

elasticity theory.
Nomenclature

- heat capacity

thermal conductivity

- temperature

heat source

- heat transfer coefficient
- shape function

- time

coordinates

- pressure

- velocity

- pressure loss coefficient
hydraulic diameter

- passage length

- mass flow

- passage cross - sectional area
- surface

Laval number
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<
N
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Complex solution of gas dynamics, heat transfer and
stress conjugated problems is an important trend in the
development and application of mathematics simulation in
the analysis of a modem high temperature turbine. An
example is the problem of an aviation engine, cooled, high
temperature turbine rotor thermostress state, for which the
accurate solution is provided by simultaneous calculation
of air and gas mass flow in inter disk cavities, in blade
cooling passages, and in the gas channel.

General purpose non - linear finite element codes,
such as MAPS, ABACUS etc. are used as a solution of
plasticity theory stress and for temperature field
calculation with boundary conditions.

A method for the calculation of a cooling air mass
flow distribution in an internal channel of a turbine blade
by a multipass configuration was presented by Jen and
Sobanic [1], Kumar et. al. [2]. Both methods are based on
published correlations describing the heat transfer and the
pressure loss. In this work, no special attention is given to
temperature definition in the blade metal. A method of
temperature field calculation for steady and unsteady
conditions with three - dimensional and two - dimensional
models, through several sections of the blade is given by

Paper presented at an AGARD Lecture Series on
“Mathematical Models of Gas Turbine Engines and their Components”, December 1994.
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Gastebois and Lagrange [3]. Three-dimensional blade
temperature distribution and internal boundary conditions
are calculated using an iterative coupled procedure given
by Tietz and Koschel [4]. In this work, questions of
temperature calculation for blade with a film cooling
system are not discussed.

Taking into account possible errors in the statement of
three-dimensional boundary conditions an analysis rule is
realized at the conclusion.

Lower level models are used at first. For heat state
calculation, an applicable interactive system of simulation
of two-dimensional and three-dimensional problems by
finite elements method, is given which includes:

e modules of automated generation finite element grids
in a two-dimensional and a three-dimensional
compound region with minimum initial data.

e modules of calculation of one-dimensional flow and
heat exchange in blade passages and in
circumferential disc cavities using experimental data.

e modules of calculation of steady and unsteady
nonlinear two-dimensional and three-dimensional
equations of heat conduction by finite element
methods with boundary conditions of second and third
kind, with boundary conditions of contact heat
transfer, and also with periodicity conditions.

e modules of graphic treatment of initial data and
calculation results (two-dimensional and three-
dimensional graphics).

In this lecture, heat transfer and hydraulic models are
discussed for the profile part of blade, for disk and for
rotor (which includes blade, hooks and disk). Also the
practical application of results of mathematics simulation
methods to analyze heat and stress processes in aviation
engine elements is demonstrated.

1. Simulation of turbine element temperature state
Equations of heat conduction (1.1) with boundary

conditions of the second and third kind (1.2) and with
contact heat transfer conditions (1.3) are integrated.

oT
po-= V&VT)+w=0 (1.1)

oT
—k5;=h,,(Tw ~T)+q (12

{5] =h.r.-1.)
{kg—f;) =Hen(T2 ~ T30)

These equations describe unsteady temperature fields
in a three-dimensional body with inside heat sources. On
body surfaces they can be simultaneous, taking the place
of convection heat flow, (determined by heat transfer
coefficient and ambient temperature) and radiation heat
flow (1.2). In compound constructions, such as a frame
and turbine rotor, the common boundary temperature
fields is wrecking break, the size of which depends on
contact heat transfer. Boundary conditions on such
surfaces are written down as (1.3).

Intergration of equation (1.1) with boundary
conditions (1.2) and (1.3) is implemented by a finite
element method. As a result we have a system of linear
algebraic equations (1.4) with relatively unknown
temperature values of a finite elements grid node.

(1.3)

2 i _
(—A—t[P]+[H]+[Q])T} =
(1.4)
(%[P] ~[H1-[0] fr}" +2{0,}

where

H,=2h.

e <] 9N.2N. aN.3N. 3N.2N.
VAR x Ty v x & |

. pt
11:211, P, —n‘_)[cpN1dv

e

Qtjz ZJ:haNthds’
l or

QT,;ZJ- heonN Nj ds
¢ Son

0t = ) (hTut @) Neds + Y, | N-Way
e S: ¢y
T=[NU{T}




In computer programs for the two-dimensional case
linear triangulation is used and for the three-dimensional
case, a 4 - node tetrahedral and 6-node prism are used.

Calculation of matrix elements [P],[H],[Q] are

implemented analytically for triangles and tetrahedrals.

For prisms the integration is implemented in a local
system of coordinates using Gauss's quadrature.

Solution of a system of algebraic equations (1.4) is
implemented by successive upper relaxation method.

To provide a unique solution, heat capacity diagonally
matrices[ P] are used.

2. Finite elements grid generation
2.1. Two-dimensional grid.

Two-dimensional arbitrary shape construction is
automatically  discretized by trianglar elements.
Construction can include some details (calculated under
regions) each of which can be multiple connected. A
minimum number of nodes is needed for describing the
construction boundaries, line segments between which
describe sufficient exact contours of each subregion. If
subregions unite in one group, then each subregion can
have its own heat transfer properties, but on common
boundaries, the temperature field is continuous. Between
subregions which belong to different groups, we shall fix
contact surfaces. An unstructured grid is generated in
each subregion (Delaunay triangulation).

Printed data is array numbers which have information
about the finite element grid and includes: numbers of
node couples which are at the beginning and end of the
boundary segments calculation region, numbers of nodes
forming contact segments, grid node coordinates, inter
node ties and addresses of inter -node ties.

One-dimensional arrays of inter node ties for each
node (for example T ) includes: node numbers connected
with T - node in order of node round-about way against
pointer.

Addresses of T - node ties in an array of inter-node
ties are defined by array addresses, which includes ties
beginning addresses of each node. In the ties array for
each node enumerated connected with other nodes, the
number of each is larger, than theT - node number. This
avoids a double description of each tie and uses thematic
symmetry in equation system (1.4). The way just described
demands a minimum volume of active computer memory.
Also, the array of triangles and their sub region order
numbers is embedded information. This information is
used to define appropriate heat physical properties of the
material while calculating matrice elements in equation
(1.4).
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2.2 . Three-dimensional finite elements grid.

A three-dimensional grid is generated based on six-
node prisms and tetrahedrons. Prisms are used for grids
generation in compound regions, which have a cylindrical
structure. Prisms are situated in layer wise direction
coinciding with cylindricity axis of a three-dimensional
object. An example of objects with piece-cylindrical
structure can be a turbine disk (cylindricity in circle
direction),or a lock of blade (lock axis is cylinder axis).

The basis for generating a spatial prism grid is a two-
dimensional plane template (body projection on plane,
which is perpendicular to the chosen cylindricity axis),
which is broken into triangles. In body projection should
be contained all geometry peculiarities, which are
distinguished as sub regions.

The simplest variant of generating a three-
dimensional prism grid is by making a template step
moving along the chosen direction - cylindricity axis.

Key information for grid generating is a layer filling
array. Each sub region of the template in each layer can be
the volume element basis. If the sub region is empty (in
this layer the sub region presents a cavity) an appropriate
array cell includes zero. Also in the sub region some
details is define. Consider that between elements, there
are contact surfaces with thermal resistance. Between sub
regions of one element contact is ideal. This information
allows the formulation of a list of node numbers for
compound finite elements (prisms).

To define the real node coordinate of each layer, a
row procedure is used. Templet accommodation as the
whole thing on the chosen cylindricity axis, complete in
space at first. In consequence we have a regular structure
in the axis direction for which each layer is plane. For
grid generation for example in disks, the templet is
situated as a fan from section to section around the given
disk axis. Also for grid generation in such regions as a
profile part of blade, reflection of the whole templet or
only its part on a piece-linear spatial surface is used.

Also there can be the possibility of a templet crook.
To local two-dimensional templet node coordinates, a
third coordinate is added, creating a local three-
dimensional cartesian coordinates system. This crooked
templet can move by steps along cylindricity axis creating
nonplaner sections. For example, for a grid generation in
the region of a perforated blade leading edge, the plane
profile part of a blade section is a templet. Templet
crookedness happens in the case of holes inclined to a
section plane.

After calculation of all global node coordinates, grid
smoothing is realized, it means the node situation changes
without the calculation region external shape changing ,
improving grid quality.
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Simultaneously with a volumetric finite element
grid, on the templet base spatial hydraulic net of cooling
system with bond to triangle or four -cornered surface grid
elements is generated. Also, geometric characteristics of
net branches are calculated. In this way liaison between
the three-dimensional finite element and hydraulic models
is provided, needed for solution of conjugated heat
conduction analysis.

3, Calculation of air mass flow and parameters in the
turbine cooling system.

Calculation of cooling air mass flow through blade
cooling system passages is implemented by using
hydraulic type resistances.

Air mass flow in the turbine air cooling system
channels, and mass flow velocity components, pressure
and air temperature in circumferential disk cavities are
defined from calculation of one-dimensional flow on
branches of the generated hydraulic model.

3.1 Calculation of the hydraulic net, simulating the
blade cooling system.

Cooling air mass flow in blade passages is simulated
by the flow in hydraulic net branches. It signifies in an
appropriate model of united hydraulic resistances. Net
generation is realized using blade geometry, given in a
simpler way with the help of layered rows by height. On
each layer is an appropriate plane blade section. Net
branches simulate hydraulic resistance of a particular part
of the blade. To each appropriate T branch appoint area F
and hydraulic resistance E_, . Drop of the total pressure on
branches m for incompessible flow between nodeT and j is
written down in :(3.1.1)

1(GY
&—@+Nkﬁ55? (3.1.1)

In order to make the equation (3.1.1 ) linear, we write
down an expression for mass flow in (3.1.2)

P,
(;=E—é;(gf“-—3f“-—Ag)(&Lm
o

where § , = SFT

(Ptf—Ptik_AP)pj

G, = : -
f

Pressure characterization in hydraulic net nodes

k41
{P,} is defined from the solution of a linear system of
algebraic equations, received from the mass flow balance

k
equation for inside nodes by using previous {P,} :

.G, =0

(m-branches index , which have common node).
For compressible flow equation (1.3.1), it is written
down inform (3.1.4):

(3.1.3)

pop o €, (03964P,gWF
Pj N
(3.14)
P}
p;= RT;

e(A);

Air temperature at inside nodes is defined by equation
(3.1.5) by taking into account flows turbulence, air
heating as a result of heat exchange with the blade and
from centrifugal forces acting.

YT + AT, + AT, )Gy, |

T =
’ Z(Gocp)m

here m-indexes branches, which have a common j node.
Air heating on branches from heat exchange with the
blade is defined as :

™ (3.1.5)

[T, - (1} +7)os]

Air pressure variation and air heating in a branch
from centrifugal forces acting is defined from dependence
on rotation frequency and hydraulic net node radii.

Hydraulic resistance to air mass flow in cooling
passages defines flow capacity of each passage and also
for the whole cooling system. Total pressure losses
coefficient §{j on each branch is presented as the sum

€, =6, +&,, where & - friction losses on the branch,

and E, - local losses, for example passage entrance losses

or passage exit losses.
Friction losses are defined using friction coefficients

A, by correlation




l
g’t = )"f E

To define friction coefficient in smooth passages
(taking into account wall roughness) and in rib passages
well-known experimental data from many authors are
used. Friction losses coefficients for sudden section
narrowing or broading depend on correlation of narrow
and wide section areas and entrance (and exit) flow
conditions. A lot of experimental data for local losses are
in reference books on hydraulic resistance.

3.2. Calculation of air parameters in the turbine rotor
cooling system.

For the calculation of heat exchange boundary
conditions of disk surfaces it is very important to have air
parameter distribution in turbine circumferential disk
cavities. It can be approximately defined from the solution
of a system of one-dimensional differential equations by
giving average parameters at entrance and exit of
circumferencial disk cavity. By this, tangent friction stress
values on revolving and immovable surfaces are
calculated using criterial equations.

Changing flow parameters by radius in the clearance
between revolving disks or between disk and immovable
wall can be defined by numerical solution of equation
system. (3.2.1)

0
Ga—r(rV(p)=2n‘,r2'cz ;
2
LV, Ve 1o Ik,

El +V:+av, I oL hdr( _T)
or{ ° 2c, 2pcGar cG\V* )t
bt
c,,G(“ ) (32.1)
0
a_r(pFrVr)=07
_P
P=&T
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where Ty = kFT, + kF,T, -for flow between the disk

and immovable wall.
Ty =2kF7, - for flow between two disks.

T,and T, -tangent friction tensions on the disk and wall ,
calculated by relations :

vV, -V,
(o, b

rel

2
[

Re,, = (ch s )r

0535 V.? V.r
- p;;;’Re_:L.

TZ - Reo.2

(T, is positive for a centrifugal flow. In other cases T, is

negative); kF, (sz) -correlation of real disk (wall)
surfaces to annular surface on integrated part.

I
oL =2nrt ,O)rEar -operating , which made by

revolving disk

(Vq, -V, < 0) -or twirling flow (Vq, -V, > 0) ;

T, = 21, -while flow in clearance between two disks;

T, =1 -while flow in clearance between disk and wall.
Substitution in the equation system integrated variable

R to Z, and equation of momentum conservation in radial

direction to momentum conservation equation in axis
direction leads to :

o(v?
21rd m =2nrt —2nrd oP

0z 0z
which describes one-dimensional swirling flow in an
annular clearance of constant width & (§ << r) between
disk and shaft or between disk and stator .

Because parameters of entrance in some
circumferential disk cavities depend on flow history, then
parameter calculation in circumferential disk cavities of
type (8) needs common solution of equations systems.

In common cases the hydraulic air admission system
model consists of branches which look similar in order of
parts with appointed flow type (such as flow between
revolving disk and wall ; in the annular clearance between
disk and shaft ; labyrinth between rotor and stator ; in the
revolving radial passage ; in apparatus of preliminary
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annular air introduction) with typical hydraulic resistance
or with given mass flow characteristic.

Calculation of such a hydraulic net is made by a
successive approach method, in two stages on each
approach. At the first stage equation system (3.2.2 ) is
solved, analogous to (3.1.1)

P P, g
- ——}_+AP(D =—LG0G‘J

n(h) () P

If the equation is solved for a branch , simulating flow in
circumferential disk cavities, then the pressure change on
the branch is defined by quantity AP® (first items in
(3.2.1) it is small because of the small speed mass flow
component ). Relative to the quantity AP, there are
successive approaches. If AP® is zero, from equation
system solution (3.2.1) mass flow values th are defined

on hydraulic net branches with given average parameters
in boundary nodes. Then for received values from
equation system solution type (3.2.1) we have parameters
at the end of the branch on the exit of this cavity ) also
this turbulence at nodes is defined by the circumferential
speed component and the temperature is according to:

1% _ZVWGT T _ZTnGt
=" 3G " G

here m -indexes branch nodes , which have common node
T . For previous values {Gv}, {P} and new values {Vq, },

{T} equation systems (3.2.2) are solved.
At the end of the stage AP is defined as

AP =P;-P, -E’—fG,.j..
P

(3.2.2)

with received vector AP the first stage is implemented
again.

The calculation succession described continues until
the establishment of vectors {P}. As a solution result we
have average parameters in net nodes and parameters
distribution in circumferential disk cavities.

4. Simulation of temperature fields in a turbine
element.

4.1.Simulation of temperature fields in blades
(quasi three-dimensional model).

The calculation model of the profile part of the blade
heat state includes a finite element and hydraulic model,
boundary condition models and heat conduction model in
the profile part of blade.

For a chosen plane profile parts of blade sections with
appropriate geometry, we generate two-dimensional finite
element grids. The profile part of the blade section
numbers is chosen in a way, that it will take into account
peculiarities of the profile part of the blade cooling
system. Separate finite element grids generated in each
section and united in one whole grid is more expedient
than generating one whole grid simultancously in all
sections.

For mutual crossing excepting, it is very important for
calculation Tresults visualization to make section
displacement relative to each other by one axis Y.

The cooling system hydraulic model generated and
branches bound to appropriate blade section contours is
accompained by use of a graphic dialogue regime.
Geometric branch characteristics are defined using point
coordinates on section contours and some drawing data.

Boundary condition models generated include
requirement of criteria dependence for heat transfer
coefficient calculation on different blade section parts. For
blades with convective film cooling systems on the finite
element grid generation stage cornering passage
projections on a section are distinguished as sub regions.

In the graphic dialogue regime, ties between
perforations and the appropriate hydraulic net branch are
established. For heat transfer coefficient calculation in
passages needed in the editor regime, passage hydraulic
diameter and passage step by height and passage
inclination comer to section plane are also given. In
perforated passages, local heat transfer coefficients and air
heating are calculated. Received values are used in heat
sources, which simulate heat exchange in perforated
passages. Source intensity is defined as

W, =hF(T,-T,)/V, =hW,(T,~T,)

here T, - air temperature in passage limits of T finite
element.; 7. - middle temperature of T element ;V -

w

volume of region with source ; Wg— source geometric
characteristic (for cylindricity passage W, =7 /S m,
defined only by hole step.)




For film cooling characteristic calculations, which depend
on cooler mass flow, hole step, blowing ratio, Mach's
number of basic flow, blade curvature is used in
experimental dependence.

(A.Trishkin, CIAM)

-1

t (Bv)an[ A(x) o
0= K) 7 +001T ==/ 1+ A 5 ReRJ :

]
t,—t

g a

where 0, =-—"—=

K - coefficient, which taking into account flow blowing
out corner to section plane.

K=1 t with & = 30°

K= 0,63 with o, = 90° (pressure side )

K=0,73 with o = 90° (suction side)

( pv)g - mass flux on film coverage surface till

calculation point ;
A = 4,5 for suction side
A =-7,1 for pressure side
x - distance from blowing site
R - middle surface curvature radius from blowing site.
In case of multi row blowing while 0 ;and film

temperature f,, calculation take into account calculation

results for holes, situated up stream, it means that instead
of gas temperature at the blowing site we take the
previously calculated value ¢ for

On the external blade surface, heat transfer coefficient
is defined using two-dimensional boundary layer
calculation programs and correlated coefficients, taking
into account film injection.

Calculation models that were described , are the basis
of program complex Quasi 3D. Account of mutual
influence of models is implemented by an iteration
process. Some calculation results of turbine blade heat
state with using this program complex are presented in
Fig.4.1.1. Here are presented hydraulic and geometric
models, external boundary conditions and temperature
fields in a middle section and also the temperature
distribution of blade's suction side.

4.2 Simulation of temperature fields in disks (axis
symmetric model ).

For disk heat state calculation, a solution to conjugate
the heat transfer problem is needed. It means
simultaneous calculation of heat exchange and heat
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conduction. For calculation time minimization (especially
while calculating unsteady heat regimes) one-dimensional
air mass flow calculation in circumferential disk cavities
and by air admission system channels are put in a separate
stage.

Calculation model generation started with finite
elements grid generation in meridional disk section and in
stator details around them. Passages in the disk for air
admission to the blade are distinguished in separate sub
regions. With air blowing through clearance of roots this
part of rotor can be in aspect a sub region row. In all these
sub regions temperature field calculation heat sources of
appropriate intensity are given.

The next stage is the air admission system hydraulic
model generation. On the air admission scheme are
distinguished parts with assigned flow type or typical
hydraulic resistance. Information preparation for
hydraulic net calculation is made in the graphic dialogue
regime. One of the net branches is the blade mass flow
characteristic, which is calculated by using the turbine
blade hydraulic calculation program.

Calculation model generation is finished with tie
establishment between the finite element grid and the
hydraulic net. It means that appointed net branches show
appropriate geometric model contour parts or sub region -
heat sources.

Flow and average parameter calculation in
circumferential disk cavities are implemented for all
regimes, which are given in the description of turbine
work. Mass flow, pressure, temperature, flow swirl and
also flow temperature change the branch because
admission (or pipe - bond) to revolving disk work are used
for heat transfer coefficients and flow temperature
calculation. Some calculation results steady and unsteady
state of a whole cooled turbine rotor are presented on Fig.
421

The hydraulic model includes labyrinth for the
compressor, cavities between stator and rotor elements ,
and preliminary calculated air mass flow characteristic of
a cooled blade. In each cavity one - dimensional swirling
flow parameters are calculated. The finite element model
includes an easier model of the blade root.

4.3. Simulation of three -dimensional temperature
fields in turbine rotor.

Temperature field in the turbine rotor is defined by
using a three - dimensional finite element model and
boundary conditions on the profile part of the blade
external surface and disk side surface, defining in QUASI
- 3D and 2D heat hydraulic models.

Inside flow and heat exchange passages are
calculated as in a QUASI - 3D model for blade. On
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platform surface, heat transfer is calculated by using
experimental data and results of gas flow calculations.

Some examples of calculated three - dimensional
temperature fields are presented on Fig. 4.3.1 - 4.3.4. The
heat state of the blade with the developed convection -
film cooling system together with the disk was calculated,
taking into account boundary conditions of contact and
periodicity conditions, which allowed the calculation of
temperature fields without distortion within the limits of
one blade root.

5. Simulation of stress - strain state turbine elements

One of the most important trends in the development
of aviation engines is the spreading adoption of the
numerical study of the stress-strain state of engine
components in the initial design process. It includes
rigorous application of finite element methods, using high
level models, including two-dimensional and three-
dimensional SSS models. The application of these models
in the initial stage allows detection of potentially
dangerous stress concentration zones; and development of
the details of constructive changes for reducing these
stress-except in the study of crack origine.

In practice the widest applications have SSS
mathematics models which are based on numerical
solutions with the help of finite elements methods, solve
two-dimensional and flat and axisymmetric elasticity
theory problems (especially for stress concentration
zones). Also, as practice showed, in development and
qualification of aviation engines in many cases, only
three-dimensional calculation analyses allowed adequate
descriptions of SSS details and only on this basis received
reliable estimation of its lifetime in the development
process.

As examples, you can see some calculation results,
which illustrate application effectiveness of three-
dimensional mathematics models for SSS aviation engines
detailed components analyses. As three-dimensional, we
mean models, based on using common elasticity theory
equations in three-dimensional form, and also common
shell theory equations.

We know that injection holes system geometric
parameters influence stress level in the blade near from
these holes, this should be taken into account while
working out blade constructions with convection film
cooling.

In Fig.5.1 there are spatial SSS calculation results in
the cooled blade suction side near injection hole inclines,
which are inclined relative to the normal to the suction
side surface in blade cross section. As you can see from
calculated data in the picture, the blade suction side near
the inclined hole has a large stress concentration,
characterized by theoretical concentration coefficient

o, = 5,4. This is much more than estimated results on
two-dimensional calculation base.

As you can see from the example, while designing
effective convection film blade cooling systems, one
should check strength conditions in stress concentration
zones while taking into account spatial effects, because
these strength conditions can place limits on choices of
geometric parameters for convection - film cooling
system.

While working out cooled turbine blade constructions
from heat strength, single crystal nickel - based alloys
there appears the problem of choice of rational, spatial,
crystallographic lattice single crystal orientation, which
provides for blade maximum lifetime while giving
exploitation conditions.

The crystallographic lattice of single NI-base alloys is
a cube, the mechanical characteristics of which are
different in different directions. Because a blade
constructed from such alloys is an anizothropic body, it is
very important to use three-dimensional mathematical
models for SSS calculations; taking into account the
anizothropic elasticity and single crystal strength
peculiarities.

There are some results of single crystal turbine blade
SSS calculation on steady engine operating regime. You
can see in Fig.5.2 the profile part of blade temperature
field on this regime. Calculation is implemented in a
common three - dimensional construction for two types of
single crystal crystallographic lattice ~orientation.
Centrifugal force N is acting in the axial orientation
:[001] (cube's rib is parallel to force N acting direction)
and [111] (the main cube's diagonal is parallel to force N
acting direction).

Elasticity strains are defined on the basis of an
orthotropic body three - dimensional elasticity theory , and
plastic strains and creep strains on the basis of plastic and
creep flow theories for an orthotropic body with izothropic
hardening (Hill's theory). This task was solved with the
help of FEM in three - dimensional construction.

Calculation results from Fig.5.3 show that the
examined blade is better when axial orientation of single
crystal [001], is that by which blade stress is minimum.
Maximum values of stresses occur for orientation [111].
The given effect is linked with elasticity modules (and it
means thermal stress, proportional to elasticity module) of
single crystal in direction (001] is as much as 1,5 times,
lower than in direction [111].

Next stress reduction and blade's strength durability
are cast with direction of crystallization [001] probably by
way of rational selection of secondary azimuthel
crystallographic lattice orientation while its rotation in the
most dangerous plane blade section remains flat.




These examples show that for the right estimation of
stress and strain distribution in highly loaded engines,
correct details of grids and nodes are very important for
implementation of three-dimensional mathematical SSS
models. Only on the basis of such details in the initial
stage of a design can be a reliable result, which allows
correct estimation of component life. But in a large
number of cases, acceptable results can be obtained by
using simpler, two-dimensional mathematical SSS
models.
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Application of multicomponent models to flow passage simulation in
multistage turbomachines and whole gas turbine engines

Dr. R. Z. Nigmatullin,
CIAM (Central Institute of Aviation Motors)
2, Aviamotornaya St.,
Moscow, Russia, 111250

Abstract

Some features of used numerical algorithms for gas
turbine engines components flow simulation are
considered. Among them are topology of computational
grids in 2D and 3D cases for flow passages of complex
geometry, details of realization of conservative scheme

at joints of different grids. In S,-calculations it is
necessary to consider the problem of inlet and outlet
angles, in Euler calculation the ways of accounting for
viscous loss effects are briefly described. Examples of
calculations of flow through by-pass engine components
are presented.

Introduction

Gas flow through the gas turbine engine flow
passage is a very complex phenomenon. It is unsteady
3D turbulent gas motion in a traveling domain of
complex geometry. So various simplified models are
used for its simulation. It leads to the necessity of using
some empirical or semi-empirical data.

For instance, while using Euler equations system for
description of such flows it is necessary to simulate
viscous loss effects. The simplest way is to use on
experimental data. But even in case there is the problem
of distribution of these losses within the blade-to-blade
domain. Some loss components may be roughly
estimated using simple models. Number of models of
such type is considered, for example, in [1], [2].
Empirical formulae of various type, based on
generalization of experimental investigation data , are
widely used in design offices. This generalization can be
fulfilled, for example, using the methods of regression
analysis {3]. Losses may also be calculated by means of
numerical solution of boundary layer equations or
Navier-Stokes equations.

If one uses 2D approaches (gas flows on 32 -

surface) it is necessary to add to this empirical data the
information about inlet and outlet flow angles.

When these data together with gas dynamic and
geometrical information are gathered (by other words,
when the problem is formulated) it is necessary for gas
flow calculation to discretize the computational domain.
Because this computational domain in many cases has

complex geometry it is convenient to use composite
grids. The choice of grid configuration depend on the
model used. In many cases it is necessary to consider
special conditions at different grid joints. Gas flows in
many modern gas turbine engine components are
transonic and so it is desirable to require the
conservation of mass, momentum and energy in this
case.

These problems are briefly considered in the present
lecture.

In conclusion examples of gas flow calculations in
multistage turbines, compressors and whole by-pass
engine are presented. A simple model of processes in
combustion chamber used in simulation for whole
engine is described.

1. Computational grids used and some features of
realization of numerical scheme at joints of different
grids.

Gas flow passages of gas turbine engine components
may be of fairly complex geometry. As an example, let
us consider gas flow through fan with low pressure
compressor and by-pass duct (see figures 8-15 of
lecture 4). This problem was considered both in 2D and
3D formulation. It is convenient to use composite
computational grids for calculation of gas flows through
such channels. For instance, a composite grid for 2D
problem (see fig. 13 of lecture 4) for the fan without
blade mid-span shroud consist of three components
generated by simple algebraic method. In addition to
ensure the scheme to be conservative it is convenient to
require that npeighboring grids have a common
boundary. Then it is sufficient to form the combined
distribution of boundary nodes of different grids, to
interpolate corresponding "left" and "right" limit
values of parameters to middles of formed segments,
then to call arbitrary discontinuity breakdown
procedure (in accordance with the main order of
calculations, described in the previous lectures) and to
obtain each flux as the sum of fluxes of the "combined
grid" at the boundary. It is obvious, that resulting
scheme is conservative. This property of the scheme is
very important for transonic flows calculations.

The computational grids and algorithms of
calculation for a 3D case are constructed almost in the

Paper presented at an AGARD Lecture Series on
“Mathematical Models of Gas Turbine Engines and their Components”, December 1994,
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same way. The grid geometry in meridional plane is
similar to a 2D problem (see fig. 8a of lecture 4). In
addition it is natural to require that the joints of
neighboring component grids are parallel to the pitch of
the cascades (for averaging of parameters in angular
direction), see fig.8b of lecture 4. And a separate grid is
generated for each vane or blade row. The inlet and
outlet boundaries of these grids coincide with the
averaging surfaces (see Appendix B of lecture 4) or with
inlet or outlet boundaries of the total computational
domain. Numerical calculation results show, that the
method of calculation at the joints briefly described here
allows to ensure the continuity of space distribution of
parameters, guarantees that the scheme is conservative,
which is important for transonic gas flows calculations
when there may exist shock waves or other
discontinuities in flow.

2. Some features of numerical algorithms of gas flow

calculations on S, - surface.

If one uses 2D approach based on consideration of

gas flow on 82— surface, it is necessary to have the
spatial distributions of two functions: ¢ = (&, 1),

k= k(&,n) (see lecture 4). The solution essentially
depends on the choice of these functions.

The simplest way is to specify as a stream surface
Q= (p(c";,n) the mean blade surface, formed from
mean profile lines for some family of blade sections (for
example, plane sections) and to choose for

k= k(é,n) the geometrical blockage factor defined

19w 0]

as: , where @, - value of angular

coordinate, corresponding to suction side of blade, and

@, - one, related to pressure side, t - angular pitch of

27 .
cascade: t = —, N_, - number of blades in cascade.

bé
But this way in many cases leads to unsatisfactory

results. So one often modify these functions (p(é,n),

k(&,n). One may, for example, "correct” functions

@,k in such way that resulting "triangles" at leading
and trailing edge lines (see Appendix B of lecture 4)
correspond (in some sense) to "real triangles” in blade-
to-blade space. As a variant of this method (for gas
turbines) one may consider such modification of

¢ =0(E,n) (and, may be, also k =k(&,7)) for
which the flow velocity angle at trailing edges is equal

to "arccos-angle” (when "exit channel area" is equal to
"throat area") and the triangle at fig. 2A of Appendix A
of lecture 4 is right-angled. An example of using of such
an approach is presented at figures 1-4 (of present

lecture), where Sz-surface gas flow calculation results
are shown for a 2-stage high pressure turbine.

Figure 1 shows stream-lines (contours of mass flow
rate of "primary" gas). Pressure contours are shown in
figure 2. Note, that because of the property of scheme to
be conservative the calculation is fulfilled both in axial
gaps and within the bladed domains and it becomes
easier to calculate the axial and angular loadings on
blades (corresponding integrals are easily calculated
using numerical fluxes without any additional
simplifications). Figure 3 shows calculated distribution
of degree of reaction for the first stage along the radius.
The results of design office are marked by squares.
Distributions of inlet gas velocity angles along radius
are presented in figure 4. (lines with crosses correspond
to calculated results using the present methods, squares
- to design office data, solid line is distribution of
geometrical inlet angles for rotor profiles; one can see
that there are considerable angles of attack; later the
geometry of this turbine was modified).

At the next example one can see the comparison of

gas flow calculation results using 2D (Sz-surface) and
3D formulation. The gas flow through 1-stage turbine
with additional vane at outlet was considered (see fig.5,
where the used computational grid for 2D problem is
presented). Viscous losses in both cases were accounted
for using dissipative forces, and the values of these
losses were defined using generalized empirical
relations of CIAM.  Figures 6 and 7 shows
corresponding stream-lines and pressure contours (for
2D case). Distribution of degree of reaction along radius
is shown in figure 8. Line with marks "+" corresponds
to 2D approach, line marked by "X" - to 3D case,
squares show experimental values at tip and at hub.
Note that both approaches give satisfactory results for
degree of reaction. Mass flow rates and power were
also in good agreement one with another and with
experimental data. (The difference of calculated and
measured mass flow rates was less than 1% for both
cases). But distribution of absolute velocity vector angle
behind the rotor shows that the 3D approach gives
results which are along whole height in better
accordance with experimental data than the 2D one
(fig.9). One can see from figure 10 that this difference
between 2D and 3D calculation results is related to the
difference in relative velocity vector angles behind the
rotor (here lines with crosses correspond to 2D case and
lines with squares to 3D one. All angles in these figures

are counted from the cascade pitch; [3, is rotor inlet

relative angle, Bz is rotor outlet relative angle). The 2D
approach evidently does not describe all three-
dimensional features of gas in blade rows. So for
accounting for these effects and also viscous effects one
may introduce empirical dependence of deviation angles
from some number of geometrical and gas dynamic




parameters (see, for example, [1], [5]). It is more
convenient to introduce them to arbitrary discontinuity
breakdown procedure at trailing edge line (see
concluding notes of Appendix A of lecture 4).

3. Modeling of viscous losses effects.

If viscous losses are modeled using dissipative
forces it is necessary to know loss coefficient values. (It
is not important here, what one means by losses

coefficient  : in various cases it may be a different
function of flow parameters; it is supposed only that

€ = 0 when there are no losses in gas flow). Supposing
that losses are small one usually write:

€ =Ch +Co +Conawan
+Ch'p cl. +Cax.gap +Ccooling +~-'a (3~1)

where { with subscript corresponds to losses,
which either are concentrated in some domains

(€ »Congwar>---) or are caused by any process

(Ccooling PR )

although really the different types of losses are not
independent, it helps to estimate the loss coefficient
values and to distribute them in space in Euler

calculations. In (3.1):

Such division is conventional and

C,, is "friction” losses in
boundary layers at blade profiles surfaces, Ctr - trailing

edge losses, - endwall losses, Gy, - losses

endwall

- friction

related to leakages in tip clearance, C,, aap

losses in axial gaps, { - losses which appear in

cooling
cooling processes, etc. Some kinds of losses in (3.1) may
be further divided into components. Considering

“friction" losses C, one may select "angle of attack”

losses C;, shock waves losses C ., distinguish viscous
losses before the "throat" section and after it, etc.

Note that when one uses Euler equations system
with spatially distributed mass sources for gas flow
simulation, some kinds of losses are accounted for
automatically. Among them there are the losses in shock
waves. In some cases (for example, in some fan blade
rows) they may be the main component of losses.
Losses in mixing processes (for cooling turbines and
compressors) are generated also automatically.

Losses in boundary layers of blade profiles (.

ideally are losses in cascades at Sl- surface (excluding

trailing edge losses). They may be defined by boundary
layer flow calculations (in absence of extended
separation zones) or by numerical solving of 2D

Navier-Stokes equations (in this case (, are also

defined). The last way is relatively costly and so during
the design process some semi-empirical correlations are
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often used obtained by generalization of experimental
data (see, for example, [3], [6]). Similar relations exist
also for endwall losses (for example, [7]) and other loss
components. Many design offices have own correlations
for losses most suited to using families of profiles.

One may also directly use experimental data for
losses for considering blade rows (if they exist), but the
models for loss components are useful also in this case
for spatial distribution of losses in computational
domain.

Some loss components may be estimated using
simple physical models (see, for example, [1], [2]).

Let us consider in conclusion two attempts of
simulation of gas flow through blade row passage with
unshrouded blades.

In experiment [8] "tip" clearance was at hub,
turbine blade row of constant profile along height was
motionless and hub surface could move. In the first

example gas flow was simulated using a viscous S2 -
surface formulation (in thin-layer approximation, see
lecture 4). Two cases were considered: & =0 and

86=22mm (& ishub clearance thickness), blade
height was 55mm, exit isentropic velocity coefficient
was: A =0.8. Gas leakage in hub clearance was
modeled by the same way, as flow in axial gap domain

6_ =0, see lecture 4). Hub surface was motionless.
®

Algebraic Baldwin-Lomax turbulence model
used in the calculation.

[9] was

Calculated loss coefficient { distribution along

radius at exit section for the cases: 0 =0 and
8 =2.2 mm are shown correspondingly in figures 11,

12, the distribution of axial velocity (for & =2.2 mm)
is shown in figure 13 (gas flows from right to the left).
Circles corresponds to experimental data of [8]. Here,

V2 - V2

loss coefficient £ is defined as: = vE where
ad

V is velocity vector magnitude, V,, is "isentropic”

velocity and is calculated (together with T, ) from the
next system:

1
hﬂg)+§V;=h(ﬁ)

s(p,T,4) =s(p.,T.)

, 3.2)

where p,, T, - total pressure and temperature at the
inlet section of channel, p is outlet pressure, h(T)

and s(p,T) - specific enthalpy and entropy (see
lecture 4).
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Constant "profile" losses & = 0.05 (some arbitrary
value) were added using dissipative forces. (If one does
not add these forces, the solution will be almost the
same, as presented in figures 11-13, but far from the

wall £ will be equal to 0).
As shown in figure 11, 2D viscous calculation
allows to account losses in boundary layer at hub section

but does not describe "secondary flows losses" (., . In

the case 0 # 0 this calculation qualitatively describes
some features of distribution of losses along radius, but
there are large quantitative differences.

The probable cause is that the flow in this region is
essentially three-dimensional and so 2D calculations
cannot clearly simulate it. But this approach could be
useful for calculations in extended channels, nozzles,
etc. "Secondary” and other loss components could be
accounted for using dissipative forces or by other ways.

Another simple model can be used in 3D Euler
approach with averaging in the middles of axial gaps
(see lecture 4). Let us consider the same example for the

case O =2.2 mm. Together with usual 3D flow

computational domain an inviscid flow on S,-surface
which coincides with butt-end of the blade is considered.
Let m be arc length along the meridional projection of
hub surface, r=r(m) - radius of current point at this
projection, b=b(m) is variable relative thickness of
radial clearance (thickness divided by & - one at
leading edge of the blade, for example). Then the flow
at this surface is described by equations (3.4) of lecture

4. The simple algebraic grid was used in this S1 -surface
domain (this domain is shown in fig.14, where one can

see also streamlines for the case & = 2.2 mm). The
boundary conditions for this problem are found from 3D
flow field by extrapolation at current time step. The
"non-reflecting” conditions were used for this 2D task.
On the other hand some numerical fluxes at the

boundary of S,-surface multiplied by & are used for

calculation of corresponding source terms rm, rmV,,

rmV,, rmV,, rmH on right hand side of equations

(1.8) of lecture 4. Usual boundary conditions are used
on solid boundaries in 3D computational domain. Thus
both 3D and 2D problems are solved simultaneously.
Although one must solve 2D steady problem at each
time step of 3D one. It is not very costly because the 2D
solution at previous time step is used as initial condition
for the current iteration.

In this example the terms rm,.... were distributed
along one row of cells around the blade hub section
profile (although one may also consider other variants).
No empirical coefficients were used in this simulation
(for applications one may use, for example, coefficients

for velocity (V,,V,,V,), etc.).

z> °ro

Calculated distribution of the loss coefficient

C averaged in angular direction is shown in figure 15
for two different grids: the first one is more fine in
radial direction (solid line; the cell radial size at hub
was equal to & =2.2 mm), and the other one is more
coarse near the hub (dashed line, the cells were almost
of equal size in radial direction; both grids had
60 x 11 x 11 nodes). Circles show experimental data of

[8]. Although radial distribution of C in calculation

does not reflect all features of experimental ones,
integral values of losses are close. One can see it in

figure 16, where C is an average value of losses for the

clearance thickness O :

h

o= fcn

bl. 0

where h is height and h,, =50 mm (see [8]). The

value {,_, corresponds to the case & =0. The
experiments and calculations were performed for the

cases: ©=0, 8=025mm, 0=0.5mm,
§=10mm, &=22mm. Line with "+"
corresponds to calculated results, and line with squares
to experimental data. These results show that described
approach could be useful for estimation of this
component of losses. Figures 17-19 show velocity vector
field at various sections of 3D computational domain for

the case: & = 2.2 mm. Note, that this approach may

be convenient for unsteady calculations when & can

depend on time: 8 = &(t).

Similar simple models may be considered also for
some other kinds of losses using known current spatial
distributions of all parameters in 2D and 3D
computational domain.

Some examples of gas flow calculations in gas turbine
engine components.

The described methods were used in gas flow
calculations through a number of multistage
turbomachines. Some examples are shown in figures 20,
21 (see also [10], [11]).

In conclusion let us consider an example of gas flow
calculation through a by-pass gas turbine engine. The

computational grid for this task (on Sz-surface) is
presented in figure 22. The domain of calculation
consists of nine sub-domains. It includes the fan (one
sub-domain), the compressor (three sub-domains), the
annular combustion chamber (three sub-domains), the
turbine with nozzle (one sub-domains) and by-pass duct
(one sub-domain). Flame-tube surface is the boundary of
computational sub-domain. Note also that the grid
includes the space within the turbine first stator blades
where gas can flow, and so some area is covered by




computational cells twice (but different sub-domains in
this area has different values of blockage factor k and
the sum of these values at the same point in meridional
plane is equal to 1).

Because in bladed regions the Euler equations (with
additional terms in right hand side) were used, we do
not need to model chemical reactions in this simulation.
The-effects of this reactions were modeled by source

terms rm, rmV,, rmV,, rmV_, rmH. It was supposed

that the heat of combustion is released along the half of
the flame-tube. Some empirical data were used for
estimation of combustion efficiency [12].

It was assumed that the flame-tube surface has
infinite number of infinitesimal holes and the ratio  of
the area of these holes to the corresponding flame-tube
surface element area was considered as a given function
of tube point. Jets through the holes were modeled using
the mass, momentum and energy sources. The values of
this terms were obtained by special procedure of
arbitrary discontinuity breakdown at the flame-tube
surface, see Appendix. (It was assumed that air
accelerates up to hole section without losses and then
mixes with the air or gas within the tube along some
distance defined by empirical relations). The cooling of
the flame-tube through narrow annular gaps was
modeled in similar way (but instead of normal direction
to the tube surface one must consider the tangential
direction and obtained source terms are proportional to
€ - annular gap thickness). This approach, of coarse,
contains a number of empirical coefficients which are
necessary to obtain realistic total temperature
distributuons at turbine inlet. Some results of steady
state calculation are presented in figures 23-26. Main
integral characteristics of flow (mass rates, power
consumption, total pressure ratios, etc.) were in
satisfactory agreement with design office data. Figure 23
shows "mass flow rate" contours. These are the
streamlines anywhere except in the domain within the
flame-tube (because of the source terms). Static pressure
and absolute pressure contours are presented in figures
2425. One can see that the most significant total
pressure increase occurs in compressor diagonal rotor
cascade. Although the integral level of total temperature
at inlet of the turbine is in good agreement with design
office data, some features of its distribution (figure 26)
show that the model of flow in the combustion chamber
must be further developed.

Some results of 3D calculations for this engine can
be seen in figures 27,28.

After verification by experiments (correction of
empirical information for steady solutions) the models
may then be used for unsteady simulations.

6-5
APPENDIX

Some used simple models for flow near the flame-
tube elements.

Let S be the flame-tube surface with infinite
number of infinitesimal holes with relative area o (fig.
1A). The values of parameters for different sides of the
surface will be marked by subscripts "1" and "2".

it

Fig. 1A

Let u be the normal component of the velocity

V:u=(V -#). As calier (lecture 4) the relations
through shocks and expansion waves will be written in
acoustic form (for simplicity).

Let: pr =p,—(pa)'u,, p; = p, +(pa)u,. The

unequality: pz > p; denotes, that air (gas) flows in
positive direction (from 2 to 1, see fig. 1A) and,

inversly: if p; > pz then air flows in negative
direction.

It will be assumed further that pz > p;. Then the

next relations are considered (V,w - tangential
to the surface component of
velocity):

143 —p2+(—p£1—)(uL -u,)=0

5, =S8, (A1)
(V,W)L =(v,w),
P=0r
puc =p,u,
4 s=s, (A2)

h+%(u2+vz+w2)=hL+%(uZ+v§+wf)

(V’ W) = (V, w)L

L
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*
{p R~ P R ( A3)
u, =0

The parameter's values with subscripts "R" and "L"

are used for the calculation of numerical fluxes for

différent sides of the surface. The values without

subscripts are related to parameters at "hole section”

and are used for the calculation of the source terms:

L]

rm, (velocity components are multiplied by some

empirical coefficients).

1
/L————
C
2
Fig.2A

Simular simple procedure was applied for
modeling of the flow through narrow annular gaps
which are used for cooling (fig. 2A). In calculation this
gap was replaced by the nearest grid node C (fig. 3A).

T

Fig.3A

The extrapolated values of parameters served then
as initial data for wusual arbitrary discontinuity

breakdown procedure (for tangential direction T: see
fig. 3A) and obtained "large" values of parameters were
used for calculation of source terms for both sides of the

surface (and the term rm in this case was proportional
to € - gap thickness).
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Fig. 7. Pressure contours (S - solution)
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Fig. 10.
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Stream-lines on Sy-surface (on butt-end of the blade), 8=2.2 mm
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Constant pressure contours in blade mid-span plane for the four stage high pressure

compressor
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Fig. 21.

Constant pressure contours in meridional section of the six stages turbine
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Fig. 22. Computational grid for by-pass gas turbine engine
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Fig. 26. Absolute total temperature contours
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Simulation of steady and unsteady viscous flows in turbomachinery

V.G.Krupa,
CIAM (Central Institute of Aviation Motors)
2, Aviamotornaya St.,
Moscow, Russia, 111250,

Abstract

A Navier-Stokes code has been used to compute the
viscous turbulent cascade flows. The numerical method
employs implicit high-order accurate Godunov scheme

and a two-equation (q—®) turbulence model
based on the intergration to the wall. The generation of
the O-H grid system for viscous cascade flow
simulations is discussed. Numerical solutions were
obtained for 2D and 3D turbine cascade flows and 2D
unsteady rotor-stator interactions. Available
experimental data are used for verification of the
computed results.

Introduction

The drive towards higher jet performance has
increased demands for accurate and detailed flowfield
predictions. Cascade flowficlds in turbomachinery are
usually very complex due to existence of many complex
flow phenomena including for example shocks and
shock boundary layer interactions, horseshoe and
passage vortices, secondary flows and boundary layer
separation. Many of these effects are greatly affected by
viscosity therefore the development of the reliable
numerical simulation of the viscous flows is of primary
importance.

At the present time 2D and 3D inviscid codes based
on solving Euler equations are extensively used for
turbomachinery flow predictions. These relatively high-
speed codes enable to assess aerodynamic performance
of very complex turbomachinery configurations [ 1 ] but
often require empirical correlations to account for
viscous effects. Boundary layer codes are restricted to
relatively simple geometry and can not be used for the
calculation of separated flows.

More accurate and reliable simulation of viscous
flows in turbomachinery can be done on the basis of the
Reynolds averaged Navier-Stokes equations. In the past
decade due to progress of computers a large number
Navier-Stokes solvers  have been developed for
turbomachinery applications (see, for example, [2-9]).
These codes employ different numerical techniques and
turbulence models. So the validation of the Navier-
Stokes solvers has become increasingly important.

In the present lecture some 2D and 3D testcase
viscous flows in turbomachinery are considered. The
Navier-Stokes equations are integrated by implicit high-

order accurate Godunov scheme. For turbulence

modeling the two-equation (q —®) turbulence model

[10] with viscous sublayer resolution is employed. The
detailed formulation of the numerical procedure was
given in the previous lecture. Here, the method to
generate O-H grid systems for 2D and 3D cascade
geometries is discussed. To test the capability of the
code to predict thermal characteristics and total pressure
losses a number of 2D viscous cascade calculations were
performed. The 3D viscous turbulent flows in the
turbine cascades are considered. Although these
calculations have been made on rather coarse grids they
can illustrate the accuracy of the present method. And
finally, the calculations of the viscous unsteady 2D
rotor-stator interaction are presented.

Boundary conditions

In viscous cascade flow calculations the boundary
conditions were formulated as follows. For solid
boundaries on the airfoil surfaces and endwalls nonslip

conditions for velocities, adiabatic (0T/0n=0) or
isotermal (T = const) condition for temperature and

for turbulent quantities ¢ = 0w / On =0 are imposed.
On the inlet and outlet boundaries of the computational
domain the boundary conditions are imposed by taking
into account the direction of propagation of the
characteristics for one - dimensional (in projection on
the boundary normal) unsteady gas flow. For (axially)
subsonic inlet in the boundary layer the velocity profile
and the valuc of the total temperature are specified
while in the inviscid core of the flow the total pressure,
the total temperature and two flow angles are fixed. The
fifth nescssary parameter was determined from the
computation domain using the characteristic relations.

The (q,®) profiles in the inlet boundary layer were
determined from the 'equilibrium' condition and the
condition of the equality of the values of turbulent

viscosity coefficient calculated from (q—@®) model
and the Baldwin-Lomax algebraic model. In the

inviscid flow the values of q,, and ® ,, are imposed. For
an (axially) subsonic exit the static pressure is fixed, the
other quantities are extrapolated from the interior.
Along the periodic gridlines the periodicity conditions
are enforced.

Paper presented at an AGARD Lecture Series on
“Mathematical Models of Gas Turbine Engines and their Components”, December 1994.
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Grid generation

To achieve high-quality numerical results in the
computation of viscous flows in turbomachinery
cascades an efficient and robust grid generation
procedure is needed. The important properties of the
grid generation procedure are the ability to control grid
point distribution in the thin regions (boundary layers)
and the ability to achieve grid points periodicity between
the upper and lower parts of the outer boundary of the
computational domain. The first condition is necessary
to resolve effectively turbulent- boundary layers with
viscous sublayers - in practice several near wall nodes

must be located in the region y, <5. The second
condition is generally required for implicit numerical
methods - in order to maintain numerical stability the
periodic conditions must be treated in an implicit
manner.

The algebraic H-grid (fig.1 ) meets both conditions
but often results in a highly skewing grid system. Also
H-grid has rather poor resolution in the rounded leading
and trailing edges of the blade. Nevertheless, H-grids
have been succesfully used in many 2D and 3D viscous
cascade flow calculations [2,5,8,11]. Widely used C-
grids [3,9,7] also do not remove deficiency in the
trailing edge. Detailed calculations in the vicinity of the
trailing edge are important in terms of predicting both
heat transfer and base pressure. The O-grid system,
based on an algebraic technique [ 12], often does not
allow to achieve periodicity of the coordinate derivatives
at the outer boundary.

One way to avoid above-mentioned difficulties is to
use the combined O-H system. This approach was
applied in [4] for computation of viscous stator-rotor
interaction. The systems of O-grid and H-grid had
overlapping regions so interpolation of the variables in
these regions was needed. The combined O-H grid based
on an algebraic technique was used in viscous cascade
flow calculations [ 13 ]. In [ 14 ], to achieve a greater
smoothness of the grid 'an elliptic grid optimization
procedure was developed.

In the present lecture we will also describe a
method for construction of the O-H topology grid for
viscous cascade flow computations. We start with 2D
case.

The procedure involves two stages. In the first
stage the O-grid around blade is generated by an

algebraic method. In this stage the € = const lines can
be constructed orthogonal to the surface of the blade and
grid points distribution near the rigid wall can be easily
controled. In the next stage H-grid system is generated
by solving the system of equations [ 15,16 ]

af, — 261, +1%,, = —(aPL + QL) ¢))

where T=(X,y), =T, %, B=T T,

Y =TT,
X,y - Cartesian coordinates; &, M - general curvilinear

coordinates; P, Q - control functions.

As well-known, a second -order elliptic system of
¢q.1 allows to be specified cither point locations on the
boundary or the coordinate line slope at the boundary
but not both. In our case, for example for boundary

1 = const, point locations are defined either by grid
points distribution on the outer boundary of the O-grid
or by grid points distribution on the line of periodicity of
H grid. As it was shown in { 16] it is possible to achieve
a specified line slope and the specified spacing of the
first coordinate surface at the boundary by iteratively
adjusting control functions P,Q in eq. (1). We used a
similar technique to generate H-grid.

Consider the M =const boundary line (the

treatment of & = const boundary line is similar). On

this line 1, and Iy, are known. Quantity 1, can be found
from specification of the desirable slope of line
€ =const and spacing of the next coordilnate line

1 = const at the boundary. From eq.1 one can easily
obtain:

P= _(af; - ﬁfn ) (afgg - ZBfgn + 'Yf:m )/ (an )a (2)

- _(Yr Brg) (argg ZB Ylin )/ (YJZ )’
T=xgyy = XgYy

The iterative procedure can proceed as follows

(1) Assume initial grid point distribution for H-
grid. In this step H-grid system can be constructed by
algebraic method.

(2) Evaluate 1, I, on N= const boundaries,

and T, Lyon &=const boundaries, from the

previous grid points distribution, using central

difference formulae. (For evaluation I, I,, points of

O-grid system or condition of periodicity can be used).
Evaluate control function P,Q from eq. 2 at the
boundary. Evaluate the control functions in the field by
interpolation from boundary values.

(3) Solve eq. (1) to generate the grid.

Steps (2) and (3) are repeated until convergence.

Computational grid obtained by this method for a
2D viscous cascade calculations are shown on fig. 2.
The O-grid system has 120x25 points, the H-grid system
has 95x40 points. In order to solve system of eq. (1) an
ADI-method was employed and about 600 iterations was
required to achieve convergence.




The construction of a 3D-grid system can be
performed applying a 2D grid generation procedure on
each radial surface. In the general case, when the radius
of a radial surface is varying with axial distance, the
orthogonality of the grid can't be retained. Figure 3
shows a 3D view of an O-H grid system obtained by this
method for a typical rotor blade.

Computational results

The computational codes based on the numerical
schemes described in the previous lecture have been
extensively tested for 2D and 3D viscous cascade flow
calculations. Here we would like to present some
computational results obtained by this method.

Figures 4-7 show the computational results [ 17]
for a rotor blade, which was experimentally investigated
by Consigny and Richards [ 18 ]. In this case an H-grid
system consisting of a 100x60 grid points was
employed. The minimum distances from the nodes of

the grid to rigid surfaces were 3107 ¢, where ¢ is

chord-length, which corresponded to y+ ~ 0.3, Courant
number Cu was varied from Cu = 5+ 8 in initial steps

to Cu=50+100, after which the calculations were
continued with a constant value of Cu (for each cell).
Figure 4 shows a typical history of convergence where
€ is a maximum residual, 1 is a number of iterations.
Lower and upper curves correspond, respectively, to the
residual of the Navier-Stokes equations and

the (Q—®) turbulence model equations. The
computations have been performed for an exit Mach

number M, = 0.92, Reynolds number based on the
inlet conditions and blade chord Re =9.42.10° and

the temperature of the wall T, =294°K Figure 5
shows the comparison between the predicted and the
measured isentropic Mach number along the blade. The
Mach contours are shown in fig. 6. Figure 7a,b,c shows
the predicted heat transfer coefficient

Q=qy/(Tgw —Ty) on the cascade surface in
compparison with experimental data for three different

levels of inlet turbulence: Tu, =0.8% (fig.7a),
Tu, =3.0% (fig.70), Tu, =5.0% (fig. 7c). On the

suction surface the (q —® ) turbulence model displays

at least qualitatively the capability to predict laminar to
turbulent transition. However, on the pressure side

the (q—®) model underpredicts the heat transfer.
Note that the Baldwin-Lomax algebraic model allows to
achieve a better agreement with experiment on the
pressure wall for low level of inlet turbulence (fig.7a).
(In this case the locations of the transition have been
inferred from experimental data).

A set of the computations have been performed to
assess the capabilities of the developed Navier-Stokes
solver to predict accurately losses in turbine cascades.

\_\
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For comparison, a vast experimental data conducted in
CIAM [ 19 ] was used. We will present some
computational results for turbine cascades designated as
BL40, BL48, BL53, BL108, BL157, BL166. The main
geometrical characteristics of these cascades are
presented in Table 1; details of the blade geometry are
availablein [ 19].

For calculations O-H grid system consisted of the

6800 points was used. The free-stream values of

and ® imposed at the inlet based on specified free
stream turbulence intensity and length scale:

Tu, =+v2/3q,/u, =5.5%,
l,=q,/0,=0.005t.

Figure 8 shows the predicted isentropic number A
(A - is the velocity coefficient) on the surface of the
blade BL40 in comparison with experiment [ 19 ] for

various values of the exit number A, . The agreement
with experiment is generally good. The Mach number

contours for A, =1.07 are shown in fig 9. The shock
system associated with the trailing edge is clearly
resolved. The loss coefficient and the base pressure
cocfficient are shown in fig. 10 . The loss coefficient
and base pressure coefficient are defined as:

A P,-P
C=1-G2), dp, =7
Zis —ipzisvzis

The index 2 corresponds to the averaged values at the
outlet.

The predicted results are in good agreement with
experiment results for exit subsonic and supersonic
velocities.

To assess the accuracy of the numerical method
several computations have been performed on fine grid
contained 27200 points. Computed Mach number

contours for blade BL48 at A, =127 are shown in
fig. 11a (6800 points grid) and in fig. 11b (27200 points
grid). The predicted and the measured loss and base
pressure coefficients are plotted in fig. 12. The
numerical results obtained on the different grids are in
reasonable agreement. The predicted loss coefficient is
generally in a good agreement with experiment while
for the base pressure a quite large difference is observed.
Since grid refinement does not allow to achieve a better
agreement with experiment, this discrepancy is
associated rather with turbulence modeling than with
numerical errors.

The predicted and the measured distributions of the
isentropic velocity coefficient A on the surface of the
blade BL166 are shown in fig. 13. A discrepancy can be
obscrved on the pressure side of the blade where a quite

large (0.8 <s/t<-0.15) separation zone exists.

Mach number contours for subsonic and supersonic exit
velocities are shown in fig. 14. Figures 15-18 show the
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predicted loss coefficient ana base pressure coefficient
for blades BL166, BL53, BL108, BL157 respectively.
For most cases the agreement berween measured and
predicted loss coefficients is quite satisfactory.

The 3D calculations have been performed for the
low-pressure turbine cascade, which the flow was
investigated experimentally in [ 20]. The cascade had
the following principle geometric parameters: axial

chord ¢, =52.5 mm, chord ¢=559 mm, pitch
t =31.5 mm, and height of the cascade h, = 95.8 mm

at the inlet and h, =101.6 mm at the outlet. The vane

profile was constant over the height of the cascade; the
profile coordinates are given in [ 20 ].

The flow parameters used in the calculations
corresponded to the flow in a low pressure turbine
cascade at its design condition: the isentropic exit Mach

number M =0.702, the isentropic exit Reynolds

number Re =2.9-10%, inlet flow angle 38.8°. The
endwall boundary layer specified at the inlet plane are in
accordance with experiment. In view of the symmetry of
the problem the calculations were carried out to half of
the height of the cascade.

The H-grid consisted of 81x27x40 nodes in the
axial (x), radial (y) and azimuthal (z) directions.

The predicted and measured midspan isentropic
Mach number distribution is presented in fig. 19 .

The limiting streamlines necar the endwall are
shown in fig. 20 in comparison with experimental data
[ 20 ). Fig. 21 shows the predicted and measured
secondary velocity vectors in the traverse plane at

x =1.42c, . Total loss pressure contours ( are plotted

in fig. 22 . Here, § = (P — Po)/ (Poz = P2)» Pois @
total pressure, the index O relates to the free streem
value, the index 2 corresponds to the averaged values at
the outlet. The calculation reproduces the main featurcs
of the flow although the predicted locations of the
centers passage and trailing shed vortex are different
from experiment. The predicted spanwise distributions
of pitchwise averaged total pressure loss coefficient and
exit flow angle with comparison of the experiment are
givep in fig. 23. The computed results are in reasonably
good agreement with the experiment.

The calculations have also been performed for this
turbine cascade at its off-design conditions [ 27 ]. Figure
24 a,b shows the limiting streamlines on the suction side

for Re=1.5-10° and Re = 6-10°, respectively . At
Re =1.5-10° a large separation zone can be observed,
at Re=6-10° the boundary laycr is turbulent (in
calculation and experiment [21]) on the suction side,
which prevents separation. The pitchwise - averaged
total pressure loss coefficient and exit flow angle are
compared with the experiment in fig. 25 and fig. 26 .

Although the predicted maximum in distribution of { is

in a fairly good agreement with experiment, the
calculations exaggerate the losses in the central part of
channel.

Figure 27 shows the predicted and measured
midspan isentropic Mach number for angles of attack
o =-20.3° and a = +8.6°. For a positive angle of
attack the flow remains attached except in the small

region near the leading edge. For o =—20.3° the
separation zones at the midsection are located at

0.69c, <x<0.98c, on the suction side and at

0.02c, <x<0.31c, on the pressure side. This is

roughly correct with experiment. The spanwise
distributions of pitchwise-averaged total pressure loss
cocfficient and exit flow angle are shown in fig. 28 and
29.

Computations have been performed for linear
turbine cascade with straight endwalls studied
experimentally at CIAM [28]. The main geometrical
characteristics of cascade were: chord length

¢ = 63mm, pitch t=41mm, height h =100mm.
The profile of the blade corresponded to hub section of
the rotor blade of fourth turbine stage. A total number
of 217600 grid points were used for O-H grid system
(fig. 30). The flow parameters were: inlet angle

o =403°, exit Math number M, =0.565,

isentropic exit Reynolds number Re= 7.4.10°.To
reduce the losses the original cascade was redesigned
[28]. Fig. 31 shows the limiting streamlines on the
suction side of the original (fig. 31 a) and modified (fig.
31b) blade. For original cascade a separation zone can
be observed while for modified cascade the flow remains
attached. Experiment [28] also indicates the separation
on the suction side of the original blade but the
extension of separation zone is underpredicted in
calculation. For this reason, a quite large discrepancy
between predicted and measured total pressure
coefficient exists for original cascade (fig. 32), for
modified cascade the computed distribution in a good
agrecment with experiment.

The calculation has been performed for supersonic
stator cascade (CA-2) studied experimentally at CIAM.
The detailed cascade geometry and experimental
conditions are available in [29]. The inlet flow assumed

o be axial, the exit Mach number M, =1.35. A total
number of 248000 grid points were uscd for this case.
Figure 33 shows the O-H grid system for a blade-to-
blade plane, and the H-grid system for a meridional
plane. Computed Mach number contours at midspan are
shown in fig. 34. The distributions of mass-averaged
total pressure loss coefficient and exit flow angle are
presented in comparison with experiment in fig. 35a and
35b, respectively. The computed results are in a good
agrecment with experiment.

Now we will present some computational results for
a 2D unsteady rotor-stator interaction. The rotor-stator
configuration considered herein is the large scale
turbine model of Dring et al. [ 22 ]. Several Navier-
Stokes analyses [ 4,23,24 ] have been performed for this
configurations but in all of them an algebraic turbulence
model was used. This may not be quite appropriate for
unsteady rotor-stator interaction especially for the




region where the rotor blade intersects the wake of the
stator blade. In the present calculations the two-equation

(q—®) turbulence model was employed. Three
different numerical schemes of different levels of
accuracy in time have been used in the present
calculations: first-order (implicit Euler scheme), second-
order (Crank-Nicolson scheme) and implicit third-order
accurate in time schemes [ 25 ). The details for
numerical integration procedure are given in a previous
lecture [ 25 ].

The actual experimental configuration consisted of
22 stator vanes and 28 rotor blades. Since in the present
calculations the number of stators and rotors was
assumed to be equal, the rotor geometry was rescaled by
a factor 28/22.

Patched O-H grid systems were used for
calculations. The computational grid (fig. 36 ) consisted
of 18000 nodes. The minimum distance from the first

point to the wall is about 107 t , where t is a pitch-
length. An axial gap between the stator and the rotor
was assumed to be equal to 15% of average axial chord.

The rotor rotational speed 2 was 1.28u_, where u_,
is the free-stream velocity at the inlet of the stage. The

value u,, (unknown before the solution) was calculated

from the assumption that inlet Mach number was
M=0.07. The inlet flow angle was assumed to be axial.

The value of the static pressure was P =0.96P, ,

where P, is the free-stream total pressure. The values
of the turbulent quantities were

q,/u,=0.01 o t/u, =65 the free stream

Reynolds number was 10° per inch. The treatment of
the patched boundaries between the O- and the H-grids
in the stator and rotor regions and at the stator and rotor
H-grids was based on the technique developed in [ 4 ].
This approach allows to preserve the conscrvation of
fluxes across a patch line.

Calculations have been performed a with time step

©=0.002T, where T (period) is the time during
which rotor blade completes one cycle. A rotor cycle
corrgsponds to the motion of the rotor through a
distance equal to pitch. Four iterations of the iterative
algorithm were performed at each step. About six rotor
cycles was required to achieve a periodic solution.
Figure 37 shows the time-averaged stator surface
pressure distribution in comparison with experimental
data [ 22 ]. The time averaged pressure coefficient is
defined as:

_P-P
C, = 1 g::
Epw

where p is the time-averaged (for period) pressure, p

is the time-averaged inlet free stream density. The
predicted results obtained by different schemes are
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practicaly identical and in a good agreement with
experimental data. Figure 38 shows the time-averaged
pressure coefficient for the rotor. Computed results
obtained by a third-order accurate scheme are in a
slightly better agreement with the experiment.

The pressure amplitude C, on the surface of the

stator are plotted in a fig. 39 . The C, is defined as

Ca = Pniax ‘_Pmin
- Qz
me

where P and P, are the maximum and minimum
pressures that occur over a cycle at a given point.

The predicted and measured pressure amplitude
distributions for the rotor are shown in fig. 40 . Note,
that the difference in the magnitude of pressure
amplitude obtained by different schemes may achieve
15-20 %; the application a of second and third order
accurate schemes in comparison with a first order
accurate scheme does not allow to obtain a much better
agreement with experiment. The computed Mach

number contours at instants t = 0.23;0.567;0.9T are
shown in fig. 41 a,b,c.

Numerical results have shown the developed
Navier-Stokes solver is able to predict quite accurately
the total pressure losses for 2D viscous transonic flows
in widely varing cascade geometries. For 3D viscous
cascade flows the agreement between computed and
measured results is also satisfactory in most cases.
Reasonably good predictions have been obtained for 2D
unsteady rotor-stator interaction.
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Fig. 9 Mach number contours for the BL 40 cascade ,
Aout=1.07.
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Fig. 11  Mach number contours for the
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Application of multidisciplinary models to the cooled turbine rotor design

Dr. VK. Kostege, Prof. V.D.Venediktov, Dr. A.V. Granovskii
CIAM (Central Institute of Aviation Motors)
2, Aviamotornaya St..,
Moscow, Russia, 111250

Abstract

A computer program for designing turbine vane
and blade cooling systems is discussed. This program is
based on the complex use of 2D and 3D gas dynamic,
heat-transfer and thermostress models.

FEM Thermostress models are formatted based on
geometry data from the computer design system. One-
dimensional mass flow and conjugate thermal models
are quickly created by using graphic dialogue regimes
for different cooling systems. Quasi-3D and 3D
thermostress models are used to carry out cooling
system optimization or comparison of alternative
cooling systems

Introduction

High temperature, spatial flow characteristics and
film cooling systems, make for difficult problems for
designing high work turbines. Design of vanes and
blades is based on complex use of different models such
as:

- inviscid, viscous and mixed 2D and 3D methods
for calculation gasdynamic processes

- statistical (regression) method for calculation
losses in turbine blades;

- methods of plane and spatial blade geometry
generation;

- quasi-3D and 3D conjugate heat - transfer
models;

- 2D and 3D stress-strain-state models

Designs are implemented in an iteration process
using multiple simultaneous solutions of straight
aerodynamic, heat transfer, and structural strength
tasks.

Operation of a blade cascade under transonic
conditions is characterized by a complex flow structure
accompanied by local supersonic zones, inner and outer
- edge shocks, and other phenomena. Designing a blade
system of optimized construction (accounting for gas
dynamics, strength, manufacturing technology, etc.) is a
formidable, if not indeterminate, task. For this reason,
when designing this equipment, which presently is
mainly concemed with the geometry of the blade
cascades and does not consider the specifics of actual
operation, the blading may have a rather poor aero -
dynamic efficiency. Therefore, the shape of the blade
passage must often be modified [1] when improving the
turbine by increasing the aerodynamic efficiency of the
blading.

The objective of existing methods for designing
and optimizing compressor and turbine blade cascade is
to provide separation and shock - free flow in the
cascades. This is achieved by solving the inverse
problem [2] and direct problems in the iterative process
[3 - 6]. A certain preferred velocity distribution along
the contour of the blade, ensuring minimum friction and
wave losses, is the basis for calculations. Specifically,
when designing supercritical blades for compressors [5],
the convex surface of the blade is corrected at points .
where the maximum over expansion of the flow gives an
intense shock wave capable of causing the separation of
flow from interaction with the boundary layer.

Note that designing transonic blade cascades by
solving the inverse problem has several disadvantages.
The blade cascade obtained as a result of solving the
inverse problem may fail to meet the requirements of
blade cooling, structural strength of the blades,
production technigues, etc.

A real modification of the blade cascade which
meets these requirements may differ substantially from
the optimal one. The numerous restrictions encountered
by the designers necessitate that compromise solutions
be taken. Therefore, it is best to carry out the design
process in several stages, in which several direct and
inverse problems are solved.

1. Linear blade cascade design

A multi-stage technique was recently developed at
CIAM [7]. In the first stage, the optimum combination
of free (variable) geometrical parameters of the cascade
ensuring a low level of blade losses is selected, taking
account of restrictions on the shape of the blades. This
can be accomplished either based on design experience,
using data from charts of experimental characteristics of
planer cascades, or using statistical (regression) models,
which generalize experimental data on losses in turbine
blade cascades [8]. Such regression equations can be
used as models to evaluate losses depending on the main
geometrical parameters of the cascade and its operating
conditions.

After selecting the optimal combination of
geometrical parameters (with given restrictions)
ensuring a low level of blade losses, a cascade may be
constructed by employing any appropriate analytical
method. This concludes the first stage of the design,
which can be regarded as the solution to the inverse
problem on the basis of statistical regression models.

Paper presented at an AGARD Lecture Series on
“Mathematical Models of Gas Turbine Engines and their Components”, December 1994.
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In order to ensure minimal losses in a cascade of a
particular shape, optimization is performed in the
second stage using analytical (gas - dynamic) models, in
particular by employing the method of realization [9],
by calculating the boundary layer on the blades, and so
on. The second stage also includes an analysis of the
distribution of the effective velocity at the blade surface
and in the blade passage, the intensity of the shock wave
at the outlet from the cascade, and the susceptibility of
the flow to separate. If necessary, the shape of the blade
may be changed and all calculations may be repeated
until a cascade with low blade losses and a favorable
flow pattern is obtained.

As is well known, the flow, and consequently the
aerodynamic efficiency, of the transonic cascade is
greatly influenced by the shape of the suction side of the
blade, particularly the distribution of its curvature in the
region of the throat.; Usually the shape of this section is
characterized by the stagger angle. Calculations have
shown that by redistributing the curvature of the suction
side of the blade in the region of the throat, even at a
constant stagger angle, the flow parameters in the
cascade may be improved: specifically, maximal over
expansion of the flow at the suction side may be
substantially reduced [3].

The high sensitivity of the transonic flow to even
minute changes in the blade contour, and the complexity
of the flow pattern in the blade passage for transonic
operating  conditions do not allow general
recommendations to be made regarding the preferred
distribution of curvature along the contour of the blade,
especially on the suction side of the blade. However, we
may make the following qualitative assessment based on
numerous calculations and experimental data: when
correcting the blade contour, careful reduction of the
intensity of the shock waves existing at the leading
section of the suction side, which cause a thicker
boundary layer at the suction side and its separation due
to the shock near the trailing edge. Also, lengthy
diffusing sections on the suction side should be avoided
especially when the pressure in the flow near the wall at
the trailing edge of the blade greatly exceeds the average
pressure downstream of the cascade, because it
contributes to the separation of the flow.

A monotonically accelerated flow along the suction
side of the blade with small over expansion on the throat
and velocity at the outlet of the suction side are the most
favorable conditions.

To ensure acrodynamic optimization of the shape
of the suction side, the second stage of the design should
employ an automated method, in which the curvature of
the surface is correlated to the local velocity of flow.
Based on equations for planar gas flow expressed in
physical coordinates (the x - axis is orthogonal to the
stream lines), we obtain the following relationship:

d\/A=-dR/R=dK /K, n

where R and K = 1/R are the radius of curvature of
the stream line and its curvature, respectively.

It follows that an increase in the curvature of the
surface (dR < 0) at an arbitrary point on the suction side
of the blade causes a local increase in the velocity of
flow (dh>0), while reduced curvature causes a
deceleration of flow (with dR >0, dA <0). This
phenomenon is qualitatively similar to the distribution
of velocity in a vortex, that is, the local stream velocity
is directly proportional to its curvature.

We optimize the shape of the suction side of the
blade with the following parameters remaining invariant
:chord 1, pitch t, blade angle Y, throat section a, ,
thicknesses d; and d, of the leading and trailing edges,
and with an invariant shape of the blade pressure side.
Parameters such as the stagger angle and the maximum
thickness of the blade may be subject to change in the
course of optimization. The shape of the suction side of
the blade is varied under the above conditions by
redistributing the curvature along its contours.

A series of direct problems were solved in
optimization by the realization method using an
iterative process. At each design stage, we analyzed the
calculated velocity distribution along the suction side of
the blade, and corrected the distribution of curvature of
the blade suction side according to the level of the
velocity and character of the distribution. In accordance
with the above mentioned influence of the curvature on
the velocity (1), it varied at the nodes of the calculation

K =K +o(k—2y) )
where K and K were the initial and final values
for the curvature at the i - th node of the net;

k= )“adilxﬁad and )\'adi = xadi/}"Zad

were the given and calculated values of the relative
velocity A, at the i - th point in the current iteration
step.

Then the contour of the blade face was
reconstructed using the changes distribution of the
curvature, and the calculation net near the suction side
was corrected retaining the orthogonality of the cells (in
the calculation, the shape of the blade was given by the
coordinates of nodes in the net within the blade
passage). In the next iteration step, we used the flow
parameters in the net cells of the previous stage to
calculate the new velocity distribution A, along the
blade contour. This process was continued until 2
cascade was obtained with over expanded flow at the
blade suction side :A ,, <1.1 to 1.15. Optimization of
the shape of the blade suction side usually requires 5 to
7 iterations, in which variations are made in the blade
curvature distribution using the relaxation coefficient
A=0.38.

In each step we changed the shape of the blade
suction side starting from a given point on its front,
such as the point of tangency with the leading edge. At
this point, the coordinates, the first derivative and the




curvature are maintained invariant during optimization.
The shape of the blade side is reconstructed in
accordance with the corrected curvature by numerical
integration of an ordinary second -order differential
equation using the Runge - Kutta - Feldberg technique.
Here, the curvature is expressed through first and
second derivatives as follows :

Y -K®)1+y*)¥ =0 ©

The throat @, and the thickness of the trailing edge
d, may be changed in the optimized cascade. Therefor,
an additional correction of the distribution of the
curvature on the blade side is necessary to maintain @,
and d, at the level of the initial cascade. This keeps the
flow rates of the gas and the cooling air in the optimized
cascade invariant. The additional correction does not
change the character of the distribution of the curvature
on the blade side.

Fig. 1 illustrates how this method works by
showing distributions of the curvature and the velocity
along the contour of the blade suction side i in the
course of the iteration process. Substantial over
expansion of the flow appears in the initial cascade
(Apax =1.41) with a section having intensive
diffusing flow. After performing corrections, the shape
of the blade suction side was obtained with a small over
expansion of flow (A ., =1.15).

The iterations were made with a large relaxation
coefficient (A =1.15) to obtain a vivid picture; this
caused substantial redistribution of the blade suction
side curvature as early as the third iteration step. The
curvature became more pronounced in the zone of the
trailing edge because of the conditions @, = const and
d, = const. However, this did not result in a substantial
local increase in the diffusing ratio (Fig. 1b). Note that
corrections may be stopped at any iteration step, which
satisfies the requirements of the designer concerning the
character of the flow and the shape of the blade.

Calculations of parameters for the boundary layer
show that the momentum thickness in the corrected
cascade is much less than in the initial cascade (Fig.
1c); it corresponds to a reduction in friction losses by
&€, = 0.01 10 0.015. From Fig. 1d we see that the
maximum thickness is reduced in the optimized blade;
however, the stagger angles & and the wedge angle of
the trailing edge ®, increase, which facilitates design
of the blade cooling system.

In Fig. 2, the distribution of velocity A ,,along the
contours of the blade is shown for the initial and
optimized cascades when A,,; =0.90. Over
expansions of the flow (A, =1.22) ending in a
shock wave occures in the initial cascade on the blade
suction side near the geometric throat. A velocity
distribution without a shock can be obtained for the
correction of the blade in accordance with the method
we have developed. There were only minor changes in
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the distribution of the curvature and in the shape of the
suction side of the blade (experimental data concerning
cascade 2 are found in [8]).

The method proposed in this lecture was also used
to reshape the root section of a turbine rotor cascade that
had already been manufactured, in which substantial
losses were noticed. When reshaping, besides correcting
the curvature of the suction side of the blade, we slightly
reduced the blade setting angle Y and the thickness of

the trailing edge d,. The initial and optimized cascades

were investigated experimentally for R e = 10° and a
level of turbulence at the inlet of € =0.06 to 0.08.

Figure 3a shows the distribution of the curvature of
the blade suction side in cascades 3 and 4, from which
we see that the curvature at the middle of the blade is
greater in cascade 3 than in cascade 4. The curvature of
optimized cascade 4 is somewhat more pronounced near
the throat than in cascade 3. This redistribution of
curvature on the blade suction side resulted in a value
for Ayy; =0.72 under working conditions (Fig. 3b)
instead of substantial over expansion of the flow on the
blade suction side in cascade 3 to A . = 1.03, with
subsequent deceleration in the elongated diffusion
section to A,y =0.7, and a reduced over expansion
and diffusion ratio of the outlet section in cascade 4
(A ax / Apag = 1.2 instead of 1.44 in cascade 3).

The unfavorable flow pattern on the blade suction
side in cascade 3 causing the separation of the flow and
substantial blade loss is clearly seen when examining
the wall flow in cascades 3 and 4 (Fig.4).

The flow was visualized by introducing a fast -
drying dye upstream of the cascade for three to five
seconds [11]. After drying, the dye traces produced a
vivid picture of the. wall currents under the operating
conditions being studied. Fig. 4b shows that in
optimized cascade 4 with A,,; = 0.72, the dye traces
on the blade suction side studied coincide with the
direction of stream lines indicate that the flow is
regular, vortex - free, and continuous. Because
separation was absent in cascade 4, the blade losses
were much lower (by 8&,, = 0.03—0.04 as compared
with the initial cascade 3), as shown in Fig.3c.

The proposed method of aerodynamic optimization
of transonic turbine blade cascades is based on the
correlation of the velocity of the flow and the curvature
of the surface being circumscribed, and can substantially
accelerate work on improving turbine blade cascades. In
some cases, this method will substantially reduce losses
by slightly changing the geometry of the cascade and the
blade system as a whole.

2. Designing of blade's cooling system

After generating the external blade surface, design
of the blade cooling system, which provides the
necessary blade surface temperature state for a. given
mass flow rate, is implemented. Application in the
design stage of quasi-3D heat transfer models allows
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comparitive analysis of alternative cooling systems, and
optimization of the chosen cooling system. The profile
part of the blade (after the aerodynamic design is
complete) is described in terms of external contours of
cross sections. Internal contours are set down for
generating smooth internal cavities in some base
section, Cavity sizes are regulated by giving wall
thickness at some points of the external contours. The
next step is the generation of internal contours for other
blade sections by interpolation.

Existing information about the geometry is written
in formats DXF or IGES and used in geometry
simulation for generating cooling passages.

In dialog graphics regime partitions, matrix,
injection holes and other elements can be generated.
Contours, which include metal, form and create an input
file for FE grid generation. Preparation of the full blade
profile part geometry is provided by FE grid generation
in all sections and by uniting all grids in one FE grid.
Geometrical and FE models which have been described
are implemented quickly and clearly, but final passage
geometry is determined by an interactive process which
demands designer's experience.

First check of geometry is the air mass flow
characteristic of the blade's cooling system. Geometry is
corrected until the correct air mass flow is obtained.
Hydraulic model generation is carried out for regular
structure (matrix, pin fin) automatically and for non
regular stuctures in graphic dialog regime. Calculation
of passage cross sectional areas and hydraulic diameters
are implemented in "Edit" regime; or in the regime for
the establishment of section connections; or when
complete information about injection hole’s (heat
sources) is formed. Fig. 7 presents a copy of the picture
on the display screen, appropriate to this regime of
hydraulic model forming. Hydraulic resistance are
calculated on the bases of given editor value of friction
coefficients, or given in regime "Edit".

Heat transfer and air heating are calculated only for
branches connected with FE grids.

For calculation of heat transfer in graphic dialog
regime numbers A and n (Nu=ARe**n) are given.

On Fig.8 gas boundary condition are presented
(film cooling and boundary layer calculation)

For temperature field calculations in blade sections,
the next input data are prepared:

distribution by height of gas temperature and
pressure before the blade, gas pressure behind the blade;

air pressure and temperature on entrance in the
blade's cooling system.

The blade's quasi-3D strength model is
implemented on the FE grid, using temperature
calculations, in conjunction with received temperature
fields and gas and centrifugal forces.
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Verification of Multidisciplinary Models for Turbomachines

Dr.Kostege
CIAM (Central Institute of Aviation Motors)
2, Aviamotornaya ST.,
Moscow, Russia, 111250

Abstract

Accurate prediction of the temperature distribution
in rotating blades is an important and difficult task. An
approach for the verification of hydraulic and thermal
models in real blades is discussed in the lecture. For
static conditions, predicted local internal convective
heat transfer coefficients on blades are corrected using a
quasi-3D thermal-hydraulic model with the blade
unsteady surface temperatures measured by the
Thermovision system. External boundary conditions are
corrected using the blade base surface temperatures
measured by thermocouples on a hot static rig. The final
identification of the models is carried out using
measurements of the gas temperature distribution within
the rotating blade passage, and the measured blade
external surface temperature in the engine.

Introduction

With constantly increasing demands for engines
maneuverability there is a resulting increase in the
hostility of the internal engine environment. These very
important problems inhibit turbine reliability for all
operating regimes. From reference [1], in 40% of the
cases tested, the hot section failures in the engine
occured on the working turbine blades. In aviation
engines, failure of turbine blades occurs primarily under
transient operating conditions. Because of this problem,
thermal - stress blade predictions must be available for
all flight regimes.

Predictions of static strength, fatigue life, and
stator-rotor clearances are limited by the accuracy of
calculation of the steady and unsteady temperature fields
in turbine engines. Currently, the only means for
obtaining enough reliable data for these temperature
calculations is through the use of termal-hydraulic
models. Model validation and parameter specification
are carried out through measurements on models, rigs,
and engines.

1.1. Model identification for the blade profile

1.2. Methods of calculation

The flow regime and corresponding heat transfer
in the core flow and in the cooling systems of turbine
blades are complex. Because of the lack of reliable
turbulent models and insufficient computing power,
local heat transfer coefficients can not be accurately
defined by computations alone. Experimental
explorations of gas heat transfer coefficients on blades
are made primarily on static rigs. Such explorations
have taken place under rotating conditions, usually
during stage design and development. Transfer of
results from the static tests to the dynamic tests shows
that it is impossible to guarantee the determination of
heat transfer coefficients to high accuracy. Furthermore,
these experimental explorations are implemented, as a
rule, for a limited number of points, which presently do
not satisfy demands for design.

Heat transfer coefficients in cooling system
passages are usually explored in models. In a mojority
of the cases reviewed, results obtained from actual
operating machines raised certain problems with respect
to measured and predicted operation.

In Russia, the Zn - MATI method is widely
implemented for the experimental determination of heat
transfer coefficients [2, 3]. Heat exchange conditions are
correlated to the height of a pure metal (Zn) crust, that
has hardened on the external blade surface. The crust is
formed by plunging the blade in pure molten metal
(Zn). Crystallization takes place while air flows in
cooling passages. Convective cooling occurs across
moving boundaries. Here, a difficult problem is
presented. The calculated heat transfer coefficient must
be related to the boundary between liquid and solid Zn.
Therefore, it is necessary to numerically compute the
heat transfer to the blade cooling system.

The gas total temperature in the relative frame of a
blade surface profil can be defined reliably only by
direct temperature measurement. For example, the heat
transfer coefficients on an uncooled blade can be
determined with the help of MMTC (measuring
maximum temperature crystallized), thermopaints and

Paper presented at an AGARD Lecture Series on
“Mathematical Models of Gas Turbine Engines and their Components”, December 1994.
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other methods. These techniques are implemented in
low temperature flow regimes.

Taking into account all the difficulties, more exact
heat transfer coefficients can be defined on blade
surfaces under working conditions through complex
calculation and experimental observation in two stages:

First stage (static rig exploration).

- Working from the blade cooling system hydraulic
model, a comparison is made of calculated results and
experimental data from tests in water and tests in air.

- Blade cooling passage profil heat transfer
coefficients are determined with solutions obtained from
the methode of liquid Zn crystallization (Zn - MATI).

- Gas heat transfer coefficients are determined by
measuring the blade wall temperature during thermal
cycling (for example by the "thin body method™).

- Boundary conditions are checked and specified
by comparing blade profile calculation results obtained
by the quasi three-dimensional model and
thermometering results in real blade static rigs
(convection - film cooling) and blades with closed
injection holes.

Second stage (dynamic explorations).

- Gas temperature measurements are taken in the
relative frame on the blade surface profile with no
cooling

- Blade profile gas temperature measurements by
MMTC sensing elements and other methods are taken.

- A series of temperature field parametric
calculations on the blade profile (quasi three-
dimensional model) is conducted with boundary
conditions as measured under real conditions in static
rig experiments, and compared with calculation results
and thermometering.

- Analysis of the calculations compared with
experimental blade profile temperature is performed.

- The blade profile heat state models in the above
calculations are based on quasi three-dimensional and
three-dimensional thermal hydraulic models.

1.3. Methods of defining local heat transfer
coefficients in real turbine cooling passages

The turbine blade cooling system performance (for
example, the heat transfer coefficients inside passages)
are defined as functions of known criteria, and using
typical average heat exchange characteristics with
available models.

Because of the complex flow in the cooling
passages (turning, mixing and separation), their exist
geometric differences between the blade and the model.
Such discrepancies can cause a large difference between
the blade’s actual heat state and that calculated. This

makes it more difficult to properly design the cooling
system and extend blade life.

In CIAM, the local heat transfer coefficients inside
the blade passage are defined based on the "Zn - MATIT"
method, with the quasi three-dimensional thermal
hydraulic model of the blade. During cooling of the
melted Zn the temperature drops until the liquid-solid
phase change point is reached. At the phase conversion
surface, the temperature remains constant. As the
surface moves during the phase change, the latent heat
of the liquid-solid phase change is evolved. For
definition of the separation boundary between the solid
and the liquid Zn phases, a standard finite element
methode for the solution of the unsteady heat transfer
equation is used. Inside the cooling passages, convective
heat transfer boundary conditions are applied. However,
in this solution, an effective heat capacity ¢ of Zn must
be used.

c=c+qd(A)

The introduction of the effective heat capacity
means that the process of crystallization takes place over
a temperature interval.

For air mass flow in the blade's passages, the heat
transfer coefficients are verified if the boundaries of
crystallization coincide with experimental data for the
entire blade profile.

At the present time, a more informative method of
defining the local heat transfer characteristics inside the
blade passages (or other experimental objects) is used.

This method, the Thermovision system, is based
on a computational analyze of experimental data.
During the calculation, the heat transfer coefficients are
varied on separate boundaries. The unsteady blade
surface temperature field is solved by the conjugate
quasi three-dimensional technique.

Mode of study: The blades surface was covered
with a special paint with a known emissivity. The blade
was then heated to 300-350°C. After heating, cooled air
(temperature 20°C) was quickly pumped trough the
blade passages. The unsteady temperature of the
external suction and pressure sides of the blade were
measured by the Thermovision system (AGA - 782)
with a frequency of one measurement set per second.
The air mass flow was continuously recorded. In
comparison with control thermocouples, the error of the
unsteady temperature field measurement by the
Thermovision system did not exceed +/- 3%.

1.4. Measurings of gas and blade temperature in
engine

The experimental determination of the heat state
in gas turbine engines was worked out at IAE by
T.A Kurchatova sensitive elements MMTC(measuring
maximum temperature crystallized) [4]. The IAE
application has several advantages : There are no
congesting wires, small surfaces may be measured, and
the maximum temperature can be measured. With the




help of MMTC, measurements of gas temperature,
cooling air temperature in the small cooling passages of
the blades, and the surface temperature of cooled blades
is possible. The experience of the MMTC application
has shown that data obtained under real engine
conditions, without recalculation or simulation of the
gas flow, can be used to understand the processes of the
flow in turbine's gas channel.

1.5. Comparison of calculation and experimental
data by blade's heat state

Consider a turbine blade with a cyclon matrix
cooling system. The blade geometric and hydraulic
models and the finite element grid for the blade middle
section are shown in Fig 1. ‘

The blade profile is given in 9 sections. Every
section consists of 5 subregions. For example, the fifth
section (middle) consists of the subregions numbered
from 21 to 25. Subregions 23 and 24 represent the
simulated heat transfer at the inlet and the exit of the
cyclone passage, and subregion 25 represents the
simulated heat transfer in the finned passages of the
trailing edge. The finite element grid of the blade profile
has 2278 boundary elements. The common number of
subregions is 45, where 24 of these subregions represent
heat sources.

The hydraulic model describes the blade cooling
systems (i.e., that part of the hydraulic network
appropriate to cooling). The regular part (matrices) of
the hydraulic network is automatically generated by the
model. Simultaneously, the blade sections and the
calculated areas are branched and the hydraulic
diameter cross sections of passages in the matrices are
established.

Generation of irregular hydraulic branches is
implemented in a graphic dialogue regime. Hydraulic
resistance of radial passages is defined as

l
=l )
where
K = 10 - coefficient, taking into account ribbed
passage.

A =0.04 - friction coefficient of smooth passage.
1, D - length and hydraulic diameter of passage

The hydraulic resistances in matrix passages were
calculeted setting K = 1. Hydraulic branch resistance at
the entrance and exit of the matrix passage are E_, =0.7
and & = 0.92, respectively.

Resistances to air mass flow between the matrix
passages on the blade pressure and suction sides are
€ =30. Passages resistances on the entrance and the
exit from the cyclone cavity are § = 0.65 and § =1.8,
respectively. Comparison of the calculations and the
experimental mass flow characteristics of the blade
cooling system show good agreement. The air mass flow
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through blades was calculated to be a; = 2.9 (0.8% of
which is through the cyclone).

For the calculation of the heat transfer coefficients
in the blade cooling system passages, well-known
experimental correlations were used. Thus, in the
cyclone cavity on the blade leading edge, surface
correlations for a single jet impingement configuration
[5] were used. This application has been confirmed by
experiments (V. Saharov, CIAM). For other passages,
the formula for heat transfer in turbulent regimes can be
used with corrections to the entrance region of the flow,
or roughness (passages with ribs).

Nu=0.018Re®* K

For passages with multiple ribs (K = 2.2), the
calculation is made at the minimum section
(A.Trishkin, CIAM). Figure 2 shows the thickness of
the Zn crust (mid-span), distribution from the Zn-MATI
method with closed injection holes in cyclone passage.
Agreement of calculated heat transfer coefficients
increased by 10-20% in matrix passages. This was
determined by taking into account the entrance region of
the flow in the passage, K = f(I. /D).

It is very important to say that the calculation of
the heat transfer coefficients in matrix passages was
implemented for air mass flow values not confirmed by
direct measurements. Only the inlet and exit air mass
flow values were measured.

As we said before, the gas temperature radial
distribution in front of the blade significantly changes in
the blade passage. Considering the blade, Figure 3
shows the temperatures that were measured in rotating
conditions on an engine. In three points (on leading and
trailing edges of the pressure and the suction sides) of
some sections of the non-cooled blade, the blade wall
temperature was measured with the help of MMTC
(V.Filippov). The gas temperature distribution on the
pressure and the suction side were obtained from the
three-dimensional heat conduction equation. Due to the
heat flowing from the blade, the maximum difference of
the blade metal wall temperature from the local gas
recovery temperature is 10 - 15K,

Results of this measurements were used to obtain
the gas temperature distribution in the passage between
blades for the base flow regime.

Calculation of the film cooling on the blade
suction side and gas heat transfer coefficients were
conducted using the Laval number distribution A(s)
along the blade section contour. Laval number
distributions for root, middle and tip sections are shown
in Figure 4. These results were obtained assuming
inviscid three-dimensional flow.

Calculation of the local gas heat transfer
coefficients was implemented while solving two-
dimensional equations of boundary layer using an
algebraic turbulent model (V. Sovershennyi). Figure 5
shows the comparison of calculated and measured
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values of gas heat transfer coefficients on the static test
rig. The measurement of the heat transfer coefficients
was implemented with the help of the unsteady “thin
body" method for the middle section of the blade
(V.Pochuev, CIAM).

In Figure 6, some temperature calculation fields
are shown for various blade sections on the external
surface of the blade profile. Here the temperatures
measured with the MMTC technique are also shown on
some points of the blade.
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Fig-1 Hydraulic and geometrical models of

cooled matrix blade.
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comparison numerical and experimental data.

Fig.6 Steady temperature field in blade




10-1

Perspective problems of gas turbine engines simulation

Prof. M. Ja. Ivanov
CIAM (Central Institute of Aviation Motors)
2, Aviamotornaya St.,
Moscow, Russia, 111250

Abstract

The purpose of the last lecture is to present the
activity of CIAM in the field of the development of
Computer Turbojet Test Technology based on aero-
engine models of high 3D level. Using this technology
the aero - engine design may be transformed into new
quality. It's the predictions of steady and transient
working processes, performances and efficiency on the
first stage of engine design ( without the real metal
engine testing). These aero-engine models must
accompany the whole engine life - from design to
production and use on aircraft.

Introduction

The preceding lectures and also the quoted
publications of last years have illustrated the modern
advances of mathematical simulation of the physical
processes in gas turbine engines and its components. In
this lecture we'll formulate the nearest perspectives of
development and application of this research direction.

First of all we would like to emphasize that now
there is a real base of good enough computer test
facilities to work out processes and performances
investigations of different type of aero-engines (turbojet,
turbofan, turboshaft and oth.). CIAM is realizing the
development of modem Computer Turbojet Test
Technology (CT3) - to create and validate new
simulation software procedure to desxgn and analyse
aircraft engines. As a result of this CT3 program will be
the creation and verification of the high levels oomputer
test facilities for whole gas turbine engines. The cr3
system based on 2D and 3D simulations of
aerodynamics, heat transfer and stress problems is
described in this lecture.

The CT3 will allow high accuracy to simulate the
real working processes on various regimes (take off,
cruise, idling, autorotation and oth.) and influence of
major parameters on engine efficiency. It will be a very
convenient tool for engine performances prediction,
such as the speed—altltude or part-load regime
performances. The CT3 will determine also the
equilibrium running lines, simulate different transient
regimes. Wide application of the CT3 system on design
engine stages allows to decrease greatly the time and
cost of the engine development.

Another CT3 application will be non traditional
methods of engine control systems. These new
regulation methods will be based on the prediction of
initial stages of nonstable engine working regimes
(starting, surge, burning put or out and oth.) and allow
to prevent nonstable processes at the initial steps.

In the frame of the considering research the special
software system of scientific analysis and visualization
is developed. This system conditionally named
Scientific Operating System (SOS) allows us to improve
greatly our analysis capabilities, as well as the ability to
view portions or all of the numerical data, to have a
static and animated 2D and 3D pictures in color
presentation.

The achieved progress in aero-engine physical
processes simulation may be used to design gas turbine
engines and units of non aircraft application. As
examples, in this lecture some results will be presented
for a big steam turbine units for atomic power stations.

The computer 3D engine model must accompany
the whole engine life - from design to production,
uprated and modified versions, and to exploitation on
aircraft. Estimation of necessary computer requirements
for the realization of the CT3 shows us the first stage of
cT3 may be developed using wide spread work stations
with RISC processors.

1. Computer Turbojet Test Technology

CIAM owns a unique test facilities for research of
real acro-engines and its components. Aircraft engines
for different applications can be tested in simulated
flight conditions up to altitude H ~ 20 km and flight
Mach number M < 3. There are special rigs for testing
small turbojet and turboshaft engines under simulated
flight altitude - speed and climatic conditions and for
gas dynamic, heat transfer and strength testing of gas
turbine engine components.

In this section we consider the creation of the
Computer Turbojet (Turbofan, Turboshaft and other
turboengine) Test Technology - the CT3 system and its
performances. The cr3 system must increase greatly
the possibilities of our natural test rigs for researches of
aircraft engines and its components.

We shall present the main peculiarities of
developing the o & system. It is based on complex 2D
and 3D mathematical simulations of acrodynamics, heat
transfer and stress problems, described in this lecture .

Paper presented at an AGARD Lecture Series on
“Mathematical Models of Gas Turbine Engines and their Components”, December 1994.
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After the thermodynamic design, when we have the
drafted project, the cT3 system is included with the
schematic diagram showed in fig.1. First of all cr3
allows to carry out the detail aerodynamic design of the
whole gas turbine engine system. Here it's emphasized
the main difference from traditional ways of engine
system design.

Up to the present time the mathematical engine
simulation used 1D and quasi-2D models [1-4], which
demanded a long time for verification testing and
development. Application of very accurate 2D and 3D
models of the CT3 system allows to get more optimal
aerodynamic project of engine system without
continuous real engine testing.

On the first step cT3 applies for major steady
regime simulations (the cruise and take off regimes).
Here we can accurate simulate the equilibrium running
points for a series of operating conditions and obtain
performance curves of power output or thrust, and
specific fuel consumption, when all components are
linked together in an engine.

Analyzing these regimes, we can design a better
variant of the working project and study off-design
performances. Beginning from the off-design steady
regimes (reduced and maximum powers, idling,
autorotation and oth.) and having a better next variant
of the working project we must analyze the very
important off-design unsteady regimes (starting, surge,
burning put or out and oth.). As a result of detail
aerodynamic engine analysis we are very close to the
optimum working engine flow passage project.

After that, also with the help of the perspective cr3
system we can carry out the mechanical detail analysis.
On this step of design, there will be carefully solved heat
transfer, stress, vibration, reliability and resource
problems. Here we will deal with the finished engine
project, which is used for the manufacturing of
experience engine. The next step of wide using of the
cr3 system will be an accompaniment of real ground
and flight engine testing and its certification. The cr3
system must raise the engine testing to the new high
quality level, where we will have essentially more
information on all test regimes.

Lastly, the cr3 system will accompany also the
engine production, exploitation and development of
uprated and modified engine versions. We would like to
emphasize once more that the cr3 system must
accompany the whole engine life and will be similar to
an engine passport.

2. Scientific Operating System

When complex multidimensional problems are
solved, the computer memory contains a large volume of
numerical information. It's necessary to fulfill quickly
enough the careful analysis of inputting and obtaining
information with the help of special techniques. This
analysis must be based on the new artificial intellectual
systems and the modern graphic visualization systems,
which are to be developed for work stations and
personal computers.

At the time of writing, a new research group has
been organized in CIAM headed by Dr. A.P.Tchiaston
for the development of special software system of
scientific analysis and visualization. This system
conditionally named Scientific Operating System (SOS)
will allow us to improve greatly our analysis
capabilities. Shortly we would like to present the major
peculiarities of this system.

At the first stage, the input information of complex
3D problems must be analyzed. The careful control of
all inputted 3D objects and surfaces must be fulfilled. A
researcher has the possibility to view any portion or the
whole object of investigation. Fig.2-5 shows the SOS
application for presentation of some pictures of gas
turbine engine, its component and part of surfaces. In
the same way, all initial problem data and boundary
conditions must be verified.

At the second stage, the SOS application allows us
to control the used computational grids. Fig.6,7 show
the typical examples of these grids.

At the next stage, a researcher must have the
possibility to analyze the computational process
(convergence history, stability, accuracy and so on).

The main stage of SOS application is the scientific
analysis of obtaining numerical data using the modern
graphic visualization systems. We present here some
typical pictures of such visualization and the special
videofilm. The SOS system allows us to analyze in a
very convenient form a steady and transient process of
gas turbine engines and its components. A static and
animated 2D and 3D pictures in color presentation are
very impressive and can help obtain better solutions and
give concrete recommendations for the engine design.

3. Some application for steam turbines design

High level of computational simulations developed
in the aircraft engine design can be applied to construct
and modify road and marine gas turbine engines, stcam
and gas turbine units of stationary power engineering.

One of the typical examples of this problem may be
the increase of a big steam turbine efficiency. In many
cases the detail study of using and producing power
turbine shows the essential reserves in the increase of
their aerodynamic efficiencies. In this section some
typical results for redesign steam turbine stage are
presented. Some real effects of multiphase phenomena
in transonic flow are taken into account.

First, we consider the efficiency increase of the last
stage of a big steam turbine (the low pressure cylinder).
This stage had the meridional shape and radial blades of
a vane and rotor as showed in fig.10, where also present
pressure contour lines on suction sides of blades. With
the help of 3D aerodynamic efficiency simulation was
redesigned this last stage and proposed the new 3D
bowed blades (fig.11). The new vane has blades with the
axial bow in the upstream direction (upper part of
blades) and with the radial bow near the hub. Fig. 12
and 13 show correspondently reaction distributions from
hub to tip for major regime and two
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partial regimes (mass flow ratio G=05 and

G =0.75). There are no negative reaction for the
modified stage. The modified stage has essentially lower
total pressure losses and the stage efficiency increases
on 2%. Details of showed researches were published in
papers [5,6]. These examples have been demonstrated as
one of the perspective problem of turbine simulation
using complex 3D blade form in turbines for stationary
power engineering.

The next perspective problem is the development of
steam turbine simulation with real effects (the
multiphase phenomena, condensation and oth.).

Gasdynamic multiphase phenomena in transonic
flows caused by the phase transitions and strong
interaction between phases is important for many
practice problems such as steam turbines and nozzles,
cryogenic turbomachinery, streams with dispended
particles and aerosols. Below some numerical results are
presented for multiphase inviscid problems based on
Euler conservation equations for gas phase coupled with
the equations of classical nucleation theory and
microscopic or macroscopic droplet grouth laws. Taking
into account heat release, phase transition and strong
interphase interactions such effects of high sensitive
reaction as "condensation shock", periodic shock
oscillations can be explained. Corresponding simulation
of 2D and 3D multiphase flow was elaborated in CIAM
by Drs. Ju. S. Kosolapov and A. S. Liberson [7,8].

Fig.14 shows pressure contour lines (with interval

Ap = 0.02) for stecam flow in cascade C-9012A with

Mach number M2 =1.2. Condensation shock is
pointed out by arrow. Correspondent distribution of

pressure € = p/ p, along the section side is presented
by Fig. 15 (solid line), compared with experimental data
("crosses"). A good agreement in almost all range,
including condensation shock proves to be except at the
trailing edge, where the viscous effects are significant.
Dotted line depicts overcooling degree - AT, upper

continious thin line - rate of vapour . It should be
noticed that calculations by pure gas methodology
without phase nonequilibrium effects lead to the
essential errors in distribution of parameters below
section with condensation shock effects. Fig.16 shows
pressure countour lines for steam flow in cascade with

M, =1.6 and evolution of pressure (solid line) and
rate of vapour (dotted line) along the suction side and
correspondent line of periodicity. System of trailing
edge shocks provides discontiniously evolution of
stream getting more and more dry up with every current
classical discontinity breakdown.

Fig. 17 shows the mass concentration of the vapour

phase for M, =1.2 and 1.6. Notice that the vapour
concentration is increased for higher Mach number.

In order to illustrate the accuracy of the developed
method the steady flows of a spontancously condensing
water vapour in the plane nozzle were calculated [9].

Three regimes with the following total parameters
at the inlet of the nozzle were examinated:

p, =0.7839 bar (common to all regimes),
T, =370 K (regime 1), T, = 373 K (regime 2),

T, =377 K (regime 3, pure condensation shock).
The nozzle flows are shown in fig.-18 for regime 1

Mach number contour lines (AM = 0.025) (fig. 18,a),
for regime 2 (fig. 18,b) and for regime 3 (fig. 13,¢).
There are the shock and subsonic flow behind it for
regime 1, the local shock and subsonic region for
regime 2 and only the condensation jump for regime 3.

The pressure distributions € =p/p, along the
axis of nozzle are shown in fig. 19 for regimes 1,2,3.

The crosses show the experimental data by D.
Barshdorf [9]. Here we would like to finish the results
presentation.

Conclusion

To direct readers' attention to important problems of
the present Lecture Series we would like to formulate
the following question: Can we create the gas turbine
engine test cell, which allows us to measure all
parameters and to observe going processes in any
interesting point of flow passage? Some results of the
Lecture Series show the principal possibility of such test
cell creation. We have been convinced that Computer
Turbojet Test Technology (CT3), based on the accurate
3D simulation of engine processes, can get results with
more higher accuracy, then only experimental
measurements. Let the real measurements of having
limit points number (usually, about a few hundreds)
coincide in the limits of demanding accuracy with their
calculated values on the identified mathematical cell
CT3. In this case we can with a sufficient confidence
believe that the united system of real and mathematical
(CT3) cells presents itself the new high level quality test
facility measuring points number, equaled the points
number of numerical grid, using in the cT3 system.
Here in any point of measurements (in any
computational cell) are registered all the parameters (for
example, in a flow passage points - pressure,
temperature, density and three component of velocity).
At that time the proposed system allows to do
transparent the all engine and to observe the research
physical process in any region, in any point on display
using impressive color graphic system. This can be
related as well is gasdynamic process and also to heat
transfer, stress, burning, deformation processes.

The CT3 system to develop an engine or a turbine
power unit can essentially influence over their
competition capacity. There is open the new
advertisement  possibilities. So all  important
performances can be presented very impressively using
the transparent computer model. Special visual
demonstration of the best sides of the article will carry
out undoubly to a growth of the competition capacity.




Moreover, the supply of engine or unit with its color
3D model will allow to get essentially clearer and more
comfortable instructions, description of components and
going processes. Simulation with the help of cr3
system of emergency situations will allow also to study
the servicing personnel and to avoid the possible
mistakes when emergency situations will be arised.

The enormous improvements in computing speed
and storage capacity will have a major impact on widely
spread of similar cT3 systems in engines and units
design and exploitation.
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Fig. 10 Mach number contour lines on suction side for the initial variant of last stage of stcam turbine.

Fig. 11 Mach number contour lines on suction side. Modified variant.
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This Lecture Series will present and discuss the scientific
problems of modern mathematical simulation of gas
turbine engines and their components.

Some peculiarities of complex multicomponent and
multidisciplinary models for whole flow passage of
bypass gas turbine engine, core, multistage compressors
and turbines, and other engine components will be
studied.
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Solutions of steady and unsteady problems are given using high efficiency monotone
numerical methods and the theoretical bases of these methods are presented.

Many practical results of aerodynamic and thermostress simulations for engine
components are shown. These results are compared widely with experimental data for
accurate verification of developing computational codes.

This Lecture Series, endorsed by the Propulsion and Energetics Panel of AGARD, has
been implemented by the Technology Cooperation Programme.

ISBN 92-836-1008-3
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