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Abstract

The problem is solved of the forced, transverse vibrations

of a solid, compressible, elastic core case-bonded to an

infinitely-long, rigid cylinder. It is shown that the ratio

of the amplitude response of the core axis to the amplitude

of the casing depends on both the frequency of the forced

vibration and Poisson's ratio for the core material. By

plotting amplitude ratio versus frequency curves for dif-

ferent values of Poisson's ratio it is demonstrated that the

amplitude ratio versus frequency plot for an incompressible,

elastic core is a simple line spectrum. On the basis of this

result it is concluded that considerable care must be exer-

cised when interpreting the results of solutions of problems

wherein the assumption of incompressible material is involved.
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I. INTRODUCTION

The problem of the free, transverse vibrations of

a solid, compressible, elastic core case-bonded to an

infinitely-long, rigid, circular-cylindrical tank has

been previously treated,* and the following frequency

equations among other things were derived.

Jn-1 (.Q)Jn+1 (kQ)+ Jn+1 ()Jn-1 (kQ)= 0, (n = 1, 2,...) (1)

These transcendental frequency equations define a doubly

infinite set of natural circular frequency coefficients

I. The mode of vibration is identified by the subscript

n while the subscript m identifies the frequency number2
within a given mode. In Eq. (I) k denotes the ratio of

the square of the shear wave velocity c to the square of5

the dilatational wave velocity c ; i. e.,c

c2 G (2a)s T

c 2 = 1 )G (2b)

2

k 2  c 1-2vk= -- = (2c)

C 2  2(1-v)
c

Since k depends only on Poisson's ratio, it is clear that

the natural frequencies of free vibrations, as defined by

Eq. (i), also depend only on Poisson's ratio. Figure 1

has been reproduced from the previous paper* in order to

demonstrate this dependency for the first-order (n = I)

natural frequency coefficients Rlm.

* Baltrukonis, J. H., "Free Transverse Vibrations of
a Solid Elastic Mass in an Infinitely-Long, Rigid,
Circular-Cylindrical Tank" J. Appl. Mechanics 27
663 (December 1960)
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These curves exhibit very peculiar and interesting shapes

but we wish to make the point here that as k tends to zero,

the curves tend to finite real values of the natural fre-

quency coefficients. The zero value for k corresponds to

a value of 1/2 for Poisson's ratio v which value defines

incompressible material. Thus, Fig. 1 demonstrates that

natural frequencies do exist for incompressible material.

We recall the problem under consideration. In the pre-

vious paper the question was posed: "Can natural frequencies

exist?" The answer was affirmative even for incompressible

material. The question immediately arises: "How can

natural frequencies exist for incompressible material when

it occupies the entire internal volume of the tank?" The

vibration under consideration is one of plane strain in

which there can be no displacement out of the plane of a

cross-section; it has been shown, however, that free vibra-
tions can exist in the modes under discussion. In the

present report we are concerned with the explanation of

this apparent contradiction.
We shall consider the problem of transverse vibrations

of the solid, compressible, elastic core when the infinitely-

long, rigid casing is oscillated by some external means

with simple harmonic motion. The response of the core at

a generic point r will be calculated. This result will

be specialized to obtain the amplitude response of the core

axis. The ratio of the amplitude response of the core

axis to the amplitude of the casing will then be plotted as

a function of the forcing frequency for various values of

Poisson's ratio tending to 1/2. It will be seen that as

Poisson's ratio tends to 1/2, that is, as the core material
tends to become incompressible, the amplitude ratio-forcing

frequency plots tend to a simple line spectrum. Clearly,
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this type of frequency response is physically impossible.

That this should be the case is not surprising since

incompressible material is an hypothetical material which

cannot exist in nature. Nevertheless, the assumption of

such a material is quite regularly used in practice. The

present report presents one difficulty arising from the

use of such an hypothetical material.
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II. NOTATION

r, 9, z radial, circumferential and axial coordinate
variables of' polar cylindrical coordinates

t time

ur , u9, z radial, circumferential and axial components
of displacement

0, V X displacement of potentials

k ratio of shear wave velocity to dilatational
wave velocity

c dilatational wave velocity
c

c shear wave velocity
s

v Poisson's ratio

G shear modulus

p mass density

e mean normal strain = - (--r + -r + + z/

32 _ r r_ 62

V 2  Laplacian operator = 
+ C) + -

+ 2
br 2  r br r 2 e aC2 z

w natural circular frequency

Qnatural circular frequency coefficient

p forcing circular frequency

A forcing circular frequency coefficient

b radius of interface between elastic core
and rigid tank

n order number of vibration mode

m frequency number within a given mode



J Bessel function of the first kind of order n
n

C01 C2 Constants

W Amplitude of vibration of the rigid casing

W Amplitude response of the core axis

A prime over a quantity denotes the ordinary derivative
of the quantity with respect to its argument.



III. STATEMENT AND SOLUTION OF THE PROBLEM

It is not difficult to show that the field equations

for the vibrations of compressible, elastic continua in

polar, cylindrical coordinates may be reduced to the fol-

lowing three equations of motion:

u 2 bu 3 1 e pU r ._r (3a)

Vr 2

r r 1 1-2v r 6 G 1U 2 u 3 1 e p 2u

V2Uz + - - P 2%z (3c)

1-2v bz G b t 2

We seek solutions of these equations of motion in terms

of three displacement potentials as follows:

u - b20+ , i X (4a)
r Sr brbz r 6E

u = 0 1 2 a - (4b)r r e r 21r

ur

SZ

U 2+ a+(c

z az r2 rbr 22E)



It may be verified by direct substitution that Eqs. (3) are

identically satisfied by these displacement components pro-

vided we take the displacement potentials as solutions of

the following differential equations:

20 k2  2 pa~ l (5a)

G at

We recognize these differential equations as wave equations,

solutions of which are well-known.

We now apply this general theory to the problem under

consideration for which the boundary conditions are:

U 1= Weiptcos e

r=b (6a)

u 6 = -We iptsin e

r=b (6b)

u z 1= 0

r=b (6c)

It is readily apparent that these boundary conditions define

a forced, sinusoidal oscillation of the rigid tank with

arbitrary frequency p and with amplitude W in the 0=0

direction.
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We take a solution for the displacement potentials

of the following form:

= 1  (kA.r) eiptcos e (7a)

t 0 (7b)

X= C2 J, 1a eiptsin 0 (7c)

It may be verified by direct substitution that these poten-

tials are solutions of Eqs. (5) provided we take

A2 _ pp b (7d)
G

Because of its relation to the forcing frequency p, A will

be referred to as the forcing frequency coefficient.

Substitution from Eqs. (7) into Eqs. (4) results in
the following expressions for the displacements:

Ur = I k b I Lj + (A ] ipt Cos (8a)
r I 1 b r b

u= -C J,(k ) C2 A 1A A ] eiptsin e (8b)

uz =0 (8c)



We must now evaluate the constants involved in the

solution given above. To this end we substitute from Eqs. (8)

into the boundary conditions given by Eqs. (6) to obtain the

following non-homogeneous system of two linear algebraic

equations in the unknown constants:

(kA) J; (kk) J1 (A) C 1  IWb

(9a)

J1 (k) A J' (A) C 2  Wb

Such a system can have a consistent solution only if the

determinant of the coefficients of the unknowns does not

vanish. On expansion of this determinant we obtain

A(A) I k A 2  J(A) J (kA) + J. (A) Jo (kA) (9b)

On comparison of this result with Eq. (i) we find that Eq.

(9b) has identically the same form as the frequency equation

given by Eq. (i) except that the natural circular frequency

coefficient 9 is replaced by the forcing frequency coeffi-

cient A ; i. e.,

A (Ql,) = 0, (m = 1,"2, 1,....) (9c)

Thus, the determinant of the coefficients of the unknowns

in Eq. (9a) will vanish whenever the forcing frequency co-

efficient A is equal to the first-order natural circular

frequency coefficient f21m. As a result, we cannot expect

to obtain a consistent solution of Eq. (9a) whenever A =

With this restriction in mind we proceed to obtain the

following solution for the arbitrary constants:
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C =-Wb A-(,) .J 2 ( ) (10a)

A .Q.,

SC2 =-Wb A 1 ( )(kA )J (kk) (lOb)

wherein we have made use of the recurrence relations for

the Bessel functions.

Finally, in view of Eqs. (I0), Eqs. (8) become

Ur = 'Wk A2 A(A) [ )2 (k - ) - J2 (kA)j 2 (AL)

-JO(AE)J 2 (kA) - J 2 (A)JO(kAb)] eiptcos e (11a)

uo = -wk A 2 4-"(A) A),2 - J(kA)J( A-)
9 2 b 2 b

+Jo(A.)J2 (kA) + J 2 (A)Jo(kAb) eiptsin e (11b)

To obtain some insight into the physics of the problem

let us investigate further the response of the axis. From

Eqs. (11) it follows that

uJ =ur I =IA 2 SA (A) [ 2 ( A)J 2 (A) J 2 ( A)2(A)
e0,O 9=0

-J0(AEJ 2 (k),) - J 2 (AOk) JO(kAE)] eipt

and so

u. 1 . -git ~ 2 L' 1"(A {J 2 (kA) +j 2(A)] ip

r=O

*=0

1_1.



Finally, therefore, if we make use of Eq. (9b)

V = (A) + J2(kA) J(A)J2(kA) + J2(A)Jo(kA) -1 (12)

This result defines an amplification factor for the axis of

the core. We observe that this amplification factor depends

not only on the forcing frequency but also on Poisson's

ratio, since k depends on Poisson's ratio only.

12



IV. ANALYSIS OF RESULTS AND CONCLUSIONS

Figure 1 shows the variation with the velocity ratio

k of the first-order circular frequency coefficients for

free, transverse vibrations of a solid, compressible elastic

core case-bonded to an infinitely-long, rigid, circular

cylindrical tank. These plots demonstrate that there exist

natural modes of vibration even for an incompressible core

when k = 0. This fact seems rather curious on closer con-

sideration since the mode of vibration under investigation

is one of plane strain and there does not appear to be

any way in which an incompressible core can be deformed.

In an attempt to provide at least a partial explanation

of this apparent anomaly Figs. 2 have been plotted in order

to demonstrate the variation with Poisson's ratio of the

amplitude ratio-frequency characteristics of the core axis

making use of Eq. (12). Since we are principally inter-

ested in the amplitude response in the neighborhood of the

natural frequencies, the forcing frequency was normalized

with the fundamental first-mode frequency in Fig. 2(a) and

with the second first-mode frequency in Fig. 2(b). We

observe that as Poisson's ratio approaches 1/2, the resonance

peaks tend to become sharper and sharper until, finally, for

an incompressible material (V = 1/2) the frequency response

is a simple impulse function and the entire characteristic

curve is a discrete line spectrum as shown in Fig. 3.

It is clear that such a response characteristic is

physically impossible for a real material. That this should

be the case ought not to be surprising inasmuch as an incom-

pressible material is an ideal material which, a priori,

would not be expected to behave physically, exactly and

entirely, as a real, nearly incompressible material. Although

many physical characteristics of incompressible materials

±2



have counterparts in compressible materials, other properties

of incompressible materials as, e. g., the nature of the

frequency response, are impossible of physical realization.

This is an important observation since many analytical

studies are being carried out on the basis of this assump-

tion. In most cases assumption of an incompressible

material simplifies analysis considerably but we must be

aware of its limitations.

Another interesting and important observation concern-

ing Figs. 2 is the tremendous sensitivity to Poisson's

ratio exhibited by the response curves. Very small changes

in Poisson's ratio in the neighborhood of 1/2 produce

considerable changes in the shape of the curves. This is

important since many materials are very nearly incompress-

ible, notably many high polymers including solid propellant

materials.

Summarizing, the foregoing points up the necessity

for considerable care when analyses are performed on the

assumption of an ideally incompressible material. In many

respects such material exhibits the properties of real

materials but it sometimes displays characteristics that

cannot be reproduced in nature. Furthermore, when the

material under study is nearly incompressible, the analysis

must be performed with considerable care and precision

since such materials are very sensitive to small changes

in Poisson's ratio. It is clear that we must take great

care in conducting experimental measurements of Poisson's

ratio for these nearly incompressible materials.
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Fig. 1 Variation of the first-order ( n = I) circular frequency
coefficients as functions of Poisson's ratio for fre
transverse vibrations of a solid elastic core case-bonded
to a infinitely-long, rigid,.circular-cylindrical tank.



9

8

7

6

_ o. 4o5

5

= .51

2

o. 495

0 0.2 o.4 0.6 0.8 1.0

Figure 2(a) Amplitude ratio-frequency plots in the neighborhood

of the fundamental resonance of a solid, elastic core

case-bonded to an infinitely-long, rigid cylinder



9

8

7

v= 0.451

6

w

5

4

:3

2

v=o. 480~ .9

1

o.9

0

0.8 0.9 1.0

Figure 2(b) Amplitude ratio-frequency plots in the neighborhood of
the second resonance for forced transverse vibrations
of a solid, elastic core case-bonded to an infinitely-
long, rigid cylinder

2Z



0

- 4-*4 0

4-) -ri

f4)

o 0

--0 ;4

4-)

0U 0

02

-~ 0 CU

k 0
42 4

~0. 0

cr)

0 )

0 .0

c. U

Ok

18~-



DISTRIBUTION LIST

Part A - Government Activities

Office of Naval Research Director

Mechanics Branch Naval Research Laboratory
Department of the Navy Washington 25, D. C.
Washington 25, D. C. Attn: Tech. Info. Officer (i)
Attn: Dr. H. Liebowitz i)

Mr. J. M. Crowley 1 Office of the Secretary of
the Army

Office of the Secretary of The Pentagon
Defense Washington Z5, D. C.

Research and Development Div. Attn: Army Library (I)
The Pentagon
Washington 25, D. C. Commanding General
Attn: Technical Library (I) Aberdeen Proving Ground

Aberdeen, Maryland
Army Oftice of Scientific Attn: Mr. A. S. Elder (i)

Research
2127 Myrtle Drive Advanced Research Projects
Duke Station Washington 25, D. C.
Durham, N. C. Attn: Dr. G. V. Mock (I)
Attn: Div. of Engineering

Sciences (I) Commanding General
U. S. Air Force

Commander Washington 25, D. C.
U. S. Naval Ordnance Lab. Attn: Research and Development
Whiteoak, Maryland Division (i)
Attn: Technical Library (i)

National Bureau of Standards
Air Force Office of Scientific Conn. Ave. at Van Ness St. N. W.

Research Washington 25, D. C.
Attn: Mechanics Division Attn: Dr. R. S. Marvin (i)
Washington 25, D. C.
Attn: Mr. H. S. Wolko (i) Commander

Wright-Patterson Air Force Base
Commander Dayton, Ohio
Air Force Research and Attn: Dynamics Branch (i)

Development Command
P. 0. Box 1395 National Science Foundation
Baltimore 3, Maryland (1) 1520 H. Street, N. W.

Washington k5, D. C.
National Advisory Committee Attn: Engineering Sciences

for Aeronautics Division (I)
Office of Research Grants

and Contracts Solid Propellant Information Agenc
1520 H. Street, N. W. The Johns Hopkins University
Washington 25, D. C. (25) Applied Physics Laboratory

8621 Georgia Avenue
Silver Spring, Maryland
Attn: Mr. M. T. Lyons (3)



Part B - Industrial Research Activities

Aerojet General Corporation Grand Central Rocket Co.
Sacramento, California P. 0. Box 111
Attn: Dr. J. H. Wiegand (i) Redlands, California

Dr. Ralph Planck (I) Attn: Mr. J. E. Fitzgerald (1)

Hercules Powder Co. Hercules Powder Co.
Allegany Ballistics Laboratory Bacchus Works
Cumberland, Maryland Magna, Utah
Attn: Mr. J. H. Thacher (1) Attn: Dr. D. E. Boynton (I)

Dr. Paul Drechsel (i) Mr. J. E. Farber (I)
Mr. D. E. Nicholson (i)

Jet Propulsion Laboratory
4800 Oak Grove Drive Rocketdyne
Pasadena 3, California Solid Propulsion Operations
Attn: Dr. R. F. Landel (i) McGregor, Texas

Attn: Mr. B. L. Black (I)
Rohm and Haas Co.
Redstone Arsenal Thiokol Chemical Corporation
Research Division Utah Division
Huntsville, Alabama Brigham City, Utah
Attn: Mr. C. H. Parr (I) Attn: Dr. L. H. Layton (1)

Dr. M. A. Brull (i)
Thiokol Chemical Corporation
Redstone Division Stanford Research Institute
Huntsville, Alabama Menlo Park, California
Attn: Mr. J. S. Wise (I) Attn: Dr. T. L. Smith (1)

Space Technology Laboratories Atlantic Research Corporation
P. 0. Box 95001 Shirley Highway and Edsall Rd.
Los Angeles 45, California Alexandria, Virginia
Attn: Dr. W. G. Gottenberq (I) Attn: Dr. M. G. DeFries (I)

Dr. M. V. Barton (0)
United Technology Corporation

Southwest Research Institute Sunnyvale, California
8500 Culebra Road Attn: Dr. R. A. Chase (I)
San Antonio, Texas
Attn: Dr. H. N. Abramson (1) Battelle Memorial Institute

505 King Avenue
Aerojet General Corporation Columbus 1, Ohio
Azusa, California Attn: Dr. J. H. Jackson (I)
Attn: Mr. W. P. Cox (I)

Thiokol Chemical Corporation
Libra Scope Division Elkton, Maryland
General Precision Inc. Attn: Mr. F. Manolakos (I)
Glendale, California
Attn: Mr. V. A. Karpenko (i)



Lockheed Missiles and Aerospace Corporation
Space Division Los Angeles 45, California

Sunnyvale California Attn: Dr. Paul Seide
Attn: Mr. L. A. Riedinger 1j Dr. A. NoremDr. J. H. Klumpp 1

Dr. William Nachbar 1  J. G. Engineering Research

Associates
Midwest Research Institute 3709 Callaway Avenue
4049 Pennsylvania Avenue Baltimore 15, Maryland
Kansas City 2, Missouri Attn: Dr. J. E. Greenspon (i)
Attn: Mr. Martin Goland (i)

Dr. D. C. Gazis
Research Laboratories
General Motors Technical

Center

12 Mile and Mound Roads
Warren, Michigan (1)



Part C - University Research Activities

Prof. R. D. Mindlin Prof. H. H. Bleich
Dept. of Civil Eng. and Dept. of Civil Eng. and

Eng. Mechanics Eng. Mechanics
Columbia University Columbia University
632 W. 125th. Street 632 W. 125th. Street
New York 27, N. Y. (1) New York 27, N. Y. (1)

Prof. B. A. Boley Prof. A. M. Freudenthal
Dept. of Civil Eng. and Dept. of Civil Eng. and

Eng. Mechanics Eng. Mechanics
Columbia University Columbia University
632 W. 125th. Street 632 W. 125th. Street
New York 27, N. Y. (1) New York 27, N. Y. (1)

Prof. H. Becker Prof. B. W. Shaffer
New York University Dept. of Mechanical Eng.
45 Fourth Street New York University
New York 53, N. Y. (1) 45 Fourth Street

New York 53, N. Y. (I)
Prof. P. J. Blatz
California Institute of Prof. Y. C. Fung

Technology California Institute of
Pasadena, California (I) Technology

Pasadena, California (I)
Prof. M. L. Williams
California Institute of Prof. G. Lianis

Technology Purdue University
Pasadena, California (i) Lafayette, Indiana (i)

Prof. A. C. Eringen Prof. J. M. Klosner
Dept. of Aeronautical Dept. of Aeronautical Eng.

Engineering and Applied Mechanics
Purdue University Polytechnic Institute of
Lafayette, Indiana (i) Brooklyn

Prof. F. Essenburg 99 Livingston Street

Illinois Institute of Brooklyn 2, N. Y. 0)

Technology Prof. P M. Naghdi
3300 Federal Street Po.P .Ngd

University of California
Chicago 16, Ill. (I) Berkeley, California (I)

Prof. N. J. Hoff Prof. H. H. Hilton
Dept. of Aeronautical Dept. of' Aeronautical

Engineering Engineering
Stanford University University of Illinois
Palo Alto, California (i) Urbana, Ill. CI)

Uraa l.0



Prof. B. Budiansky Prof. George H. Lee
Division of Eng. and Director of Research

Applied Physics Rensselaer Polytechnic
Harvard University Institute
Cambridge, Massachusetts (1) Troy, New York (i)

Prof. W. H. Hoppmann Prof. W. D. Jordan
Rensselaer Polytechnic University of Alabama

Institute Tuscaloosa, Alabama (i)
Troy, New York (I)

Prof. K. S. Pister
Prof. W. A. Nash University of' Calif'ornia

University of Florida Berkeley, California (i)
Gainsville, Florida (i)

Prof. J. W. Miles
Prof. W. T. Thomson University of California
University of California Los Angeles, California (i)
Los Angeles, California (i)

Prof. Eric Reissner
Prof. Norman C. Dahl Dept. of Mathematics
Dept. of Mechanical Massachusetts Institute

Engineering of Technology
Massachusetts Institute Cambridge 39, Mass. (i)

of Technology
Cambridge 39, Mass. (i) Prof. J. Miklowitz

California Institute of
Prof. E. H. Lee Technology
Brown University Pasadena, California (i)
Providence 12, R. I. (i)

Prof. D. C. Drucker
Prof. W. Prager Brown University
Brown University Providence 12, R. I. (i)
Providence 12, R. I. (i)

Prof. E. Sternberg
Rt. Rev. Msgr. W. J. McDonald Brown University
Rector Providence 12, R. I. (i)
The Catholic University of

America Dr. F. Joseph McGrane
Washington 17, D. C. (i) Coordinator of Research

The Catholic University of
Mr. Donald E. Marlowe America
Dean of Engineering Washington 17, D. C. (2)
The Catholic University of

America Prof. F. A. Biberstein
Washington 17, D. C. (i) The Catholic University of

America

Dr. A. J. Durelli Washington 17, D. C. (i)
The Catholic University of

America
Washington 17, D. C. (i)


