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e • EVAPORATION, HEAT TRANSFER, AND VELOCITY DISTRIBUTION

0 0 IN TWO-DIMENSIONAL AND ROTATIONALLY SYMMETRICAL

LAMINAR BOUNDARY-LAYER FLOW*

By Nils Fr6ssling

INTRODUCTION

Aside from the simple case of the plane, no quantitative calcula-
tions of the evaporation of a body in a moving medium exist so far. The
heat transfer, which under certain circumstances (see p. 4) follows the
same laws, has been treated theoretically for the cylinder by Kroujiline
(ref. 1) and Squire (ref. 2). For boundary-layer flow, Kroujiline used
for the temperature field a power-series method of the same type which
has been introduced for velocities by Pohlhausen (ref. 3). Because of
this stipulation of the profile form, the result must be approximate,
and the eventual agreement with the correct value is rather accidental.
Squire gave an exact treatment of the transfer in the immediate proximity
of the stagnation point. However, it is of great interest to have a
calculation method for heat and mass transfer in the entire boundary
layer, the error of which depends only on the work expenditure of the
numerical calculation and, therefore, not on possible approximative
formulations. Even though the calculation is time consuming, one has
the advantage of being able to check approximate and more rapid methods
with respect to this solution. Under the supposition that the constants
of the problem (shape of body, pressure distribution, etc.) may possibly
be eliminated from the equations to be solved, it is also possible in
several cases to use the complete exact solution directly. The author
of this report perfected, for this reason, the exact solutions for the
temperature and concentration fields. Two dimensional and rotationally
symmetrical steady boundary-layer flows were treated. The latter case
is the more complicated one because of the form of the continuity
equation.

* "Vordunstung, Wrmeubergang und Geschwindigkeitsverteilung bei
zweidimensionaler und rotations ymmetrischer laminarer Grenzschicht-
strdmung." Lunds Universitets Arsskrift, N.F. Avd. 2, Bd. 36, Nr. 4
Kungl. Fysiografiska Sdllskapets Handlingar, N.F. Bd. 51, Nr. 4, 1940.
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For the calculation of the transfers, however, the velocity fields
must be known. For the two-dimensional case one has, aside from approx-

.. imate methods of solution by Pohlhausen (ref. 5), K&-mdn and Millikan
*see (ref. 4), and others, the method of Blasius (ref. 5) and Hiemenz (ref. 6)

.... which was improved by Howarth (ref. 7). By means of this method one may
solve the equations, without any arbitrary assumptions regarding velocity
profile and the like, by power-series development from the stagnation
point up to an arbitrary point on the meridian c'4rve. The work expend-
iture depends on the required accuracy and on .-ne position of that point.
Since the development becomes very rapidly more cumbersome with the
distance from the stagnation point, it is appropriate to use, from a
certain point onward, a continuation method, for instance, according to
Prandtl (ref. 8) and Gbrtler (ref. 9). Howarth (ref. 7) transformed
the functions of Blasius and Hiemenz into functions of such a type that
the constants disappear from the equations so that the numerical solu-
tions for them may be applied to any two-dimensional flow. He treated
the symmetrical as well as the unsymmetrical case, and indicates the
solution of one of these functions. For the present investigation,
Howarth's functions are used in the two-dimensional case. Since the
accuracy of Howarth's numerical tables is not sufficient for the cal-
culation of the transfer, a new numerical calculation was made of certain
functions. For the three-dimensional rotationally symmetrical case, in
contrast, there exists, so far, no calculation of the functions of the
series development. Because of the modified continuity equation, other
systems of equations must be used, and these systems are established
here. The necessary functions are numerically calculated. Although the
form of the meridian curve takes effect through the continuity equation,
one can proceed in the distribution of the functions in such a manner
that the constants of the meridian equation disappear, and the solutions
therefore are valid not only for arbitrary pressure distribution but also
for arbitrary shape of the body of revolution. The continuation method,
beginning with the limit of validity of the broken-off power series, has
been perfected also for this case.

An investigation is carried out regarding the validity of the law,
stated, for instance, by Ulsamer (ref. 10) that the Nusselt number is
proportional to the cube root of the Prandtl number.

A few approximation methods for the calculation of the transfer 0
layer are discussed.

I]
Only a brief survey is presented here since a more 

detailed report

is to be given in a later paper.
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THE FUNDAMENTAL EQUATIONS
0 SO

With dimensioned quantities, the boundary-layer equations for flow,

concentration, and temperature read

u U + v 6u = UU' + . -2
6x 6Y 3Y2

+ L = 0 two dimensional
6x y

8(ur) 8(vr)
-+ - = 0 rotationally symmetrical
6x 6

2
x y

U ct + V t= a Yt

Concerning the derivation of the two last equations for the
rotationally symmetrical case see p. 15-16. The boundary conditions are

y 0; u v = 0; t = to; c = Cm;

y :; u U; t = 0; c = O.

In these equations the customary designations of the various
quantities are used. x = distance along the body surface from the
stagnation point to the base point of the normal to the body surface.
y = length of that normal. r = distance from base point to axis of
rotation. u, v = velocity components in the direction of x and y,
respectively. U = the velocity component parallel to the body surface
Inediately outside of the boundary layer (calculated from the experi-
mentally determined pressure distribution). t = excess of the temper-
ature of the surface over the temperature of the undisturbed fluid.
c - corresponding concentration quantity. v = kinematic viscosity,

a = temperature diffusivity (= -). A = diffusion coefficient. If
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U0  is the undisturbed velocity and D a characteristic length of the

body (for instance, its diameter), one can transform the equation into
.. odimensionless form by dividing the velocities, lengths, temperatures,

and concentrations by the quantities UO, D, to, and cm. These equa-
• 0 ** UD

tions contain as constants, among others, the Reynolds number Re = M.

This number one may eliminate by modifying the scale of the boundary
layer in transverse direction, by multiplying the values of y and

by \je. The equations used below with the designation "dimensionless
equations without Reynolds numbers" are changed in their appearance,
compared to those mentioned above, only in that v disappears, and A

and a are replaced by & and &. In the boundary conditions to  and
V V

cm are replaced by 1. The two quantities - and a which are often
V V

idependent of pressure and temperature, as in the case of ideal gases,
are dependent on the media used. These quantities are called Stanton's
numbers. Frequently their inverse values are used, designated as Prandtl
numbers. In an earlier report of the author on the evaporation of drops
(ref. 11) the designation a is used for the Stanton number. Since at
present this letter is used mostly for the Prandtl numbers, this defini-
tion is employed in the present report to prevent misunderstandings.

Thus a here signifies: a = or, respectively, = = -&-p
a a

The equations for temperature and concentration are therefore
identical when t and c are interchanged. For the temperature-
boundary layer it is assumed, however, that the dissipation and the
heat generated by change in pressure may be neglected. This assumption
is satisfied for not-too-large velocities (ref. 12). The equations also
presuppose that the velocities be small compared to sonic velocity in
order to make the compressibility negligible. A further limitation of
the equations is given by the fact that the differences in concentration
and temperature must not be so large that the constant characteristics
of the media vary from point to point. Because of the identical form
of the two equations for temperature and concentration, which is thus
satisfied uder these presuppositions, both may be treated simultaneously.
In the following equations one may, therefore, immediately interchange
the quantities c and t.

In the search for a solution which satisfies the accuracy require-
ments discussed in the introduction, the method of power-series develop-
ment in x was used. Breaking off the power series after a certain
number of terms one was able to use this solution from the stagnation
point up to a point the position of which was dependent on the accuracy
requirements. Starting from this point one could then use for the layers
of different types step-by-step continuation methods.



5

For the sake of brevity, we shall use below the common name
ee** "transfer" boundary layer for the temperature and for the concentration-
'o. boundary layer.

0O

* 000

POWER-SERIES DEVELOPMENTS MN x

A. TWO DIMENSIONAL CASE

a. Flow Boundary Layer

1. Symmetrical case

As was mentioned in the introduction, this case has been treated
by Blasius, Hiemenz, and Howarth. This report uses for the most part
the same designations as Howarth. The only difference is that Howarth's
quantities Fv  are here replaced by the quantities 4V because the

capital letters are more suitable for the functions of the transfer
boundary layer.

In order to replace the two unknown quantities u and v by a
single one (*), the following conditions satisfying the continuity
equation are set up as usual:

u = L* v=-

The first flow equation then becomes (with dimensionless quantities
without Reynolds numbers)

€ 82€ 82€ uu + Y-

Blasius and Hiemenz solved this equation by means of the formula

--1 x + * 3 X + 45x5 +

for the sym etrical case where the velocity distribution outside of the

boundary layer follows the formula U = ulx + u~x5 + u5x5 + *.

are functions only of y.
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By comparison of the various powers of x the equations for *V

were obtained. These equations were freed of the constants uV  by

introduction of the functions fv, gv, etc., by means of the following

* "statements:

u3

\ Tl ulu5 ) V4ilj = 7 ulfu7

u5 (2 u
3
2 h2 55U

*5 Ig5  UlU5u 7  u2u

lou9 / u5u7 u5
2 5

2u u

\f -l + -u u
9  ul u 9 9 uu 9

2. Unsymmetrical case

For an unsymmetrical two-dimensional body for which the velocity

distribution follows the formula U = ulx + u2x2 + u3x5 + • • . , the

formulation

= i x + *2x 2 + *3x3 +

was used. Here also the *V were freed of the constants uV, this time

by the expressions

3Fu
k~f~J~~r= -f 2 etc.

b. Transfer Boundary Layer

1. Symmetrical case

The author of this report attempted in the dimensionless equations

without Reynolds numbers, aside from the formulations for * mentioned

above, a development for c in the following manner (cv  are functions

of y only):

c = cvxV = c O + clx + c2 x2 + C3x3 + c4 x 4 + •
V=0
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Boundary conditions:

, = Y -- co 
= i cI  c2 .. .=0* 00@

: "y = 0 co = cl = C2 = . . . =0

By substitution one obtains for the c2n and C2n+1

c s = 0 2'+l-2kc2k (- (2n + 1 - 2k)*2n+1 _2kc2k

2n k=O 2+

c" = (2k + l)*' +l2kC2k-- (n + 1 - 2k), +l 2 k'2k+:
k=O 0

One can easily show that the equations for c2n+l are such that

they become identically zero. In the groups of equations mentioned
above which constitute the recursion equations, there occur exclusively
functions with even or odd subscripts. From this one can see that c
is an even function of x which follows, besides, from the nature of
the problem. In order to be free of the constants 1J, new functions

are introduced by the following statements:

rj= Yy/-j; *V as above; co  = F0 ; c 2 
=  Ul

T( 8u 1
6u + u3 u2 H 5  2f4 l ( --4 u 4) C6 U 6 ulu7  6 + ul'76

c8 '=- G8 + IIU-H8+ u- K8+ u 9J8 + u u9
u'u 9 8, u9

Boundary conditions:

= 0; F0 = 1; the remaining functions = 0

= ®; all functions = 0
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Ie dn
00 , F 0  -

.000 Ti
0 * -a f1 di

0 e  d

The remaining equations do not have explicit solutions and must therefore
be integrated by other methods, for instance, according to Runge and
Kutta. (See p. 19.)

2. Unsymmetrical case

With c = co + clx + c2x2 + c3x5 + • • • and the boundary conditions

= 0; cO = 1; c= c 2 =. . 0

{ =:> 0; cO = c= c 2 = . . =0

one obtains for cv

1V
Sv = k- I(v + 1 - k)*V+l_kck'a k=O v+l-k k 0

Here none of the functions cv  disappears, and c is therefore,

as had been expected, an even function. The equations here are not
divided into two independent groups but the functions follow successively
one from the other.

Distribution of the cv:

7 y ; = fl/ etc.; co = FO; cl = 2l l

u 2, = 3  -1 uj

6U(G 4 + u 2 u4 - u 2  + u2 4
1J4uu5  uu + +

C4~ -K41  2u+
Uluu5 u u IX 5 u 5 5 7
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Boundary conditions:

0 = ; F0 = 1; the remaining functions = 0;
* 000

*0000 -; all functions = 0;

4 0 " =-flFoa!

l + f-f'F1 - 2f2Fo0

92" , -G 2' + 2f 'G - 3gF'
a 12 25

= -f H + 2f 'H 3h hFI + l - 2f
a1 12 3 0 4~2

I-G3" = -fiG3' + 3fl'G3 - 4g4F O'

F3" -f111'+ 5f1 ,- i34h4Fo' + i-.(2f2 'G2 + g3 'F1 - 2f2G2 '- 5gFi')

fK3' + 3f'K3 -4k4F o ' + 2 + h33' - 2 ' - 3hF)
a ,, , (2,22H '3 1

4= -fiG4 ' + flG 4 - 5g 5 F0

t4 = -f1 H' + 4flH - 5h5Fo + .(f2 'G3 + g4'FI - 2f 2 G31 - 4g4Fl 1)

= -flK4' + 4If,'1K4 - 5k5F0'+O2I' 2 - gGt

= -fJ , + 4fI 'J4 - 5J5Fo' + f 'H + h4 'F1 - 2f2H5  - 4h4F +

16 T + h5'G2) - 8( 5 2  + h5G'

Q41' -f1V4  + 4f '4 - 5q,5F0' + 2(f'3+ kFl- 2f K 4k4- +

-~ -.5 H2 - 3h H2~

The first equation is identical with the first one of the symmetrical
case.
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B. ROTATIONALLY SYMMETRIC CASE
* **

a. Flow Boundary Layer

•00

S* "For flows about a blunt body of revolution whose axis lies in the
direction of the flow, the flow equations are, according to Boltze
(ref. 15),

+ V6= UU+ V

8x y

6(ur) + (vr) = 0

In the transformation to the dimensionless form without Reynolds
number v disappears. The quantity r then must have, for the bodies
of revolution, the meaning, distance of axis of rotation up to the base
point of the normal instead of up to the point (x, y). A function for
identical solution of the continuity equation is desired. Boltze
(ref. 13) suggested a function * which is defined as follows:

u l$ 1 v
U = --6* V = -16

r y r 6.

In the present report another solution 4 also has been examined.
Definition

6* 1 6(-*) dr 1 l (; )
I --= - =- V

6y r 6y 6x r dx r 6x

The function 4 has the advantage that the equations become some-
what simpler and that the velocity profile is obtained directly. The
functions are derived in both cases. * and :Fr are flow functions.

1. Use of the function

After substitution of the expressions for u and v into the
first boundary-layer equation one obtains

( -- + r L 2  r * ) 2 * = r3UU' + r2 C4

dx - x y ay3
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The power-series developments used V function of y; rv  and

uv  constants)
e

oo oo = 2x2 + *i4x' + * 6 xb +

r = rlx + r3x3 + r 5 x 5 +

U = ulx + ux 5 + u5x5 +

The functions *v have the following boundary condition .

y =0; *v *V' = 0;

y c; *2' = rul; *4' = rlu3 + r3ul; *6' = rlu 5 + r3u3 + r5ul;

After substitution of the power expressions into the equation for
one obtains equations for *V by comparison of the different coef-

ficients. These equations may be freed of the letters rV  and uv

by the following formulations:

Y pul; *2z = u f2; * 2
rlU 1u3 U, rl34

+l ruu32 r3u3  r132u1

6 = 2u 6  r5-6 + u 2 rk 6 +  ++ r " "( ru 5  15 15 1 /

The new functions have the boundary conditions

= 0; all functions and their first derivative = 0

00; f2' I = ; g64.' h1 = h 6' =  = 6 ' = 0;..
2 3
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One obtains the following equations:

see f2"' = -f2f2 " + ( 2 -

:000

" " 9 = -f A "+ 2f2 g4 ' 2f2 "g4 - 1

h4' = -f2h4  + 2f2 'h4' 2 n4  4 f2  - 21 +)

6 = -f296"+ 3f2
1g6 ' - 5f2 "g6 - 1

h 6 "' = -f2h6 " + 5f2'h6' - 3f2 "h6 - 1(5f2 2 - 2f2f2 " +

'= -fk" + 32'k6' - 3f2"k6 + a(3g4 2 - 4 94g4 2-

J" = -f2J6 " + 5f2 'J6 ' - 3f2 "J6 + 4 g4 'h4 ' - (84 h4 t 4g4 +

2 (f ,, _f2'g4' + 2f2 ,,g4 -)

, -f 2 q6 "+ 3f'q 6  - 2 q . ,2 6, 44f)4") +(f 2 h4 I

+ 1 ,f2 2 ')

2f 2 '11h4  + 2 - 2 f

2. Use of the function

One obtains

y a Tx r dx flrUT'

Power series developments

* x + *3x113 + T 5x5 +

r = rlx + r3x3 + r5x
5 +.••

U = ulx + u3x3 + u5 x 5 +



Boundary conditions

y 0; ;F = V' = 0;

0 Y 0; = UV

The functions Fv are here divided up as follows:

U_ l fl; 2 3 =23I ~--lu =f33 + -2L3)

3u5  3u5  ru u3 2 quS= f5 r ~ + fU h9 +  _ k5 +  --U J5 +  -2ujf5 19i5r+iu5 5 Ulu 5  r1u r 2u1

Boundary conditions

= 0; all functions and their first derivative = 0;
; fl =1; 93- g51. h'I= h' = = 0;

3*g 3 5 5

flfit= -fll + I1 -

g3"' = -flg3
't + 2fl'g3' - 2f1"g3 - 1

hs 3 -f Ih3 + 2flh 3 ' - 2f1 " 3 - 3 flfl'

85"' -flg 5 + 3fl'g5' - 3fl"95 - 1

h,, -flh5 " + 3fl'h5 ' - 3f 1 "h - I flf5 I'l= -f 5 5 31 1"

ks.., = ,-flk + 3fl'k5 , - 3f"k + 2g ,2 8 ,,=-l51 1 5- g3 933 2

J5"' = "flJ5' + 3f l
' J 5 ' - 3fl"J 5 + 4g3'h3 ' 8 (83h3 " + h3 3 ")

3 + f 1

q5 , = -flq5" + 3f'q 3iflq 5 
+ 2h3 1

2  3 3 l  1ffl"

3- (flh3" 1 f 3)
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In the first method, the functions have even subscripts, in the
see .second odd ones. A simple relation exists between the two groups of
S:"functions which one may easily obtain by equating the two expressions

defining u and, respectively, the two expressions defining v (which
gives = .

f2 = fl;

fl
94 = g3; h 4 =h 5 + ;

fl. 2 2h3
6 = ; h6 = h5 + 3- k ks5 ; J6 = J5 +  6g; = q5 + 3

b. Transfer Boundary Layer

The general equation of the temperature and concentration fields
for rotationally symmetrical flow has not been set up before. For the
special case where the body is a sphere, the author (ref. 11) has shown
that for boundary-layer flow the equation is identical with the one for
the two-dimensional case, at least for points which do not lie directly
at the stagnation point. In the present report, it is shown that the
same boundary-layer equation is valid also for arbitrary blunt bodies
of revolution, and that this applies to points directly at the stagnation
point as well. The introduction of mass or heat into a volume element
by diffusion and convection is expressed by the following equation (which
is valid for rotationally symmetrical flow without neglect of the boundary
layer when x and r are counted up to the element instead of to the
base point):

3(cur) 3(cvr) _ 6 6 c r

The derivation becomes the simplest if one chooses as the volume element
an element bounded by two meridian planes, two surfaces x = constant,
and two surfaces y = constant. In order to arrive at the boundary-layer
equation, one groups the derivatives

Nurtc +clr 6 2 c Ia r cj
- +c - - uy v++ + _ 6

3 x r 2)y ax -2 3y r 6y r ox;X
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Supposing that a thin boundary layer exists, the terms 2 and 3 in
the parenthesis disappear. The first two terms of the left side disappear

00 obecause of the appearance of the continuity equation. The last term of

the parenthesis becomes infinite at the stagnation point if k is not
* ** 3X

here zero. In order to avoid discontinuities at the stagnation point,

one must therefore equate there L = 0. Then the last term becomesax

everywhere negligible, and one obtains the equation

uc + v c - 2c6x+ 6y (y2

which thus is identical with the one in the case of two-dfimensional flow.

1. Use of the function *

Because of symmetry and of the requirement c = 0 one uses for

c the expression c = cO + c2x
2 + c4 x + . . . with the following

boundary conditions for cv :

y = 0; cO = l; c 2 =c=. . ;

y = ; c0 =c 2 =c 4 = . . 0

For the cv  one obtains equations which contain rV  and uv . In

order to eliminate these constants, one may make the following
substitutions:

4=yj2u; *v -as before; co = FO; 2 +

5u5  'U 5 4  r~ul u3 2 r3u3  r 3 ul
=2 -G f - j + K 4 + - J 2c.=- 4 + I-- H4 + u 4 U5r+ J4 r

Ul uI  rluC u4U+ rlu5 r1 u5

Boundary condition

=0 ; FO = 1; remaining functions = 0;

= -; all functions = 0
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For the new functions the following equations of the second order
are obtained:

* *o

oFO f2FO ,

1 G2 , = -f2G2' + f2 'G2 - 2 0Fo'

-f2 + ' - 2h4Fo' + 2FoH2' 22' +f2'2 20

a G4" = -f2G+' + 22'G - 39 6 Fo'

1 if,= _f + 2f2'H4 - 3h1Fo , + f2FO'

1y H4 2H'' 6 3

SK, = -f2K4 ' + 22'4- 3k6F0 + 2 ,gG2'

-JJ4 = ' +  - 3JF' + 11 (g 'H2 +h 'G2)

8 agj +f 2 If2 Gf 60 2G f
3- 2 a+(-f 2G2 '+f 2' 2 - 2g4F')

-f ' + 2 ' - 3 o' + 4 h 8 '

~ " - 2Q4') f2tQ4 3qF 4'Hf2 5 h3 2'-

-2(2 + f2 'H2 - 2h4F' + 2 0 f2FO

2. Use of the function

With the same power development for c and the same definitions
of the functions FO, G2, G4, etc., one obtains

1 FO,' = _flF O ,
0

1 G2 " = -fiG2' + fl'G2 - 2g3Fo'

1 12

*_H2 " -=-flH2' + fl'H2 - 2h3Fo ' -- fIFa 2
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G41." _ -flG4 ' + 2fl'G4 - 3g5F0 'a

*~ 0*
"" .. h' . 5 fF

K4 -f% + 2f 1 'H4 - 3150 G 1
J-" - is = -flK' + 2f,'J4 - 3h5F0 ' + !L + h

a (F g'H+2 3'G2- 3 (fG' +

g F) - + h5 ' 3G2')

1 2io
94 Q" = .. 1Q4 ' - 2f,'Q4 - 35F 0 ' + !k h5' ~h5  - .(f lH 2 ' + hF'

51

One can show easily by application of the relationships between the
functions with even and the functions with odd subscripts that the systems
of equations for the cases 1 and 2 are identical.

The first equations of the two systems are identical with the first
equation for two-dimensional flow and are, therefore, also solved by
quadratures.

C. FINAL EXPRESSIONS FOR THE TRANSFER

The transfers are made dimensionless by the Nusselt number
Nu 2m D Q

Nu = D m or, respectively, D )2 Q It is easily shown that

Nu ( c -!' where c and y are "dimensionless and without

Reynolds number." The heat transferred by radiation is, of course, not
contained in this expression. For two-dimensional symmetrical bodies one
obtains

Nu 2 1u
We -FO' /Ti 52J X2 7= (G4 ul 5 H4 -. =
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Corresponding expressions are obtained in the other cases. As one
can see from the equations, one may easily calculate the Nusselt number
for arbitrary pressure distributions and body shapes which agree with
the formulations, if one has made a numerical calculation of the func-

S0"tions. Unfortunately, the quantity a is left over and one must there-
fore make different solutions for different media. As is shown in a
section below, however, one can free the equations of a, too, if a
is large.

D. NUMERICAL CALCULATIONS

For the two-dimensional symmetrical case and for rotationally
symmetrical bodies the author has numerically calculated various func-
tions, corresponding to the three first terms of the power-series devel-
opments in x. The method of Runge and Kutta (ref. 14) was used for
this purpose. This method is rather time consuming but one has good
possibilities of determining the errors. The first function f, of
the two-dimensional case has been calculated by Hiemenz and Howarth with
an accuracy sufficient for this investigation; Howarth's values are
directly used here. For fl in the rotationally symmetrical case there

exists a table by Hartree (ref. 15) which was set up by using a mechanical
differential analyzer. The accuracy is here not sufficient and the first
two derivatives also are required; for this reason the function is cal-
culated here anew. Since the equation for fl is not linear and one

therefore cannot find the solution by combining two particular solutions,
it was valuable to have approximate information on fl" for il = 0.
The functions were solved mostly by steps of n = 0.2. Since the values
with n-interval 0.1 must be known for the successive calculations, the
values lying between were interpolated by means of a Taylor series. For
the transfer boundary layer the calculations for the a-value of the air
(0.7) were performed in the two-dimensional symmetrical case because
experimental results for the heat transfer of a circular cylinder in air
exist (see, for instance, the compilation by Kroujiline (ref. 1). For
(Fol)O one may obtain values from a table given by Goldstein and cal-

culated by Squire (ref. 2) also in the case of other a-values. Squire
indicated an analogous expression for the heat transfer at the stagnation
point. For the rotationally symmetrical case calculations have been

carried out for a = ----- because the only experimental result for the
0.395

transfer distribution has been found for the evaporation of naphthalene
spheres (ref. 11), naphthalene has this value of a. If one wants to
calculate the higher terms of the power-series development in x for a
special case, one may combine the separate functions in a single term in
order to save work expenditixre; but the generality of the solution is lost
thereby. This has been done for the boundary layer of the body of revolution

.4 w m im
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for a - The parenthesis in the defining equation for G4 , H4
etc., has been combined into a single function F4  and calculated for

:I ... the sphere for the pressure distribution of Fage. (See below.)

* 0 •The tables of the calculated functions are printed at the end of
the report with the exception of the higher ones for rotationally sym-

metric boundary layer. Here one has for n = Oand 0 =

G2 ' = 0.3186, H2' = -0.1005, and F4' = -0.2118. The error of the

tabulated functions which will be discussed in more detail later is at
most a few units in the last digit.

From the tables one obtains for air, for the pressure distribution
measured by Hiemen (ref. 6) at Re - 19000 for the circular cylinder

U = 3.6 314x - 2.1709xO - 1.5144x5

Nu = 0.9449 - 0.100x-2 _ 0.5956x . . .

The quantity x is here dimensionless (the length dimension x
divided by the diameter D). Not only in the range 00 - 550 where the
series is to apply exactly (see E, 2) but up to the separation point this
equation is in good agreement with the compilation of experimental dis-
tribution curves indicated by Kroujiline (ref. 1). The derivations will
be discussed later.

For the sphere a qualitative agreement with the values obtained for
evaporation of naphthalene at higher Re (ref. 11) is attained if the
pressure distribution according to Fage (ref. 17) is used which gives

U = 3x - 3.4966x3 + 4.7391x5 - 5.418lx 7 for Re = 157200 (ref. 18).
One then obtains

Nu _ 1.8615 - 2.1477x2 + 2.4609 . . .

The deviations depend, among other things, on the fact that Fage's
pressure distribution is possibly not fulfilled for Reynolds numbers as
small as those used here. Later oh a more exact comparison will be made
with more recent experimental values obtained by the author at still
higher Reynolds numbers.
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E. DETERMINATION OF THE ERRORS OF THE* e

BROKEN-OFF POWER-SERIES DEVELOPMENTS

• • •One may use various methods: (1) The following term is calculated
and for not-too-large x this indicates the error. (2) If the value
of the errors is not required with a very high accuracy, the coefficient
of the x-terms may be assumed to be of the same order of magnitude. (3)
Use of a continuation method of the profile. (See following section. )
(4) In the case of direct differentiation, with respect to y, of the

value of L__c taken from the transfer boundary-layer equation one may
6x

obtain, for transition to y = 0, the first derivative of Nu in x
whereby a continuation step may be taken directly with respect to Nu.
Later on numerical calculations according to some of these methods will
be given.

STEPWISE DEVELOPMENT OF THE BOUNDARY-LAYER PROFILE

A. TWO-DIMENSIONAL CASE

a. Flow Boundary Layer

Prandtl (ref. 8) indicated for this case a method which is based
on the fact that one may obtain from the equations an expression for
ou containing only u with derivatives for a prescribed xfloa becomes

with dimensionless quantities without Reynolds numbers

When two adjacent profiles (at x -r e x and x) were known, for
instance, by application of the method of Blasies and Hiemenz, it was
possible to calculate a third for x k Ax. Witl the u-values at x - x

the 2x u values for x were used. One could then continue in the

same manner with the profiles at x and x + Ax. In order to guarantee
the convergence of the expression', one was not to use the original numer-ical profile at x but had to replace it by another which satisfied
certain requirements. In order to calculate those, u was developed
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* .. *
• 0 into a power series with respect to y: u = Y For the a onev~l v.

* 0 obtained certain conditions by substitution into the flow equation whereby

* .• only some of them could be chosen arbitrarily. These latter were deter-
mined by comparison with the given profile. G13rtler (ref. 9) perfected
the method practically and used it in Hiemenz' pressure distribution over
the circular cylinder. In the present report corresponding ideas are
used for bodies of revolution and for the transfer boundary layer, and
the necessary expressions are added and discussed.

b. Transfer Boundary Layer

From the basic equation one obtains directly

x u 8y2  v

This equation may therefore be used directly for step-by-step
continuation of the vapor and temperature boundary layer. Conditions
become here simpler insofar as no integration is necessary. However,
here also the danger exists that the expression becomes uncertain at the

wall (because of u occurring in the denominator). Moreover, L must

become identically zero at the wall. In order to satisfy the require-
ments, one resolves here also the quantity c into a power-series devel-
opment with respect to y(b, function of x only):

~bvyV

c = l -

v=l V!

By substitution one obtains

a Tv _+l bvyV-l 1 _bvyv-2avYv bvK '  v Y 'z" : - "-- -V-

V! v! (v + 1)T (v - 1)! a (v - 2)!

By comparison of terms of the same degree, one arrives at the
relation between the bV . For the first nine bV  there applies (with

f = -til')
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bI  free; b2 =b 5 = 0
- = 2alb' - al'bl free; - fbl ' - f'bl; b6  0

"b7 =l0al2abl" + 5alal'(l - 3a)b' + [ 2(loa- 1) - a al"(5a + 1b free* 0 = 1111 11 + i 1re

bL8 = 48LafbI + 2Falf'(5 - 7a) - 15al'flb I ' + F-2alf"(3a + 1)- 15fal"a +

f'al(55a - 2)jbl;

- - 631f2ab1" + 7ff'(2 - 9a)b1
1 + [ft2(35a - 2) - ff"(21a + 2]b1

a

The free coefficients are calculated as before by comparison with
the given profile, and the c-values developed in power series are sub-

stituted into the above equation for 6x
3x,

B. ROTATIONALLY SYMMETRICAL CASE

a. Flow Boundary Layer

The equations read

u - u + v = UU, + 62u

(ur) + (vr) = 0

Here r signifies, as before, for a blunt body of revolution the
distance between the axis of rotation and the base point of the normal
to the surface.

By eliminating Lx one obtains a linear equation of the first order

in v with solution

v = _ufU(U' + 12 )ddy 1 dr-Jo \Eu2 u2 6y 2 r dx y
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By forming the derivative from v with respect to y fnfd using
S.-the continuity equation one obtains

00 • -u = l__ + dy +1 dr y _u
a x C y J Iu -:2 )y2 r dx ay

L uS

For given u-profile, one may therefore use an equation for the
continuation of the boundary-layer profile which differs from the equa-
tion for the two-dimensional case only with respect to the last term.
In order to establish the convergence at the wall, here also a power-
series development in y becomes necessry

00

V .

since

v a -+ av -"(V 1

0Or 0

By substitution into the basic equations one obtains (With f -UU';
,\ v~l

9 r))

a, free; a2 = f; a3 = 0;

a4 ale,' - al2 g free; a5 = 2alf' - 4alfg; a6 = 2ff' - 4f2g

As before, one determines the free coefficients.

b. Transfer Boundary Layer

With the same expression as above for the two-dimensional case one
obtains for the bV



bI free; b2 = b 3 0;

.. • b5

= - - alblg free; -s = 1fbI ' - f'b I - fblg; b6  0;

. . . . . . . . . . . . . . . . . . . . . . . . . . . .•

The practical execution in the last three cases will be discussed
in a later report together with numerical calculations. The methods of
continuation discussed yield results the accuracy of which depends

exclusively on the work expenditure and is therefore not limited by
postulating approximation functions. The methods may also be used for
determining the accuracy of the aforementioned power-series developments
in x in the case of breaking-off after a certain number of terms at a

certain point. One then starts the continuation method at an x so
small that the error is certainly small, and compares the result then

obtained at a larger x with the one directly calculated from the power-

series development in x.

DEPENDENCE OF THE EVAPORATION AND THE HEAT TRANSFER ON a

A. GENERALITIES

Pohlhauscn (ref. 16) has shown for the plane that Nu is approxi-

mately proportional to the quantity In the approximate calcula-
tions of Kroujiline (ref. 1) the same was shown for the circular cylinder.
Ulsamer (ref. 10) demonstrated that the law may be approximately selected
from various experimental investigations on the heat transfer of a
circular cylinder. The author of this report has confirmed the law at
least approximately in the case of evaporation of drops (ref. 11).

From the equations of the section on power-series developments in
x one sees that a can probably not be eliminated from them by simple
transformations. Thus one cannot expect a relation as simple as the
aforementioned to apply exactly. For the case where a is very large
and the transfer boundary layer therefore thin compared to the flow

3,-
boundary layer, the author of this report found the I a-law to be txact.
In this case the curvature of the velocity profile may be neglected in
the entire transfer boundary layer, and one may replace u by (u')opy

and v by _(v") 0 y2 in the general boundary-la.yer e4uation, with the
2

apostrophes indicating derivatives with respect to y.
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)x 2 y aY 32
0@

0@

*o The variable = y a is introduced for c (not for u and v)

(U')o0 + 2 Ic +
2 ' 2

Boundary conditions: = 0; c = 1. o; c = 0.

Thus one has obtained an equation free of a. For this reason, c

becomes c = f(x,y a); hence follows that for large a the quantity

Nu is proportional to the quantity a on the entire surface in the
boundary layer. That the same law has been found experimentally also
for a a that is not large, is based on the fact that the quantity

Nu Cr does not vary greatly with a and may therefore be found to be
approximately constant in a small region.

B. TWO-DIMvENSIONAL SYMMETRICAL CASE

Into the equations for F0 , F2 , G4, H4 . . . the following

functions and variables are introduced:

: 5  fz(f )0; Fo(n) = 0o(k); F2 (T) = __"

6(f")o -

_f 0(); ( h ' 0 0ey); etc

Boundary conditions:

= 0; k0 = 1; remaining functions = 0;
= ; all functions - 0.
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Taking into account that for large a the equation 1 = (")2

is valid, one obtains

* 000

11"= 532 0

02 " = -3v22 + 12EO2 - 9 2¢ O ,

4 " = -3Cr4  + 24r 4 - 152 o

8 2")

e4"1=-3E4' + 24PO4 - 15F20' + (1f) (hB" [U 2 - 3 2]

(fl )0 ( 5 i)o

For the pressure distribution according to Hiemenz (see p. 20)

one obtains in the case of a circular cylinder Nu = 1.2592 -

0.7583x2 . . . ; for the case calculated above a = 0.7 one obtains for

the corresponding quantity 1.0642 - o.5744x2 - 0.6708x4 . . .. Here
x signifies the dimensionless abscissa which is obtained from the length
dimension through division by the diameter D. The functions 00 and

02 are given numerically in table 6.

C. ROTATIONALLY SYMMETRICAL CASE

The following functions are now introduced:

= r3 5~II) 0 ; F0 (rn) = 00( ); G2 ) (19 -0r() (h3 )0
6 (( ()2

The equations become

0o" = -3E 2o'

r2" -3E2r2 ' + 6ur2 - 6 2¢0 '

02" = _2 + 6 e2 - 6 2, - 3 P f2") 0  DOI
2 (h3")O

. . . . . . . . . . . . . . . . . . . . . . .
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As in the previous case, the solution of the first equation is

: ::. _x3
*@ •0 JO

* 
e / e= dx

For the pressure distribution according to Fage (ref. 17) (see p. 20)

one obtains for the sphere Nu 1.4725 - (. . .)x2 + . • .; for

1
S= , one obtains 1.3658 - •

0.395

DISCUSSION OF APPROXhIMATE METHODS

As has been mentioned above, Pohlhausen (ref. 5) gave an approxi-
mate method for the solution of the boundary-layer equation for the flow
about a circular cylinder. Tomotika (ref. 18) applied this method to
the sphere. Kroujouline used a similar method for the transfer for the
cylinder, applying a broken-off series development in y which was
determined with utilization of the integral condition of the transfer
boundary layer. For the flow boundary layer he used a parabolic profile
whereby the agreement may be assumed to be bad particularly in the case
of pressure increase. Probably better approximations could have been
obtained with the use of polynominals of the fourth degree. These
statements are valid only when the transfer boundary layer is thinner

than the flow boundary layer. Here a brief description is given
concerning some considerations of the author of this report concerning
a body of revolution, for various relative magnitudes of the two layers.

The integral condition formerly not set up for bodies of revolution

becomes (see p. 4)

1d [ac
r dx ucdy]= A )

which may be derived, for instance, by integration of the original
equation. Here 5 is the thickness of the transition boundary layer.
Using dimensionless quantities without Reynolds numbers only, A is

1
replaced by 5" This is assumed below.
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If for the two profiles the definitions

* 0
•0.. u _

* e0g U aI1  a0O 00 U ...-. 5,)13

* 0

and

c = 1 -2 + 2( 4

are used, one obtains for 6 < 61 the equation

2 ru(1 + + +
8lza (1- 42 280 18

Here 81 is the thickness of the flow boundary layer and z =

For 8 > 81, the integration is performed, with use of the integral

condition, first from 0 to 61 and then from 81 to 8. Result

2r d + a a + a /a a a
Ir za {r+ 2 + (i _++ L) a 5 6

l) 2a a a4l2)l3 a24a5 aj4 }

-- - -3 + -i a- a 4-

) z3 -5 + T + 8 4 6 7 8 +

The two equations have the same form when the parentheses after
51 are denoted, for instance, by the letter P. From the first of the

two equations one sees that, for a a so large and a z therefore so
small that only the first term of the parenthesis must be considered,
this z is, for a given x, inversely proportional to the quantity

f. Since the Nusselt number Nu equals 2 Re. Nu is, for a

large a, proportional to 3 also according to this approximate
theory. Ya

Since r, U, av, and 81 are known functions of x, we have in

any case an equation of the first order with z and x which can be
solved with customary methods (for instance, with the isocline method
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or according to Runge and Kutta). The only boundary condition required
• •. for this is the z-value at x = 0. This value is calculated from the

" e4uation ?zP = 1 where = 12 is identical with the parameter

used by Pohlhausen and Tomotika. For the sphere where U' = 5 and
OA -- 4.716, one obtains in the proximity of the stagnation point

1 = 0.8759z3 - 0.2648z4 + 0.01809z5 + 0.0056lz6 or, respectively,

1 = 1.4148z 2 _ 1.2295z + 0.5052 - 0.0746 + 0.0189
a z2  z3

For a given z and therefore also given Nu one may easily
calculate the corresponding a. For

z = 0.0 O.1 0.4 0.7 1.1 1.6 2.0 3.0 4.0, one obtains

Nu/ 5Re 5[ = 1.526 1.511 1.464 1.418 1.356 1.284 1.232 1.128

1.049 and

i/ 5. = 0 0.095 0.367 0.622 0.955 1.288 1.545 2.121 2.631

The quantity Nu/ FRe fJ is therefore, for a large a, almost
constant and varies in the proximity of the stagnation point about

linearly with 1i, C.

The reason for choosing, above, z instead of b as the dependent
variable was that z probably varies little with x (compare Kroujouline
(ref. 1)) and can therefore be calculated exactly more easily.

In the later more detailed report on the investigations, the numer-
ical results of this formulation as well as of others will be discussed.

It was shown that the choice of the profile form had a great effect on
the result.

SUMMARY

A preliminary report is given of a theoretical investigation of the
boundary-layer flow for two-dimensional and rotationally symmetrical
bodies. The evaporation, the heat transfer, and the velocity are cal-
culated by power-series developments with respect to the meridiau length.
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The coefficient functions which were calculated numerically in some cases
have been chosen so that the calculation is valid for all pressure distri-

butions and body shapes. The methods for determination of the errors in

breaking off the series are briefly treated. Methods of continuation are

* discussed. It is shown, for large Prandtl numbers, that the Nusselt
@ 00• number is exactly proportional to the cube root of the Prandtl number.

Finally, approximate methods of calculation are discussed.
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TABJE 1. TWO-DIMENSIONAL SYMMETRICAL

0,'oo" FLOW BOUNDARY IAYER

•0OO

:5 g5 g5 h h h 5 h' 5

0.0 0 0 0.7244 o o o.6548 o 0 0.1192
.1 .005 .0675 .6249 .0030 .0005
.2 .0132 .1251 .5286 .o114 .1072 .4402 .0017 .o141 .0249
3 .0282 .174 .4375 .0242 .0032

.4 .0476 .2129 .3539 .0405 .1778 .2717 .0045 .0117 -. 0436
.5 .0705 .2444 .2780 .0595 .0055
.6 o962 .2688 .2112 .08o6 .2184 .1408 .0057 -.0010 -.0783
.7 1240 .2869 .1530 .1030 .0052
.8 .1534 .2997 .1037 .1264 .2367 .o483 .0039 -.0176 -. o833
.9 1838 .3080 .0626 .1502 .0017

1.0 .2149 .3125 .0292 .1742 .2399 -.0106 -.0012 -.0330 -.0680
1.1 .2462 .3140 .0028 .1981 -. 0049
1.2 .2776 .3132 -.0173 .2218 .254-, -.0431 -. 0090 -.0441 -.0423
1 .3088 .3107 -.0320 .2449 -.0136
1.4 .3397 .3070 -.0420 .2676 .2239 -.0567 -.0185 -.0498 -. 0149
1.5 .3702 .3025 -.0482 .2897 -.0236
1.6 .4002 .2974 -.0513 .3112 .2123 -.0580 -.0286 -.0503 .0088
1.7 .4297 .2923 -.0518 .3322 -.0336
1.8 .4587 .2871 -.0506 .3526 .2012 -.0522 -.0384 -.0468 .0256
1 9 .4871 .2822 -. 0480 .3724 -.0430
2.0 .5151 .2775 -.0444 .3918 .1916 -.0432 -.0472 -. 0406 .0351
2.1 .5426 .2733 -.0402 .4108 -.0510
2.2 .5698 .2695 -.0358 .4293 .1839 -.0335 -.0546 -.0331 .0380
2.3 .5966 .2662 -.0314 .4476 -.0577
2.4 .6230 .2632 -.0271 .4655 .1781 -.0245 -.0604 -.0257 .0361
2.5 .6492 .2607 -.0230 .4832 -.0628
2.6 .6752 .2586 -.0194 .5007 .1740 -.0171 -.0649 -.0189 .0312
2.7 .7010 .2568 -.0160 .5180 -.0666
2.8 .7266 .2554 -.0131 .5352 .1712 -.0114 -.0681 -.0133 .0249
2.9 .7520 .2542 -.0106 .5522 -.0693
3.0 .7774 .2533 -.0085 .5692 .1694 -.0072 -.0703 -. 0089 .0187
3.1 .8027 .2525 -.0067 .5861 -.0711
3.2 .8279 .2519 -.0052 .6030 .1682 -.0043 -.0717 -.0058 .0132
3.3 .8531 .2515 -. 0041 .6198 -.0722
3.4 .8782 .2511 -.0032 .6365 .1676 -.0026 -.0726 -. 0036 .0089
3.5 .9033 .2508 -.0024 .6533 -.0730
3.6 .9284 .2506 -. 0019 .6700 .1672 -.0015 -.0732 -.0021 .0057
5.7 .9534 .254 -.oo14 .6867 -.0734
3.8 .9785 .2503 -.0011 .7o34 .1669 -.ooi0 -.0735 -.0012 .0036
3.9 1.0035 .2502 -.0008 .7201 -.0736
4.0 1.0285 .2502 -.0006 .7368 .1668 -.0004 -.0737 -.0006 .0022
4.1 1.0535 .2501 -.0004 .7535 -.0738
4.2 1.o785 .2501 -. 0003 .7701 .1667 -.oo01 -.0738 -. 0003 .0012
4.3 .2500 -.0002 .7868 -.o738
4.4 -. 0001 .8035 -. 0001 -.0738 -.ooo .0007
4.5 .0000 .8201 -.0739
4.6 .8368 -.0000 -.0000 .0003
4.7
4.8 .0001
4.9
[5.0 .0000
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TABLE 2. TWO-DIMENSIONAL SYMMETRICAL
00

TRANSITION B)UNDARY LAYER

1 - FO -Fo°' F2  F2 ' G4  G4' H4 H4'

0.0 0 0.4959 0 -0.1119 0 -0.0977 0 0.0518
.2 .0991 .4955 -.0224 -. 1115 -.0195 -.0970 .0064 .0520
.4 .1979 .4917 -. 0445 -.1077 -.0586 -.0952 .0129 .0558
.6 .2954 .4825 -.0651 -.0988 -.0565 -.o846 .0200 .0578
.8 .5904 .4660 -. 0855 -. 0841 -. 0721 -. 0704 .0281 .0455

1.0 .4815 .4416 -. 0985 -. 0658 -. 0845 -. 0517 .0574 .0490
1.2 .5666 .4095 -.1087 -.0397 -.0926 -.0501 .0476 .0529
1.4 .6447 .5708 -.1141 -.0158 -.0964 -.0078 .058: .0550
1.6 .7146 .5275 -.1145 .oll -.0958 .0131 .0685 .0480
1.8 .7755 .2818 -. 1099 .0528 -. 0915 .0507 .0771 .0576
2.0 .8275 .2560 -.1015 .0496 -.0858 .0440 .0832 .0228
2.2 .8701 .1924 -. o904 .0605 -.o741 .0521 .x861 .oo54
2.4 .9045 .1526 -.0777 .0656 -. 0655 .0554 .0854 -.0125
2.6 .9515 .1177 -.o645 .0654 -.0522 .0544 .x815 -.0281
2.8 .9520 .o885 -.0518 .o610 -.0417 .0502 .o744 -. 0404
5.0 .9672 .0644 -. 0403 .0540 -.0323 .0440 .0654 -.0481
5.2 .9781 .0457 -.0503 .0454 -.0242 .0368 .0555 -.0511
3.4 .9858 .0315 -.0221 .0366 -.0176 .0295 .0453 -.0500
3.6 .9910 .0211 -.0156 .0285 -.0124 .0227 .056 -.0458
3.8 .9944 .0138 -.0107 .0211 -.0084 .0168 .0271 -.0396
4.o .9966 .oo88 -.0071 .0151 -.0056 .0119 .0199 -.0525
4.2 .9980 .004 -. 0046 .04 -. 0056 .0082 .0141 -.0254
4.4 .9989 .0052 -.0029 .0070 -.0022 .0055 .0097 -.0191
4.6 .9994 .0019 -.0018 .0045 -. 0014 .005 .0064 -.0157
4.8 .9996 .0011 -. oolo .0028 -.0008 .0021 .0041 -.0095
5.0 .9998 .0006 -.0006 .0017 -.0005 .0015 .0026 -. 0065
5.2 .9999 .0005 -. 0005 .0010 -.0003 .0008 .0015 -.0040
5.4 1.0000 .0002 -.0002 .0006 -.0002 .0005 .0009 -.0025
5.6 .0001 -. 0001 .0005 -. 0001 .0005 .0005 -.0015
5.8 .0000 -. 0000 .0002 -.0000 .0002 .0005 -.0009
6.0 .0001 .0000 .0001 - .0005
6.2 .0000 .0001 -. 0002
6.4 .0000 -. 0001
6.6 -.oooi
6.81 -.0000
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TABLE 3. ROTATIONALLY SY4MMETRICAL FLOW

do o* BOUNDARY IAYER
* 0O
00

@ OO

e 0 oe fl f o fl" gh h3g3 h3"
* •93l' 93' 3 3  h3'

0.0 0 0 0.9277 0 0 i.o475 0 0 0.0448
.1 .0046 .0903 .8777 .0051 .0998 .9477 .0002 .0044 .0448
.2 .0179 .1755 .8277 .0196 .1896 .8488 .0009 .0090 .0444
.3 .0395 .2558 .7778 .0427 .2696 .7517 .0020 .0133 .034
.4 .0689 .3311 .7282 .0732 .34o0 .6574 .0056 .0176 .o416
.5 .1056 .4014 .6788 .1104 .4012 .5666 .0055 .0217 .0391
.6 .1490 .4669 .6500 .1532 .4535 .4802 .0079 .0254 .0356
.7 .1988 .5275 .5319 .208 .4974 .3986 .01o6 .0288 .0314
.8 .2544 .5833 .5348 .2524 .5334 .3227 .0136 .0316 .0265
* 9 .3153 .6345 .4888 .3072 .5621 .2528 .0169 .0340 .0210

1.o .3811 .6811 .4443 .3646 .5842 .1895 .0204 .0358 .0152
1.1 .4514 .7234 .4o14 .4239 .6002 .1328 .0241 .0370 .0091
1.2 .5256 .7614 .3604 .4845 .611o .0832 .0278 .0377 .0032
1.3 .6035 .7954 .3215 .5459 .6171 .o403 .0316 .0377 -. 0026
1.4 .6846 .8258 .2850 .6078 .6193 .0044 .0353 .0372 -.0080
1.5 .7686 .8526 .2508 .6696 .6182 -.0251 .0390 .0361 -.0127
1.6 .8550 .8761 .2192 .7313 .6144 -.o483 .o425 .0346 -.o168
1.7 .9437 .8966 .1901 .7925 .6087 -.0657 .0459 .0327 -.0202
1.8 1.0342 .9142 .1637 .8530 .6015 -.0780 .0491 .0306 -.0228
1.9 1.1264 .9294 .1398 .9127 .5932 -.0857 .0520 .0282 -.0244
2.0 1.2200 .9422 .1185 .9716 .5845 -.894 .0547 .0258 -.0254
2.1 1.3148 .9530 .0996 1.0296 .5755 -.898 .0572 .0233 -.0256
2.2 1.4106 .9622 .831 1.0867 .5666 -.0876 .0594 .0207 -.0252
2.3 1.5072 .9698 .0688 1.1430 .5580 -.834 .0613 .0182 -.0243
2.4 1.6045 .9760 .0564 1.1984 .5500 -.0776 .0630 .0158 -.0229
2.5 1.7024 .9811 .0458 1.2530 .5425 -.0709 .0645 .0136 -.0212
2.6 1.8007 .9853 .0370 1.3069 .5358 -.0637 .0657 .0116 -. 0193
2.7 1.8994 .9886 .0296 1.3602 .5298 -. 0563 .0668 .0097 -. 0174
2.8 1.9984 .9912 .0234 1.4129 .5245 -. 0490 .0677 .0081 -.0153
2.9 2.0977 .9932 .0184 1.4651 .5200 -.0420 .0684 .0067 -.0133
3.0 2.1971 .9949 .0143 1.5169 .5161 -.0356 .0690 .0054 -. 0114
3.1 2.2966 .9962 .0110 1.5683 .5128 -.0297 .0695 .0044 -. 0097
3.2 2.3963 .9972 .0085 1.6195 .5102 -.0245 .0699 .0035 -.0082
3.3 2.4961 .9979 .0064 1.67o4 .5079 -.0200 .0702 .0028 -. 0067
3.4 2.5959 .9985 .0048 1.7211 .5061 -.0161 .0705 .0022 -. 0054
3.5 2.6958 .9989 .0036 1.7716 .5047 -.0128 .0706 .0016 -. 0044
3.6 2.7957 .9992 .0026 1.8220 .5036 -. 0101 .0708 .0013 -.0035
3.7 2.8956 .9995 .0020 1.8723 .5027 -.0078 .0709 .0olo -.0028
3.8 2.9956 .9996 .oo14 1.9226 .5020 -.0o6o .0710 .0007 -. 0021
3.9 3.0955 .9997 .0010 1.9727 .5o15 -.0046 .0711 .0oo6 -. 0016
4.0 3.1955 .9998 .0007 2.0229 .5011 -.0034 .0711 .0004 -.0013
4.1 3.2955 .9999 .0005 2.0730 .5w08 -.0026 .0711 .0002 -.0009
4.2 3.3955 .9999 .0004 2.1230 .5006 -.o019 .0712 .0002 -. 0007
4.3 3.4955 .9999 .0003 2.1731 .5o04 -.0014 .0712 .0002 -.0006
4.4 3.5954 .9999 .0002 2.2231 .5003 -.0010 .0712 .0002 -.0004
4.5 3.6954 1.0000 .0001 2.2731 .5002 -.0007 .0000 -.0002
4.6 .0001 2.3231 .5001 -.0005 -.0002
4.7 .0000 2.3732 .5001 -. 000o4 -.0001
4.8 .5000 -. 0002 -. 0001
4.9 -.0001 -.0000
5.0 -. 0001
5.1 -.0001
5.2 -. 0001
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TABLE 5. ROTATIONALLY SYMMETRICAL
S 00

0O@. TRANSFER BOUNDARY LAYER
(O

0.5 0.4129

.7 .4705
1 .5390
1/0.395 .7599
10 1.2389
100 2.7365

TABLE 6. TWO-DIMENSIONAL SYMMETRICAL TRANSFER

BOUNDARY LAYER. c LARGE

1 - (Do -pot '02 D2'I

0.0 0 1.1198 0 -0.4799
.1 .1120 1.1187 -.0479 -.4780
.2 .2235 1.1109 -.0952 -.4647
.3 .3337 1.0900 -.1401 -.4293
.4 .4409 1.0504 -.18Ol -.3637
.5 .5430 .9883 -.2118 -.2647
.6 .6378 .9023 -.2320 -.1361
.7 .7228 .7947 -.2384 .0099
.8 .7962 .6711 -.2301 .1541
.9 .8567 .5402 -.2083 .2747

1.0 .9043 .4120 -.1765 .3530
1.1 .9396 .2959 -.1395 .379
1.2 .9641 .1989 -.1023 .3565
1.3 .9801 .1245 -.0693 .2981
1.4 .9897 .0720 -.0432 .2232
1.5 .9951 .0583 -.0246 .1500
1.6 .9979 .0186 -.0128 .0904
1.7 .9992 .0082 -.0060 .0488
1.8 .9997 .0033 -.0026 .0236
1.9 .9999 .0012 -.0010 .0102
2.0 1.0000 .0004 -.0003 .0040
2.1 .0001 -.0001 .0014
2.2 .0000 -.0000 .0004
2.3 .0001
2.4 .0000


