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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

EVAPORATION, HEAT TRANSFER, AND VELOCITY DISTRIBUTION
IN TWO-DIMENSIONAL AND ROTATIONALLY SYMMETRICAL
LAMINAR BOUNDARY-LAYER FLOW*

By Nils Frossling

INTRODUCTION

Aside from the simple case of the plane, no quantitative calcula-
tions of the evaporation of a body in a moving medium exist so far. The
heat transfer, which under certain circumstances (see p. 4) follows the
same laws, has been treated theoretically for the cylinder by Kroujiline
(ref. 1) and Squire (ref. 2). For boundary-layer flow, Kroujiline used
for the temperature field a power-series method of the same type which
has been introduced for velocities by Pohlhausen (ref. 3). Because of
this stipulation of the profile form, the result must be approximate,
and the eventual agreement with the correct value is rather accidental.
Squire gave an exact treatment of the transfer in the immediate proximity
of the stagnation point. However, it is of great interest to have a
calculation method for heat and mass transfer in the entire boundary
layer, the error of which depends only on the work expenditure of the
numerical calculation and, therefore, not on possible approximative
formulations. Even though the calculation is time consuming, one has
the advantage of being able to check spproximate and more rapid methods
with respect to this solution. Under the supposition that the constants
of the problem (shape of body, pressure distribution, etc.) may possibly
be eliminated from the equations to be solved, it is also possible in
several cases to use the complete exact solution directly. The author
of this report perfected, for this reason, the exact solutions for the
temperature and concentration fields. Two dimensional and rotationally
symmetrical steady boundary-layer flows were treated. The latter case
is the more complicated one because of the form of the continuity
equation.

*"Verdunstung, Wermeubergang und Geschwindigkeitsverteilung bei
zweidimensionaler und rotationsgymmetrischer laminarer Grenzschicht-
strémung.” Lunds Universitets Arsskrift, N.F. Avd. 2, Bd. 36, Nr. 4
Kungl. Fysiografiska S#dllskapets Handlingar, N.F. Bd. 51, Nr. 4, 1940.




For the calculation of the transfers, however, the velocity fields
must be known. For the two-dimensional case one has, aside from approx-
imate methods of solution by Pohlhausen (ref. 3), Kfrmfn and Millikan
(ref. %), and others, the method of Blasius (ref. 5) and Hiemenz (ref. 6)
which was improved by Howarth (ref. 7). By means of this method one may
solve the equations, without any arbitrary assumptions regarding velocity
profile and the like, by power-series development from the stagnation
point up to an arbitrary point on the meridien cu.rve. The work expend-
iture depends on the required accuracy and on .he position of that point.
Since the development becomes very rapidly more cumbersome with the
distance from the stagnation point, it is appropriate to use, from a
certain point onward, a continuation method, for instance, according to
Prandtl (ref. 8) and Gortler (ref. 9). Howarth (ref. 7) transformed
the functions of Blasius and Hiemenz into functions of such a type that
the constants disappear from the equations so that the numerical solu-
tions for them may be applied to any two-dimensional flow., He treated
the symmetrical as well as the unsymmetrical case, and indicates the
solution of one of these functions. For the present investigation,
Howarth's functions are used in the two-dimensional case. Since the
accuracy of Howarth's numerical tables is not sufficient for the cal-
culation of the transfer, a new numerical calculation was made of certain
functions. For the three-dimensional rotationally symmetrical case, in
contrast, there exists, so far, no calculation of the functions of the
series development. Because of the modified continuilty equation, other
systems of equations must be used, and these systems are established
here. The necessary functions are numerically calculated. Although the
form of the meridian curve takes effect through the continuity equation,
one can proceed in the distribution of the functions in such a manner
that the constants of the meridian equation disappear, and the solutions
therefore are valid not only for arbitrary pressure distribution but also
for arbitrary shape of the body of revolution. The continuation method,
beginning with the 1limit of validity of the broken-off power series, has
been perfected also for this case,

An investigation is carried out regarding the validity of the law,
stated, for instance, by Ulsamer (ref. 10) that the Nusselt number is
proportional to the cube root of the Prandtl number,

A few approximation methods for the calculation of the transfer 0
layer are discussed. Ef/

Only a brief survey is presented here since a more detailed report
is to be given 1in a later paper. e
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THE FUNDAMENTAL EQUATIONS

With dimensioned quantities, the boundary-layer equations for flow,

concentration, and temperature read

2
w v Wy gy é—%
Ax dy dy
él-i'-i- é! = 0 +two dimensional
ox Oy
of{ur) d(vr)
¢ + = 0 rotationally symmetrical
Ix Joy
2
uXy®_a%e
ox dy dy?2

Concerning the derivation of the two last equations for the

rotationally symmetrical case see p. 15-16. The boundary conditions are

Yy=0 u=vs=0; t=1% c =cp;

In these equations the customary designations of the various
quantities are used, x = distance along the body surface from the
stagnation point to the base point of the normal to the body surface,
Yy = length of that normal. r = distance from base point to axis of
rotation. u, v = velocity components in the direction of x and Yy,
respectively. U = the velocity component parallel to the body surface
immediately outside of the boundary layer (calculated from the experi-
mentally determined pressure distribution). t = excess of the temper-
ature of the surface over the temperature of the undisturbed fluid.
¢ = corresponding concentration quantity. v = kinematic viscosity,

a = temperature diffusivity (= 5%—). A = diffusion coefficient. If
Y




Uy 1s the undisturbed velocity and D a characteristic length of the

body (for instance, its diameter), one can transform the equation into
dimensionless form by dividing the velocities, lengths, temperatures,
and concentrations by the quantities Up, D, to, and cp. These equa-
tions contain as constants, among others, the Reynolds number Re = o,
v
This number one may eliminate by modifying the scale of the boundary

layer in transverse direction, by multiplying the values of y and v

by xjﬁg. The equations used below with the designation "dimensionless
equations without Reynolds numbers" are changed in their appearance,
compared to those mentioned above, only in that v disappears, and A

and a are replaced by e and %- In the boundary conditions tg and

¢y are replaced by 1. The two quantities % and % which are often
independent of pressure and temperature, as in the case of ideal gases,
are dependent on the media used. These quantities are called Stanton's
nunbers. Frequently their inverse values are used, designated as Prandtl
numbers., In an earlier report of the author on the evaporation of drops
(ref, 11) the designation o is used for the Stanton number. Since at
present this letter is used mostly for the Prandtl numbers, this defini-
tion is employed in the present report to prevent misunderstandings.

v

ve
Thus o here signifies: o = % or, respectively, = . = —3?2.

The equations for temperature and concentration are therefore
identical when t and c¢ are interchanged. For the temperature-
boundary layer it is assumed, however, that the dissipation and the
heat generated by change in pressure may be neglected., This assumption
is satisfied for not-too-large velocities (ref. 12). The equations also
presuppose that the velocities be small compared to sonic velocity in
order to make the compressibility negligible, A further limitation of
the equations is given by the fact that the differences in concentration
and temperature must not be so large that the constant characteristics
of the media vary from point to point. Because of the identical form
of the two equations for temperature and concentration, which is thus
satisfied under these presuppositions, both may be treated simultaneocusly.
In the following equations one may, therefore, immediately interchange
the quantities ¢ and t.

In the search for a solution which satisfies the accuracy require-
rments discussed in the introduction, the method of power-series develop-
ment in x was used. Breaking off the power series after a certain
nunber of terms one was able to use this solution from the stagnation
point up to a point the position of which was dependent on the accuracy
requirements. Starting from this point one could then use for the layers
of different types step-by-step continuation methods,
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For the sake of brevity, we shall use below the common name

"transfer" boundary layer for the temperature and for the concentration-
boundary layer.

POWER-SERIES DEVELOPMENTS IN x

A. TWO DIMENSIONAL CASE
a. Flow Boundary Layer

1. Symmetrical case

As was menticned in the introduction, this case has been treated
by Blasius, Hiemenz, and Howarth. This report uses for the most part
the same designations as Howarth. The only difference is that Howarth's
quantities F, are here replaced by the quantities V¥, because the

capital letters are more suitable for the functions of the transfer
boundary layer.

In order to replace the two unknown quantities u and v by a
single one (¥), the following conditions satisfying the continuity
equation are set up as usual:

o -1}
"ty VT

The first flow equation then becomes (with dimensionless quantities
without Reynolds numbers)

2 2 b)
éy____b\y _a_\lf_é__\ll__ '+a_l
dy Oxdy  Ox By2 ay5

Blasius and Hiemenz solved this equation by means of the formula

Vo= X+ w3x5 + w5x5 + . 0 e

for the symmetrical case where the velocity distribution outside of the

boundary layer follows the formula U = ujx + u5x5 + u5x5 oo .Yy,

are functions only of y.




By comparison of the various powers of x the equations for W,

;:-::0 were obtained. These equations were freed of the constants wu, by
e, introduction of the functions fy, gy, etc., by means of the following
“ o statements:
)'HJ.}
LISV T INE R N i
2
Vg = _EEZ g + u3 Yoy = _921 + 3222 7 + u53 k)
2 2 l
s T A S ry+ 22 40 2 q\
2 \/’1?1 E ujug 9 ujug u12u9 J9 ul3u9 9/

2. Unsymmetrical case

For an unsymmetrical two-dimensional body for which the velocity

distribution follows the formula U = ujx + u2x2 + u3x5 + . . ., the
formulation

v = wlx + szz + W3X§ + o s .

was used, Here also the V, were freed of the constants w,, this time
by the expressions

3
=y\/'u_1 ‘Vl=fl\/il \y2=———\/:_2f2 etc.
1

b. Transfer Boundary Layer
1. Symmetrical case
The author of this report attempted in the dimensionless equations

without Reynolds numbers, aside from the formulations for mentioned
above, a development for c¢ in the following manner (¢, are functions

of y only):

c=z:)cva=c0+clx+c2x2+03x5+cuxu+. L
v=




T
Boundary conditions:
y=0 cg =1 €l =Ch =+ o o = 0]
Yy = c0=cl=02=...=0
By substitution one obtains for the Cop and Contl
1 ]

n
"
s en” l;oew'aml-ekcek - i; (2n + 1 - 2k)¥op41 0K "2k

Tl "

n n
X = ' - _ '
E ¢ ontl kgo(ak + IV op 41 -2kCoke1 %(2:1 1= 2kWo 0 o o

”

One can easily show that the equations for conyy are such that

they become identically zero. In the groups of equations mentioned
above which constitute the recursion equations, there occur exclusively
functions with even or odd subscripts. From this one can see that ¢
is an even function of x which follows, besides, from the nature of
the problem. In order to be free of the constants U,, new functions

are introduced by the following statements:

hu5F2

M =Y Juys ¥, as above; c = FAs co = .

\[_l’ v ’ 0 (o} uy ’

o A Bug (g, 4 B3% a5
10\.19 u3u7 u5 u3 u5 u}’-l»
"8 o \8 iy B Ty 8 L2 8T 3

Boundary conditions:

=
[}

0; Fg = 1; the remaining functions = 0O

n = o3 all functions =0
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The remaining equations do not have explicit solutions and must therefore
be integrated by other methods, for instance, according to Runge and
Kutta. (See p. 19.)

2. Unsymmetrical case

With ¢ = Co + cqx + c2x2 + c3x3 + . . . and the boundary conditions

one obtains for ey,

v

%cv" = Z:

k=0 +l-k k i(v ti- k)w v+1- k k

Here none of the functions ¢, disappears, and c is therefore,

as had been expected, an even function. The equations here are not
divided into two independent groups but the functions follow successively
one from the other.

Distribution of the cy:

3u
. N =y fu ¥ o= fl\/ﬁi etc.; ¢g =Fg; ¢ = ™ 1;
lu us? u 5
. 02=——3—G2+—2-——HQ\; 05—5% +2—3-H5+u—2é—{<;
5 ) D

u
-_“_5_ v 3 ____2 o | s
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Boundary conditions:

n=0; Fo=1; the remaining functions = O
n = »; all functions = O;

%Fo" = -1’
L' = EF 4 £)F) - 2R
%Ge" = -£,Gy" + 2f, "Gy - 35"
%52" = -fyHy' + 2f) 'H, - 3h,F' + g(fg'F]_ ) 2f2F1'>
63" = £1G5' + 365 - bg,Fy' |
Lo . -£1H5" + 3£ 'Hg - byFy' + %(Qfe Gp + 83'Fy - 2fGp' - 3g3F1'>r
%KE" = 05"+ 3F) 'Ky - Mg Rt 4 Jég(zféﬂe *h3'hy - 20T - 5h5F1> J
t "= -£G,' + UG, - ST 1
%ﬁh" _ 'flﬂﬁ' + hfl'Hu - 5h5FO' g(§f2'G3 + g, 'F, - 2f2G5 - hghFlj
T S

156 <g5'H + by G2> 8(g3H2' + h3G2'>
%%" = -£,," + 4£,79, - SaFy" + (3f Ky + g, 'F) - 26K, - hkuFl'> +

o J

The first equation is identical with the first one of the symmetrical

case,

~
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B. ROTATIONALLY SYMMETRIC CASE
a. Flow Boundary Layer

For flows about a blunt body of revolution whose axis lies in the

direction of the flow, the flow equations are, according to Boltze
(ref. 13),

[ 2
ué-ll + vég = UU* + vé--—]i
ox oy dy°
logur) , 30 _
[ X dy

In the transformation to the dimensionless form without Reymolds
number v disappears. The quantity r +then must have, for the bodies
of revolution, the mesning, distance of axis of rotation up to the base
point of the normal instead of up to the point (x, y). A function for
identical solution of the continuity equation is desired. Boltze
(ref. 13) suggested a function V¥ which is defined as follows:

In the present report another solution @ also has been examined.
Definition

) dy r Oy ) ox r dx r Ox

The function ¥ has the advantage that the equations become some-
what simpler and that the velocity profille is Obtained directly. The
functions are derived in both cases. ¥ and VYr are flow functions.

1. Use of the function ¥

After substitution of the expressions for u and v into the
first boundary-layer equation one obtains

-r ¥ Syyr 4 2 QZX
Jdy/ dx dy Ixdy ox ayg dy?
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The power-series developments used (Wv function of y; r, and

‘.oo

o e
[ 1]

8o S, ¥ o= \112x2 + \yuxb’ + \y6x6 + .

) > +

uy constants)

r = rlx + T5X5 + r5x

o]
|

= ulx + u3x5 + u5x5 + . . .

The functions V¥, have the following boundary conditions .

Y= @5 Yo' =riwpi W o= Tius o Tsu; o ¥g = TiUg o T3Uz F ToW; . . -

After substitution of the power expressions into the equation for
- V¥ one obtains equations for V, by comparison of the different coef-

ficients. These equations may be freed of the letters r, and
by the following formulations:

r,u
21y,

2ul\ ryusz

riug 2r.u
n = y Qul- Wa = fg; wh = _—l_i gu +
,/Eul
3rqus rzus r52ul

1 2
¢6 = —_— g6 + r5d}h6 + u3 k6 + “——-ﬂ6 +
2u1 rlu5 ulu5 rlu5 rl u5

.o
3
L
.

The new functions have the boundary conditions

n = 0; all functions and their first derivative = O

1 1

n=ow f5'=1; g,'=h'-= %; gg' = hg' = Jg' = %; kg' = qg' = 0;. .




- ©e
o o®

[

e o

L J [ 11}

e 00

L J

fa ne
gu’ mn

hy,
h6l|l

e

kg

J6HI

q6l"

One obtains the following equations:

= -fofo" + %(fg'e -

" ' 1
= Tog, + 2ty -
- - mn ]
= fgh),t + 2f2 hh'

11

= T8 + 3T, 'eg

- ~£ang" + 38'b’

= ~fokg" + 31, k!

= -folg" + 3f5'36" -

2 " 1 1]
E(fzgu - he,'g,

" 1 ' n 2 |2 1" 2 I ' '

\ 2
of,"hy  + %(5f2

2.

One obtailns

)

+of,"g, - 1)

"
- 2ot >

Use of the function V¥

Power series developments

v

L1}

r

c
1]

13

2f2 g, - 1
- t l 12 "
- 2f2 'h)+ - £(3f2 - 2f'2f2 + 1)
o
" 1 12 "
fr'hg - =(5F -2t 57 + 1
52 hg 6(5 2 ofo )
" 2 12 u
3£, ke + 3(38u - hgugu ) - %
n 1 8 1" "

MY 1ar - PV
N Y —=U 4 —
ox 8y2 r dx 8y2 8y3
= T WD LT oD

Wlx + w3x + ¢5x + . . .

p

r1x+r5x5+r5x + . . .

u X + u5x3 + u5x5 ...




1k

Boundary conditions

y=0; ¥y =¥, =0

y

it
R
<
< -
l
é:

The functions V¥, are here divided up as follows:

— u 2 2u: rZU
R R T R (‘%——“hs)

N VeI

rlU.§

3115 51.15 / r5ul u32 I‘BU3 r32u1 \
Ve = fe = Igs + —=<— + + e + ~=——= ¢
2 \/'Zz_i ,/2u1\5 T u5 2 uq ug %5 r)us 5 r12u5 5/
Boundary conditions
n = 0; all functions and their first derivative = 0;
nee f1' =L e’ &' -3 byt ohs' ok - st < =0
e n l
£1'" = £1F" + 5(:'1'2 - 1)
g3 1t = -flgB" + 2fllg5| - 2flllg3 - l
hs™ = -fjhs" + 2f) 'hs' - 2f "hs - Jz-flfl"
g‘j"' = 'flgrj“ + 3f1l85l - 5fl"g5 - 1
hs™ = -£1hS" 4 3£ B! - 30y - 30
1t " 1 ] 1t 12 8 " l
k5 = -f‘lk5 + 3fl k,j - 51‘1 k5 + 233 -3 ng3 -3
35"’ - _flell + 5f1|35| - 5flnj5 + h_gslhﬁl - 2(85}15" + h}&ju) -
2 " [1]
3'(‘-’1 g3 + 183 )
Mo g "3 -3 + 2,2 — B e ket -
B = 1% 1 %5 1% 7 S35 T3 0503 T3

-?—(flhj" + fl"h5>

—
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In the first method, the functions have even subscripts, in the
second odd ones. A simple relation exists between the two groups of
functions which one may easily obtain by equating the two expressions
defining u_ and, respectively, the two expressions defining v (which

gives ¥ = yr).

f1
&, = 83 my =hz+ PX
5 2 2
8 = 855 hg=hs+ 35 kg =Kk5 Jg=Jd5+385 9=+ 5hs

b. Transfer Boundary Layer

The general equation of the temperature and concentration fields
for rotationally symmetrical flow has not been set up before. For the
special case where the body is a sphere, the author (ref. 11) has shown
that for boundary-layer flow the equation is identical with the one for
the two-dimensional case, at least for points which do not lie directly
at the stagnation point. In the present report, it is shown that the
same boundary-layer equation is valid also for arbitrary blunt bodies
of revolution, and that this applies to points directly at the stagnation
point as well. The introduction of mass or heat into a volume element
by diffusion and convection is expressed by the following equation (which
is valid for rotationally symmetrical flow without neglect of the boundary
layer when x and r are counted up to the element instead of to the
base point):

d(cur) d(evr) _ (3 S ) d (3¢
v S A ™ 5% r +A ——<—~ %

The derivation becomes the simplest if one chooses as the volume element
an element bounded by two meridian planes, two surfaces x = constant,
and two surfaces y = constant. In order to arrive at the boundary-layer
equation, one groups the derivatives

e dur) , ), %, 2 A, el P, Ll
T r Jy ox oy dye dy r dy x r Ox Ox
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Supposing that a thin boundary layer exists, the terms 2 and 3 in
the parenthesis disappear. The first two terms of the left side disappear
because of the appearance of the continuity equation. The last term of

the parenthesis becomes infinite at the stagnation point if dc is not

ox
here zero. In order to avoid discontinuities at the stagnation point,

one must therefore equate there oc = 0. Then the last term becomes

ox
everywhere negligible, and one obtains the equation

ox dy dy?

which thus is identical with the one in the case of two-dimensional flow.

1. Use of the function V¥

dc
N ox
¢ the expression ¢ = cq + c2x2 +¢x” + . . . with the following

Because of symmetry and of the requirement = 0 one uses for

boundary conditions for c,:

y=0; cg=1; eo=¢cy =...=0;
y=w; CO=02=C)+=.-.=O

For the c, one obtains equations which contain r, and wu,. In

order to eliminate these constants, one may make the following
substitutions:

2115 r3u1
1=y, /2u; Vv = as before; cg = Fo; cp = _GI<GQ * r1u3 H2>
2 rzU rzu
¢y = 232 R = 222 Gy + ZZEL Hy, + 22—— K, + 22 Jy + 32 L Y
uy up I‘1U5 U.lU.5 rlu5 I‘l u5

Boundary condition

n = 0; Fo = 1; remaining functions = O;

n = »; all functions = O
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For the new functions the following equations of the second order

CRIN are obtained:
e e
.... l
= n - o []
. 5 YO £2Fo

'};Gg" = —f2G2' + f2'G2 - quFo'

1 T ' ' 1 1 '
Lyt = e B, £,'H, - T+ L EF
l "o ] t 1]
EG},_ = -f2G)+ + 2f2 G)+ - 586Fo
lH)+"=-fH'+2f'H-5hF'+lfF'
o o8y o'y 6fo * 3 ffy
Ly = £, + 285Ky - SKF, '+ £ g "G, - O g,G,
. g K = -1y 2 Ky 60 T38 Y3 g
1 "o _ ] 1 1 ]
) S = "+ 2L - 33gF, +%(81+H2+h1+G2)‘
8lem ' +n6" -2(-£G."' +£.'G, - 28 F.'
380 t G -5l 56 - el
La"=-£q"'+26.'9 -3qF.' +%n'H -SnH' -
o U = T 2 Y ~ % tyhyE - I,

g. - 1 1 t l 1
3< f2H2 + f2 H2 - 2h1+FO + 5 f2FO

2. Use of the function :V.

With the same power development for c¢ and the same definitions
of the functions Fp, Go, Gy, etc., one obtains

S Fo" = -£3Fp'
l " (]

- ; G2 = -fle' + fl'Ge - 283F0'

. lg" = fH'+f 'H - 2hF' -=fF"
o 2 172 12 370 27170




1 " oo oo ! ' - t
s O = D16+ 2fy'Gy - 3esFg

%Hu" = LB+ 2 B - ShoRo' - £ o Fy

LRS- w2 - ST 4 e, - 850,

%Ju" = -fydy 2Ny, - 30F, 4 l’;’(g} Hy + hg' 2)‘ %(flGQ' *
85%') - g(gs o'+ Bs8)

Ql=
\NJro

L LY ' ! ,;_I-_ _8_ ' J 1
Q" = 119"+ 2fy'q - 3aF)' + $ 0", - S hH," - (le2 +h5FO>+

One can show easily by application of the relationships between the
functions with even and the functions with odd subscripts that the systems
of equations for the cases 1 and 2 are identical.

The first equations of the two systems are identical with the first
equation for two-dimensional flow and are, therefore, also solved by
quadratures.

C. FINAL EXPRESSIONS FOR THE TRANSFER

The transfers are made dimensionless by the Nusselt number

D 3m D 3°q

Nu = — ——- or, respective — ——. It 1is easi shown that
Nepy OSOT ’ P s Atg oSor Ly

Bu__ (— oc éﬂ, where ¢ and y are "dimensionless and without
VRe /0 dy

Reynolds number." The heat transferred by radiation is, of course, not
contained in this expression. For two-dimensional symmetrical bodies one

obtains

Yu,F 6u uz?
Nu = | ' - o2 x2 - __?_ G '+ b H ' xh' - e e .
JRe 0V VA! Vi! 4 U1 U5 * In=0
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Corresponding expressions are obtained in the other cases. As one
can see from the equations, one may easily calculate the Nusselt number
for arbitrary pressure distributions and body shapes which agree with
the formulations, if one has made a numerical calculation of the func-
tions. Unfortunately, the quantity o is left over and one must there-
fore make different solutions for different media. As is shown in a
section below, however, one can free the equations of a, too, if ¢
is large.

D. NUMERICAL CALCULATIONS

For the two-dimensional symmetrical case and for rotationally
symmetrical bodies the author has numerically calculated various func-
tions, corresponding to the three first terms of the power-series devel-
opments in x. The method of Runge and Kutta (ref. 14%) was used for
this purpose. This method is rather time consuming but one has good
possibilities of determining the errors. The first function f; of
the two-dimensional case has been calculated by Hiemenz and Howarth with
an accuracy sufficient for this investigation; Howarth's values are
directly used here. For f37 in the rotationally symmetrical case there

exists a table by Hartree (ref. 15) which was set up by using a mechanical
differential analyzer. The accuracy is here not sufficient and the first
two derivatives also are required; for this reason the function is cal-
culated here anew. Since the equation for f; 1is not linear and one

therefore cannot find the solution by combining two particular solutions,
it was valuable to have approximate information on fy" for n = O.

The functions were solved mostly by steps of n = 0.2. Since the values
with n-interval 0.1 must be known for the successive calculations, the
values lying between were interpolated by means of a Taylor series. For
the transfer boundary layer the calculations for the o-value of the air
(0.7) were performed in the two-dimensional symmetrical case because
experimental results for the heat transfer of a circular cylinder in air
exist (see, for instance, the compilation by Kroujiline (ref. 1). For
(Fb")o one may obtain values from a table given by Goldstein and cal-

culated by Squire (ref. 2) also in the case of other o-values. Squire
indicated an analogous expression for the heat transfer at the stagnation
point. For the rotationally symmetrical case calculations have been

carried out for o = because the only experimental result for the

1
0.395
transfer distribution has been found for the evaporation of naphthalene
spheres (ref. 11), naphthalene has this value of o. If one wants to
calculate the higher terms of the power-series development in x for a
special case, one may combine the separate functions in a single term in
order to save work expenditure; but the generality of the solution is lost
thereby. This has been done for the boundary layer of the body of revolution
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1
for o = .
0.39

etc., has been combined into a single function Fy, and calculated for
the sphere for the pressure distribution of Fage. (See below.)

The parenthesis in the defining equation for Gh’ Hh

The tables of the calculated functions are printed at the end of
the report with the exception of the higher ones for rotationally sym-

metric boundary layer. Here one has for n = O(?nd o = 5 %95>
Go' = 0.3186, H,' - -0.1005, and F,' = -0.2118. The error of the

tabulated functions which will be discussed in more detail later is at
most a few units in the last digit.

From the tables one obtains for air, for the pressure distribution
measured by Hiemenz: (ref. 6) at Re ~ 19000 for the circular cylinder

U = 3.6314x - 2.1709%° - 1.51kkx>

Nu

JRe

The quantity x is here dimensionless (the length dimension x
divided by the diameter D). Not only in the range 0° - 55° where the
series is to apply exactly (see E, 2) but up to the separation point this
equation is in good agreement with the compilation of experimental dis-

tribution curves indicated by Kroujiline (ref. 1). The derivations will
be discussed later.

- 0.9449 - 0.5100x2 - 0.5956x". . .

For the sphere a qualitative agreement with the values obtained for
evaporation of naphthalene at higher Re (ref. 11) is attained if the
pressure distribution according to Fage (ref. 17) is used which gives

U= 3x - 3.5966x0 + 4.7391x° - 5.4181x7 for Re = 157200 (ref. 18).
One then obtains

Nu

VRe

The deviations depend, among other things, on the fact that Fage's
pressure distribution is possibly not fulfilled for Reynolds numbers as
small as those used here. Later on a more exact comparison will be made
with more recent experimental values obtained by the author at still
higher Reynolds numbers.

= 1.8615 - 2.1477x2 + 2.4609x" . . .
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E. DETERMINATION OF THE ERRORS OF THE

BROKEN-OFF POWER-SERIES DEVELOPMENTS

One may use various methods: (1) The following term is calculated
and for not-too-large x this indicates the error. (2) If the value
of the errors is not required with a very high accuracy, the coefficient
of the x-terms may be assumed to be of the same order of magnitude. (3)
Use of a continuation method of the profile. (See following section.)
(4) In the case of direct differentiation, with respect to y, of the
value of g% taken from the transfer boundary-layer equation one may
obtain, for transition to y = O, the first derivative of Nu in x
whereby a continuation step may be taken directly with respect to Nu.
Later on numerical calculations according to some of these methods will
be given.

STEPWISE DEVELOPMENT OF THE BOUNDARY-LAYFR PROFILE

A. TWO-DIMENSIONAL CASE

a. Flow Boundary Layer

Prandtl (ref. 8) indicated for this case a method which is based
on the fact that one may obtain from the equations an expression for

%& containing only u with derivatives for a prescribed x. %3 becomes
X

with dimensionless quantities without Reynolds numbers

y 2
du _ 9. u\/h Ll o+ d7u dy
ox Oy 0 ue dy°

When two adjacent profiles (at x - Ax and x) were known, for
instance, by application of the method of Blasius and Hiemenz, it was
possible to calculate a third for x + Ax. With the u-values at x - Ax

the 2Ax QE values for x were used. One could then continue in the

ox
same manner with the profiles at x and x + Ax. In order to guarantee
the convergence of the expression, one was not to use the original numer-
ical profile at x but had to replace it by another which satisfied
certain requirements. 1In order to calculate those, u was developed




22

© v
1 : . _ ayy
into a power series with respect to y: u = 2::—;7—u For the a, one

v=1l "*

obtained certain conditions by substitution into the flow equation whereby
only some of them could be chosen arbitrarily. These latter were deter-
mined by comparison with the given profile. Gortler (ref. 9) perfected
the method practically and used it in Hiemenz' pressure distribution over
the circular cylinder. In the present report corresponding ideas are
used for bodies of revolution and for the transfer boundary layer, and
the necessary expressions are added and discussed.

b. Transfer Boundary Layer

From the basic equation one obtalns directly

This equation may therefore be used directly for step-by-step
continuation of the vapor and temperature boundary layer. Conditions
become here simpler insofar as no integration is necessary. However,
here also the danger exists that the expression becomes uncertain at the

Joe

wall (because of u occurring in the denominator). Moreover, < must

ox
become identically zero at the wall. In order to satisfy the require-

ments, one resolves here also the gquantity c¢ into a power-series devel-
opment with respect to y(bv function of x onLy):

oobyv
¢c=1-2_-Y
v:lv:

By substitution one obtains

ayy’ by —ay'y
zz: VVZE:: vv! _jz: .

(v + 1)!

v+1 v-1 1 v-2

byy _ lovbwy
EE:(v - 1) UEZ:(V - 2)!

By comparison of terms of the same degree, one arrives at the
relation between the b,. For the first nine b, there applies (with
f = -UU')
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bl free; b2 = b5 =0

Py b by f -b5-5fb' f'by; be = O
g = 2a1by’ - a1 'by) free; —F = Ofby;’ - £'by; bg =

10a

2 1" 1 1 |2 - - " Y
1 Ubl + 5313 (1 - 30)bl + [%l (100 - 1) - aja_ "(50 + 1{}b1 free

1 11

alg al¥

48a, ofb, " + 2[2’a.lf'(3 - 70) - 15a1'f<i]bl' + [-Qalf"(Bo +1)- 15fay"o +
£'a;1(350 - 2)|by;

b9 _ 636%0by" + TEE'(2 - 90)by ' + [f'2(35o - 2) - ££"(210 + 2ﬂ by
g

The free coefficients are calculated as before by comparison with
the given profile, and the c-values developed in power series are sub-

stituted into the above equation for QE

ox

B. ROTATIONALLY SYMMETRICAL CASE

a. Flow Boundary Layer
The equations read

2
W,y gy U

ox oy dy?
dur) | Avr) _
ox oy

Here r signifies, as before, for a blunt body of revolution the
distance between the axis of rotation and the base point of the normal
to the surface.

By eliminating gﬂ one obtains a linear equation of the first order
X
in v with solution
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By forming the derivative from v with respect to y und using

the continuity equation one obtains

Al

du _ d ( gl < 1 dr
au _ 9O A (yuy u 4 r
- By-u«’a u2< + byg/’dy +2 Ty

&

For given u=-profile, one may therefore use an cyuation for the
continuation of the boundary-layer profile which differs from the equa-
tion for the two-dimensional case only with respect to the last term.
In order to establish the convergence at the wall, herc also a power-
series development in y becomes necessury

Vv

o]
ayy
u=y
l -
since

r /'(v + 1)!

By substitution into the basic equations one obtains (with £ = -UU';

ay = ajeq’ - al2g free; ac = 2a.f' - hayfg; a, = 2ff' - hfzg

As before, one determines the free coefficients.

b. Transfer Boundary Layer

With the same expression as above for the two-dimensional case one
obtains for the b,

7




b . - o
b 2albl' - a, 'b, - alblg free; = = §Ibl - f bl - fblg, bC 0;

The practical execution in the last thrce cascs will be discussed
in a later report together with numerical calculations. The methods of
continuation discussed yield results the accuracy of which depends
exclusively on the work expenditure and is therefore not limited by
postulating approximation functions. The methods may also be used for
determining the accuracy of the aforementioned power-serics developrients
in x 1in the case of breaking-off after a certain number of terms at a
certain point. One then starts the continuation mecthod at an x5O
small that thec error is certainly small, and compares the result then

obtained at a larger x with the one directly calculated from the power-
series development in x.

DEPENDENCE OF THE EVAPORATION AND THE HEAT TRANSFER ON o
A. GENERALITIES

Pohlhauscn {(ref. 10) has shown for the planc that Nu is epproxi-

mately proportional to the quantity \3/;1 In the approximate calcula-
tions of KrouJjiline (ref. 1) the same was shown for the circular cylinder.
Ulsamer (ref. 10) demonstrated that the law may be approximately selected
from various experimental investigations on the heat transfer of a
circular cylinder. The author of this report has confirmed the law at
least approximately in the case of evaporation of drops (ref. 11).

From the equations of the section on power-series developments in
x one sees that o can probably not be eliminated from them ty simple
transformations. Thus one cannot expect a relation as simple as the
aforementioned to apply exactly. For the case where ¢ 1is very large
and the transfer boundary layer therefore thin comparcd to the flow

—
boundary layer, the author of this report found the 3/o-law to be cxact.
In this case the curvature of the velocity profile may be ncglected in
the entire transfer boundary layer, and one may replace u by (u')oy

and v by %(v")oy2 in the general boundary-liyer cquation, with the
apostrophes indicating derivatives with recpect to y.




dc . WMo 23 2
' dc oc _ 1 o%¢c
(u")oy ox * 2 Y dy o

y2

o/

The variable ¢ =y 2/5_ is introduced for c¢ (not for u and V)

d | vo 2 de _ d%c

ox 2 G &

(u" )t
Boundary conditjons: § =0; ¢ =1. § = »; ¢ = O.

Thus one has obtained an equation free of ¢. For this reason, ¢

becomes ¢ = fi{x,y 3/s ); hence follows that for large o the quantity
b b

Nu is proportional to the quantity \9/; on the entire surface in the
boundary layer. That the same law has been found experimentally also
for a o that is not large, is based on the fact that the wuantity

Nu/§?r6 does not vary greatly with o and may therefore be found to be
approximately constant in a small region.

B. TWO-DIMENSIONAL SYMMETRICAL CASE

Into the equations for Fp, Fp, Gy, Hy . . . the following
functions and variables are introduced:

E =17 3/%<fl">o Foln) = ¢g(&); Fo(n) = EZBH))O o~(t)
1

e

0
g o
Gy, - ((—fi—w/)—zf'u(e); - ((fi>g 0y (8); ete

Boundary conditions:

0; ¢g = 1; remaining functions = O;
£ = »; g1l functions - O.
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Taking into account that for large o the equation V = %(w")oy2

is valid, one obtains
@0" = -5&2(:0'
" 2(5 2
0," = -38%0p" + 1280, - 99’

0" = -3, + 2uer), - 15t%"

" 2 1 1
6" = -36%0)," + 2hedy - 155" +

For the pressure distribution according to Hiemenz (see p. 20)
Nu

QER/Re

0.7583x2. . . 3 for the case calculated above o = 0.7 one obtains for

the corresponding quantity 1.0642 - 0.57hkx° - 0.6708xu .+« . . Here

x signifies the dimensionless abscissa which is obtained from the length
dimension through division by the diameter D. The functions ¢g and
05 are given numericelly in table 6.

one obtains in the case of a circular cylinder =1.2592 -

C. ROTATIONALLY SYMMETRICAL CASE

The following functions are now introduced:

" h "\,
E =17 \5/§(f1")0; Fo(n) = 04(8); Gy(n) = —(?ﬁ r(¢); Hy= LB—TO 02(¢)
0

The equations become

q’o” = —55%0'

Tp" = -382D5" + 68T, - 6650

62" -3&262' + 6562 - 6§2®0| -

PO\N
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As in the previous case, the solution of the first equation is

€ 3
/e_x dx
JO
=1-"3
/ e'xidx
J0
For the pressure distribution according to Fage (ref. 17) (see p. 20)
one obtains for the sphere B\ S 1.4723 - (. . .)x2 + . . .3 for
{?G:jRe

o= , one obtains 1.3658 - . .

0.395
DISCUSSION OF APPROXIMATE METHODS

As has been mentioned above, Pohlhausen (ref. 3) gave an approxi-
mate method for the solution of the boundary-layer equation for the flow
about a circular cylinder. Tomotika (ref. 18) applied this method to
the sphere. Kroujouline used a similar method for the transfer for the
cylinder, applying a broken-off series development in y which was
determined with utilization of the integral condition of the transfer
boundary layer. For the flow boundary layer he used a parabolic profile
whereby the agreement may be assumed to be bad particularly in the case
of pressure increase. Probably better approximations could have been
obtained with the use of polynominals of the fourth degree. These
statements are valid only when the transfer boundary layer is thinner
than the flow boundary layer. Here a brief description is given
concerning some considerations of the author of this report concerning
a body of revolution, for various relative magnitudes of the two layers.

The integral condition formerly not set up for bodies of revolution
becomes (see p. 4)

B
14d ac
= — cdy| = -Al—
r &l o (5-‘/)0

which may be derived, for instance, by integration of the original
equation. Here B 1s the thickness of the transition boundary layer.
Using dimensionless quantities without Reynolds numbers only, A 1is

replaced by %. This is assumed below.
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If for ithe two profiles the definitions

.:.0..
® oo \2 \3 ) ]+
3 z:az_+a(-y_ +a(L+al
o “oee U~ "15% 215 a) b5
se oo, 1 1/ 5 1 \l/
) L]
and
v\J L
c=1-2¥-+2!Y- -<3—’>
o) \d o
are used, one obtains for ©& < b7 the eguation
2 3 4 5\
z z
ar j3—‘--1'U'61 ok + 22 + da5z vk )
8120 dx 15 k2 280 180
o]
- Here ®; 1is the thickness of the flow boundary layer and z = 5
1

- For & > 97, the integration is performed, with use of the integral
condition, first from O to ©®; and then from %; to &. Result

/
a a a a ‘8 a a 8;
er =2.. r[ﬁl3_z+(_]-.+._2.+_i+ ll'_l)_g’\__l+._2.+_i+__l.‘._
8120  dx 4 z 3 4 5

The two equations have the same form when the parentheses after
b1 are denoted, for instance, by the letter P. From the first of the
two equations one sees that, for a ¢ so large and a z therefore so
small that only the first term of the parenthesis must be considered,
this 2z 1s, for a given x, inversely proportional to the quantity

3[—. Since the Nusselt number Nu equals élz Re, Nu 1is, for a
1

large o, proportional to Ebﬂ; also according to this approximate
theory.

Since r, U, &,, and & are known functions of x, we have in
. any case an equation of the first order with 2z and x which can be
solved with customary methods (for instance, with the isocline method
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or according to Runge and Kutta). The only boundary condition required
for this is the z-value at x = 0. This value is calculated from the

equation AzoP =1 where A\ = U'612 is identical with the parameter A

used by Pohlhausen and Tomotika. For the sphere where U' = 3 and
N = 4,716, one obtains in the proximity of the stagnation point

% = 0.8759z0 - 0.26482% + O.01809z5 + 0.0056126 or, respectively,

1. 1414822 - 1.20952 + 0.5052 - 2:07TH6  0.0189
[6) 22 25

For a given 2z and therefore also given Nu one may easily
calculate the corresponding o. For

z = 0.0 0.1 0.4 0.7 1.1 1.6 2.0 3.0 4.0, one obtains

Nu \fRe éfE = 1.526 1.511 1.46% 1.418 1.35 1.284 1.232 1.128
1.049 and

1/ \;E'= 0 0.095 0.367 0.622 0.935 1.288 1.545 2.121 2.631

The quantity Nu/‘\Re ;/o is therefore, for a large o, almost
constant and varies in the proximity of the stagnation point about

linearly with lj\z/;.

The reason for choosing, above, 2z instead of & as the dependent
variable was that 2z probably varies little with x (compare Kroujouline
(ref. 1)) and can therefore be calculated exactly more easily.

In the later more detailed report on the investigations, the numer-
ical results of this formulation as well as of others will be discussed.

It was shown that the choice of the profile form had a great effect on
the result.

SUMMARY

A preliminary report is given of a theoretical investigation of the
boundary-layer flow for two-dimensional and rotationally symmetrical
bodies. The evaporation, the heat transfer, and the velocity are cal-
culated by power-series developments with respect to the meridian length.
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The coefficient functions which were calculated numerically in some cases
have been chosen so that the calculation is valid for all pressurc distri-
butions and body shapes. The methods for determination of the errors in
breaking off the series are briefly treated. Methods of continuation are
discussed. It is shown, for large Prandtl numbers, that the Nusselt
number is exactly proportional to the cube root of the Prandtl number.
Finally, approximate methods of calculation are discussed.
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TAHLE 1. TWO-DIMENSIONAL SYMMETRICAL

FLOW BOUNDARY LAYER
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1 5 5! f5" & &' g5 by he' hg
0.0|0 0 0.7244 | O 0.6348 | 0 0 0.1192
1| .0035( .0675 | .6249{ .0030 .0005
21 0132 .1251 | .5286 | .011% | .1072 | .sho2 | .0017 | .O141 | .02k9
3 L0282 1734 | 4375 .ook2 .0032
Ll oout6l L2129 | .3539 | 0405 | L1778 .2T17 | .OO45 0117 | -.0436
S5 0705 .2kk4 | 2780 | .0595 L0055
6| .0962| .2688 | .2112| .0806| .2184 | .1408 | .0057 | -.0010 |-.0783
T 1240 .2869( .1530 | .1030 .0052
B8 1534 | .2997 | .1037 | .1264 | .2367 | .0483 | .0039 | -.0L76 | -.0833
.9( .1838{ .3080 | .0626 | .1502 .0017
1.0 .2149| .3125| .0292 | .17h2 | .2399 | -.0106 | -.0012 | -.0330 | -.0680
1.1 24627 .3140 | .0028 1 .1981 -.0049
1.2 | .27176| .313%32 |-.0173 | .2218 | .234» | -.O431 | -.0090 | -.O4k1 | -,0423
1.3 .3088| .3107 |{-.0320 | .24k9 -.0136
1. | .3397( .3070 |-.0420 | .2676| .2239 |-.056T | -.0185 | -.0498 | ~.0149
1.5 .3702{ .3025 |-.0482 | .2897 -.0236
1.6 | .koo2| .297h |-.0513 | .3112| .2123 |-.0580 | -.0286 | -.0503 | .0088
1.7 Jso97| .2923 | -.0518 | .3322 -.0336
1.8 | 4587 .2871 |-.0506 | .3526 | .2012 |-.0522 | -.0384 | -.0468 | .0256
1.9! 4871 .2822 {-.0480 | .372h -.0430
2.0 | .5151| .2775 |-.O4kl | .3918 | .1916 | -.O432 | -.0472 | -.0406 | .0351
2.1 .5426| .2733 {-.0402 | .4108 -.0510
2.2 | .5698| .2695 |-.0358 | .4293 | .1839 |-.0335 | -.0546 | -.0331 | .0380
2.3 1 5966 | .2662 |-.0314 | u476 -.0577
2.4 1 .6230| .2632 |-.0271 | 4655 | .1781 |-.0245 | -.0604 | -.025T7 | .0361
2.5 | .6492| .2607 |-.0230 | .4832 -.0628
2.6 | .6752| .2586 |-.0194 | .5007| .1740 | -.0171 | -.0649 | -.0189 | .0312
2.7} .7000| .2568 |-.0160 ] .5180 -.0666
2.8 | .7266| .25% |-.0131 | .5352| .1T12 {-.O11k | -.0681 | -.0133 | .0249
2.9 .7520] .2542 }|-.0106 | .5522 -.0693
3.0 0 JTTT4| .2533 |-.0085 | .5692 1 .169% | -.0072 | -.0703 | -.0089 | ,0187
3.1 | .8027 2525 | -.0067 | .5861 -.07T11
3.2 .827191 .2519 |-.0052 | .6030 | .1682 | -.0043 | -.0717 | -.0058 | .013%2
3.3 .8531 | .2515 |-.00k1 | .6198 -.0722
3.4 1 .8782| .2511 [-.0032 | .6365 | .1676 |-.0026 | -.0726 | -.0036 | .0089
3.51 .9033 | .2508 |-.0024 | .6533 -.0730
3.6 | .9284| .2506 |-.0019 | .6700 | .1672 |-.0015 |-.0732 | -.0021 | .0057
3.7 .9534 | .250% |-.001k | .6867 -. 0734
3.8 .9785 2503 | -.0011 | .7O34 | .1669 |-.0010 | -.0735 | -.0012 | .00%6
3.9 {1.0035| .2502 |-.0008 | .7201 -.0736
4.0 [1.0285| .2502 |-.0006 | .7368 | .1668 |-.0004 | -.0737 | -.0006 | .0022
4.1 112.0535| .2501 |-.000% | .7535 -.0738
L.2 ]1.0185| .2501 |-.0003 | .7701 | .1667 |-.0001 |-.0738 | -.0003 | .0012
4.3 .2500 | -.0002 | .7868 -.0738
L4 -.0001 | .8035 -.0001 | -.0738 | -.0001 | .0007
4.5 -.0000 | .8201 -.0739
t.6 .8368 -.0000 -.0000 | .0003
.7
4.8 .0001
4.9
5.0 .0000
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TABLE 2. TWO-DIMENSIONAL SYMMETRICAL
TRANSTITION BOUNDARY LAYER

n|1-F| -Fy F, Fp' Gy Gy ' Hy H,'
0.0] 0 0.4959 | 0 -0.1119 (0 -0.0977 |0 0.0318

.21 .0991| .4953 | -.0224 | -.1113|-.0195 | -.0970 | .0064 | .0320

L1 1979 JLor7 | -.osk3 | -.1077 | -.0386 | -.0932 | .0129| .0338

6] .2954 | .4825|-.0651| -.09881-.0565| -.0846 | .0200| .0378

81 3904 | 4660 | -.0835| -.0841|-.0721 | -.0704 | .0281L | .O433
1.0 .4813| .4416|-.0983| -.0638 |-.0843 | -.0517| .0374 | .O490
1.2| .5666 | .4095|-.1087| -.0397]-.0926 | -.0301 | .O476 | .0529
1.4 .6447| .3708|-.1241| -.0138 | -.0964 | -.0078 | .0587 | .0530
1.6 .7146 | .3275 | -.1143 .0111 | -.0958 0131 | .0685( .ou80
1.8 .7755| .2818 | -.1099 .0328 | -.0913 .0307 | .OT71| .0376
2.0l .8273| .2%360/| -.1015 L0496 | ~.0838 OO | 0832 .0228
2.2| .8701| .1924 | -.0904 L0605 | -.07h1 .0521 | .0861 0054
2.k 9045 | .1526 | -.0TTT L0656 | -.0633 L0554 | .0854 | -.0123
2.6 .9315| .1177 ] -.0645 L0654 | -.0522 054y | .0813 | -.0281
2.8 .9520| .0883 | -.0518 L0610 | -.0417 L0502 | o744 | -.04O0
3.0 .9672| .o64k4 |-.0403 L0540 | -.0323 oMo | L0654 | -.0481
3.2 .9781| .0457 | -.0303 Lok | -.02k2 .0368 [ .0555 | -.0511
3.4 .9858( .0315| -.0221 L0366 | -.0176 .0295 | 0453 | -.0500
3.6 .9910| .0211 | -.0156 .0283 | -.0124 L0227 | .0356 | -.0458
3.8 .99%44 | .0138 | -.0107 L0211 | -.0084 L0168 | .0271 | -.0396
L.O0| .9966| .0088 | -.0071 .0151 | -.0056 .0119 | .0199 | -.0325
L.,2] .9980| .0054 | -.0046 .010k4 | -.0036 L0082 | .0141 | -.0254
L.4h| .9989| .0032 | -.0029 .0070 | -.0022 .0055 | .0097 | -.0191
L6 .999%% | .0019 | -.0018 L0045 | -.001k .0035 | .0064 | -.0137
4.8 .9996 | .0011 | -.0010 .0028 | -.0008 .0021 | .0041 | -.0095
5.0 .9998 | .0006 | -.0006 .0017 | -.0005 .0013 | .0026 | -.0063
5.21 .9999| .0003 | -.0003 .0010 { -.0003 .0008 | .0015 | -.0040
5.4 11.0000| .0002 | -.0002 .0006 | -.0002 .0005 | .0009 | -.0025
5.6 .0001 | -.0001 .0003 | -.0001 .0003 | .0005 | -.0015
5.8 .0000 | -.0000 .0002 | -.0000 .0002 | .0003 | -.0009
6.0 .0001 .0000 | .0001 | -.0005
6.2 .0000 .0001 | -.0002
6.4 .0000 | -.0001
6.6 -.0001
6.8 -

.0000




TABLE 3. ROTATIONALLY SYMMETRICAL FLOW

BOUNDARY LAYER

n f1 £y’ £y" g3 gs' g3 hz | hs' hz"

0.010 0 0.92771] © 0 1.0475 0 0.0448
1| .00k6 | .0903 { .8777| .0051 | .0998 | .77 | .0002 [ .OOW4 | .Ouu48
21 .0179 | .1755| .8277| .0196 | .1896( .8488 | .0009 | .0090 | .OuLk
B3 .0395 | 2558 | 7778 o427 | L2696 .7517 ) .0020 | .0133 | .O43L
b0 L0689 | .3311 | 7282 (0732 | .3400] .65T4 | .0036 | .0L76 | .O416
S .10% | ko4 | 67881 .1104 | kO12| .9666 | .0055 | .0217 | .0391
6| J1h90 | 4669 63001 .1532 ] .u45351 4802 | .0079 | .0254 | .0356
71 1988 5275 5319 .2008 | 49Tk | .3986 | .0106 | .0288 ( .0314
B ookl | 5833 | 5348 | 2524 | 5334 | 3227 | .0136 | .0316 | .0265
L9 3153 | 6345 | 48881 .3072 | .5621| .2528 | .0069 | .0340 | .0210
1.0 .3811 | .6811 | .Luu3| 3646 | 5842 .1895 | .020k | .0358 | .01%52
1.1 b5k | L7234 | Jholk | L4239 6002 | .132811 .02k1 | .0370 [ .0091
1.2 .9525% | 7614 | .3604! L4845 | .6110| .0832{ .0278| .0377 | .0032
1.3 | .6035 | 7954 | .3215| .5459 | .6171| .0%03 | .0316| .037T |-.0026
1.4 | 6846 | .8258 | .2850| .6078 | .6193| .ooulk | .0%353 | .0372 | -.0080
1.5| .7686 | .8526 | .2508| .6696 | .6182| -.0251| .0%90 | .0361 {-.0127
1.6 .8550 | .8761| .2192| .7313 | .614k4 [ -.0483 | .0u25 | .0346 |-.0168
1.7 9437 | .89%66 | .1901'! .7925| .6087|-.065T | .O0459 | .0327 | -.0202
1.8 11.0342 | .9142 | .1637| .8530| .6015|-.0780| .049L | .0306 |-.0228
1.9 |1.1264 | .9294 | .1398| .9127 | .5932 | -.0857 | .0520 | .0282 | -.o2uh
2.0(1.2200 | .22 | .1185( .9716| .5845} -.08% | .0547 | .0258 {-.0254
2.1 [1.3148 | .9530 | .0996| 1.0296 [ .5755 | -.0898 | .0572 | .0233 |-.0256
2.2 | 1.4106 | .9622 | .0831| 1.0867| .5666|-.0876 | .059% | .0207 |-.0252
2.3 |1.5072 | .9698 | .0688] 1.1430| .5580 | -.0834 | .0613 | .0182 | -.0243
2.4 J1.6045 | .97601 .0564| 1.1984 | .5500 | -.0776 | .0630 | .0158 | -.0229
2.5 |1.7024 | .9811} .0458] 1.2530 | .25 | -.0709 | .0645 | .0136 |-.0212
2.6 [1.8007 | .9853 | .0370]| 1.3069| .5358 | -.0637 | .0657 | .0116 | -.019%
2.7|1.899 | .9886 | .0296| 1.3602 5298 | -.0563 | .0668 | .0097 |-.0174
2.8 11.998: | .9912 | .0234 | 1.4129 | .5245 | -.0490{ .0677T | .0081 |-.0153
2.9]2.09T7 | .9932 | .0184 | 1.4651 | .5200 | -.0420 | .068k | .006T |-.0133
3.0(2.1971 | .9k9 | .O143| 1.5169| .5161 | -.0356 | .0690 | .0054 | -.0114
3.1 (2.2966 | .9962 | .0110| 1.95683 | .5128 | -.0297 | .0695 | .00k | -.0097
3.2 2.3963 | .9972 | .0085| 1.6195| .5102 | -.0245 | .0699 | .0035 | -.0082
3.3 (2.4961 | .9979( .0064 | 1.6704 | .5079 |-.0200 | .0702 | .0028 |-.0067
3.4 12,5959 | .9985 | .o048]| 1.7211 | .5061 | -.0161 [ .0705 | .0022 | -.005k4
3.5|2.6958 | .9989 | .0036| 1.T716 | .5047 [-.0128 | .0706 | .0016 | -.OOuL
3.6 |2.7957 | .9992 | .0026| 1.8220 | .50%6 |-.0101 | .0708 | .0013 |-.0035
3.712.89% | .9995| .0020| 1.8723| .5027 | -.0078 | .0709 | .0010 |-.0028
3.812.9956 | .9996 | .0014 | 1.9226 | .5020 | -.0060 | .0710 | .0007 |-.0021
3.913.0955 | .9997| .0010]1.9727 | .5015 | -.0046 | .0o711 { .0006 |-.0016
h,0[3.1955 | .9998{ .o007| 2.0229 | .5011 [ -.0034 { .OT11 | .O0OOL [-.0013
L.,113.2955 | .9999 | .0005| 2.0730 | .5008 | -.0026 | .o711 | .0002 |-.0009
4b.213.3955 | .9999 | .000k | 2.1230 | .5006 | -.0019 | .0712 | .0002 |-.0007
L.313.4955 | .9999 | .0003|2.1731 ! .5004 |{-.0014 | .0712 | .0002 |-.0006
L. 13,5954 | .9999 | .0002 | 2.2231 | .500% |-.0010 | .0712 | .0002 |-.0004
h.5 13,6954 [1.0000| .000112.2731| .5002 |-.0007 .0000 | -.0002
4.6 .0001 | 2.3231 | .5001 | -.0005 -.0002
h.7 .0000 | 2.3732 | .5001 | -.0004 -.0001
4.8 .5000 | -.0002 -.0001
4.9 -.0001 -.0000
5.0 -.0001

5.1 -.0001

5.2 -.0000
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TABLE 5. ROTATIONALLY SYMMETRICAL

TRANSFER BOUNDARY LAYER

o -(Fo"jo
0.5 0.4129
.7 L4705
1 .5390
1/0.395 L7599
10 1.2389
100 2.7365

TABLE 6. TWO-DIMENSIONAL SYMMETRICAL TRANSFER

BOUNDARY LAYER. o LARGE

g 1 - ¢O _m! ¢2 ¢2l
0.0 0 1.1198 0 -0.4799
.1 .1120 1.1187 -.0479 -.4780
.2 .2235 1.1109 -.0952 -.4647
.3 3537 1.0900 -.1401 -.4293
A Lho9 1.0504 -.1801 -.3637
5 5430 .9883 -.2118 -.2647
.6 6378 .9023 -.2320 -.1361
ré L7228 Mrde g -.2384 .0099
.8 L7962 6711 -.2301 L1541
.9 8567 .5h02 -.2083 2ThT
1.0 L9043 4120 -.1765 .3530
1.1 .9396 2959 | -.1395 37
1.2 L9641 .1989 -.1023 <3565
1.3 .9801 1245 -.0693 .2981
1.4 .9897 .0720 -.0432 2232
1.5 .9951 .0383 -.0246 .1500
1.6 .9979 .0186 -.0128 . 0904
1.7 .9992 .0082 -.0060 .0488
1.8 .9997 .0033 -.0026 .0236
1.9 .9999 L0012 -.0010 .0102
2.0 1.0000 . 0004 -.0003 L0040
2.1 .0001 -.0001 L0014
2.2 .0000 -.0000 . 0004
2.3 .0001
2.4 .0000




