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IL

ABSTRACT

In a typical self-contained space navigation system celestial observa-

tion data are gathered and processed to produce estimated velocity corrections.

The results of this paper provide a basis for determining the best celestial

measurements and the proper times to implement velocity corrections.

Fundamental to the navigation system is a procedure for processing

celestial measurement data which permits incorporation of each individual

measurement as it is made to provide an improved estimate of position and

velocity. In order to "optimize" the navigation, a statistical evaluation of a

number of alternative courses of action is made. The various alternatives,

which form the basis of a decision process, concern the following:

1. Which star and planet combination provide the "best" available

observation ?
2. Does the best observation give a sufficient reduction in the pre-

dicted target error to warrant making the measurement?

3. Is the uncertainty in the indicated velocity correction a small en-

ough percentage of the correction itself to justify an engine re-

start and propellant expenditure?

Numerical results are presented which illustrate the effectiveness of

this approach to the space navigation problem.
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1. INTRODUCTION

During the past two years, the problems of guiding a space vehicle

during the midcourse phase of its mission have been extensively explored at

the MIT Instrumentation Laboratory. Following the specific demonstration

of the technical feasibility of an unmanned photographic reconnaissance flight
(1)

to the planet Mars reported by Laning, Frey, and Trageser , the detailed

navigational aspects of such a venture were developed (2) by Dr. J. II. Laning,

Jr., and the present author. Later, a variable time of arrival navigation theory

was devised (3)and contrasted with the earlier fixed time of arrival scheme.

More recently, the question of optimum utilization of navigation data has been

given considerable study. It is the solution of this problem which forms the

subject of the present paper.

The general method of navigation is based on perturbation theory so

that only deviations in position and velocity from a reference path are utilized.

Data is gathered by an optical angle measuring device and processed by a

spacecraft- digital computer. Periodically, small changes in the spacecraft

velocity are implemented by a propulsion system as directed by the computer.

Basically, three problems are considered in this paper: (1) to identify

the best sources of data available to the space vehicle navigator; (2) to define

the optimum linear operations for processing the data in a manner consistent

with the mission objectives; and (3)to minimize both the amount of navigational

data and the number of corrective maneuvers required without unduly comprom-

ising mission accuracy.

The formulation of an optimum linear estimator as a recursion oper-

ation in which the current best estimate is combined with newly acquired
(4)information to produce a still better estimate was presented by Kalman

The author is indebted to Dr. Stanley F. Schmidt for directing his attention to

Kalman's excellent work. In fact, the original application of Kalman's theory

to space navigation was made by Schmidt (5) and his associates.



The work described in the following sections of this paper was done

without any detailed knowledge of Schmidt's activities. As a result of this in-

dependent approach, several new and interesting ideas have developed. Spec-

ifically, an extremely simple derivation of the optimum linear operator has

been achieved using only the basic technique of least squares estimation. In

addition, the following new results are noted: (1) the mean-squared velocity

correction is expressed directly in terms of initial orbital injection errors,

the errors associated with navigational measurements, and the errors in

establishing the desired velocity correction -- hence, a statistical simulation

of the navigation scheme may be made without resorting to Monte Carlo

techniques; (2) a detailed procedure for incorporating cross-correlation

effects of random measurement errors in determining the optimum linear

operator has been developed; and (3) the mathematical problem of determining

the optimum plane in which to make a star-planet angular measurement has

been solved.

Throughout the paper, we shall deal exclusively with discrete infor-

mation; observations or velocity corrections are made at specific points in

time which are termed "decision points. " The interval between decision

points is not necessarily uniform and may be selected somewhat arbitrarily;

e. g., the interval length required for accurate numerical integration of the

trajectory equations was used in preparing the computational data presented

in Section 6.

Finally, a few remarks relevant to notational conventions are appro-

priate. We shall deal generally with both three- and six-dimensional vectors.

A column vector of any dimension is represented by a lower case underscored

letter. Matrices are denoted by capital letters and can be either square or

rectangular arrays. The transpose of a vector or a matrix will be denoted by

a superscript T. Thus, the scalar product of two vectors a and b will be

written as a Tb. In like manner a quadratic form associated with a square

matrix A will be written as xT Ax_. Finally, the expected value of a random

vector x will be indicated by an overscore; thus, x denotes the average

value of x.
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2. OUTLINE OF THE NAVIGATION AND GUIDANCE PROCEDURE

2. 1 A Deterministic Method

The basic process involved in determining spacecraft position by means

of a celestial fix consists fundamentally of a sequence of measurements of the

angles between selected pairs of celestial objects. Three independent and

precise angular measurements made at a known instant of time suffice to

determine uniquely the position of the vehicle. Practical constraints, however,

preclude simultaneous measurements without severely complicating the instru-

mentation. On the other hand, if the vehicle dynamics are governed by known

laws and if deviations from a pre-determined reference trajectory are kept

sufficiently small to permit a linearization of the navigation problem, then the

question of simultaneous measurements loses it significance.

Under the assumptions of a linearized theory, a single observation

serves to fix the position of the spacecraft in one coordinate. For example,

if An is the angle measured at time tn and is defined by the lines-of-sight

from the vehicle to a star and to a nearby celestial body, the position of the

vehicle is established along a line normal to the direction toward the near body

and in the plane of the measurement. It is shown in Appendix A that the devi-

ation in position 6r of the spacecraft from the reference position is related-n

to the deviation in angular measurement 6A n by
n  n (2.1)

if the observation is made at a known instant of time t . The vector h dep-
n-

ends upon the geometrical configuration of the relevant celestial objects at

time tn as well as the type of measurement made.

Because of the inherent dynamic coupling of position and velocity, the

result at a later time tn+1 of a measurement made at time t does not lendn
itself to simple geometric interpretation. In order to provide a geometrical

description, it is convenient to introduce the concept of a six dimensional

space in which the coordinates represent the components of both position and

velocity deviations of the vehicle from the reference path as functions of time.
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Points in this space are defined by the six dimensional deviation vector

11 '-n 11(2.2)

where Sv is the deviation in the vector velocity of the vehicle from the refer--n

ence value. The vector 6x defines the "state" of the vehicle dynamics at-n
time t . Transition from one state to another is provided by the matrix oper-
ation

'n + 1, n = (D tn + 1, tn)

which is frequently referred to as the "transition matrix". Indeed, the relation-

ship between 6xn+ 1 and 6 x is simply-n

8Xn+l = 4n+l,n 8 n (2.3)

as shown in Section 3. 4.

By means of the rectangular matrix K defined by

K =i 11'1 (2.4)K=0

Eq. (2.1) may be written in terms of 6x as-n

T T (2. 5)
8An -n K Xn

The submatrices I and 0 are, respectively, the three dimensional identity

and zero matrices. Now, by combining Eqs. (2.3) and (2.5)

SAn =bT KT (1 'n,n 8 Xn+1 (2. 6)n +l~ -n l

it is clear that the effect at time tn+ 1 of an observation at time t is to determinen
the component of the six dimensional deviation vector in the direction defined by

the vector T-1 Kh Six observations made at different times wouldn+l, n -n
provide a set of six equations of the form of Eq. (2. 6) . If no two of the com-

ponent directions were parallel, then the deviation vector could be obtained by

inverting the six dimensional coefficient matrix.

2.2 Statistical Parameters of the Navigation Problem

Because of the presence of instrument inaccuracies additional observations

may be used to reduce the errors associated with the simple deterministic pro-

cess just described. By applying least square techniques to the observed data,

a more accurate estimate of position and velocity is frequently possible than

could be obtained from the minimum number of measurements. For this
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purpose, it is necessary to know certain statistical information with respect

to the instrument inaccuracies. In a linear least squares estimation procedure

all statistical calculations are based on first and second order averages and no

additional statistical data is needed.

At this point of the discussion it is necessary to distinguish measured

values, estimated values and true values of various quantities; e. g., 6A will' n

be the measured value of the deviation in the angle A from its reference value
at time tn, 6A n the true value of the deviation, and 65 the estimated value. If

we write
8 An = 8An +an (2.7)

then a n will be the error in the measurement. In the subsequent analysis Cn

will be regarded as a random variable with an average value a and a variancen

2 2 -2 (2.8)
n ' - an

The possibility of cross-correlation of measurement errors will not be excluded;

i.e., in general, the average an am may be different from zero.

In Section 4 an estimation procedur. is developed for determining an

optimal linear estimate of 6 xn , denoted b 65x . As each measurement is made,

the estimate 6 Ax is updated by a simple recursive formula and, thereby, the prob--n
lem associated with inverting sixth order matrices is avoided. An integral

part of the estimation technique is the correlation matrix of the errors in the

estimate. If we write
5 x, - n +en (2.9)

then

fn (2.10)

is the six dimensional error vector and may be partitioned as shown using

E and 6 to denote, respectively, the position and velocity errors. The corr--n -n

elation matrix is thus defined by

T___T E( 1 ) E (2 ) (2. 11)
fn En - n n n

En =e n en =
S T E(3) E(4)

-n § n n n n

5n



When cross-correlation of measurement errors is considered, a corr-

elation vector

_Pnm - anem (2. 12)

is needed to represent the average value of the product of a measurement error

at time t and the estimation error at time tn m

It is important to distinguish between a new estimate (n , obtained by

incorporating an observation at time tn, and an estimate simply extrapolated
n 

6A,from a previous estimate. For the latter case, the notation 6x' n is used where

AA
-- = n - 1 (2. 13)

In like manner, we define an extrapolated error vector e' and a cross-corr-
_____-n

elation vector 0' = a e' . The extrapolated correlation matrix is- nm n -in
readily shown to be

cT
En 7D n,n- 1  En- 1  n,n-1 (2.14)

As a final comment, note that an estimate of the deviation in the angle to be

measured at time tn may be obtained from the extrapolated estimate of 6 n - l

We have

, =b KT , (2.15)A nK -n

and it is this quantity, compared with the measured deviation 6 An, which is

used in arriving at a revised estimate of 6x n '

2. 3 Summary of the Navigation and Guidance Equations

In the navigation and guidance theory presented here, the problem of

launch guidance from Earth is ignored. It is assumed that the main propulsion

stages are completed at time t L and that the correlation matrix E0 = E(t L ) is

specified initially from a statistical knowledge of injection guidance errors.
A A

The initial estimate of position and velocity deviation 6_ ° = 6x (tL) is zero,

since, in the absence of any observation, the best unbiased estimate is that the

spacecraft is on course.

The time interval from launch to arrival time tA at the target point is

considered to be subdivided into a number of smaller intervals by the sequence

of times t 1 , t 2 1 . . . called "decision points". At each decision point one of

three possible courses of action is followed: (1) a single observation is made;

(2) a velocity correction is implemented; or (3) no action is taken. A revised

6



estimate of the deviation vector 6x(t) is made at each such point -- the form of

the revision depending, of course, on the nature of the decision. Specifically,

as shown in Section 4, the revised estimate at the decision time t n is one of the

following:

At^ (2. 16)

8 Xn + an1 (E, K hn - 5 n) (5 A - 8 An) (measurement)

n 0+ J B ) '(I n  (correction)

n(no action)

The scalar coefficient a is computed fromn

hT KT Tn T 2~ (2. 17)an 'Zhn KT En K-hn - 2NT KT Nn + an 2 7

The rectangular matrix J has six rows and three columns

J = 1 0 (2. 18)

and is just the reverse of the K matrix. The matrix B n is also rectangular

having three rows and six columns and is partitioned as shown

Bn = ({C* -I 1 (2. 19)

where C* is one of the fundamental navigation matrices described in Section 3.2.

n

At each decision point it is also necessary to update the correlation

matrix E n and to compute the correlation vector 0 ' = D1 n,n- n n, n-1---n n-l"

Thus

En  - a- (E' Khn - _'n,)(En Khn - _ Tn) (measurement)

T jT (2. 20)
En = En + J ~n U3n (correction)

En  (no action)

!"n'1- =an-in'l + TT Fktk,k.I an f (2.21)

7 k =J+I

I I II I7



where

- a (E K hk - O'k) h KT (measurement)

Fk (correction) (2.22)

(no action)

al aj (EI Khb -±je) (measurement)

DI (correction) (2.23)

0 (no action)

The vector ?77 is the difference between the commanded velocity correction and

the actual velocity change implemented at time ti .

The above collection of formulae provides the means of maintaining an up
A

to date estimate of the deviation vector 6x2 but, in themselves, do not provide-n
any clue as to what decision should be made at each point. Suggestions for

reasonable decision rules are discussed in Section 6. 2 and in Appendix B.

It is important to note that the navigation formulae are considerably

simplified if the measurement errors are considered uncorrelated. For this

special case all the 0 correlation vectors are identically zero so that far less

computation is required.
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3. FUNDAMENTAL NAVIGATION MATRICES

Basic to the solution of the navigation problem is a certain collection of

matrices. The objective here is to introduce these matrices, indicate their role

in the navigation theory, and show how they may be obtained as solutions of

differential equations.

3. 1 General Solution of the Linearized Trajectory Equations

Let rs(t ) and v s(t) denote the position and velocity vectors of the space-

craft in an inertial coordinate system, and let g (r ,t) denote the gravitational1
acceleration at position r5 and time t. Then

drs dvs

dt --dt vg(r.,t) (3.1)

are the basic equations of motion of the spaceship except for those brief periods

during which propulsion is applied.

Let the vectors r 0(t) and v o(t) represent the position and velocity at time

t associated with the prescribed reference trajectory, and define

Sr(t) r(t) - (t) , Sv(t) = v1(t) - Vo(t) (3. 2)

Then, the deviations 6r and 6v may be approximately related by means of the

linearized differential equations:

dt - v d(- =  G(r[,t) S r (3.3)

where G(ro, t) is a matrix whose elements are the partial derivatives of the
components of g(r o, t) with respect to the components of r .

0 -O

A particularly useful fundamental set of solutions of Eqs. (3. 3) may be

developed in the following way. Let t L and t A be, respectively, the time of

launch and the time of arrival at the target. Then, define the matrices R(t),

R* (t) , V(t), V (t) as the solutions of the matrix differential equations

dR V dR* V*
dt dt

dV dV* (3.4)

dt ' dt =

a I In9



which satisfy the initial conditions

R "tL) - 0 , R* (WA 7 0
(3.5)

V (tL) = 1 V* (tA) = I

Here 0 and I denote, respectively, the zero and identity matrix. If we now write

8r(t) R (t) c + R* (t) (3.6)

8t(t) V t) c + V*(t) c (3.7)

where c and c* are arbitrary constant vectors, it follows that these expressions

satisfy the perturbation differential equations (3. 3) , and contain precisely the

required number of unspecified constants to meet any valid set of initial or bound-

ary conditions.

The elements of the R and V matrices represent deviations in position and

velocity from the corresponding reference quantities as the result of certain

specific deviations in the launch velocity from its reference value. For example,

the first columns of these matrices are the vector deviations at time t due to a

unit change in the first component of the velocity at time tL' Corresponding

interpretations may be ascribed to the other columns as well. A similar dis-

cussion will provide a physical meaning for the elements of R* and V*. For

this purpose, however, it is convenient to imagine the roles of launch and target

points as reversed.

3.2 The Vector Velocity Correction

Associated with the position r and the time t is the vector velocity re-

quired by the spacecraft to travel in free fall from r s(t) to the target point-s
r0 (t A) in the time tA - t. An expression for this velocity vector is readily

obtained from Eqs. (3. 6) and (3. 7). The condition that the vehicle pass

through the target point is met by the requirement

3r(tA) =0 =R(tA)9 + R* (tA)._*

Since R* (tA ) 0, it follows that c = 0, Eliminating c* between Eqs. ( 3. 6)

and (3. 7) gives for the required velocity deviation* at time t

v + (t) :V*(t) R*(t)' 1 8r(t) (3.8)

*The superscripts- and + are used to distinguish the velocity just prior to
correction from the velocity immediately following the correction.

10



Hence, the required velocity correction A v* is given by

Av*(t) = C*(t) 8r(t) - bv'(t) (3.9)

where the C * matrix is defined by

C*(t) = V*(t) R*(t)" (3. 10)

The elements of the C* matrix are deviations in vehicle velocity from the

reference values, as required to place the vehicle on a trajectory to the target

point, which arise from certain specific deviations in the vehicle position. The

interpretation applied to the columns is made in the manner described earlier

in connection with the R and V matrices.

If the spacecraft has been in a free-fall status since launch, then, by

employing arguments similar to those used in establishing Eq. (3. 8) , it can be

shown that
5 y'(0) = C(t) , r (t) (3. 11)

where

C(t) = V(t) R(t) 1  (3. 12)

In this case Eq. (3. 9) takes the form
A,*(t) =  [C*(t) - C(t)] Sr(t) (3. 13

Since 5r(t) is different from zero solely as a result of an injection velocity

error 6 v(tL ), it follows, from the definition of the R matrix, that

A *(t)= - A(t) 5_Y,(tL) (3.14)

Thus, the A matrix, defined by

A(t) = V(t) - C*(t) R(t) (3.15)

relates a deviation in launch velocity to the velocity impulse required at time t.

A starred form of the A matrix

A*(t) = V*(t) - C (t) R*(t) (3.16)

will occur in the subsequent discussions.

3.3 Differential Equation Solutions

The matrices C, C*, A , A* may also be generated directly as solutions

of differential equations. However, for C and C*, a difficulty arises in pre-

scribing appropriate initial conditions. From the initial values of the R and R

matrices, it follows that C(tL )and C* (tA )are both infinite. The singularities

may be avoided by working directly with the differential equation for the inverse

matrices C-land C* -1

11



By differentiating the identity

C(t), V(t) = R(t) (3.17)

and using Eq. (3.4), the following equation for C - I results
d C1 (3.18)

dt+ C GC =(

Similarly, we obtain
dC- *1 * 1 (3,19)dtG C* =1

dt
Equations (3. 18) and (3. 19) may be used to demonstrate an interesting

property possessed by C and C It is easy to show that the G matrix is sym-

metrical. It follows at once that the matrices C and C* will be symmetrical for

all values of t in the interval (tL, tA) if they are symmetrical for any particular

time. But from Eq. (3. 17) and a similar one involving starred matrices, we

have

C(tL)'  =0 , C*(tA ) '  0 (3.20)

so that C and C* are, indeed, symmetrical for t equal to tL and tA respectively.

Hence C(t) and C * (t) are symmetrical for all t in the interval from launch to

the target point.

In an entirely analogous manner, differential equations may be developed

for A and A*. By differentiating Eqs. (3.15) and (3. 16) and using Eq. (3.4),

one readily obtains the equations
dA + C*A =0 (3.21)

dt
and

dA+ C A* =0 (3.22)
dt

with the initial conditions

A(tL) =1 , A*(tA) 1 (3.23)

3.4 The State Transition Matrix

Let 6r n = 6r(tn ) and 6v n = 6v(t n) be the deviations in position and

velocity at time tn , and let Rn , Vn .. . be the corresponding values of the

fundamental matrices. The c and c *must be obtained as solutions of

Srn =Rc + R c* (3.24)
n* *

8v n  =V n  + Vn  _ (3.25)

12



Multiplying Eq. (3. 24) by Rn we obtain for e

Rn (S rr - R* c*) (3.26)

Then, by substituting this expression into Eq. (3.25) and using Eqs. (3. 12) and

(3. 16), there results

c =-An (Cn brn - 8vn) (3.27)

Finally, from Eq. (3.26) we have

c = - A nQ (C* br n - 8 n)  
(3.28)

after some simplification. Thus, with c and c* determined, the position and

velocity deviations at any other time t are given by Eqs. (3.6) and (3.7) .

In terms of the six dimensional deviation vector defined by Eq. (2.2), the

result may be written in the form R(t) R IN)
Sx t) = V(t) V*(t) l * (3.29)

Consider now a specific value of t = tn+ 1 . Then substituting from Eqs. (3. 27)

and (3.28) into Eq. (3.29) , a relationship between 6xn+ 1 and 6x n is displayed

8Xn+l = (n+1,n 8Xn (3.30)

where 4Fn+1, n' the six-dimensional state transition matrix, is computed from

Rn+ 1  R*+ 1  -A' 0-I
¢'n+1,n * *-1 (3.31)Vn+ 1 Vn+ 1  0 -An Cn  I

13



4. DERIVATION OF THE OPTIMUM LINEAR ESTIMATE

As noted in the Introduction, the optimum linear estimate of the deviation
A

vector may be expressed as a recursion formula. Therefore, assume 6 xn 1

and En-1 are known and that a single measurement of the type described in

Appendix A is made at time t n . The observed deviation in the measured quantity

A is 6 An, and the best estimate for 6 An, as obtained from the extrapolated
n

estimate of 6xn-l, is given by Eq. (2.15). Then a linear estimate for the

deviation vector 6x at time t is expressible as a linear combination of the-n n
extrapolated estimate of 6Xn-1 and the difference between the observed and

estimated deviations in the measured quantity A . Thus
nn (8 An (4.1)

where the vector wn is a weighting factor which will be chosen so as to minimize

the mean-squared error in the estimate.

For this purpose use Eqs. (2.9), (2.7) and (2.5) to write
e(n = 8An- x

(4.2)

+ W-n ( An + an- An) - sXn

= (1 - w~n h
T K T (8i, - _xn) + _wn a n

=(I - wn b
T K T n_  ) +w n an

where I is the six-dimensional identity matrix. Then the correlation matrix

En defined by Eq. (2. 11) may be expressed as a function of the weighting vector

w as
-n

En(Wn) =II - We he KT) E (I - K h n T) (4.3)

+ (I - Kh wh ) + w T 2

The mean-squared errors in the estimate of position and velocity devia-

tions E and 62 are simply the respective traces of the submatricesn n

14



E( 1 ") and E( 4 ). If the six-dimensional weighting vector w is partitioned into tvo
n n n

three-dimensional vectors

h) (4.)
n

(~2)

(1)

then from Eq. (4. 3) it is easy to show that E ()is a function only of w (1) and
(4) (2) n-n

E n is a function only of w n * Therefore, for the purposes of the following

discussion, it is legitimate formally to treat the mean-squared error in the

estimate e 2 (w ) as the trace of the six-dimensional correlation matrix En(w)
n -n

The subvectors of the optimum weighting vector w will then each be optimum-n

for the respective estimates of position and velocity deviations.

In order to determine the optimum weighting vector, one may apply the

usual technique of the variational calculus. Let w n take on a variation 6w n and

obtain from Eq. (4.3)

Se~(~ 2 2 [ ~ T K T E' 0I - K h T (4.5)n T n)nn 2 t -Wnbn _n %w
TT T T T T ]

8w~ h, K + S~W (I K h v

If 6 e 2 (Wn) is to vanish for all variations 6 Wn, then it must follow that
an wff = E' K hn - N'n (4.6)n-n

where the positive scalar quantity a n is defined by Eq. (2.17) .

It can be r shown that the w n determined from Eq. (4. 6) actually

does minimize e (W ) . Suppose that the optimum w is replaced by anothern -n -n
weighting factor -n ---Yn* Then from Eqs. (4.3) and (2.17)

2 [E n 2(w n  yn)(IT KT En T T T (4.7)e( -n = E - _ _n) + an (w -Yn) (Wn Y

and using Eq. (4.6)

e - a) tr E - a n (WT y)(W_ + y T (4.8)

so that 2 -n 2T
n - ) e (W) + On tr (Yn _nT) (4.9)

Thus, the mean-squared error is not decreased by perturbing wn if Eq. (4. 6)

holds.

Having obtained the optimum weighting vector, the expression for the

correlation matrix of the estimate errors E given by Eq. (4.3) may be writtenn

in a more convenient form. Thus, from the definition of a in Eq. (2. 17) ,
n

15



there results
T T T ,+ (4.

En =E n (I n -K _n -Wnh n  _ N' n ' n ' n (4.10)

Substituting from Eq. (4.6), the final expression may be written as

E = En' - a',I (E' K bn - Nn)(E' Kb -n)T (4. 11)

For the case in which the measurement errors are uncorrelated, i. e.,

0' = 0 for all n and m, the estimation procedure is complete. Equations
- nm

(4.1) and (4.11) in the form
A A
Xn nxI + 0 El K h ( 8A - SAn ) (4. 12)

En =E n - a-Q (En K hn)(E n K hn)T

then serve as recursive relations to be used in obtaining improved estimates

of position and velocity deviations at each of the measurement times t 1 , t 2 , .

If the measurement errors are correlated, the procedure must be expanded

to include a method for computing 01 nn. For this purpose, a recursion formula

may be developed from Eq. (4.2) . We have at time t in-i

T  K T) pa I + w a, (4.13)

so that T T___
a nm =¢m,m-1 (I --Wm-lhm KT) n,m-1 + eram-1 I-1 an am-1 (4. 14)

m =2, 3,.. .,n
Equation (4. 14) permits the calculation of 0'nn by successive substitu-

tion beginning with m = 2 and noting that
!p '- .:1 1 0 a n eo(4 . 1 5 )

where e = - 6x is the negative of the deviation vector at time t 2 arising from

improper injection into orbit.

The closed form calculation given in Eq. (2. 21) is readily derived from

Eq. (4.14).
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5. STATISTICAL ANALYSIS OF THE GUIDANCE PROCEDURE

From exact knowledge of the six-dimensional deviation vector 6 xn at time

t n, a velocity correction may be calculated which, if implemented, will insure
the vehicle's arrival at a fixed point in space at the required time. However,

only the estimate 6 is available. From thisan estimate of the velocity corr-
A - n

ection vector A v may be determined from-n

AA =B. 8-A (5.1)
where Bn is defined by Eq. (2.19). (Refer to the discussion leading to Eq.(3.9).)

The need for a velocity correction arises solely from improper injection

into orbit. If the first such correction is executed perfectly, then, of course,
no further corrections are required. However, because of imperfect knowledge

of position and velocity obtained from navigational measurements, the command-

ed velocity change will be in error. Furthermore, the actual velocity change

experienced will differ from that commanded because of imperfect instrument-

ation. Therefore, subsequent corrections will be required to remove the

effects produced by earlier inaccuracies.

5.1 Correlation Matrix of the Velocity Correction Vector

For notational purposes in this section, it will be convenient to distin-

guish the times of velocity correction from the other decision times. Therefore,
t will be used to denote the time of the n-th corrective maneuver. An arbi-c, n
trary number of decision points may, of course, fall between t and tc, n c +

Suppose that corrective action is to be taken at the time t c, Let the
commanded velocity change be A v n while the actual velocity change exper-commndedvelcitychage b A c, n'ienced is Av .c n Then, with _2 c, n denoting the uncertainty, we have

AA =AV + c,n (5.2)

The actual velocity change may be expressed as

6V,,n -- c,n (Sx ,n + ec,n) - rc,n (5.3)
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where el is the error vector as extrapolated from the last observation point.
The minus superscript is used to emphasize that the deviation vector corres-

ponds to the time immediately prior to application of the corrective velocity

impulse. Similarly, a plus superscript will distinguish a deviation vector

immediately subsequent to a velocity correction.

Just as the extrapolated error vector is altered at an observation point,

so also will it change at a correction point. Thus
0 (5.4)

c, n c, n n

so that Eq. (5. 3) becomes

AVc,n =- Bc,n ( X'c,n + ec,n) (5.5)

We further note that the correlation matrix of the deviation errors must be

updated at a correction point following the application of the velocity correction.

It follows from Eq. (5.4) that
0 0 (5.6)

Ec, n = Ec, n +

0 T
o !?c.,n

A more convenient form of Eq. (5. 5) is necessary for subsequent statis-

tical analysis. Indeed, it is possible to express the velocity correction actually

applied at time tc, n directly in terms of the error vectors e and ecn-c, n -c, n-l"

For this purpose, we use the definition of the transition matrix operator to

write Eq. (5.5) as +

Avc,n =Bc,n ( cn;€,n -1 8Xc+n -I + ec,n)

=Bc,n (C,n;n-I c-xcn-1 + + Bc,n -c'n
I Vc'n -1 (5. 7)

Further simplification is possible because of the identity
Bc,n Dc,n;c,n- 1 A cn - I Bc,n 1 (5. 8)

which is readily established from Eq. (3. 31) .

Therefore, AV = Ac A
1
' I -

c nc,n n-Il(B c,n -I 8X'c,n -I A c,n -1 +  B c n - n (5.9 )

However, since Eq. (5. 5) obtains at the previous correction time tc, n- 1' then

Bc,n-1 X'cn- - Vc,n ,c,n - (5.10)
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Hence, finally, we have

vc,n = Bcon ec,n -A c,nA c,n- I c,n -ec,n - 1 (5. 11)

as the desired expression or, alternately, using Eq. (5. 2), we may write

0 A-1Av-c,n =BC,n -gc,n -A c,n A^n- Bc,n-1 ecn 15. )
~~~ -c1 ~ ,n - 1 (5. 12)

The correlation matrix of the estimated velocity correction vector is
A

found by computing the mathematical expectation of the product of A A

-c , n
and its transpose. Thus

A, AT T T T-I T
AA Ac,n -Bc,n c,n c,n B c,n -c, n-1 B ,n-1 c,n-1 Ac,n

-1 e,T T

+A B T T- T

- Ac,n At,n-I Be,n-! ec,n-1 -c,n Bc,n

-I T T- I T (5. 13)
+ A "~ c -1I Bc,n1 Ec,n- BT,n-1 Ac, - Ac,n

expresses this correlation matrix in terms of the correlation matrices of the

errors in the deviation vectors at the two consecutive correction points and a

cross-correlation matrix e' e T
c,n - c,n-l"

The cross-correlation matrix appearing in Eq. (5. 13) is most easily

computed by a recursive operation. In order to facilitate a description of the

procedure, let us identify the time t with tc, n- and assume p observation

times before the next velocity correction at time t . Then, from the defin-c,n

itions of the quantities involved,

+ItT =4m+ E (5. 14)em+l em =('m+1,m ni(. 4

At the k-th observation point, the error vector associated with the deviation

vector is
T T

era+k (I -Wm+kM+kK )em+k +_Wm+k a+ (5.15)

according to Eq. (4. 2) . Therefore, in general, we have

-P-e +k+1-m -- Pm +k+1,m+k [ Wm+k bm+ k K -er+k - + m+k,m

Now, starting with Eq. (5. 14) , a succession of cross-correlation matrices is

computed from Eq. (5.16 )for k= 1, 2,. . . p. The final calculation produces

el e which is identical with the matrix e' e T required for
m+p+l - m - c, n - c, n -I

the evaluation of Eq. (5. 13).

19



The mean-squared estimate of the velocity correction is determined as
A AT

the trace of the matrix A v A v As a basis for a decision theory, it is
-c, n c, n'

important to know something of the precision of the estimate. Clearly, a

velocity correction having a large uncertainty should not be commanded if it is

possible to improve substantially the estimate by future observations. The un-
A

certainty d in the estimate A v is simply-C, n -C,n
A_dc,n  = _ c, n  - B , n  b Xc, n  = B C, n  ec", n  (5. 17 )

Hence, the mean-squared uncertainty is determined as the trace of the matrix

TT1c, n  d
T  -Bc, n  E' Bc, n  (5. 18)- --c~nc,n

5.2 Uncertainty in the Applied Velocity Correction

In order to complete the statistical analysis of the velocity correction, it

is necessary to examine more carefully the vector uncertainty i in the velocity
A

correction. The inaccuracy in establishing a commanded velocity correction A v

is due to errors in both magnitude and orientation. In the following analysis the

two sources of error will be assumed independently random with zero means.

Consider a coordinate system in which the estimated velocity correction

vector is along one of the coordinate axes. Then if M is the transformation

matrix which relates the selected axis system and the original reference system,

we may write

IA = zAA 0 (5. 19)

Now, define a random variable K such that

Av (1 + K)AV (5.20)

and let -y be the random angle between A and A v It will be assumed that both

K and y are small quantities so that powers and products are negligible compared

with unity. The actual vector velocity correction is then

Y cos 3 (5.21)

AV (! + K) AVM y sin

where 6 is a polar angle defining the rotation of A v with respect to Av . Hence,

the uncertainty vector 77 is expressible as
ACos/ K (5.22)

7 -AvAv =- AvM (I + )y sin + K 0

- - - 0

20



Assume that K, , /3 are statistically independent random variables with

zero means. Further assume that /3 is uniformly distributed over the interval

0 to 2 . Then one obtains for the correlation matrix of the velocity correction

uncertainty

T 2 2- 1 0 0q +-_1. Av 2 M 0 1 0 MT
_._ _ 2 - (5.23)0 0 0

=- _ + +Yf(AT &_ ,- & T

2 2

whei a I is the three-dimensional identity matrix and K and 2 are the mean-

squared valued of K and ).

5.3 Miss Distance at the Target

Turning now to the problem of guidance accuracy, the determination of

the position deviation vector at the nominal time of arrival at the target is made

by extrapolating the deviation vector from the point of the final velocity corr-

ection. Thus, if tN is the time of the last correction and 6 xA is the deviation

vector at the time of arrival tAt then
+

XA : +A,N N (5. 24)

But from Eq. (3. 31) and the terminal conditions for the navigation matrices,
we have -whae- RA A' 0 CN  - I

AN 0 -(5.25)

DA,N

-VA AN -A CN -
N

Hence, the position deviation vector at the target 5 rA may be written as

br - A- 1 B +(526
A RA N BN (5.2

with a similar expression obtainable for the velocity deviation at time tA.

The target position error may be written ultimately in terms of the

error vector eN according to the following self-evident steps
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6r P A AN -N~ ~ .YJ

(5. 27)

R_ -A AN (BN N - AVN)

=RA AN (BN eN - fN)

- 1
=RA AN BN eN

The mean square position error at the target is then computed as the trace of

the matrix 6rA r T
-A
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6. APPLICATION TO TRANS-LUNAR NAVIGATION

6.1 Decision Rules

As a necessary step in the application of the navigation and guidance

scheme formulated in this paper, certain rules must be adopted concerning the

course of action to be taken at each of the "decision points" described in

Section 2.3. The number and frequency of observations must be controlled in

some manner -- ideally by a decision rule which is realistically compatible with

both the mission objectives and the capabilities of the measuring device. If an

observation is to be made, a decision is required regarding the type of measure-

ment and the celestial objects to be used. Periodic velocity corrections must

be applied and the number of impulses and times of occurrence must be decided.

Once the decision rules have been specified, it is necessary to test their
effectiveness according to some measure of performance. A typical objective

is to minimize the miss distance at the target. However, a reduction in miss

distance usually implies an increase in either the required number of measure-

ments or a greater expenditure of corrective propulsion or both. In the face of

these conflicting objectives, compromises are clearly necessary and statistical

simulation provides a means of arriving at an acceptable balance.

In the interest of minimizing the number of simulator runs, Monte Carlo

techniques should be avoided if possible. Fortunately, it is unnecessary to

generate the true spacecraft trajectory, as would be required for Monte Carlo

simulation, in order to analyze the effects of a particular set of decision rules.

The reader may readily verify that Eq. (2. 16), which defines the estimate
A5x n and depends on actual measurement data, is never involved in any of the

statistical calculations.

A specific example of a set of decision rules to be applied at each decision

point is as follows:
A21. The estimated mean-squared velocity correction Av n and the mean-n

squared uncertainty d2 associated with the estimate are computed from
n

Eqs. (5. 13 ) and (5. 18). If the ratio
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R V  n 'v n (6.1)

is less than a specified amoint Rv(min), a velocity correction is made at

time t . In any case, the correction is made, regardless of the value of Rv,

if the root- mean-squared velocity correction exceeds a fixed amount AvI max

2. If neither of the criteria is met which would call for initiation of a

velocity correction, the desirability of making an observation is examined. For

this purpose, an abbreviated star catalog is postulated together with selected

planets. Each star and planet combination is analyzed to determine the effect

of each such measurement on the potential reduction in the miss distance at the

target. More specifically, at time t the mean-square miss distance, whichn
would result if no further corrective action were taken, is calculated from

Eq. (5. 27) . Now, if any measurement were made and were followed imme-

diately by a velocity correction, a calculable mean-square reduction in the

target error would result. The particular star-planet combination producing

the greatest mean-square reduction in target error is then defined as the

best potential measurement.

Now let 6 rA2+ and 6 rA - be the respective mean-square miss distances

which would result with and without the best possible observation. Then, if the

ratio
2 - 2+

RrA.- °rA (6.2)

5 r2

is greater than a specified value R p(max) the best potential measurement is

made at time t n . In other words, for a measurement to be made, a significant

reduction in the potential miss distance must result. If, on the other hand,

the above criterion is not met, no action is taken at the decision point t .n

6.2 A Numerical Example

The particular set of decision rules formulated in the previous section

were applied to the problem of navigating along a trans-lunar trajectory. For

simplicity, possible cross-correlation between measurement errors was

ignored. Furthermore, only the Earth and the Moon, together with the ten

brightest stars, were considered for potential measurements.
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For the specific trajectory chosen for illustration, the date and time of

orbital injection was Julian Day 2440042.5 at the twelfth hour. The target point

was selected approximately 11, 000 miles beyond the moon with the closest

point of approach some 3, 000 miles from the lunar surface. The nominal time

of flight from injection was 84 hours.

The correlation matrix of injection errors E was assumed to be0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
400 0

0 0 0 0 0 0
3

0 0 0 0 0 4003

which corresponds to assuming zero mean-squared position error and an

isotropic velocity error whose root-mean-square value is 20 miles per hour.

At each decision point, twenty potential measurements were examined

and evaluated according to the decision criterion. If the best potential measure-

ment was actually made, then the second best measurement was also evaluated

using the same criterion. In this manner, the possibility of two observations

at each decision point was allowed.

For simplicity, only star elevations above an illuminated horizon of

either the Earth or Moon were considered. Certain practical constraints were

imposed so that physically unrealizable measurements were screened out. For

example, no measurement could be made if the line of sight to either star or

planet edge were closer than fifteen degrees from the direction to the Sun.

Furthermore, the relative orientation of the Earth and Moon were taken fully

into account; e. g., if the illuminated face of the Moon formed the background

of the edge of the Earth from which a star elevation was to be reckoned, that

particular measurement would not be made.
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The optical measuring device used for the observations xas assumed to

be unbiased with a random error whose variance was

2 = (0.00005)2 +(2 )2 radians

where rSP is the distance in miles from the spacecraft to the planet edge. In

this manner it was possible to account for the larger uncertainty in defining the

horizon which would exist when the spacecraft is close to the planet. At large

distances the rms error is approximately 0. 05 milliradians.

Finally, in this example calculation, the error in applying a velocity

correction was assumed to be isotropic and proportional to the commanded

correction. Specifically, the relation

2¢, = 0.0001 6A2,

was adopted so that the rms error would be one percent of the rms correction.

Preliminary results of an analysis of this sample trajectory are summar-

ized in the accompanying tables. A number of simulated guidance flights were

made for which the strategy parameters Rv and Rp had various assigned values.

Certain pertinent navigation data are recorded in the tables as functions of these

strategy parameters.

In Table 1 the navigation data is given as a function of the miss distance

reduction ratio R for a value of the velocity correction uncertainty ratioP
R = 0. 3. As one requires each measurement to have a proportionately greaterv
significance in the reduction of the potential target error, the total number of

measurements is considerably lessened. The extremes are 126 and 22 mea-

surements. The number of corrective velocity impulses remains about the

same but the total of the velocity corrections applied increases by fifty percent.

The miss distance at the target varies between one and three miles while the

uncertainty in the knowledge of the vehicle velocity at the target falls between

one-quarter and one-half mile per hour.

The navigation data recorded in Table 2 is a function of the velocity corr-

ection uncertainty ratio with Rp fixed at 0.4. The total of 77 measurements

did not vary with R but the number of velocity corrections decreased from 9v

to 4 as Rv was decreased from 0. 4 to 0. 1. The final miss distance and uncer-

tainty in velocity were not greatly effected and the total of the velocity correct-

ions varied between approximately 65 and 80 miles per hour. Also recorded
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in the table is the time from injection to the application of the first velocity

correction. As the parameter R was decreased, this time increased from twov

to five hours.

Table I. Navigation data as a function of miss distance reduction ratio.

Velocity Correction Uncertainty Ratio 0.3

Miss Number Total Final Final
Distance Number of Velocity Miss Velocity

Reduction of Velocity Correction Distance Uncertainty
Ratio Measurements Corrections (mph) (miles) (mph)

0.3 126 7 55.5 1.15 0.23

0.4 77 7 71.1 1.41 0.28
0.5 50 7 73.1 1.90 0.39
o.6 33 6 79.7 2.25 0.45
0.7 22 6 84.7 3.19 0.57

Table 2. Navigation data as a function of velocity correction uncertainty ratio.

Miss Distance Reduction Ratio = 0.4 No. of Measurements 77

Velocity Time Number Total Final Final
Correction of Fi rst of Velocity Miss Velocity

Uncertainty Velocity Velocity Correction Distance Uncertainty
Ratio Correction Corrections (mph) (miles) (mph)

0.40 2.0 9 70.2 1.41 0.29
0.30 2.0 7 71.1 1.41 0.28
0.25 2.4 6 70.6 1.45 0.29
0.20 2.6 6 65.9 1.37 0.28
0.15 3.4 5 74.7 1.47 0.30
0.10 5.0 4 79.1 1.52 0.31

In order to evaluate the effect on the navigation data of a variation in the

time of year, a number of pseudo-trajectories were generated by the simple

device of rotating the direction of the Sun as viewed from the Earth. The

trajectory was considered to be unchanged by this process -- the assumption

being quite adequate for the purpose of this preliminary analysis. One set of

values for R v and Rp was selected and the Sun direction was altered in sixty

degree steps. In this manner different illuminated portions of the Earth and
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Mars were visible to the spacecraft resulting, thereby, in different measure-

ments. As seen in Table 3, the total number of measurements varied by twenty

percent while the total of the velocity corrections had a variation between 67 and

87 miles per hour. The effects on miss distance and velocity uncertainty were

not substantial.

Table 3. Navigation data for pseudo-trajectories as a function of sun direction rotation.

i 0.5 Time = Start to 10 hours

Miss Distance Reduction Ratio = 0.4 Time = 10 hours to 50 hours

'0.5 Time = 50 hours to end

Velocity Correction Uncertainty Ratio = 0.3

Sun Number Total Final Fina!
Direction Number of Velocity Miss Velocity
Rotation of Velocity Correction Distance Uncertainty
(degrees) Measurements Corrections (mph) (miles) (mph)

0 57 7 73.5 1.70 0.36
60 59 7 68.4 1.82 0.39

120 53 6 67.2 1.75 0.33
180 53 7 75.8 2.06 0.54
240 55 7 75.5 2.11 0.55
300 49 6 86.9 2.21 0.54

Finally, in Table 4, a complete history of one of the guided translunar

flights is recorded. With R = 0. 7 and R = 0. 3, the time and nature ofp v

each observation and velocity correction is listed. It is curious to note the

frequency with which a particular star and planet combination is repeated

in the record of observations.

In conclusion, it should be emphasized that only fragmentary results

have been obtained by utilizing this navigational scheme. Therefore, too great

an importance should not be attached to the numerical data presented in this

section. At this point, only the ideas are significant, and one must await a

more thorough investigation before definitive conclusions can be drawn.
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Table 4. Example of translunar navigation.

Miss Distance Reduction Ratio 7 0.7
Velocity Correction Uncertainty Ratio " 0.3

TIME OBSERVATION VELOCITY CORRECTION
(hours) (mph)

0.70 Earth Procyon
1.20 Earth Procyon
1.80 Earth Procyon
2.00 37.05
2.60 Earth Procyon

3.80 Earth Procyon
6.00 Earth Procyon
6.00 Moon Capella
6.80 17.14

,030 j Farth Procyon
11.00 Moon Capella
15.00 Moon Procyon
18.00 Moon Procyon
20.00 6.57
22.00 Moon Procyon
28.00 Moon Procyon

34.00 Moon Procyon
42.00 Moon Capella
42.00 Earth Arcturus
45.00 3.44
51.00 Moon Capella
65.00 Moon Capella
76.00 Moon Rigel
80.20 Moon Arcturus

80.40 8.31
81.20 Moon Capella
82.50 Moon Capella

12.19
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APPEN DIX A

NAVIGATIONAL MEASUREMENTS

The mathematical processes are considered here in some detail for

determining spacecraft position by means of both celestial observation and

ground based radar measurements. It is assumed throughout the analysis that

approximations to spacecraft position and velocity are already known so that

perturbation techniques may be employed.

Secondary effects arising from the finite speed of light, the finite distance

or stars, etc. are ignored in this analysis. Such effects may be lumped to-

gether for a particular reference point on the trajectory as a modification to

the stored data which represent reference values for the quantities to be meas-

ured at that point.

For simplicity in the present analysis, it will be assumed that the

spacecraft clock is perfect so that all measurements are made at known instants

of time. Methods of including clock errors in the computation are discussed

thoroughly in reference 2.

As indicated in Section 2. 1 each measurement establishes a component of

spacecraft position along some direction in space. If A is the quantity to be

measured and 6A is the difference between the true and the reference values,

then it will be shown that the relation between 5A and the deviation in space-

craft position 6 r is

SA =h T Sr (A .1)

regardless of the type of measurement. Thus, the h vector alone will charact-

erize the kind of measurement.

Sun-Planet Measurement

The first type of measurement to be considered is that of the angle from

the Sun to a planet. By passing to the limit of infinite distance from one or the

other of these bodies, corresponding relations for the Sun-star or planet-star

type of measurement may be obtained.
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Let S and P be, respectively, the reference positions of the space-o 0

craft and a planet at the time of the measurement. Let r be the vector from-S

the Sun to S and z the vector from S to P . With A denoting the angle from0o - 0 0
the Sun line to the planet line, we have

cos A = - (r - z)/rz (A. 2)

where r and z denote magnitudes of the respective vectors r and z. Treating

all changes as first-order differentials, it can be shown that

SA - n !! I --r (A. 3)

A sin A z sinA 

For details the reader is referred to reference 2. Here m and n are, respect-

ively, the unit vectors from S toward the Sun and toward P . The two indivi-

dual vector coefficients of 6r in Eq. (A. 3) are vectors in the plane of the meas-

urement and normal, respectively, to the lines-of-sight to the Sun and to the

planet.

Planet Diameter Measurement

If D is the actual diameter of a planet, the apparent angular diameter A

is found from

sin (A/2) = D/2z (A. 4)

Again taking differentials as before, one can show that

A = - (A. 5)

z2 cos (A/2)

Star Occultations

The next type of measurement to be considered is that of noting the time

at which a star is occulted by a planet. Let z be the vector from S to P , r the

vector from the Sun to S and n a unit vector in the direction of the star to be0
occulted. With 7, denoting the angle from the star line to the planet line as

shown in Fig. A-l, we have, at the nominal instant of occultation,

n " z :zcosy (A. 6)

Treating changes as first order differentials we obtain

n' Sz :cosy 5z - zsiny 8y (A. 7)

=cos y m * z - z sin y 8y

where m is a unit vector from S toward P
0 0
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SUN

So

Fig. A-i. Measurement of time of a star occultation.

The angle deviation 6 is computed from a first order differential of

2z sin D. There results
- Dm • z/2z 2 cos y (A. 8)

Furthermore, if v and v are the respective velocity vectors of the planet and-p -s

the spacecraft and if 6r is the difference between the observed and the reference

occultation times, we have
&z V P 8-r - (5r + v s 8-r) (A. 9)

- Er - vr 8-r

where v is the velocity of the spacecraft relative to the planet. Then by corn-

bining Eqs. (A. 7) , (A. 8) and (A. 9) we have finally

1 (p-tonym) r (A. 1o)
R(p- tanyrnvr -

where p is a unit vector perpendicular to m and lying in the plane determined by

the lines-of-sight to the planet and the star.

Star Elevation Measurement

Consider next the measurement of the angle between the lines-of-sight to

a star and the edge of a planet disc. From Fig. A-2 we have

n " z =zcos(A + y) (A. 11)
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where A is the angle to be measured. Again taking total differentials and

noting that 6r - 6z, we obtain
p r SA + y

z (A. 12)

SA + Dm " Sr/2z2 cos y

SA + tan y m ' /z

or finally

8A -(p tan ym S 8r (A.13)
z

SUN

So

Fig. A-2. Measurement of star elevation angle.

Landmark Measurement

For the measurement of the angle between a landmark on a planet surface

and a star, let p be a unit vector perpendicular to the line-of-sight to the land-
mark and in the plane of the measurement. Then if p is the vector position of

the landmark relative to the center of the planet, we have

8A Sr (A. 14)

SA

I-i +_eI
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Radar Range, Azimuth, and Elevation Measurements

Assume the radar site to be the origin of the coordinate system although

other origins could equally well be used. Let a cartesian coordinate system be

chosen such that the z axis is radially out from the center of the Earth through

the radar site; the x axis is positive in the direction from which radar azimuths

are to be measured; the y axis completes the coordinate system. Then, we may

write Cos 'e Cos 6

r =r cos/8sin & (A. 15)

sin8

where r, 0, G are, respectively, the range, azimuth, and elevation of the

vehicle from the radar site. Taking differentials separately for each of the

three variables gives

(A. 16)
Sr -- cos /3:sinl 0 Sr

sin 8

- sin 8 Cos 0 1 (A .17 )

8r =r -sin 8 sin 0 8/3

Cos '6

- cos 8 sin 0 (A. 18)

br = r cos '8cos SO

0

Then, by expressing each of these relations in the form of Eq. (A. 1), we obtain

8r--lcos5cos & cos 8sin & sin 83II8r (A.19)

g-i sin 3 /cos e -sin /3sin 0 cos /31 8r (A.20)
r

S rco - sin 0 Cos 0 0 Sr (A. 21)
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APPENDIX B

OPTIMUM SELECTION OF NAVIGATION MEASUREMENTS

In the main body of this paper a method of processing measurement data

in an optimum linear manner has been developed. The purpose of this appendix

is to treat the associated problem of selecting those measurements which are,

in some sense, most effective. For example, the requirement might be to

select the measurement to be made at time t in order to get the maximumn
reduction in mean-squared positional or velocity uncertainty at time t . Ofn
perhaps greater significance would be the requirement of selecting the measure-

ment which minimizes the uncertainty in any linear combination of position and

velocity deviations. Specifically, one might select the measurement which

minimizes the uncertainty in the required velocity correction. As a further

example, one might wish to select that measurement which, if followed imme-

diately by a velocity correction, would result in the smallest position error

at the target.

Consider first the simplest case, i. e., minimizing the mean-squared

positional uncertainty at time t n . From Eq. (4. 12) the mean-squared positional

uncertainty is expressible as

-- F (1)T E (1  h (B. 1)
2n  tr En En-

E' 2
hi E 1)n -h + an

assuming the measurement errors to be uncorrelated. In the absence of any

measurement error a = 0) , the problem of minimizing either mean-squared

error is equivalent to finding a direction for the h vector which maximizes the-r

ratio of two quadratic forms. For the case of the mean-squared positional

error, the geometrical interpretation is clear. Since the principal directions

of E (1 ) and E (1) E (1 ) are the same, the optimal direction for h coincides
n n n ( )-

with the major principal direction of E nn
n
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The problem of minimizing the mean-squared velocity uncertainty at time

t by proper choice of the h vector is not as easily solved or interpreted.n -n

Again, from Eq. (4. 12) the mean-squared velocity uncertainty may be written
as

as2 (4) hT E(2 )' E(3 ) hn (B. 2)5 tr (E~ () "
nn8n~ En tr (+: an B.2

Denote by p and q the two quadratic forms
=h T  E( 2 )  E 3)  hn , q = T  E _1-n (B. 3)

nn n n-n

From the theory of quadratic forms there exists an orthogonal transformation
which will reduce q to a diagonal form. Thus

hn = Qd (B. 4)

gives

_dT QT EMQ)'Qd 2 , 2 d2 d 2 (B. 5)
q Q - 1  2  +g 3d 3

where gi, 4L2 P AL3 are the characteristic roots of the matrix E(M) and the
n

columns of the Q matrix are the associated characteristic unit vectors. Since

E ( 1 ) is a positive definite matrix, the characteristic roots are positive and an
further transformation

f D d (B.6)

gives

q fT f f2 + f2 + 2 (B. 7)
1 f 3

where D is a diagonal matrix whose diagonal elements are % F /

The same transformation from h to f applied to the quadratic form p

produces

fT D I QT E(2)' E(3)' Q D f (B.8)
D En n D

One final transformation applied to f will reduce Eq. (B. 8) to a diagonal form

thus

f =S m (B.9)
results in P =Xl m2 +,X 2 2 (B.10)

1  2 m2 + X3 m3
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where the columns of the S matrix are the characteristic unit vectors of thematrix D - 1 QT E ( 2  A the'
mrEiD Q D- and 1' 2' 3 the correspondingn n2p 3characteristic roots. The same transformation (B. 9) applied to (B. 7) gives

q=MT S T  M m2 +m2+ 2 (B. 11)2 2 2-i Sm Sm :r 1 + m + m3  (~1

since S is an orthogonal matrix.

In summary, then, the transformation

bn =QD'I Sm (B. 12)

produces for the ratio of the two quadratic forms

k 1 2 + X 2 + X3 m3
2  (B. 13)

q m2+ M2+ m2

Furthermore, if the matrix E 2 is nonsingular, the product E (2  E (3 ) n
E() E(2)' n n n

E (2 n E(2 is positive definite and it would then follow that A X X
n n 1' 2' 3

are all real and positive.

The problem of maximizing the ratio p/q is now readily solved. Since

no measurement error is assumed, one cannot hope to determine more than

the direction for the optimum h or, equivalently, the optimum m. Therefore,-n __"

it may be assumed that m is a unit vector. Let

kk =max (k 1, X2 , k3) (B. 14)

Then the optimum value of m is k{- j: (B. 15)

m i =  
1

The same technique can be used to select that direction for h which-n

minimizes the uncertainty in any linear combination of position and velocity

deviations. Specifically, consider the selection of that measurement which

minimizes the uncertainty in the velocity correction which would be required

immediately following the measurement.

The correlation matrix of the velocity correction uncertainty is

T T (B. 16)

and the mean-squared uncertainty may be expressed as

hT W h (B. 17)
d2 2 tr (B E-n

n t nB En n) - T (1),_ __ __hT E _h +2
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Here W is a symmetric matrix defined by

(B. 18)
En

E (1)' E(2)' IL T B
W = E n  En Bn Bn

( 2) 'T

En

so that if E En)EBT is nonsingular, the matrix W will be positive11 n n I n

definite. Under any circumstances, if the identification

SE( 1 )' En2  11

is made, then the exact same procedure may be used to select the optimum dir-

ection for the h vector as was used pr-eviously to minimize the mean-squared-n

velocity uncertainty.

In all cases of practical interest the determination of the optimum direction

for the h vector must be made subject to certain constraints. For example,-n

one might wish to select the "best" star to be used in measuring the angle

between the line of sight to the center of a planet disc and the line of sight to

the star. For such a measurement the h vector is required to be perpendicular-n

to the line of sight to the planet. If z is the position vector of the planet from-n
the space vehicle, then we must have

Fn n = 0 (B. 19)

Applying the transformation defined in Eq. (B. 12 ) gives
T ST -1 T

mS D QZ n = 0 (B. 20)

Let p be a unit vector in the direction of ST DI QT z . Then the problem- -n
of selecting the optimum direction for hn or, equivalently, for m is to maximize

2 2 2
XM + X2 m2 + X3 m

subject to the conditions of constraintT T
m p =0 and m m 1 (B. 21)

In terms of the Lagrange multipliers p and a, this is equivalent to the problem

of obtaining a free maximum for

L Aj MJ- 2p~ Pjmjo 1:M
J= 1  j=1 3=1
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Setting the partial derivatives with respect to each of the m.'s equal to zero,

we have r- j 1,2,3 (B. 22)

where p and a are to be determined from the requirements of Eq. (B-21).

The condition that m be orthogonal to p leads to a quadratic equation

for u, 012 _[P2 + X' + P2 + k+ + 2 (XI+ " a)o- P1 (X2  2 + 
1  3) + P3 (X1 +

2) (B. 23)

+ 2 + 2 2
p1 X2 + P2 k 1 '\ 3 + P3 1 X2  0

If the AI's are ordered X 1 < A2 < A 3 , then the two roots a 1 and a 2 will

be such that A1 
< al < X 2 < ( 2 < X 3. One of these roots provides the

maximum while the other gives the minimum. The other Lagrange multiplier

p is determined so that m will be a unit vector.

With the optimum vector m selected, the corresponding value for hn is

found from Eq. (B. 12) .
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