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SUMMARY

A general theory of filamentary structures consisting of monotropic mem-

branes is presented. Applications to isotensoid pressure vessels with rotational

symmetry demonstrate the use of the general theory. Particular attention is

given to applications of filamentary design of variable-geometry expandable

structures.

An extension of the theory to pressurized filamentary structures subject

to centrifugal loading and the special case of meridional winding patterns are pre-

sented in two Appendices.

Physical interpretation of the resulting shapes and winding patterns leads

to a discussion of the morphology of filament-wound pressure vessels.

Design implications in terms of weight/volume/pressure and volume/

surface-area relations are discussed. Directions of further investigations

are indicated, involving studies of instability phenomena, development of fila-

mentary textures other than those described by inonotropic membranes, and

design for concentrated-load-carrying pressure- stabilized structures.
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I I. INTRODUCTION

I A review of recent developments in the field of advanced structures for

aeronautical, missile-borne, and space applications shows an increasing inter-

est in exploiting the remarkable physical-mechanical properties of fibered ma-

terials. A large volume of published information (See, for instance, Refs. 8, 9,

15, and 16) is available, particularly in the field of filament wound structures.

* The attraction of filamentary structures may be found in three areas:

(1) Considerably higher strength/weight ratios are potentially possi-

ble (and have, in certain instances, been demonstrated) by use of fila-

mentary materials as compared to similar structures made from conven-

tional isotropic material (Ref. 21).

(2) The potential of obtaining relative insensitivity to crack-propaga-

I tion due to accidental damage in filamentary arrays typical for filament-

wound structures has been shown theoretically by Hedgepeth (Ref. 17).

I Furthermore, tests on single fibers of many materials show increased

strength and resistance to elevated temperature (Ref. 18), creep, and

I fatigue as compared to the properties of the same materials in bulk form.

Realization of the implied potential performance gains depends upon pro-

I per utilization of fibers (isotensoid design, Ref. 19) and remains to be

generally demonstrated in practice.

(3) The peculiar, non-isotropic character of 'ilamentary textured

material may be used to advantage in specific applications. One of par-

ticular interest is the design of expandable structures with variable geo-

metry, for which a multitude of space applications are presently consid-

ered.

* There exists a need for a fundamental approach to the problem of design

synthesis of filamentary structures. The present report deals with a specific

and relatively important species of filamentary structures, namely those pro-

!I
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duced by filament-winding processes, both from the point of view of developing

I a basic understanding, and from the point of view of particular applications to

toroidal pressure containers.I
I
I
I
I
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I

I I. THEORY OF MONOTROPIC MEMBRANES

A. Definitions

Consider a thin walled shell made from a material which consists of an

array of filaments (Figure 1, page 39). The thickness of the shell may be vari-

able, but will always be sufficiently small so that the geometrical properties of

the shell can be described by its middle surface (membrane).

I Consider now a small but finite domain of this shell. The geometrical

arrangement of the filaments traversing this domain shall be such that the tan-

gents to all filaments have a uniquely determined direction, described by an

angleR between the filament centerlines and a coordinate line inscribed on the

membrane surface. The centerlines of all filaments, thus, belong to a "one

parametric" family of curves. Mathematically, this can be expressed by

A , i-;a : V)o(1)
where u and v are surface coordinates and (u V is a unique and continuous

function of the surface coordinates u and v. The condition of uniquely defined

filament direction shall hold for all regular points of the membrane, but may

not hold for points of singularity such as poles, lines of cross-over, etc.

* We will assume that the filaments are completely flexible and capable of

carrying only normal forces only in the directionh? of their local tangents. If

these filaments are bonded together by a matrix material, we will consider this

matrix to be completely compliant. Thus, the only stresses that can exist in

* this shell are normal stresses in the locallydefined direction I&

A structure of this nature shall be called a Monotropic Membrane, to indi-

cate the unique and predetermined character of stress distribution.

Filament-wound structures can frequently be considered as combinations

of contiguous or intermeshing monotropic membranes. This is particularly

I3



true if the filaments are relatively rigid and the matrix or binder material is

relatively flexible, so that the predominant part of the structural loading is car-

ried by the filamentary constituent of the composite material.

B. Geometry of Monotropic Membranes

In this paragraph, geometrical relations referring to surfaces and curves

on surfaces are summarized from Refs. 1 through 3 for convenience of the sub-

sequent discussion of the properties of monotropic membranes.

Consider the middle surface of the shell described by a vector Y extend-

ing from an arbitrary origin "0" to any point "P" on the surface (Figure Za, page

40). The surface is inscribed with a system of orthogonal curvilinear coordi-

nates u, v. For the purpose of this discussion, the lines u = const and v = const

will be chosen as the lines of principal curvature of the surface.

Let (Et ," , 1 ) be a triad of mutually orthogonal unit vectors, movingtn g

along the centerline of a filament located on the surface where

6 t is tangential to the filament centerline.

9 is perpendicular to the surface.

Z is located in the tangent plane to the surface centerline
g and normal to the filament tangent.

The rate of change of the unit tangent vector Z , while proceeding alongt

the filament centerline for a differential length ds, is equal to the curvature

vector:

dik " t

ds (2)

where k is a vector collinear with the radius vector of curvature p and of abso-
1

lute magnitude--
.P

The normal curvature vector K is the projection of 1 into a plane

spanned by t and 7 . Its magnitude, the normal curvature, can be expressed

by the scalar vector product

k = ( R. ) (3)
n n

I 4



The geodesic curvature vectork is the projection of k into the tangentg

plane to the surface. Its magnitude, the geodesic curvature, can be expressed

by the scalar vector product

I k = (]Z-9) (4)

Curves of vanishing geodesic curvature are called geodesics. They have the

characteristics of straight lines in the non-Euclidian geometry of the surface

described by X. Thus, they are also curves of minimum (or maximum) dis-

tance between two points on the surface. A particularly important character-

istic of geodesics is the fact that geodesics retain their geodesic character dur-

ing an inextensional (bending) deformation of the membrane.

The pertinent geometrical properties of the surface can be expressed in

terms of two fundamental quadratic forms:

(1) The first fundamental form describes the length ds of a line ele-

ment on the surface. For an orthogonal surface coordinate system (u, v)

this first fundamental form reduces to

(ds) = (dR. d3) = Eldu2 + G1dv (5)

where E = zu GuR

IU

(2) The second fundamental form is a measure of the change of the

I surface tangent plane or surface normal vector, i. e. , a measure for

the curvature and twist of the surface. For orthogonal coordinate sys-

* tems, the second fundamental form reduces to

. (d X d9) = Eldu2 + G iidv 2

where E n)

I °5



I
Now let kn(v) and kg(v ) be the normal and geodesic curvature of the lines

v = const, and let kn(u) and kg(u ) be the normal and geodesic curvature of the lines

u = const.

I The normal curvature of the filament centerline forming an anglel with the line

v = const is then given by Euler's Theorem for the orthogonal system of surface

coordinates formed by the lines of principal curvature:

k k n(v)cost1 + kn(u) sin 2 (7)

i The geodesic curvature of the filament centerline forming an angle/9 with the

line v = const is given by Liouville's Theorem for any orthogonal system of sur-

I face coordinates:

k d g os/9 + k sin/9 (8)
Ig( )  ds g(v) g(u)

Finally, the normal and geodesic curvatures of the coordinate lines are

related to the coefficients of the first and second fundamental forms of Eq. 5 and

* 6 as follows:

E

kn(v) =E
n (9)II

kn(u) G-

EI

Ik 6 E) 2Eg(v) v ZEIV I

* (10)

k G
g(u) d u

IE
I¥
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C. Equilib rium Condition

Consider an element of a filament of length ds. subject to an axial force

vector T and an external force vector/unit length F' of arbitrary direction (Figure

3, page 41). Equilibrium for the element demands that

T(s+ds) " (s) + r'(s) ds = 0

or, in differential vector form

AT (s)(1
da + s =

The vector T(5) can be written as T(s) = t T(s)' where T(s) is the magnitude

of the force vector T at s. Thus, Eq. (11) can be written as

Is (s)"- (T s * iti + ' = 0

and by partial differentiation of the first term, considering Eq. (2) we obtain

-dT(s) E + T k + F' = 0 (12)
ds t T() (s)

Scalar multiplication of (12) in turn with the three unit vectors of the triad(9 , F
t n3 9) yields three scalar equilibrium conditions:

gT
dT+ Fit = 0 (13)
ds

Tk + F = 0 (14)IIn n

Tk + F' = 0 (15)
g g

- 7



I
where F' = (F' • )

IF' = i')

n n

F' = (P'. - )g g

are the three components of the external load vector in the three directions indi-

cated by the triad (t, E , W ), respectively (Figure 3, page 26).tn g

I D. Discussion

The equations (13)through (15) relate the filament load to the geometrical

I characteristics of the filament given by Et, k , and k . The two curvatures aren g

related to the properties of the lines of principal curvature serving as surface

I coordinates by Euler's and Liousville's Theorem (7) and (8), respectively, and

may be related to the coefficients of the fundamental forms as giver in (9) and

I (10).

An examination of the equilibrium equations (13) through (15) yields the

following results:

(1) For a given monotropic shell, only one of the three components of

external load vector P' can be freely chosen, While still satisfying all

conditions of equilibrium. This implies that the monotropic shell is two-

fold statically underdeterminate, i. e., it will act as a mechanism rather

than as a structure under all external loads not satisfying conditions (13)

through (15). This effect may be beneficial where a "variable geometry

structure" such asa foldable and expandable shell is desired. On the other

hand, however, peculiar instability phenomena, as discussed in the latter

portion of this report, may occur requiring particular study and attention.

In general, it is necessary to have three contiguous or intermesh-

ing layers of monotropic membranes present in a structural shell in

order to produce a statically determinate system.

!8
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(2) For the case where F t= 0, the fiber force T is invariant through-
out the structure. Such a structure is called "Isotensoid" (from iso-

equal, tensus-extension) to indicate the uniform character of stress and

strain in the load carrying material (Ref. 8 and 19). An isotensoid struc-

ture, furthermore, constitutes an optimum design, since the material

will be stressed equally (i. e. , utilized uniformly) at all points.

(3) For monotropic shells that are loaded by pressure loads normal

to the surface, both F' and F1 vanish. The structure is isotensoid and the
t g

geodesic curvature k of the filaments vanishes; therefore, the curvesg
of filament centerlines describe geodesics of the membrane surface.

These are of particular importance for the case of filament winding,

since a fiber placed under some tension on an arbitrarily shaped man-

drel will tend to follow a geodesic on the mandrel surface.

The general problem of optimum isotensoid design synthesis for a fila-

ment-wound structure may now be stated as follows:

For a given external load, find the surface shape and associated

filamentary geometry of one or several monotropic membranes for

which F' vanishes.
t

I This problem, applied to pressure loaded shells of revolution, will be

discussed in detail in the remaining portion of this report. A different situa-

tion arising from a combination of pressure and centrifugal loads is discussed

in Appendix A. This case demonstrates the application of the basic approach

to filamentary design of not necessarily isotensoid character and for more com-

* plex loading conditions.

I
I
I
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II I. ISOTENSOID PRESSURE SHELLS OF REVOLUTION

A. Basic Equations

Consider a surface of revolution (r,f, z), as shown in Figure 4, page

42. The coordinates of the vector T extending from the origin of a cartesian

system (x y z) are

(r cos 1
I* = sinP) (16)

The lines of principal curvature used as surface coordinate lines are

the parallel circles u = z = const and the meridians v = = const.

I The differential vector dR in terms of the coordinates (z r), is:
dz cos dz - r sin d 10

-dz dr= (17)=--a - -= sin dz + r cos d71
z dz

The unit vector normal to the surface has the coordinates

Cosa< cos( coscK sinr (18)

I sin)

where J is the angle between the local surface normal n and the (x y) plane.

I The second derivatives of Y, with respect to the principal curvature

coordinates, are: d r Cos

dz2

2 2
d z dz

i (19)

and r coosf
S - in

I 10



From Eq. (5) and (17) the coefficients of the first fundamental form become:

= E1  (Tz 1 + (20)

Similarly, from Eq. (6), (18), and (19) the coefficients of the second fundamental

form become:

22

dr
E cos1

G dz

Ik 2Icos 23

(2 1)

*~u GG

tII gn2 n n e f r o Fs i

From (20) and (21 ) the principal curvatures of the coordinate lines become:

k - II=d-
n(v) El = I -d -

/+ ,d , (22)

k G1 I coso(
kn(u) -G 1  r (23)

The negative signs appearing in Eq. (22) and (23) are a consequence of

the sign conventions used foromandf'M, as indicated in Figure 4, page 42.

It is, of course, possible to derive the values of principal curvature by

inspection of Figure 4 directly. The analytical development has been

given here to demonstrate the application of an approach that may be
used for analysis of generalized surfaces.

The normal curvature in direction becomes, according to Euler's

Theorem (7):

k = 1 CO 2 cosa< sin

n cos r (24)

II
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The directioneof the geodesic filament is obtained by integration of Liouville's

Theorem (8) with kg(O) = 0. For surfaces of revolution, this integration yields

the Theorem of Clairaut (Ref. 4).

sin= sior (25)

I
where sin/ and r are arbitrary constants of integration.

0

Let C =sin/90 Filament helix parameter characteristic for the
filamentary geometry.

I R r/r Non-dimensional radius of shell.
0

Then, (25) can be written as

sin4 C (2 5a)
R

and cos#3= I. - C (2 5b)

We will now consider a structural shell of revolution consisting of several

layers of monotropic membranes, as shown in Figure 5, page 43, subject to a

rotationally symmetrical pressure load P(z) that may be variable along the meri-

dian, but is uniform along any parallel circle. Each monotropic membrane is

assumed to comprise n. filaments uniformly spaced along any parallel circle of1

the shell, each filament of each monotropic membrane forming an angle sin 0

C with the meridian at the extreme perimeter of radius r , and each filamentI
carrying an equal and uniform axial force T.

The normal load/unit length carried by each filament is

F' = Pi rl cos (26)

where pi is the normal pressure carried by each monotropic membrane "i".

I
I 12



The equilibrium condition (14), considering (26) and (24), then becomes
I 1 coscK sin2i 2rA

U- Cos - + > - 0 (27)
rM cos~ 1 n.T

Introducing the "non-dimensional" filament count N. =-2i, where n is the total
I n

number of filaments, traversing a parallel circle, we obtain by substituting (25a)

and (25b) into (27)

N .2 r N R2 _C
nT cos . i I

Pi 'r2 R RM R (28)

I Summing over all monotropic membranes "i", and solving for the non-dimen-

sional reridional curvature yields:
r°0 1 I C OS  N. C i ,  .K 2 P(z) I

JDMKR2p 
(9

N i- T., r, -C R" R< ,<-, rPo 1 (2-9)
where K = 21r p0 r0 2 is the non-dimensional pressure load parameter which is

I nT
characteristic for the curvature properties of the shell.

Eq. (29) describes the meridional curve of the shell of revolution in

terms of the intrinsic coordinatesPM ancd , as a function of the two character-

istic parameters Ciand K.

An integral form of Eq. (29) can be derived by considering the equilib-

rium conditions pertaining to the whole shell, as shown in Figure 5, page 43.

Equilibrium in axial direction requires:

os )-r2 2 2( iNnT co - r 0 Ni nT cosa(cosjg.) - R r 02 (z)

u or, solved for cose:

cos= R i R 2 P(z) (30)

I I - V-C -p -

13



Equilibrium in torque around the z-axis for a single filament requires

(since the pressure loading can not contribute to a torque):

T sin.i r = T sin/o i ro

which simply reduces to the Theorem of Clairaut (25) by division through T.

For the complete shell, torsional equilibrium in absence of an exter-

nally applied torque requires:

57N. C. = 0 (31)

A further condition is imposed for closed pressure vessels of singly con-

nected volume without externally applied axial forces ("Bottles").

For this case, axial equilibrium requires that:

I N.i C ~I-G K (32)
iii 2

I Finally, the problem of defining the filamentary geometry can be solved

by integration of the differential geometrical relationship between{ and.(, along

a geodesic. By inspection of Figure 4, page 42, we obtain:

I M-tan = r df

or, integrated

I =C2o - r (33)

0

B. Methods of Solution

Eq. (30) represents an integral form of (29) which can be transformed in-
to a first-order non-linear differential equation for R suitable for numerical
integration by substituting

* dR
dZ

14
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where Z = -L is the non-dimensionalized axial coordinate.
r 0

The resulting differential equation can be written in finite difference

form for numerical integration by means of a digital computer.

A program has been prepared for an IBM, Type 1620 computer, capable

of handling arbitrary inputs for N, C. and K, and

and non-dimensionalized cartesian coordinates (R, Z) of the meridional shapes

by means of a modified Runge-Kutta method (Ref. 22). Additional output data

available from the program are the filament geometryf, as well as surfaces

IS and enclosed volumes V of the bodies of revolution generated by rotating the

meridional curves (R, Z) around the z-axis.

I Analytical solutions of Eq. (30) are possible. These lead to expressions

which may be reduced to elliptical integrals. In the general case, however, the

resulting expressions are quite involved and time-consuming for evaluation. As

a consequence, direct digital integration appears to be a more economical

approach for the purpose of obtaining design data. An exception is the case for

C = 0, discussed in Appendix B. There, the solution can be reduced to simple

combinations of elliptical integrals of the first and second kind, which are tabu-

lated, for instance, in Ref. S.

For the purpose of a graphical solution, Eq. (29) and (30) are suitable

in their intrinsic form. Tables of PM and oin function of r/ro can be computed

for any given set of K, C., N. from Eq. (30) and (29). With slopeo(and radius__ I

of curvaturerM known, very accurate meridional shapes can be constructed by

means of rule, compass, and protractor.

In addition to the numerical and graphical methods mentioned, the par-
ticular case of C = 0 (i. e. , meridional fiber direction only) allows solution of

the isotensoid meridional shape equations by means of a column analog, as

shown in Figures 6 and 7, page 44. This analog is described in more detail in

* Appendix B.

All three methods, digital integration, graphical solution, and column

analogy have been used to generate the data shown in Figures 10 through 20, pages
47 through 56.

* 15



C. Discussion of Results

For the purpose of an initial evaluation of possible isotensoid pressure ves-

*els, the number of free parameters may be reduced as follows:

( 1) The pressure p is assumed to be constant throughout the length of the

shell, i.e., p ( P = const.shelli~e., (z) o

(2) The shells are considered to consist of two monotropic membranes

satisfying the torque equilibrium equation (31):
where N I = N =5

and C 1 =-C 
= C

With these assumptions, the intrinsic equations (29) and (30) reduce to
I1 co s C2  ~~

r o IC O S O C 2 K R( 2 9 b )

and, in integral form:

CO" =- C2? _- (I - R2 )  (30b)

R 2 _C2 2l- 1 (113b

where C and K are the defining parameters of the isotensoid pressure shell.

Inspection of Eq. (29b) and (30b) shows that no real solution for either P or

m(exist if R< C. Thus, the minimum distance from the axis of rotation whicha geo-

desic filament canhave is givenby its helix angle defined by C. An important design

implication that may be derived from this is that there will always be a polar opening

for any geodesically helix wound (C * 0) pressure vessel. The size of the polar

opening Rmin can be computed from Eq. (30b) by letting

cosOC = 1

Excluding the trivial solution R = 1, we obtain a relation between K, C and Rmin:

K m2 =Ri lC (34)_ _ ( I - m i n)R m in

This equation is useful if Rmin is given as a design parameter, and a compati-

ble pair C and K need to be determined for the design of the pressure vessel.

16
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The solutions that may be obtained for the meridional shapes R(Z ) by so-

lution of the intrinsic equations (29b) and (30b) can be classified according to

their general character for a range of parameter K.

I For the purpose of this discussion, only the range of K_?0 will be con-

sidered. Negative K-values yield similar shapes (corresponding to either nega-

tive pressure or compressive fiber force) and yield no new general insight into

the problem even though they may be important for particular design objectives.

The various shapes for positive K-values are discussed below and are shown in

schematic form in Figures 8 and 9, pages 45 and 46:

(1) Hyperboloid (Figure 8a)

Here the extreme perimeter r is a minimum. For all positive
0

z, cos ois always negative andfM is always positive. This re-

I quires K = 0 and results in the filaments being straight lines ro-

tating around the z-axis, forming a hyperboloid of revolution.

This is a surface of zero curvature, corresponding to zero in-

ternal pressure p.

I (2) Cylinder (Figure 8b)

For a cylinder RE 1, cos€----0 and PM = €w. These condi-

tions are satisfied if

I K=

I (3) Corrugated Tube (Figure 8c)

A corrugated tube will exhibit a point of inflection where PM +

at a value of R > C. w will always be smaller than + fr_

* This requires that

2I o<K

I
* 17



I
If K< cZ , then the corrugations are located outside the cylinder R =I

and r is a minimum; if K> , then the corrugations are inside0

the cylinderR = 1, andro is a maximum, as indicated in Figure 8c.

For those corrugated tubes ("bottles") which satisfythe axial equili-

brium equation (32), the following relations hold:

The minimum radius Rmin is related to the fiber helix paramet-

er C by

I -C = Rmi n  - C z

Rmin

The slope ocof the meridian is given by

coscK= R 3  1 - C
) Z- CZ

The radius at the inflection point of the meridian is

R(p0)= - {ic

The slope at the inflection point is given by

Cos 04 -73 C~~l

(4) Cusp (Figure 8d)

For the case of a cusp, the angleobecomes indefinite andrM becomes

Oat R = C. This condition is satisfied if

2
K K- - C

The cusp shape constitutes the transition between the corrugated tube

and the progressive loop.

(5) Loop (Figure 9)

Looped curves which are of particular interest for the generation of

toroidal pressure vessels, are generatedif PM is negative for allvalues

of R. This requires

K> 2

Three distinct types of loops are generated as K increases:

18
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(a) A progressive, periodic loop (Figure 9a), page 46.

I (b) A closed loop forming the transition between progressive

and regressive, periodic loops (Figure 9b), page 46.

(c) A regressive, periodic loop (Figure 9c), page 46.

I The radius RH at which the meridional curve is horizontal (i. e. ,

the location of maximum thickness of the toroid generated by

I rotation of the loop) is

r/l)= 1 -

A summary of the domains in the positive K-C plane corresponding to the

various types of solutions is shown in Figure 10, page 47. Also shown in Figure

10 are the curves R min = const, and the C-K values resulting in "bottles" accord-

ing to Eq. (32).

A number of cases for various parameter combinations have been worked

out by digital integration of Eq. (30) and (33) complemented by graphical and col-

umn analog studies. Primary attention was given to the looped type of solutions

which are of interest in the design of toroidal pressure vessels.

Figures 11 through 14, pages 48 through 51, show the meridional shapes

for 1/2 period (0 y'= ir) of double helix wound shells according to Eq. (29b) and

(30b) for K l - and for C-values of 0, 25, .5, and .75, respectively.

Figures 15 through 17, pages 52 through 54, show solutions for the case

of looped meridians for shells consisting of three layers C1 = 0, C 2 = .5, C -3 .5

with variable ratios of N IN and with N 2 = N3 .

Figure 18, page 55, shows a case with 6 layers, representing the case of a

corrugated tube, together with the filamentary geometry of the various layers.

In the cases of multiple C-values, shown in Figures 15 through 18, re-
turn points occur at R = C., where the corresponding monotropic membrane folds

I

back into itself, reversing the helix angle and thus forming Ci+ 1 = - C..

Figure 19, page 56, shows an example of an unsymmetrical loop resulting
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from linearly variable pressure simulating the situation of a pressure vessel

subject to hydrostatic pressure gradients such as may be encountered in a liq-

uid container during the boost phase of a rocket.

Figure 20, page 56, shows a realization of the particular case for a

closed loop indicating the general shape and the disposition of the winding pat-

tern.

I
I
I
I
I
I
I
I
I
I
I
I
I
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IV. MORPHOLOGY OF CLOSED PRESSURE VESSELS

The range of possible isotensoid pressure shells of revolution with mer-

idional shapes as shown in Figures 11 through 20, is limited by the restriction

of the parameter ranges and combinations that have been considered. Neverthe-

less, five basic types of possible closed pressure vessel designs are identifi-

able from a review of the presented material. A brief discussion of their gen-

eral characteristics follows:

A. Containers With Simply Connected Volume

i 1. Type I: (Figure 21, page 57). Closed shells containing a mono-

tropic membrane with meridional fiber direction (C = 0) cross-

I ing the z-axis.

In the spe. ial case where the "bottle" relationship of K and C.,
given in Eq. (32) is satisfied, the meridian crosses the z-axis at

right angles, and simple closed "bottles" result. Where the

parameters K and C. do not satisfy Eq. (32), additional elements

in the form of an axial compression column or tension rod locat-

ed in the z-axisare necessaryfor equilibrium. A discussion of

such shapes has been given in Ref. 8.

Shells containing monotropic membranes with C = 0 are, from a

practical point of view, not realizable in pure form, since all fib-

era of the C = 0 layers cross the z-axis at the same location, re-

sulting in a "pole" singularity, and generating an impractical loc-

al buildup of material in the winding pattern at the pole. This

form of pressure vessel has been approached by employing very

small helix angleseo(or small C-values). Such structures have

been made in the form of the "Bermuda bottles" (C~0, K~2),

and as endclosures of'end-over-end" wound cylinders produced by

several manufacturers of filament-wound pressure vessels.
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Other possibilities in reducing the polar problem

rest in the use of wide bands for the C =, 0 layers. An example

is shown in Figures 37 and 38, page 66.

I 2. Type II: (Figure 22, page 58): Closed bottles of singly connect-

ed volume incorporating a secondary closure structure

for the polar openings.

This type of pressure vessel needs to satisfy Eq. (32) for axial

balance unless axial tension or compression members support-

ing unbalanced endclosure forces are added to the design. As

seen from Figure 10, all "bottles" fall in the realm of monotropic

membranes in the form of corrugated tubes. These corrugated

tubes can be modified to include a cylindrical portion of R = 1 be-

tween two converging portions by application of a circumferen-

tial winding pattern (C = 1). Such "bottles" represent the ideal

design for the familiar type of filament-wound cylindrical press-

ure vessels and rocket motor cases with "ovaloid endclosures"

(Ref. 9).

A section of a "corrugated tube" will have two polar openings

with a minimum radius of Rmi = Cim. If a polar opening

R>C imin is required (for instance, for nozzle attachments, etc.)

I then a circumferential retaining hoop(C = 1) must be inserted in-

to the winding pattern to obtain balance of an isotensoid structure

I (Ref. 19) requiring a special winding arrangement. In either

case, a secondary closure structure, normally consisting of a

I flanged ring or disk insert, must be provided.

A discussion of the detail design problems for the flange attach-

ments is beyond the scope of this report. Suffice it to note that

* the proper flange shapes may be derived from the basic equations

for isotensoid shells by introducing the contact pressure between

* flange and filamentary shell into the equations.
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As inthe case for Type I, excessive buildup of filaments at the

polar opening (i. e., at the "turn around" point of the winding

pattern) may result. This problem can be reduced by use of a

tension hoop (Ref. 19), as discussed above, which prevents the

filaments from piling up at the turn around. Other solutions

* that have found practical application consist of using filaments

of finite width (ribbon-winding) or by small variations of the

* filament helix angle around a mean value (wobble-winding),

which tends to spread the buildup over a finite domain of the in-

* terface area.

i B. Container with Doubly Connected Volume

1. Type III: (Figure 23, page 59): Closed toroids (doubly connected

volumes) generated from progressive loops.

Progressive loops, as shown in Figure 9a, may be used to gener-

ate close toroidal pressure vessels in two ways:

a. A compression-resistant hub structure may be used to pro-

vide internal closure of a loop extending between two min-

imum perimeters R mi n of the meridional curve. The fila-

ments, in this case, may either be continuous around the

torus meridian, or they may return around retaining hoops

located at the hub rims in the fashion of an automobile

tire, similar to the one shown for Type II in Figure 22,

page 58.

b. A compression-resistant hoop may be introduced in the

outward cusp of a single loop, providing the necessary

* circumferential balance forces.

In either case, compression-resistant structural components are

required to close the pressure vessel. As a result, the elastic

deformation of the shell due to pressurization cannot yield a geo-
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metrically similar shape which insures uniform strain in each

filament. Mismatched deformations in the various components

of the shell will normally take place, and deviations from ideal

isotensoid conditions will be encountered in most cases.

2. Type IV: (Figure 24, page 60): Closed toroids from closed

loops.

Closed loops, as shown in Figure 9b, form an ideal basis for

the design of isotensoid toroidal pressure vessels, unless large

access holes or valve openings are required by the particular

design application.

3. Type V: (Figure 24): Closed toroids generated from regressive

loops.

Regressive loops, as shown in Figure 9c, may be used to form

closed toroidal pressure vessels in a similar fashion, as dis-

cussed for Type III:

a. Tension-resistant outer equatorial bands of finite width

(C = 1) may be used to provide external closure of a loop

* extending between two maximum perimeters r of the

meridional curve.

I b. A tension-resistant hoop may be introduced in the in-

ward cusp of a single loop, providing the necessary cir-

I cumferential balance forces.

c. Of practical importance is the case where both outer

bands and an inner hoop are used for a complete torus

structure. The free choice of width and/or spacing in

the outer bands allows greater freedom in obtaining par-

I ticular design characteristics. Further, the use of sev-

eral bands allows construction of stable toroidal pressure

vessel configurations with only meridional (C = 0) and

perimetral (C = 1) windings.
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As opposed to the Type III, Type V employs tension-resistant ma-

terial only, thus, the conditions of uniform extension throughout

the structure may be satisfied by proper dimensioning of the bands

* and hoops.

A review of the various isotensoid pressure vessels forming shells of re-

volution indicates that in practice only the toroidal Types IV and V can be made

as completely closed containers and requiring only tension-resistant filamentary

material.

* These types promise to be of interest in two aspects:

1. Where foldable, pneumatically stabilized structures are required,

filamentary materials made from strong fibers imbedded in an

elastic matrix may be used. The absence of any rigid, compres-

sion-resistant members favors the Types IV and V for such appli-

cation.

2. Secondly, the monolithic structure of Types IV and V, and absence

of additional weights due to endclosures, such as required for Type II,

promises a a high structural efficiency for the toroidal shapes.

Toroidal isotensoid pressure vessels have been selected for experimental

verification of the theoretically derived data in Part Tw, - "Experimental Investi-

* gations" - of this report.

I
I
I
I
I
* 25



V. CONCLUDING REMARKS

Several areas of investigation, pertinent to the practical design imple-

mentations for isotensoid pressure vessels, have been covered only briefly dur-

ing this investigation. The following paragraphs are intended to indicate direc-

* tions for further studies.

A. Structural Weights, Enclosed Volumes, and

Surface Areas of Isotensoid Pressure Vessels

The theoretical structural weight of an isotensoid pressure vessel has

been derived from energy considerations in Refs. 8 and 10:

VP (SF)
Ws =

where V: Enclosed volume of pressure vessel.

p : Working pressure.

(SF): Safety factor.

t: Specific strength of unidirectional material.

From this equation the surprising conclusion follows that the theoreti-

cal weight of a pressure vessel made from a given material to enclose a given

volume under a given pressure is independent of its general shape, provided it

satisfies the conditions of isotensoid design.

I As discussed in Ref. 1C, the actual weight exceeds the theoretical for

several reasons, such as premature failure due to design deficiencies, and

I additional weights from "bottle" endclosures, leakage barriers, attachments,

etc.

ec While the toroidal isotensoid shapes of Type IV and V may be expected

to be superior to others with respect to design efficiency and absence of weights

associated with auxiliary structural members, etc. , they will normally exhibit

relatively large surface areas for a given enclosed volume, resulting in low

structural wall thickness. This is advantageous from tho point of view of folda-
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bility for expandable structures. It also results, however, in a relatively large

weight contribution of leakage barriers required for pressure tightness.

The non-dimensionalized volume-to-surface area ratio V/Sr has been
0

worked out for toroidal pressure vessels of Type V-b for a range of C and K-

values. The results are plotted in Figure 26, page62. From this plot it

appears that the V/Sr -value is, for practical purposes, independent of C and

a function of K only for the particular type of toroidal isotensoid pressure ves-

sel considered.

B. Periodicity of Winding Patterns

In the practical realizations of winding patterns, a uniform distribution

I of the fibers over the mandrel is desired. Ideally, this may be accomplished by

selecting a fiber geometry where the filament is displaced by a unit filament

I spacing after each complete revolution f= 2 T of the mandrel. The same effect

is produced if the central angle of mandrel revolution for each filament revolu-

I tion is a rational fraction of 2 Ir + c, where Sis the central angle of the desired

filament spacing. In this case, a multiple number of mandrel revolutions is

necessary until the filament becomes again adjacent to itself. An example of

this type is shown in the filamentary geometry of Figure 20 where e(CX= 2 it ) has

been selected as q , thus, two mandrel revolutions and nine filament revolu-

tions will constitute a full period in the filamentary pattern.

The relation of the central angle for a complete filament revolution

a'= 2 ir can be obtained by integration of Eq. (33). Data have been worked out

over a range of C-values for isotensoid pressure vessels of Type IV. Results

in the form of r= 2 ?r)vs C are plotted in Figure 27, page 63.

C. Instability Pheonomena in Toroidal Pressure Vessels

I Instability phenomena have been observed in toroidal pressure vessels

and reported, for instance, in Ref. 10. Such instabilities will be expected par-

ticularly in those cases which are of structurally underdeterminate nature, i. e.,

in shells containing two or less fiber directions in certain domains of the struc-

ture. The instability mechanisms are very similar to those observed in magnetic
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bottles designed to confine plasma at high pressure, where the magnetic lines of

force take the place of the filamentary texture (see, for instance, Ref. 11).

Other types are those found in soap bubbles (Ref. 12) or of the nature of

hydrostatic instability for straight cylindrical tube made from isotropic material

(Ref. 13).

Instability phenomena have also been observed during the experimental

program discussed in Part Two of this report. A number of test models have been

designed to elucidate the various possible shapes that are obtained, some of them

exhibiting striking geometrical symmetry and beauty. Figures 28 through 31, page

64, shows a number of those shapes, obtained from toroidal pressure

vessels of Type V.

While, for the purpose of pressure-containing, the instability phenomena

are detrimental, it is well conceivable that these may be purposely used for con-

trol of geometry where such control is a functional requirement.

D. Non-Monotropic Filamentary Textures

The study presented here has been essentially confined to filamentary tex-

tures that may be produced by filament winding processes, and may be idealized

as arrays of monotropic membranes.

There are obviously many other possible arrangements, differing in their

degree of orientation and in their topological character. A possible approach to the

discussion of these textures may originate from a study of their production process-

es. Such processes, familiar from the textile and wire industry, may involve:

* Weaving Braiding

Meshing Crocheting

Netting Mailling

Looping Matting

* Knitting etc.

The filament winding process is apt to yield the best possible directional

strength and fiber density for a structure. Other processes, however, may have

S28



structural advantages, particularly where foldability is required.

Figures 32 and 33, page 65, show a toroidal pressure vessel made

from a knitted filamentary texture, in inflated and deflated (folded) condition. The

advantage of the knitted texture is its ability to absorb large membrane distortions

in its own plane; thus, the possible folding mechanisms and folding geometries are

not restricted to those of isometric nature (Ref. 20).

Figure 34, page 65, shows a combination of a knitted structure combined

with filament-wound reinforcing bands, producing a "corrugated toroid" structure.

Figure 35, page 66, shows a tubular structure made from knitted tungsten

wire, indicative of the possibilities in forming high-temperature-resistant variable

geometry structures useful, for instance, as aerodynamic re-entry control de-

vices.

I A somewhat different topology of meshed wire indicative of possible vari-

ations for filamentary structures is shown in Figure 36, page 66.

E. Isotensoid Pressure-Stabilized Structures Subjected to Concentrated Loads

Practical applications of load carrying, pressure-stabilized structures

frequently involve concentrated loadings:

I (1) Problems associated with one type of concentrated loading arising

from the flange interface pressure originating from endclosure in-

serts and attachments in pressure containers of Type II have been

* briefly mentioned in paragraph IV.

(2) Another case of concentrated loading is represented, for instance,

by the toroidal pressure vessel of Type V that can be generated by

rotation of the unsymmetrical loop shown in Figure 19. The re-

sulting toroidal pressure vessel will be designed for a hydrostatic

gradient load resulting from a heavy liquid. The reaction to the

liquid weight results in an axial load component. This component

may be provided by a concentrated loading acting upon the tension

hoop placed into the inside cusp of the toroid formed from the loop.
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The same force also provides equilibrium for the unsymmetrically

disposed, isotensoid filament forces acting on the hoop.

(3) A third case of a concentrated side load applied to a pressure ves-

sel of modified Type I is shown in Figure 37, page 66. Figure 38,

page 66, shows the same pressure vessel in a folded, de-pressur-

ized state, demonstrating the bending flexibility of the materials

* used in the shell construction.

Of interest in each of the three cases of concentrated load application dis-

cussed above is the fact that the isotensoid character of the structure is retained

despite the concentrated load application; thus, an optimum- load- bearing design

* for pressure-stabilized structures may be evolved.

I
I
I
I
I
I
I
I

I
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APPENDIX A

MONOTROPIC SHELLS SUBJECT TO
CENTRIFUGAL LOADING AND PRESSURE

Consider a monotropic membrane in the form of a shell of revolution

similar to the one shown in Figure 5.

In addition to the normal load/unit length of filament due to a uniform

internal pressure we will now also consider a radial load vector Fu. caused by

a rotation of the shell around the z-axis with an angular velocity w.

F 2 (cosP) lA

_ rmr (sine)
0

where m' is the mass associated with a unit length of the filament.

The tangential component of this load vector is obtained by scalar multi-

plication with the unit tangent vector t

F T  = F = m' r. cos sin o( (ZA)

The first equilibrium equation (13) becomes

dT l 2 codI " + m' r 2 cosesin = 0

and, since dr = - ds cos/ 3 sin *o:

2
dT = m' r w dr

which integrates to

S-T =mw 2 (r 2 - ro)

or T/T = - I- R) (3A)

33



U2
where T is the fiber force at r and ZL - 2 is the non-dimensionalized

o 0 T
0

centrifugal load parameter. Thus, the fiber force is non-uniform and an "isoten-

soid" design would require a tapering cross-section of filaments designed to keep

the filament stress and strain uniform.

The equilibrium conditions for the shell of revolution in axial direction

and in torque remain unaffected by the centrifugal force field. Thus, Eq. (25a)

becomes, for a single monotropic membrane

T sinlR = T C (4A)

Since in general T/T will differ from unity, the fiber paths are obviously no
a

longer geodesics. This may be verified by comparing (4A) with Clairaut's

Theorem given in the form of Eq. (25a).

The axial equilibrium equation (30) becomes for a single monotropic

membrane:

2 2r2
n T cos/J - r 2 pI = n T cosa<cos,4 - R 2r P

0 90 0 0

or 2 R) = cosoc (To C (5A)

where K is defined by

K = 21Y r, P
nT

Solving (5A) for cos cand substituting (3A) for T/T yields the intrinsic equa-

tion for the meridional shape of a monotropic membrane subject to both a uni-

form internal pressure and a distributed centrifugal load associated with a ro-

tation around the z-axis and a uniform mass distribution per unit length of the

filaments:

cos 0- = 2 C2 (6A)
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Thus, the equilibrium shape is delivered by three characteristic parameters:

() The parameter defining the fiber geometry: C.

(2) The parameter defining the pressure loading: K.

(3) The parameter defining the centrifugal loading: A.

I35
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APPENDIX BI
MERIDIONALLY WOUND ISOTENSOID PRESSURE VESSELSI

For the particular case of C _= 0 (i. e. , meridional fiber direction only) and for

p = PO = const, Eq. (29) and (30) reduce to

r
0 KR(M)I

cos = -- !- (1 - R2 )  (ZB)

It can be shown (Ref. 14) that the shape of a buckled slender column with large

deformations, subject to eccentrical loading, as shown in Figure 6, satisfies an

equation of the form (B) as follows:

Let El = bending stiffness of column

- P = compressive load

Then the equilibrium condition for the buckled column becomes

Pr El

or

r--- (3B)

which can be transformed into Eq. (B) by setting

P
* El

Analytical solutions to this classical problem ("The Elastica") lead to

tabulated elliptical integrals of the first and second kind (Ref. 5), and have been

worked out in detail by several authors (see, for instance, Ref. 6 and 7). The

derivations will not be reproduced here, but only the principal results will be

summarized.
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I
The lengths s of the column (or meridional lengths of the isotensoid

pressure vessel) is related to the parameter K=-
El

Sby

S = 2 IFi T1 t/ 2) (4 B)

where:

* .: Elliptical integral of the first kind

: . Characteristic argument of elliptical integral.

I The maximum deflection r of the column (or perimetral radius r of the iso-0 0

tensoid pressure vessel) is:

r J 4 K (5B)

The distance h between ends of the buckled column (or between the poles of the
isotensoid membrane) is

I2fi KT [2 (4 I/ 2) 2F(r) (6B)

* where:

&: Elliptical integral of the second kind.

The "column analogy" for the meridional isotensoid uniform pressure

* vessel has proven useful in gaining insight into the types of solutions that can

be expected. A workable analog device suitable for general study has been con-

structed from a thin piano wire, loaded by axial forces over adjustable bars,

as shown in Figure 7.

Several solutions for the case C = 0 are shown in Figure 11. Their gen-

eral character shows a peculiarity, which has been discussed in Ref. 8:

The cusp case (K = 2) represents a closed ovaloid (Bermuda bottle). Al-

ternating loops crossing the z-axis between each maxium occur between K = 2 and
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K = 4. These loops are progressive for 2 4 K < 3. 3Z and regressive for 3. 32

<. K < 4. The transition case of K = 3. 32 represents a figure resembling a

lernniscate from which a degenerated closed toroid of vanishing inner perimeter

can be formed by rotation around the z-axis.

The case K = 4 represents an aperiodic loop with both branches asyrnp-

I totic to the z-axis.

For K > 4, regular, regressive periodic loops such as shown in Figure

9c occur.

I
I
I
I
,I
I
I
I
I
I
I
I
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I FIGURE 1-Monotropic Membrane
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FIGURE 26-Non-dimensional Volume-Surface Ratio For Toroidal
Isotensoid Pressure Vessels Of Type V-b

62



1.0

S.9.
.8

.7

I .6

I .5-

* .3

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 C

FIGURE 27-Central Angle = 211) For Full Period Of Winding
Pattern On Closed Toroidal Isotensoid Pressure

Vessels Of Type IV
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FIGURE 32-Knitted Toroid, Inflated
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FIGURE 33-Knitted Toroid, Deflated and FoldedI
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i FIGURE 34-Corrugated Toroid, Knitted
And Filament-Wound 65
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