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FOREWORD 

Contract F33615-83-C-3232, entitled "Automated Strength-Aeroelastic 

Design of Aerospace Structures," was initiated by the Analysis and 

Optimization Branch (FIBR) of the Air Force Wright Aeronautical Laboratories. 

The objective of this contract was to develop a computer procedure which can 

assist significantly in the preliminary automated design of aerospace struc- 

tures. This report, which is one of a four volume final report is the Theo- 

retical Manual that describes the analytical foundations for this procedure. 

Northrop Corporation, Aircraft Division, was the primary contractor 

for this program with Dr. E. H. Johnson, the Program Manager, and Mr. D. J. 

Neill, the Project Co-Principal Investigator. Subcontractors for the program 

were Universal Analytics, Incorporated (UAI), with Mr. D. L. Herendeen the UAI 

Project Manager, and Kaman AviDyne, with Dr. J. R. Ruetenik, the Project 

Manager. At the Air Force, Capt. R. A. Canfield was the Project Manager while 

Dr. V. B. Venkayya initiated the program and provided overall program direc- 

tion. 

Key contributions to this report were made by the following people 
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SECTION I 

INTRODUCTION 

The design of aircraft and space structures requires the marshaling of 

large teams of engineers to select a design which satisfies all requirements 

Typically this design goes through further refinement or modification as more 

knowledge is gained about requirements or as new conditions are imposed.  Much 

of this effort presently consists of applying laborious "cut and try" proce- 

dures wherein the design is perturbed and reanalyzed many times.  This rede- 

sign frequently is dictated when two or more disciplines have conflicting 

demands that require compromise. 

The goal of Air Force Contract F33615-C-83-3232 has been to provide an 

automated design/analysis procedure that performs the tradeoff and synthesis 

tasks in a systematic way. The ASTROS (Automated STRuctural Optimization 

System) procedure is the code that has resulted from this effort and this 

Theoretical Manual, plus the companion User's, and Applications Manuals, 

provide the information required to understand, apply and modify the proce- 

dure. This introduction provides a broad overview of ASTROS concepts and 

capabilities, discusses the contents of ASTROS documentation and provides 

information on supplementary references. 

1.1    ASTROS CONCEPTS 

ASTROS is a finite element based procedure that has been designed to 

assist, to the maximum practical extent, in the preliminary design of aero- 

space structures. A concerted effort has been made to provide the user with a 

tool that has general capabilities with flexibility in their application. 

A vital consideration in a code of this type is that the key disci- 

plines that impact the design must be included in the automated design task. 

This multidisciplinary aspect of the code has been implemented in an integrat- 

ed way so that all the critical design conditions are considered simultaneous- 

In addition to several disciplines interacting, there is a requirement 

that it be possible to treat multiple boundary conditions and, within each 

boundary condition, multiple subcases.  Additional desirable features of this 



code are that the user should not be arbitrarily restricted size and that the 

use of the code should conform to the current environment for performing 

structural analysis in the aerospace industry. Practical limitations of 

available disk space and data processing time restrict the problem size 

feature, but this should be left to the user's discretion. 

These requirements have been addressed by the development of a system 

specifically suited to the task. In particular, the multidisciplinary re- 

quirement has been addressed by implementing the disciplines in separate 

modules and by the use of MAPOL (Matrix Analysis Problem Oriented Language), a 

high level language, to direct the interactions among the modules. Data 

transfer is accomplished using CADDB (Computer Automated Design Data Base) 

that has also been developed for this project. 

The requirement for large problem size is addressed by the presence of 

a Dynamic Memory Manager that allocates memory in a way that eliminates the 

need for fixed length arrays.  Allocations are made and destroyed dynamically 

so that free memory can be shared by the engineering modules. 

Finally, the feature of compatibility with the current aerospace 

environment is addressed by making the ASTROS procedure resemble that of 

NASTRAN in terms of user input and pre- and post-processor interfaces. While 

the ASTROS procedure does not contain many of the specialized capabilities 

available in NASTRAN, the basic structural analysis features have been includ- 

ed. Most importantly, from a user point of view, the bulk data formats have 

been taken directly from NASTRAN and modified only if the design considera- 

tions dictate a modification in the data or, in a few cases, if minor changes 

result in superior capability. Of course, new bulk data entries have been 

created to input design information and data needed to run the steady aerody- 

namics and other analyses specific to ASTROS. 

1.2    ASTROS CAPABILITIES 

The documentation of the engineering analyses within ASTROS is the 

main function of the balance of this manual. This section gives a brief 

overview of the capabilities that are included in the code. The basic disci- 

plines that are implemented within this code are as follows: 

(1) Static analysis 

(2) Modal analysis 



(3) Aerodynamic Analysis 

(4) Dynamic Analysis 

(5) Optimization 

The statics analysis methodology is based on a finite element repre- 

sentation of the structure, as are all the structural analysis disciplines in 

ASTROS. The static analyses compute responses to statically applied mechani- 

cal (e.g., discrete forces and moments), thermal and gravity loadings. Static 

deformations and their resultant stresses are among the computed responses. 

An extensive design capability is provided for the static analysis discipline. 

Details of this discipline are provided in Section VI of this report. 

The modal analysis capability in ASTROS permits the determination of a 

structure's eigenfrequencies and normal modes.  As outlined in Section VII of 

this report, the reduction of the finite element model to a size tractable for 

performing an eigenanalysis is performed by one of two techniques.  In the 

first, the degrees of freedom are reduced to a user specified analysis set 

through the use of Guyan reduction.  The second technique employs Dynamic 

Reduction concepts to produce basis vectors that are "rich in the eigen- 

vectors" of the structure.   The design capability for modal analysis is 

limited to the ability to impose limits on the natural frequencies of the 

structure.  Apart from its inherent usefulness, the modal analysis capability 

also serves as the basis for further analyses, such as flutter, transient re- 

sponse and frequency response, that can be performed using modal coordinates*. 

The aerodynamic analyses in ASTROS include both steady and unsteady 

formulations. These could be considered as separate disciplines, but they 

are linked in this report because of the fact that they share the method for 

linking quantities computed in the aerodynamic models to the structural model. 

Section VIII first discusses these spline techniques and then separately 

discusses the steady and unsteady aerodynamics analyses. Section IX discusses 

the use of the steady aerodynamics to provide loads on a free flying aircraft 

for specified longitudinal flight conditions and to provide estimates of the 

rolling effectiveness of control surfaces in antisymmetric maneuvers. All the 

design conditions that can be applied to a static analysis can also be imposed 

on the symmetric flight condition. In addition, limits on the aircraft's lift 

effectiveness and rolling effectiveness can be imposed. 



The unsteady aerodynamics are used for flutter, gust and nuclear blast 

analyses. Section X provides a description of the algorithms used to perform 

flutter analysis and design. Flutter design requirements are specified in 

terms of the required damping levels at user specified velocities. 

The dynamic analysis disciplines listed above represent a breadbasket 

of methods that are detailed in Sections XI and XII.  These methods share the 

characteristic that they include time or frequency varying loads as well as 

inertial terms (i.e., those proportional to the structure's acceleration) and 

optional damping terms (i.e., those proportional to the structure's velocity). 

Section XI discusses transient and frequency analyses that utilize either a 

direct or a modal representation of the structure while Section XII discusses 

the specialized dynamic response of an aircraft to a nuclear blast.  All the 

dynamic analyses in ASTROS share the property that only an analysis capa- 

bility, with no design conditions, is provided.  The rationale for including 

these further analyses, in what is basically a structural design procedure, is 

that it allows the user to check the final achieved design for a variety of 

other conditions within the context of ASTROS. This is in contrast to requir- 

ing the user to understand and develop models for a series of more specialized 

procedures. 

The final discipline listed above is that of optimization. If only 

stress (or strain) constraints are included in the design task, the fully 

stressed design option can be efficiently utilized. For more general design 

tasks, a mathematical programming approach has been implemented. Section XIII 

discusses both of these methods and provides details on the extensive use of 

approximation concepts to make the design task tractable when many design 

variables and design conditions are used. 

1.3    DOCUMENTATION 

This subsection provides a brief description of each of the ASTROS 

documentation manuals, as well as other references that are central to the 

ASTROS procedure. The ASTROS documentation is divided into the following four 

manuals: 

(1? VOLUME I - Theoretical Manual 
(2) VOL'IME II - User's Manual 
(3) VOLUMF III - Applications Manual 
(4) VOLUME I" - Programmer's Manual 



This Theoretical Manual contains theoretical background on both the 

computer science and engineering analyses of the ASTROS system. Emphasis is 

given to the more innovative aspects of the ASTROS system with other sources 

relied upon to detail those features that are common to other procedures. 

The User's Manual contains the information needed to run the ASTROS 

procedure. The user input is documented, as is information on the output 

quantities that can be computed. The user is also provided with information 

on how to modify the standard MAPOL sequence or to write a specialized MAPOL 

program to tailor ASTROS to a particular application. 

The Applications Manual serves a number of functions. The first is to 

describe, in some detail, alternate sources of information. Secondly, it 

provides guidelines and modeling information on the use of more unique fea- 

tures of the procedure. For example, the steady aerodynamic and design 

capabilities are discussed in some detail since these are unique to ASTROS. 

Finally, the Applications Manual contains a number of sample runs that can be 

used to check out the initial installation of the procedure and further guide 

ASTROS usage. 

The Programmer's Manual is reserved for researchers who wish to make 

modifications to the ASTROS code, either to insert a new module or to modify 

an existing capability. A large percentage of this manual is the documenta- 

tion of the data base entities. Other useful sections of the report are the 

definitions of the calls to utility routines. Also, the installation of the 

procedure on different machines is presented for the "system administrator." 

In terms of subsidiary documentation, ASTROS relies heavily on NASTRAN 

in terms of methodology and as a starting point for code development. NASTRAN 

documentation, therefore, is useful in understanding ASTROS. As mentioned, 

the ASTROS documentation, and particularly the Theoretical Manual, emphasizes 

the more novel aspects of the ASTROS code while relying on this other documen- 

tation for the more standard features. For example, this theoretical manual 

contains no description of the large matrix utilities while the NASTRAN Manual 

of Reference 1 devotes 21 pages to these utilities. This reliance is less 

evident in the other manuals. The ASTROS Programmer's Manual is considerably 

more succinct than the corresponding NASTRAN manual of Reference 2 in terms of 

module definition, but does provide some documentation for each module. The 

ASTROS User's Manual is intended to be standalone and is sufficiently 



different from the corresponding manual of Reference 3 that one is advised not 

to rely too heavily on preconceptions based on using NASTRAN. On the other 

hand, the similarities between ASTROS and NASTRAN inputs are so marked that it 

should be extremely easy for a user to go from one system to another. 

Subsection 1.3 of the Applications Manual discusses in greater detail how 

other reference sources can be used to supplement the ASTROS documentation. 



SECTION II 

MULTIDISCIPLINARY ANALYSIS AND DESIGN 

The ASTROS system was developed to have maximum impact at the prelimi- 

nary design stage of an aerospace structural design. At this stage, the 

configuration has been defined and the materials have been selected. The 

design task is the determination of structural sizes that will provide an 

optimal structure while satisfying the numerous requirements that multiple 

disciplines impose on the structure. A key motivation for the development of 

a single automated structural optimization tool is that such a tool can 

shorten the design cycle (time) and provide better structural designs. This 

is particularly true as composite materials come into widespread use. Balanc- 

ing conflicting requirements for the structure's strength and stiffness while 

exploiting the benefits of anisotropy (e.g., "aeroelastic tailoring") is per- 

haps an impossible task without assistance from an automated design tool. The 

use of a single tool can also bring the design task into better focus among 

design team members, thereby improving the insight into their overall task. 

The development of a system to meet these needs is by no means a new 

endeavor. Concepts of automated structural design have been advanced for over 

30 years and a number of software procedures have been developed. Notable 

among these are the TSO (Reference 4) and FASTOP (Reference 5) procedures that 

were developed under Air Force sponsorship. NASA has been very active in this 

area and has sponsored, or performed in-house, many programs that have served 

to crystalize the methodologies that are applicable in this area (References 6 

and 7). 

The basic objective in developing the ASTROS system has been to pro- 

vide a state-of-the-art design tool that integrates existing methodologies 

into a unified multidisciplinary package. Concepts from TSO and FASTOP were 

adapted for ASTROS; for example, TSO's capability to simultaneously design to 

strength, flutter, displacement, and other requirements has been incorporated 

into ASTROS, as has FASTOP'S use of finite element structural analysis. 

The distinctive attribute of ASTROS is the scope of conditions it can 

consider in a design task.  Multiple boundary conditions, each permitting a 

range of analyses (e.g., statics, modes and flutter) can be treated.  Also, 

limits on problem size have been removed for the most part. 



The remainder of this section describes the implementation of 

multidisciplinary analysis and design in ASTROS; first by providing an over- 

view of the design algorithm and then by defining the design task in a mathe- 

matical and a physical sense. 

2.1    MULTIDISCIPLINARY OPTIMIZATION 

A general optimization task may be defined in a mathematical form as: 

Find the set of design variables, (v), which will minimize an objective 

function 

F(v) (2-1) 

subject to constraints: 

gj(v) < 0.0 j - 1, neon                        (2-2) 

hfc(v) - 0.0 k - 1, ne                          (2-3) 

lower       upper 
vi    < vi < V£     i - 1, ndv (2-4) 

where g specifies the neon inequality constraints while h refers to the ne 

equality constraints.  Equation 2-4 specifies upper and lower bounds (side 

constraints) on each of the design variables.  Subsection  2.2 provides the 

physical interpretations of each of these quantities as they are applied in 

ASTROS. 

Figure 1 presents a schematic diagram of the ASTROS program flow for 

the design portion of the procedure and contains a number of key concepts that 

need to be understood in order to appreciate the generality and power of the 

procedure. The figure indicates that the task is divided into three phases. 

In the first phase, an analysis of a specified design is performed. As the 

diagram shows, there can be any number of boundary conditions included in this 

phase and each boundary condition can contain a number of disciplines. 

Further, each discipline could contain a number of subcases. As an example, a 

typical design task could be to analyze the structure for strength at a number 

of flight conditions (specified by Mach Number, altitude and load factor) and 

also to evaluate the flutter behavior at another set of flight conditions for 

both symmetric and antisymmetric response.  It should be clear that each of 
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these conditions could contain a response that is critical in determining the 

design and that all critical conditions must be considered simultaneously to 

achieve an overall best design. The inability of previous automated design 

procedure to perform this simultaneous analysis has been seen as one of their 

primary weaknesses by potential users. 

As Figure 1 shows, each of the subcases generates constraints that 

quantify the response of the design relative to prescribed limits. In the 

second phase, the sensitivities of these constraints to changes in the design 

variables are calculated. Note that this discussion of the sensitivity and 

the optimization phases pertains only to the mathematical programming option 

for design. Subsection 13.2 discusses the alternative Fully Stressed Design 

option. 

Because of the potentially large number of constraints, a screening 

process takes place to select the constraints that can be expected to play a 

role in the redesign (see Subsection 13.1). Two important points to be made 

for the present discussion are that (1) the sensitivity calculations require a 

looping through the same boundary condition, discipline and subcase hierarchy 

that was required in the analysis phase and (2) it would be Inefficient to 

calculate these sensitivities "on the fly" during the analysis phase, since 

only a small percentage of the constraints require sensitivities and the 

identity of the "active" constraints cannot be determined until all the 

constraints are known. 

In the optimization phase, the information on the objective and the 

active constraints is assimilated into a redesign algorithm so as to meet the 

requirements of Equations 2-1 through 2-4. Subsection 13.1 describes how this 

information is utilized to the maximum practical degree so that the iterations 

through the computationally expensive analysis and sensitivity phases are kept 

to a minimum. As a final point on Figure 1, the convergence test for program 

termination entails an evaluation of whether the redesign is making progress 

in meeting the requirements or if the maximum specified number of iterations 

have been made. 

2.2    THE DESIGN TASK 

Equations 2-1 through 2-4 are general in the sense that they apply to 

any optimization task. This subsection describes the meaning of each of these 

terms in the equations in ASTROS. 
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The objective to be minimized is structural weight.   It would be 

relatively simple to replace or augment this objective with other response 

quantities (as was done in the TSO program of Reference 4), but this require- 

ment did not emerge during the project. 

There are no equality constraints in ASTROS; therefore, there is no 

need to further consider Equation 2-3. The remaining terms require substan- 

tially more definition. 

2.2.1  Design Variables 

ASTROS defines design variables at two levels: (1) Physical (or local) 

variables, and (2) Global Variables. The basic rationale for having these ■/ 

two levels is to reduce the number of design variables to a number that is 

tractable in a mathematical programming context. As will be discussed, a fur- 

ther motivating factor is that it provides the user with a means of imposing 

constraints on the design task that are desirable due to manufacturing or 

other considerations. This is not a new concept; for example Reference 6 pro- 

vides a discussion and review of techniques for reducing the number of design 

variables. 

Local Variables 

These variables are properties of the finite elements used in ASTROS. 

Table 1 lists the finite element types that can be designed and their associ- 

ated design variables. 

TABLE 1.  PHYSICAL DESIGN VARIABLES 

ELEMENT DESIGN VARIABLE 

CROD Area 
CSHEAR Thickness 
CQDMEM Thickness(es) 
CTRMEM Thickness(es) 
CQUAD4 Membrane Thickness(es) 
CBAR Area 
C0NM2 Mass 
CELAS1.2 Stiffness 
CMASS1.2 Mass 
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A common feature of all of the physical design variables Is that their 

associated element mass and stiffness matrices are a linear function of the 

design variable. This fact is exploited in ASTROS by computing the invariant 

portions of these matrices only once in the preface portion of the procedure 

and then multiplying this portion by the current value of the design variable 

during the assembly of the global stiffness and mass matrices. The one 

exception to this linearity is for the bar element, where inertial properties 

(Ix and I2) are exponential functions of the area (A): 

i! - Ri  Aa 

(2-5) 
I2 - R2 Aa 

Where R]_, R2 and a are user defined quantities. This somewhat artificial 

construct permits the introduction of bending elements in the design process 

and does model common bar geometries. E.g., a - 1 corresponds to a thin 

walled beam while a - 3 corresponds to a solid beam of constant width and 

varying depth. 

The designed two-dimensional elements include only in-plane (i.e., 

membrane and shear) deformation with bending effects assumed to be negligible. 

This is a good approximation for most aerospace applications, although it is 

recognized that this represents a shortcoming in the design capability. Meth- 

odology for including bending features is considered to be an active area of 

research at this time, particularly when composite materials are being de- 

signed. 

As a final point, the Table 1 references to thicknesses for the 

membrane elements refer to the fact that each ply direction for a composite 

element can be treated as a separate design variable. This emulates the TSO 

(Reference 4) and FASTOP (Reference 5) treatments of composite materials. 

Global Variables 

These variables are the ones that are directly involved in the design 

process. The local variables are linked to the global values through a matrix 

relationship of the form 

(t)  -  [P]{v} (2-6) 

where t is a vector of nloc local variables, v Is vector of ndv global varia- 

bles and P Is the linking matrix of dimension nloc by ndv. Three linking 

options are provided  in ASTROS: 
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(1) Unique Linking - In this case, the global variables are the same 

as the local variables and there is a single nonzero term in the 

corresponding row of the linking matrix and its value is the 

initial local property value. 

(2) Physical Linking - One global variable uniquely specifies a 

number of local variables. This option is used to permit the 

simultaneous variation of finite elements over a region of the 

structure, the rationale being that there is no inherent reason 

why each finite element should be independently designed. There 

may be manufacturing reasons why this linking should occur or it 

may be that the designer knows that uniform properties in certain 

areas of the structures are adequate. The corresponding row of 

the P matrix for the local variables has a single nonzero term 

corresponding to the initial local property value. 

(3) Shape Function Linking - A local variable is the weighted sum of 

several global variables. In this case, the global variable 

controls the magnitude of a shape function that applies over a 

region of the structure. The shape function concept is best 

illustrated by reference to TSO's representation of the skin 

thickness as being the weighted sum of polynomials in the non- 

dimensional coordinates £ and tj  of the trapezoidal wing box: 

3  3 
t(i,f,)   -    2  2 an e1*1 nJ'1 (2-7) 

i-1 j-1  J 

where the a^j are the design variables.  ASTROS has expanded this 

capability by allowing the user to define any shape function over 

any part of the structure.  For this third case, a row of the P 

matrix can have any number of nonzero terms, and they can be 

either positive or negative.  These factors are applied to a unit 

local property value in computing the local variable. 

Further perspective on these aspects can be obtained by referring to 

the simple model shown in Figure 2, which is the Intermediate Complexity Wing 

(ICW) used by Grumman in the development of the FASTOP procedure.  The model 

has 62 quadrilateral membrane elements that represent the upper and lower skin 

surfaces.  Each of these elements contains four layers of composite material. 

13 



NO. OF NODES NO. OF ELEMENTS NO. OF DOPS 

88 39 RODS 294    CONSTRAINED 

55 SHEAR PANELS 234    UNCONSTRAINED 

62 QUADRILATERAL MEMBRANE 528    TOTAL 

2 TRIANGULAP MEMBRANE 

158 TOTAL 

Figure 2.  Intermediate Complexity Wing Structure 

14 



A number of different linking concepts can be studied using tbe ASTROS proce- 

dure.  In one, all the elements between two ribs could be linked to give the 

same thickness, with different thicknesses allowed on the two surfaces.  This 

would result in 2 (surfaces) x 4 (layers) x 8 (bays) - 64 global design 

variables.  Alternatively, the user could allow the thickness to vary linearly 

in the spanwise direction while holding it constant in the chordwise direc- 

tion.  This could provide a reasonable design that is also attractive from a 

manufacturing standpoint.  There would then be one global design variable for 

each surface that specifies the level of a uniform distribution of the thick- 

ness while a second variable provides the linear taper.  This is equivalent to 

designating the a\\   and a^2 components of Equation 2-7 as design variables 

while setting the remainder of the components to zero.  This results in 2 

(surfaces) x 4 (layers) x 2 (shapes) - 16 global design variables. 

It is recognized that the flexibility provided by these three options 

also places a burden on the users in term of defining the design variables. 

Subsection 3.1 of the Applications manual discusses the preparation of the 

bulk data inputs for these three options in some detail. Subsection 4.7 and 

4.8 of the same manual contain results from applying a variety of linking 

option to the ICW of Figure 2. 

2.2.2  Constraints 

Constraints in ASTROS are of two basic types: constraints on response 

quantities, as given by Equation 2-2 and side constraints on the design 

variables, as given by Equation 2-4. The design variable options described in 

the previous subsection complicate the definition of side constraints so that 

these constraints are included here in the discussion of thickness con- 

straints. The response constraints are divided into those that represent 

strength constraints and those that represent stiffness constraints. The 

constraints are introduced in this subsection, with more detailed descriptions 

deferred until the discussion of their associated disciplines in Sections VI, 

VII, IX, and X. 

2.2.2.1 Strength Constraints 

Three forms of strength constraints are provided in ASTROS: 

(1)  Von Mises Stress Constraint - This constraint on element stress 

is written in the format of Equation 2-2 as: 
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Ih a    „ O      n a a r       n 

g - (-*)2 + 
S2 s1s2 

1 0 (2 ■8) 

where CTX and ay are the normal stresses in the element coordinate 

system and rxv is the corresponding transverse shear stress. Fs 

is a user defined limit for the shear stress while S^ and S2 are 

allowables in tension and compression. The tension and compres- 

sion limits need not be the same so that, in evaluating Equation 

2-8, the sign of the normal stresses must be known before the 

appropriate divisor can be selected. 

(2) Tsai-Wu Stress Constraint - This constraint on element stress is 

based on the Tsai-Wu failure criterion (Reference 8) which states 

that a material will fail when 

Fij CTi aj + Fi ai    ~ 10 (2-9) 

For the two-dimensional elements of ASTROS, this becomes: 

F11CT1 + 2Fi2fflff2 + F22a22 
2 (2-10) 

+ Fiai + F2a2  + F66r12  -  1.0 

where symmetry considerations dictate that the Fig, F2g and Fg 

terms are zero.  The remaining coefficient terms are: 

(2-11) 

Fll — 1_ - L_ 
xt  xc 

F22 - 
yt yc 

*1 - 1 
xt xc 

F2 - 1 
yt yc 

F66 - 
S2 

where x, y and s are allowables in the longitudinal, transverse 

and shear directions for a fiber and the t and c subscripts refer 

to tension and compression. The F^2 term is not defined analyti- 

cally, instead it must be provided by experiment for each materi- 

al. 
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The Tsai-Wu criterion is utilized in ASTROS by determining the 

strength ratios, R, that the stress state must be multiplied by 

to exactly satisfy Equation 2-10. This factor is determined by 

solving the quadratic equation: 

AR2 + BR - 1.0 - 0.0 (2-12) 

where 

2 2 2 
A    -    Fnai + F22*2 + F66r12 + 2Fi2"lff2 

and (2-13) 

B    -    F]ffi  + F2<72 

The constraint is formed as 

g - i-°- - 1.0 (2-14) 
R 

(3) Principal Strain Constraint - The implementation of a strain 

constraint in ASTROS is based on the two principal strains in a 

two-dimensional element: 

ex " J l«l + «2 + J(«l - «2>Z + m2  ] 

(2-15) 
_  1 t ,.  , ,     I /,.     . \ 7    . .. . 2    i 

y -   i I«i + «2 -  J(«l - «2>Z + «12Z 1 

Two constraints are computed per element based on the strains of 

Equation 2-15, with the evaluation dependent on whether the user 

has specified a single strain limit or if separate tension and 

compression («j and «c) allowables are specified. 

If ec - 0, the constraints are calculated using 

gl " «xAall - 1-° 
(2-16) 

82 " £yAall "1-0 

If ec   is nonzero, similar formulas are used, with the selection 

of f.&\\  based on the sign of the computed strains.  For example, 

if «y is negative, then 

g2 " l«yi/l«cl - 1.0 (2-17) 
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2.2.2.2  Stiffness Constraints 

A number of the constraints imposed in ASTROS can be thought of as 

placing limits on the structural stiffness.  Although inertia properties will 

play a role in some of these constraints, it is still a convenient distinc- 

tion, with displacement, frequency, flutter and static aeroelastic conditions 

the available stiffness constraints in ASTROS. 

(1) Displacement Constraints - Displacement constraints are either 

upper bound: 

ndisp 
S  AijUj < St (2-18) 

j-1 a11 

or lower bound: 

ndisp 
S  AijUj > 6L (2-19) 

j-1 ^1 

where the AJJ are user specified weighting factors on structural 

displacement and 5^ is the user specified limit. Note that the 

summation permits the specification of limits on th« shape of a 

deformation. For example, the twist of a wing tip could be 

limited by differencing the displacements at the leading and 

trailing edges of the structural torque box: 

(WLE - WTE)/CTIP < 0.04 radians (2-20) 

where Cjip is the chord distance between two displacements. 

(2) Frequency Constraints - Limits on the natural frequencies of the 

structure can be specified as 

flow < fi < fhigh (2-21) 

where f^ is the computed value of the i'*1 natural frequency and 
flow and fhigh are user specified limits on this frequency. Note 

that formulation permits the specification that a frequency be 

within a certain band, but it does not allow the exclusion of a 

frequency from a range: 

18 



fi < flow 
or (2-22) 

ft > fhigh 
for 

flow < fhigh 

The difficulty is that ASTROS does not permit the "or" type of 

specification. Furthermore, if the frequency did lie in the 

excluded zone, it is not easy to specify a redesign algorithm 

that could determine whether it is better to drive the frequency 

up or down. 

(3) Flutter Constraint - The flutter constraint in ASTROS is formu- 

lated in terms of satisfying requirements on the modal damping 

values at a series of user specified velocities: 

7ij ^ TJREQ J"1'2 --nvel (2-23) 

where 7JREQ *
S tne required level of damping at the jtn velocity 

and 7j4 is the computed damping level for the itn branch at the 

jtn velocity. A further discussion of this constraint is given 

in Subsection 10.3, following the development of the flutter 

equations.   A point to be made here is that the constraint 

formulation of Equation 2-23 does not require the determination 

of the flutter speed. 

(4) Lift Effectiveness Constraint - The lift effectiveness constraint 

places bounds on the ratio of the flexible to rigid lift curve 

slope of the aircraft: 

«min < CWCLa  < *max (2-24) 
f   r 

where ^L^ is the flexible lift curve slope and includes the 

effects of aeroelastic deformation and inertia relief, ^l^    is 
r 

the lift curve slope for the rigid aircraft. This constraint 

gives the user a direct and physically meaningful way of control- 

ling the amount of flexibility in the structure. 

(5) Aileron Effectiveness Constraint - Roll performance requirements 

frequently drive the design of aircraft wing structures. This 

factor has been recognized in ASTROS by the incorporation of an 
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aileron effectiveness constraint. Aileron effectiveness, follow- 

ing terminology used in Reference 9 can be defined as the ratio 

of roll due to aileron deflection over roll due to roll rate: 

«eff " -(Ct6  )f/(^Eb)f (2-25) 
a     2V 

where 

C-j - Rolling moment about the aircraft centerline 

6a    - Aileron deflection 

EE - Roll rate nondimensional'zed by wing span and air- 
2V    craft velocity 

f  - Flexibility effects are included in the derivatives 

The effectiveness parameter can be thought of as a measure of the 

steady roll rate achievable for a unit value of aileron deflec- 

tion. In a manner similar to the lift effectiveness, the user 

can specify that the aileron effectiveness be within a specified 

range: 

«min £ eeff ^ £max (2-26) 

An intriguing application of this constraint is its application 

to specify a reversed aileron. In this case the effectiveness 

limits would be negative and active controls would typically be 

necessary to augment the aircraft performance. 

2.2.2.3 Thickness Constraints 

A structural design task requires that limits be placed on the values 

over which the physical variables can range. In this discussion, these limits 

are generically identified as thickness constraints, but the term also applies 

to limits on the cross-sectional areas and concentrated mass variables listed 

in Table 1. Without these limits, the optimization algorithm could take the 

thickness to unrealistically small (or even negative) values. Unrealistically 

large values (e.g., thicknesses greater than the available wing depth) could 

also occur. Thickness constraints are specified in one of three ways, as 

specified in the following paragraphs. 

(1)  Side Constraints - For the unique and the regional linking 

options (options 1 and 2 of the Global Variables discussion of 
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Subsection 2.2.1),  the global variables are explicitly con- 

strained.   Physical limits,  manufacturing considerations or 

limits specified by factors not considered in ASTROS (e.g. 

fatigue or buckling) can all contribute to defining these con- 

straints. 

(2) Thickness Constraints - When the shape function design variable 

linking option is used, side constraints on the global design 

variables cannot be used. Move limits on the physical design 

variable (local variable) are instead applied through the defini- 

tion of thickness constraints. The value of the thickness 

constraint is determined by the user specified move limit or by 

the true physical upper or lower bound gauge constraints. 

Subsection 3.2 of the Applications Manual discusses the use of 

the DCONTHK data entry to explicitly select elements whose 

thickness constraints will always be retained in the design task. 

Note that the ASTROS procedure automatically generates thickness 

constraints for all local design variables linked to shape func- 

tions. 

(3) Move Limits - The user should be aware of a third type of thick- 

ness constraint that is internal to the ASTROS procedure. 

Approximation concepts (see Subsection 13.2) are based on the 

assumption that many response quantities are a linear function of 

the design variables, or their inverse. In order to maintain the 

validity of this approximation, limits are placed on how much a 

local design variable can change during a design cycle. A MAPOL 

parameter controls these limits, with a halving or doubling of a 

thickness typically permitted. These limits will be most pro- 

nounced when a user's initial design is far from the optimum. 

Progress toward the optimum may appear slow in these cases 

because the move limits are artificially restricting the design. 

2.3     SENSITIVITY ANALYSIS 

Mathematical programming approaches to the solution of Equations 2-1 

through 2-4 typically require the gradients of the objective and the con- 

straints with respect to the design variables.  That is: 
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S£- i - 1, ndv 

and (2-27) 

—I j - 1, neon; i - 1, ndv 
3v£ 

Previous ASTROS-like procedures have used one of two approaches to 

supply these gradients: (1) finite difference analyses and (2) analytical 

analyses. The first approach calculates the gradients by making a perturba- 

tion in the design variable, reanalyzing the problem and computing the 

gradients based on: 

!fi - 81(V1 + AV -81(V (2-28) 
dv£ Av£ 

The TSO procedure of Reference 4 uses this technique. Finite differ- 

ence calculations become burdensome when there are large numbers of design 

variables and constraints, so a significant effort was expended in the ASTROS 

procedures to provide analytical gradient information. 

The ASTROS objective function of weight is a linear combination of the 

design variables: 

ndv 
F(v)  -  Z DOBJi vt (2-29) 

so that 

flf- - DOBJi (2-30) 
av^ 

is an invariant factor that is computed once in the preface portion of an 

ASTROS run and stored. 

Gradients of the constraints require more complex calculations which 

are described with their associated constraints in Sections VI, VII, IX, and 

X. 
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SECTION III 

SYSTEM ARCHITECTURE 

A large, interdisciplinary procedure such as ASTROS necessarily 

requires that considerable care and effort be put into the design and imple- 

mentation of a system architecture that serves as the basis for construction 

and integration of the developed procedure. The detailed specification of 

this architecture contains a significant computer science content that is not 

only outside the scope of this report, but also not of general interest. 

Nonetheless, the ASTROS user should have a basic familiarity with this archi- 

tecture, since it permeates the implementation and application of the code. 

These basics are provided in this section, while details into particular 

aspects of the system design can be found in References 10, 11, and 12. 

Figure 3 depicts the components of the ASTROS architecture, emphasiz- 

ing its modular form. An additional component that does not fit neatly on the 

figure is the Dynamic Memory Manager.  Each of these components is now dis- 

cussed. 

f       USER ^ 

V.  INPUT J 

EXECUTIVE SYSTEM 

UTILITY 

LIBRARY 

DATA 

BASE 

1 f _* 
* \ f * 

FUNCTIONAL 

MODULE 

FUNCTIONAL 

MODULE 

FUNCTIONAL 

MODULE 
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r     SOLU 

V    RESl 

TION      >v 

JLTS       ) 

Figure 3.  The ASTROS System Architecture 
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3.1    THE ASTROS EXECUTIVE SYSTEM 

The executive system is the heart of the software. It initiates the 

procedure, controls program flow and terminates execution. It is convenient 

to think of the Executive System as a stylized computer with four components 

found in an actual computer: 

(1) Control unit 

(2) High level memory 

(3) Execution monitor 

(4) Input/output subsystem 

3.1.1  The Controller 

The controller begins the execution. This is the routine that first 

performs standard initiation tasks, such as accommodating machine dependent 

idiosyncracies and initiating elapsed time and CPU timers. Subroutines are 

also called which initialize the system and engineering data bases and the 

dynamic memory manager. An initial pass is made through the user's input 

deck, breaking it into four packets: Debug, MAPOL, Solution, and Bulk Data. 

Information on the function and input requirements for each of these packets 

is given in the User's Manual, but the processing of the MAPOL packet needs to 

be further explained here in terms of how it effects the initiation and 

execution of the ASTROS system. 

From the point of view of the user, ASTROS is driven by MAPOL (Matrix 

Analysis Problem Oriented Language). Such a control language, similar to the 

DMAP of NASTRAN or the typical query language of a data base management 

system, has proven to provide maximum flexibility for the user. In particu- 

lar, MAPOL provides features that include: 

(1; Structured, algorithmic language syntax 

(2) Special data types for matrices and relations 

(3) User-written procedures and an extendible procedure library 

(4) Complete run-time utility library 

(5) Embedded data base operations. 
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Just as for any high level language, the translation of a MAPOL 

sequence from the user's input to the form used in controlling the execution 

is performed by a compiler. The MAPOL compiler creates two relations. The 

first, called MEMORY, is a map of the memory defined by the MAPOL program and 

discussed in the next subsection. The second relation, called MCODE, repre- 

sents the executable code that performs operations directly and calls the 

functional modules within the ASTROS system. 

Depending on user input, the controller operates on these two rela- 

tions in one of three ways. If the user has selected the standard MAPOL 

sequence, there is no MAPOL packet and the MCODE and MEMORY relations con- 

tained in the system data base are fed directly to the execution monitor. If 

the user has modified the standard sequence, an editing process must take 

place on the stored standard sequence. The edited sequence is then recom- 

piled, replacing the data in the MCODE and MEMORY relations. Finally, if the 

user has supplied a complete customized MAPOL sequence, the data in the two 

relations are replaced with new entries created by the MAPOL compiler. 

3.1.2 High Level Memory 

The MAPOL compiler reserves a space in core for the ASTROS memory. 

(Note that this is separate from the MEMORY relation just discussed.)  This 

memory is of a "high-order."   This means that, unlike a normal computer 

memory, more than one word is used to store a data item.  The ASTROS memory 

contains entries that are five single-precision computer words in length.  The 

first word contains the data type and the next four words the actual memory 

contents.  These contents may be integers, real values, in single or double 

precision, complex values, in single or double precision, or character data 

defining the names of data base entities.  Then, in a manner analogous to most 

machines, memory addresses are referenced by the executable code and modified 

during execution. 

3.1.3 Execution Monitor 

Following the initiation tasks discussed in Subsection 3.1.1, the 

controller invokes the Execution Monitor to drive the ASTROS system. This 

monitor, using the instructions contained in the MCODE relation, directs the 

tasks specified in the MAPOL sequence. The monitor contains a processor which 

performs basic arithmetic and logical operations and also interfaces directly 
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with a "run-time library" that performs simple mathematical and data base 

operations. For more complex tasks, control is passed to the functional and 

utility modules discussed in Subsections 3.5 and 3.6. 

3.1.4  Input/Output Subsystem 

The executive system controls the files that are to be used for input 

and output. The principal I/O is performed by the Computer Automated Design 

Data Base (CADDB) discussed in Subsection 3.2. The definition of FORTRAN 

logical units used for the user interface is also performed by the executive. 

Finally, a limited capability for sending data directly to the user output 

file is available from the MAPOL packet. 

3.2    THE DATA BASE 

In a large scale engineering analysis system such as ASTROS, the 

efficient handling of the voluminous data required is a key element in the 

viability of the system. A specifically designed data base, called CADDB 

(Computer Automated Design Data Base), was developed for the ASTROS system. 

The design of this data base recognized the need for handling three distinct 

types of data. First, the structural analysis aspects of ASTROS impose a 

requirement for the storage and retrieval of very large, often sparse, matri- 

ces. A storage method is needed that minimizes disk storage requirements 

while allowing algorithms to be developed that can perform matrix operations 

of virtually unlimited size. The second requirement is the need to access 

individual data items directly and rapidly with minimum physical I/O. Such 

data items include the thickness of a single finite element or the data 

defining the properties of a particular material. Finally, there is a need to 

access heterogeneous collections of unstructured data very efficiently. This 

type typically represents "scratch" data which is generally used on an all-or- 

nothing basis within an individual module. 

Existing available data bases provide some, but not all, of these 

capabilities. In addition, many of these are commercial products with propri- 

etary restrictions that are inconsistent with the basic groundrules for 

developing the ASTROS system. Therefore, a unique data base was constructed 

which supports these three different representations. A significant benefit 

that accrued from this customized design was that a common structure was 

formulated for accessing the three types of data, i.e., a uniform, common 
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applications interface has been provided to support each of the data base 

entity classes.   For example, a module may position to a specific matrix 

column, relational row, or unstructured record.  This can then be followed by 

fetching all, or part, of the data stored at the current position. 

Each of the three data types is now briefly described. Appendix 3 of 

Reference 9 contains more detailed information on CADDB and the Programmer's 

Manual contains applications interface information. 

3.2.1  Matrix Entities 

ASTROS is based upon the finite element method of structural analysis 

extended to include optimization. This method requires that all governing 

equations of motion be written in matrix form, thus, allowing complex solu- 

tions to be performed using straightforward matrix algebra. Since the order 

of these matrices may be very large, it is essential that they be stored in a 

compressed, or "packed," format. This format exploits the strongly banded 

nature of most structural matrices; the low density of nonzero terms in these 

matrices allows enormous saving of storage space. 

The "packed" format of matrices is shown in Figure 4. There are 

actually two levels of data compression. Firstly, any null column in a matrix 

is completely omitted. This extension to previous methods of packing is well 

suited to the extremely sparse matrices arising from sensitivity calculations. 

DATA 
BASE 

1 ROW n • • • ROW n I   ... | END | 

2 ROW n • • • END 
24 ROW n * • • END 
87 ROW n • • • ROW n |   ... | END | 
167 ROW n • 1 • END 

COLUMNS 

Figure 4.  The Packed Matrix Format 
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Secondly, only strings of nonzero terms In a non-null column are actually 

stored. Each string contains a two word "header" which specifies the row 

position of the first nonzero terra followed by the number of terms appearing. 

The header is then followed by the actual numeric values. This method of 

storage, pioneered by NASTRAN, has proven to be very effective. 

3.2.2  Relational Entities 

Relational entities are essentially tables.  The formalization of this 

type of data in recent years has found relevance across a wide variety of data 

processing applications (Reference 13).   Each relation has rows, called 

"entries" and columns, called "attributes."  Each attribute is given a de- 

scriptive name, a data type, and constraints on the values that the attribute 

may assume.  These definitions are referred to as the "schema" of the rela- 

tion.  An example of a relation defining grid point data is shown in Figure 5. 

The importance of relational data to design optimization is that a single 

entry may be directly accessed based on qualified values of one or more of its 

attributes.  This minimizes the actual I/O transfer required when modifying 

small amounts of data.  CADDB further extends this capability by allowing a 

mechanism for rapidly accessing all of the data in a relation, if such access 

would be more efficient. 

DATA 
BASE 

ATTRIBUTES GID X Y z 
101 0.0 0.0 0.0 
102 1.0 0.0 0.0 
103 1.0 1.0 0.0 
104 0.0 1.0 0.0 

ENTRIES 

Figure 5.  Example of a Relational Entity 
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3.2.3    anaaifiaaifi Entities 

There are many times that a software module requires temporary, or 

scratch, disk space while performing its task. These data are generally 

highly local and will not be passed to other modules within the system. To 

accommodate this requirement effectively, CADDB supports an unstructured 

entity type composed of "records" containing any arbitrary collection of data 

as shown in Figure 6. Once again, CADDB has the capability to directly access 

each of the records within the entity. 

 ! 

DATA 
BASE 

1 • • • ... |   ... | END | 
2 END 
3 • • • 

4 • • • ...   |   ...  | END | 

5 END 

RECORDS 

3.3 

Figure 6. An Unstructured Data Entity 

THE DYNAMIC MEMORY MANAGER 

A key feature of the ASTROS system, that is not shown in Figure 3, is 

the Dynamic Memory Manager. This feature allows modules to be written without 

resorting to fixed size arrays. A suite of utility routines is available to 

allocate and release blocks of dynamic memory. These blocks reside in the 

physically allocated memory region as shown in Figure 7. The actual size of 

the memory block is determined at execution time. Modules using this feature 

may be designed to allow "spill logic" which allows operations to be performed 

on data that exceeds the size of available memory. Dynamic memory management 

is also used by the data base in performing its buffered I/O functions. This 

represents an extension to the NASTRAN open core concept in that the applica- 

tion programmer is able to manipulate memory blocks rather than being given 

the total memory available in one block. 
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EXECUTABLE CODE 
AND DATA 

/ 

BLOCK 1 
BLOCK 2 

LOCAL ARRAYS 
• • • 
• • • 

FREE 

MEMORY 

BLOCKn 
BLOCK n+1 
BLOCK n+2 

• 1 • 

• • • 

BLOCK m 
• • • 
• • • 

• • • 

V   GROUP 1 

V GROUP2 

ALLOCATED REGION SIZE 

3.4 

Figure 7.  Dynamic Memory 

THE USER INTERFACE 

The User Input and Solution Results blocks of Figure 3 represent the 

user's interface with ASTROS.  A very brief discussion is provided of these 

blocks here since the entire User's Manual is devoted to the documentation of 

these files. 

The User Input is a series of optional packets that are interpreted by 

the Executive system to direct the design and analysis tasks. The first 

packet contains "Debug" directives that can be used by a sophisticated user to 

diagnose problems with the execution. This packet should never be required. 

The second packet contains the MAPOL sequence which directs the flow of 

execution. This packet is also optional, since the standard MAPOL sequence is 

available to handle the majority of ASTROS tasks. 

A third input packet contains Solution Control directives that select 

the design and analysis tasks, including the boundary conditions and the 

required analysis disciplines. This packet also provides output requests that 

define the majority of the Solution Results outputs. This packet is not 

required but is almost always needed to direct the procedure. 

The final input packet contains the bulk data which defines the 

physical and geometric characteristics of the structural system that is to be 

analyzed and designed.  The formats of these data entries are compatible with 
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those used in NASTRAN, to the maximum extent possible. The bulk data packet 

is almost always required, with the exception of certain "restart" runs where 

an initial run has completely specified the problem to be analyzed. 

The Solution Results that are output to the user are intended to 

provide the user with the ability to assess the performance of ASTROS on the 

designated task.   Since a multidisciplinary design task could potentially 

produce an overwhelming amount of output, an effort was made to provide 

minimal default output.  Instead, Solution Control commands provide a means of 

selecting specific quantities for output.  Additional output is available by 

turning on print requests that are imbedded in calls to functional modules in 

the MAPOL sequence.  This latter type of output requires a modification to the 

standard MAPOL sequence and is typically of minimal interest to a routine 

user.  Finally, utilities allow the user to print data base information to the 

user's output. 

3.5    ENGINEERING MODULES 

The engineering modules of Figure 3 are those which perform the 

specific engineering tasks required in the ASTROS system. The remainder of 

this report is concerned with describing the algorithms used in these tasks so 

that this discussion will be limited to what characterizes an engineering 

module. 

The concept of modular programming is essentially one of dividing the 

overall programming tasks into a number of non-interacting units that can be 

separately designed and implemented.  Input and output data are rigorously 

defined and control is sequentially passed from one module to another.  In the 

ASTROS system, the Executive System provides this control so that an engineer- 

ing module can only be accessed through the MAPOL sequence.  Modular independ- 

ence is enforced by requiring that (1) each module establish its own base 

address in dynamic memory, (2) data base entities required by a module must be 

opened before their data can be accessed, (3) all data base entities must be 

closed before the module is exited, and (4) all dynamic memory must be freed 

before the module is exited.  In essence, the requirement of modularity is 

that all intermodular data communication take place through rigorously defined 

data formats on the data base. 
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One exception to this module independence in ASTROS is that there is a 

limited amount of data that are passed through common blocks at the system 

level.  These data include items such as unit number for the read and write 

files, engineering constants and conversion factors (e.g., pi and the radian 

to degrees conversion) and system dependent numbers, such as number of lines 

per page in the output.  It would, of course, be possible to independently de- 

fine these quantities in each module, but this creates other bookkeeping prob- 

lems.  This form of communication is considered part of the executive system 

since the data are global and the communication is one way.  That is, the 

executive "tells" a module the output logical unit number, never vice versa. 

Also, this form of communication is never used to pass data between modules. 

General utilities perform relatively simple functions that are re- 

quired repeatedly in any program like ASTROS. Examples are data sort and 

search routines, CPU timers, data converters and print controllers. A partic- 

ular reason for identifying and segregating these functions is to avoid 

duplication of code when two programmers have a similar requirement. Another 

reason is that a number of these functions are machine dependent so their 

segregation aids in the installation of ASTROS on a new computer system. 

Large matrix utilities are a suite of routines that perform operations 

on the matrix data base entities discussed in Subsection 3.2.1. It is these 

utilities that permit ASTROS to address problems of essentially unlimited 

size. Table 2 defines the large matrix utilities available in ASTROS. Since 

these functions are required repeatedly in a structural analysis task, these 

utilities can be accessed either directly from the executive system or from 

the functional modules, as shown in Figure 3. Not all utilities have this 

feature and those that do require an interface routine between the executive 

system and the utility. Considering this fact, the distinction between an 

engineering module and a utility called by the executive is blurred. As an 

example, the large matrix utility to multiply matrices can be viewed as either 

an engineering module or a utility. For the purposes of this discussion, it 

is designated a utility, with the term engineering module reserved for the 

basic engineering tasks. The distinction being that an engineering module may 

call a utility through its application interface but may never call another 

engineering module. The executive system may call both engineering modules 

and utility modules. 
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TABLE 2.  LARGE MATRIX UTILITIES 

UTILITY FUNCTION 

PARTN [A] -  [ All  A12 1 
L A21  A22 J 

MERGE [A] -  [ All A12 1 
L A21 A22 J 

SDCOMP [A] -  [L][D)[L]T 

FBS [X] -  ([L][D][L]T)-1 [B] 

DECOMP [A] -»  [L][U] 

GFBS [X] -  ([L][U])-1 [B] 

MXADD [C] - a[A] + /9[B] 

MPYAD [D] -  [A)[B] + [C] 

TRNSPOSE [B] -  [A]T 

REIG [K - AM][^]  -  [0] 
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SECTION IV 

GEOMETRY AND NOTATION 

This section provides definitions of basic structural analysis terms 

as they are used in ASTROS. As has been mentioned, ASTROS concepts and 

notation follow those used in NASTRAN to the maximum extent possible. The 

contents of this section should therefore be familiar to a typical NASTRAN 

user and are redundant with existing NASTRAN documentation, such as that found 

in References 1 and 14. It is provided here because the use of coordinate 

systems and displacement sets are pervasive in the remainder of this manual 

and it is therefore necessary to have clear definitions in order to proceed. 

4.1    GEOMETRY 

The geometry of the structural model is defined by the user in terms 

of grid points and scalar points. Grid points are located in space by user 

defined coordinates and each point has six degrees of freedom. Scalar points 

have a single degree of freedom that has no geometric definition but is 

included in the solution set. Scalar points are used to conveniently include 

scalar elements, such as springs and mass elements, in the structural repre- 

sentation. 

The geometry definitions are made in terms of coordinate systems. In 

order to simplify input, the user is permitted to define any number of coordi- 

nate systems in the bulk data packet and the ASTROS procedure then must 

rationalize these systems into a single system for performing the analyses. 

The input (and output) coordinates can be specified in terms of rectangular, 

cylindrical or spherical systems. The concepts of Local, Global and Basic 

coordinate systems also need to be understood in order to prepare ASTROS input 

and interpret the results. 

A Local coordinate system is one that is chosen for convenience in 

specifying element geometries. A given structure is typically divisible into 

-omponents and surfaces that naturally present themselves. Each of these is 

modeled most efficiently through the use of a local coordinate system. 

The Global coordinate system is the single system in which the struc- 

tural analysis is performed and the results are presented.   It should be 

35 



emphasized that this coordinate system is not necessarily defined by a single 

axis system. Instead, it is the collection of all the user specified output 

coordinate systems. 

The Basic coordinate system is the single system relative to which all 

other systems are defined. In this case, it can be depicted by a single axis 

system and it is necessary that all geometric points be able to be defined in 

this coordinate system before ASTROS can proceed. This definition is done 

internally and the user has no need to be aware of the computations required 

to get the coordinates into this system. 

4.2    DISPLACEMENT SETS 

ASTROS has maintained the NASTRAN terminology in defining displacement 

sets in structural analysis.  This discussion introduces these sets since 

their definition is required in all the disciplines described in the remainder 

of this report.  It is convenient to divide this discussion into physical, 

dynamic reduction, dynamic analysis and unsteady aerodynamic sets. 

4.2.1  Physical Sets 

The term physical refers to those sets whose members have a specific 

physical meaning and are related directly to the degrees of freedom in the 

analysis.  Figure 8 depicts the hierarchy of sets that are used in the stan- 

dard static and modal analysis disciplines described in Sections VI and VII. 

Starting at the top of the figure, the g-set contains all the degrees 

of freedom in the structural model. The size of this set is equal the number 

of scalar points plus six times the number of grid points. This set can be 

divided into one set (the m-set) whose members are defined to be explicitly 

dependent on the second, independent set (the n-set). These dependencies are 

designated multipoint constraints. 

At the next level of division, the n-set degrees of freedom are 

divided into those whose displacements are user specified (the s-set) and 

those that are left free for solution (the f-set). The specified displace- 

ments are most typically used to constrain rigid body motions, either by 

setting degrees of freedom with no associated stiffness to zero or by applying 

fixity conditions at the structure's boundary. They can also be used to force 

the structure to deform to certain user specified values.  It is useful to 
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Figure 8.     Hierarchy of Displacement Sets and Their Degrees of 
Freedom  (DOF's) 

37 



make a distinction between those degrees of freedom that are constrained for 

all boundary conditions (permanent single point constraints) and those that 

may be boundary condition dependent. 

The next reduction divides the f-set into the omitted (the o-set) and 

the analysis (the a-set) degrees of freedom.  This reduction is done primarily 

to make a modal analysis task tractable and has less utility for a static 

analysis.  The multidisciplinary nature of ASTROS, however, makes it desirable 

to use an a-set in a static analysis if the same boundary condition also 

requires dynamic analyses.  The selection of degrees of freedom for the two 

sets is somewhat arbitrary and therefore puts a burden on the user.  Dynamic 

Reduction, discussed in Subsection 7.1, is an attractive alternative to this 

selection process. 

If the structure has rigid body degrees of freedom, such as a complete 

aircraft or spacecraft, a further reduction is required before the static or 

modal response can be obtained. In this reduction, the a-set is divided into 

a set that is just sufficient to remove the rigid body motions (the reference 

or r-set) and a set of remaining (the left over or 1-set) degrees of freedom. 

4.2.2 Dynamic Reduction Seta 

The Dynamic Reduction technique of Subsection 7.1 defines two further 

sets.  The first is a set of generalized degrees of freedom for the approxi- 

mate eigenvectors of the reduction process and is designated the j-set.  The 

second is a set of generalized degrees of freedom for the inertia relief 

shapes and is designated the k-set. 

4.2.3 Dynamic Analysis Sets 

Modal analyses produce generalized coordinates that represent further 

sets that are used in subsequent dynamic analyses, such as flutter and fre- 

quency response. In addition, the representation of control systems is 

effected through the definition of "extra" points that make up a further set. '' 

The sets involved in dynamic analysis are shown in Figure 9. The set of 

generalized coordinates associated with the eigenvectors determined in a modal 

analysis is designated the i-set. The extra point degrees of freedom are 

contained in the e-set and the union of these two sets is the h-set. Dynamic 

analyses performed directly in the physical degrees of freedom utilize the d- 

set, which is the union of the e-set and the a-set.  A final set, which is in 

38 



Modal Coordinates 

i Set 

Extra Points 

e Set 

Modal Response 

h Set 

Analysis OOPs 

a Set 

Direct Response 

d Set 

Figure 9. Relation of Dynamic Analysis Sets 

addition to those shown in Figures 8 and 9, is the union of the g-set and the 

e-set and it constitutes the complete physical degrees of freedom (the p-set). 

4.2.4  Unsteady Aerodynamic Sets 

As discussed in Section VII, the aerodynamic models are defined 

independent of the structural model and therefore have their own degrees of 

freedom. For the unsteady aerodynamics model, ASTROS has copied the NASTRAN 

convention and refers to these degrees of freedom as the k-set and uses the j- 

set to refer to the aerodynamic boxes. Note that the j- and k-sets have been 

defined in a different manner in Subsection 4.2.2 and the appropriate defini- 

tion must be determined from context. 

4.3 NOTATION 

Standard notation,  as used in structural analysis literature in 

general and NASTRAN in particular, has been adopted to the maximum extent 
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possible. This section defines matrix and subscript notation as it is used 

throughout the balance of this report. This is not a comprehensive list, with 

additional definitions for specialized notation provided where the term is 

first used. The standard MAPOL sequence also conforms to this notation, with 

the limitation that subscripting is not available in the MAPOL language so 

that matrix names and their subscripts make up the MAPOL name (e.g., [Maa] in 

this document becomes [MAA] in the MAPOL sequence). 

4.3.1  Matrices and Vectors 

Matrices in the report are denoted by square brackets [ and ] while 

vectors are denoted by braces  { and }.  The matrices defined in Table 3 are 

typically subscripted to indicate the set to which the matrix is referred 

TABLE 3.  MATRIX NOTATION 

TERM 
(M)ATRIX OR 
(V)ECTOR DESIGNATION 

B M Damping 

D M Rigid body transformation 

G M Transformation matrix, including spline matrices 
for steady aerodynamics 

K M Structural stiffness 

M M Mass 

m M Rigid body mass 

P V/M Applied load 

t V Local thickness variables 

u V/M Displacement 

UG M Unsteady aerodynamic spline 

V V Global design variables 

YS V Enforced displacements 
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(e.g., the [Maa] matrix Just discussed is in the analysis set while the [Moa] 

matrix has rows associated with the omit set and columns associated with the 

analysis set). 

4.3.2  Subscripts 

The subscripts listed in Table 4 correspond, in most cases, to the 

displacement sets discussed in Subsection 4.2.  Certain of the subscripts are 

TABLE 4.  SUBSCRIPT NOTATION 

>/ 

SUBSCRIPT DEFINITION 

a Analysis set 

d Dynamic set 

e Extra point set 

f Free set 

g Global set 

h Modal analysis set 

i Nodal coordinates set or 
Design variable identification 

j Inertia relief shape coordinates set or 
Constraint identification or 
Aerodynamic box set 

k Approximate eigenvector coordinates set 
Aerodynamic set 

or 

1 Left over set 

m Multipoint constraint set 

n Independent set 

o Omitted set 

P Physical set 

r Rigid or support set 

• Single point constraint set 

41 



seen to have multiple definitions and the appropriate definition will either 

be clear from context or defined explicitly in the text. 

4.3.3  Superscripts 

Table 5 presents a small set of superscripts that conform to those 

used in general structural analysis. 

TABLE 5.  SUPERSCRIPT NOTATION 

SUPERSCRIPT DEFINITION 

I Imaginary part 

R Real part 

T Matrix transpose 

-1 Matrix inverse 

• (Single dot) Time first derivative or velocity 

. , (Double dot) Time second derivative or accelera- 
tion 

4.3.4  Miscellaneous Notation 

The partial derivative symbol, 3, is used extensively in this report 

for the sensitivity calculations. 
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SECTION V 

FINITE ELEMENT MODELING 

This section provides a description of the finite elements available 

in ASTROS and the algorithms used to assemble the individual elements into 

global mass and stiffness matrices. Emphasis is placed on the design aspects 

of this modeling. Section 5 of Reference 1 and Section 8 of Reference 2 

contain thorough discussions of the elements used in ASTROS. An exception to 

this is a complete description of the QUAD4 element in Appendix A. This 

element was developed specifically for the ASTROS program and therefore 

requires detailed documentation. 

5.1    FINITE ELEMENTS 

A limited set of elements have been implemented in ASTROS.   The 

selection of the elements was based primarily on past experience in the 

modeling of aerospace structures.  Another consideration was the selection of 

elements that lend themselves to an automated design task.  The discussion 

which follows divides the elements into five categories:   (1) concentrated 

mass elements, (2) scalar elements, (3) one-dimensional elements, (4) two- 

dimensional elements, and (5) three-dimensional elements.  The discussion in 

this subsection is primarily devoted to the formation of the element stiffness 

and mass matrices and the thermal load sensitivity vectors (referred to below 

as the thermal vectors).  Subsection 5.2 contains a discussion of the calcula- 

tion of stress and strain constraints for the ASTROS' elements while Subsec- 

tion 7.2.1 of the User's Manual discusses the output that is available for 

each of the elements. 

5.1.1  Concentrated Mass Elements 

These elements allow for the definition of mass properties without any 

associated stiffness. They are useful for modeling the mass properties of a 

structure, which are typically defined by a separate group from that used in 

the structural stiffness modeling. In the design context, these elements can 

be used by the design to size tuning masses when frequency constraints are to 

be satisfied or as a mass balance variable in a flutter design task. 
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ASTROS has provided two separate forms for specifying concentrated 

masses that have been adapted from the C0NH1 and C0NM2 elements of NASTRAN. 

In the C0NM1 form, the user inputs the top half of a symmetric mass matrix at 

a geometric grid point.  The bulk data entry for this element in the User's 

Manual completely defines its form.  The element cannot be designed. 

In the C0NM2 form, the user inputs mass data about a center of gravity 

point that may be offset from a geometric grid point.  The mass matrix at the 

grid point is then calculated using: 

[m]  - m 

1  0 0 0 z -y 

1 0 -z 0 X 

1 y -X 0 

y2+z2 -xy -xz 

SYMMETRIC x2+z
2 -yz 

x2+y2 

(5-1) 

0 0 

111 -I2i -I31 

0 -I2i I22 -J32 

-131 -l32 I33 

where x, y, and z are the offset distances  from the mass to  the associated 

ij 
grid point in a specified coordinate system, m is the mass value and the I 

terms are inertias about the mass center of gravity.  The mass matrix of 

Equation 5-1 is in the input coordinate system.  It may be necessary to make a 

coordinate transformation to the global coordinate system.  Equation 5-1 is 

written in the form  it is to stress  the point that the design variable for 

ASTROS for this element is the m value and that the input inertia terms must 

be zero when design is being performed.  These design features give an element 

mass matrix that is linear in the design variable with little loss in general- 

ity. 
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There are no thermal effects or output recovery for these elements. 

5.1.2  Scalar Elements 

ASTROS has Implemented a scalar spring element and a scalar mass 

element based on the CELAS and CMASS element in NASTRAN. The element matrices 

for these items are 

[k]  - k 

and 

[m]  - m 

1 -1 

-1 1 

1 -1 

-1 1 

(5-2) 

(5-3) 

where m and k are user input values and the matrices are in relation to the 

two degrees of freedom specified by the user. Both m and k can be design 

variables in ASTROS, although the physical meaning of the scalar mass variable 

is not clear and its use appears limited. The spring variable can be used to 

represent, for example, an actuator stiffness and could be included in the 

design process. Note that the sensitivity of the objective (i.e., the weight) 

to changes in the scalar spring design variable is zero. This presents no 

particular problem, but it may result in a poorly posed problem if the user 

naively assumes that infinite stiffness is achievable in a real world situa- 

l. n for no penalty. 

There are no thermal effects for these elements, nor are there any 

stress constraints in the design task. The user can impose displacement con- 

straints which emulate a stress type constraint for the scalar spring element. 

5.1.3  One-Dimensional Elements 

Two one-dimensional elements, the rod and the bar, have been imple- 

mented in ASTROS. 

5.1.3.1 The Rod Element 

The rod element of Figure 10 has both extensional and torsional 

stiffness with an assumed linear displacement field. This field gives rise to 

constant element stresses. The implementation of this element has been based 

on that used for the CROD (or CONROD) element in NASTRAN.  As the figure 
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Indicates, the rod has two degrees of freedom at each node in its element 

coordinate system. After transformation to the global coordinate system, this 

results in either a 6x6 or 12x12 element stiffness matrix, depending on 

whether the user has specified only extensional or both torsional and exten- 

sional stiffness values. The mass matrix is always 6x6 since only the trans- 

lational degrees of freedom have inertia properties associated with them. The 

user is given the option as to whether a lumped or a consistent formulation 

of the mass matrix is to be used.  The thermal vector is 6x1. 

Figure 10.  The ROD Element 

The design variable for the rod element is its area.  Two modifica- 

tions to the element matrix calculations are made if the element is designed. 

The first is that user input values of the torsional stiffness are ignored, 

since there is no general relationship between the rod area and the torsional 

stiffness.  (A separate, nondesigned element can be specified if it is neces- 

sary to have torsional stiffness.)  The second modification is that user input 

values for the nonstructural mass are ignored when the element is designed, as 

they are on all elements.  This is done primarily to ensure that the element 

mass matrix is a linear function of the design variable.  Concentrated mass 

elements could fulfill the function of the nonstructural mass input; albeit, 

at the cost of increased data preparation for the user. 

Stress constraint calculations for designed rods do not include shear 

stresses since the torsional stiffness has been disabled.  If the user speci- 

fies stress constraints on an element that is not designed and that has tor- 

sional stiffness, shear stresses are included in the constraint calculation. 
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5.1.3.2 The BAR Element 

The bar element of Figure 11 includes extension, torsion and bending 

in two perpendicular planes with associated transverse shear properties. The 

bar element has the following modeling features and limitations, as given in 

Subsection 9.5 of Reference 14: 

(1) The neutral axis may be offset from the grid points. 

(2) The neutral axis and shear center coincide. 

(3) Pinned connections may be defined. 

(4) The area properties are constant. 

(5) The principal axes of inertia need not coincide with the local 
axes. 

(6) Stress can be recovered at four points on the cross section on 
each end. 

Pinned connections allow the specification of degrees of freedom that 

cannot transfer force, thereby creating a hinge. As Figure 11 indicates, six 

degrees of freedom are present at each node, resulting in a 12x12 element 

stiffness matrix. Rows and columns associated with pinned degrees of freedom 

are zeroed out. The element mass matrix is also 12x12 and has off-diagonal 

terms if a consistent mass formulation is used or if the beam is offset from 

the grid points. The thermal vector is 12x1 and thermal gradients are ne- 

glected (i.e., the TEMPBR data entry of NASTRAN is not supported). 

If the element is designed, a number of restrictions are placed on the 

modeling. As in the rod element, user specifications of torsional stiffness 

and nonstructural mass are ignored. In addition, input shear factors and 

cross products of inertia values are set to zero. Neither the pin connection 

feature nor the offset feature is supported for a designed beam. The key 

assumption that is made for the design of beams is the relationship between 

the bar's area and its moments of inertia that has already been discussed in 

Equation 2-5 and is repeated here: 

i! - ri A« 
(2-5) 

2 
12 - r2 AQ 
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This formulation conforms to an ASTROS groundrule that there be only 

one design variable per finite element. Implementation of the relationships 

of Equation 2-5 dictates that the total element stiffness matrix is made up of 

a term that is linear in the cross sectional area and a second term that is 

this same area raised to an exponential power: 

E        R 
[KEE]  - A[KEE]  + Aa[KEE] (5-4) 

where the E and R superscripts refer to extensional and rotational stiffness 

terms, respectively. 

The four stresses computed at the nodes of the bar elements are axial 

stresses, at the locations specified in the element coordinate system, due to 

axial strain and bending. Limitations imposed on designed bar elements are 

imposed on the stress computations for that element as well. If, however, the 

user specifies stress constraints on an element that is not designed, the full 

finite element capabilities are included in the stress computation. 

5.1.4  Two-Dimensional Elements 

Four two-dimensional elements; viz., quadrilateral shear, triangular 

membrane, quadrilateral rcembrane, and quadrilateral bending, have been imple- 

mented in ASTROS. The quadrilateral bending element is similar to the MSC/ 

NASTRAN QUAD4 element and it is anticipated that this element will be selected 

for representation of quadrilateral plate elements in ASTROS, since the shear 

and membrane capabilities of the QUAD4 provide an equivalence to the SHEAR and 

QDMEM1 elements. 

5.1.4.1 The Quadrilateral Shear Element 

The shear element shown in Figure 12 is a two-dimensional quadrilater- 

al element that resists only in-plane shear forces. The element is defined 

relative to a mean plane parallel to the plane of the diagonals and located 

midway between them. Garvey's assumption that the shear flow distribution is 

constrained to satisfy equilibrium conditions, with no requirement on strain 

compatibility, is used (See Subsection 5.3 of Reference 1). This assumption 

is exact for rectangular elements and becomes more approximate as the distor- 

tion from this rectangular shape increases. 

Element stiffness and mass matrices of dimension 12x12 are generated 

for the translational degrees of freedom.  Only isotropic material properties 
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Figure 12. The Quadrilateral Shear Element 
(Forces and Element Coordinate System) 

are Implemented for this element and only a lumped formulation of the mass 

matrix can be computed. No temperature effects are included in this element. 

The design variable for the shear panel is the element thickness. If 

the element is designed, user specified values of the nonstructural mass for 

the element are ignored. Stress constraints for the shear element are calcu- 

lated based on the average of the shear stresses at the four nodes. 

5.1.4.2 The Triangular Membrane Element 

The membrane element shown in Figure 13 is a two-dimensional triangu- 

lar element that resists only in-plane forces and is equivalent to the TRMEM 

element in NASTRAN. The displacement field is assumed to vary linearly in the 

coordinates of the element, giving rise to a constant strain state within the 

element. Both isotropic and anisotropic materials can be analyzed, with the 6 

angle of Figure 13 used to define the property axis for an anisotropic mater- 

ial. 

Element stiffness and matrices are 9x9 for this triangular element. 

Only a lumped mass formulations of the mass matrix is available. The thermal 

vector is of dimension 9x1, wi^h the thermal loading taken to be the average 

of the temperatures at the three element nodes. 
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Figure 13. The Triangular Membrane Element 

The design variable for the triangular element is the element thick- 

ness. Separate design variables are available for each ply direction if a 

composite material is being designed. This is consistent with the FASTOP 

formulation of Reference 5, which treats all the plies within a laminate that 

are aligned in the same direction as a "layer." In reality, of course, ply 

layup ordering is of critical importance and must be considered in the de- 

tailed design of a composite part. If only membrane forces are being consid- 

ered, ply order effects do not matter and the lumping of plies is permissible 

for analysis purposes. Ply orientation angles are not available as a design 

variable. However, there is no limit on the number of ply directions that a 

user can specify and it is conjectured that if a user selects a large number 

of directions (say six), a winnowing process will take place and desirable 

orientation directions will present themselves. If the element is designed, 

user specified values of the nonstructural mass are ignored. 

5.1.4.3 The Isoparametric Quadrilateral Membrane Element 

The membrane element shown in Figure  14  is a two-dimensional 

quadrilateral element that resists only in-plane forces and is equivalent to 

the QDMEM1 element in NASTRAN.  The element has the following properties, as 

discussed in Subsection 5.8.5 of Reference 1: 

(1) The stresses and strains vary within the element in an essential- 
ly linear manner. 

(2) The element may have a warped shape; i.e., the four nodes need 
not be co-planar. 
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Figure 14.  The Quadrilateral Membrane Element 

(3) Gaussian quadrature, with a 4x4 grid, is used to evaluate the 
stiffness matrix. 

(4) The temperature is assumed to be constant over the element, and 
is the average of the nodal temperatures. 

The "isoparametric" designation refers to the fact that the equation 

which relates the displacements at any point in the element to the displace- 

ments at the nodes in terms of parametric coordinates (£, fj) is identical in 

form to the equation which relates the internal coordinates to the coordinates 

of the grid points. Both isotropic and anisotropic materials can be accommo- 

dated by the element, with a material axis defining the orientation of the 

anisotropic properties. 

The element grid points are mapped to a mean plane located midway 

between the diagonals of the element, resulting in a planar quadrilateral. 

The 12x12 stiffness matrix is then derived for this quadrilateral and then 

transformed to the physical grid points. The 12x12 mass matrix is calculated 

using a lumped formulation.  The thermal vector is of dimension 12x1. 

The design variable for the quadrilateral element is the element 

thickness. Separate design variables are available for each ply direction if 

a composite material is being designed. The comments on composite design just 

discussed for the triangular element apply to this element as well. If the 

element is designed, user specified values of the nonstructural mass are 

ignored. 

52 



5.1.4.4 The Quadrilateral Shell Element 

The QUAD4 element In ASTROS was provided to allow for the inclusion of 

bending effects in a quadrilateral element and to give a general treatment of 

composite materials.  Since there was no QUAD4 element in COSMIC/NASTRAN, it 

was necessary to develop this element.  Appendix A provides a detailed theo- 

retical treatment of this development, with an overview provided here. 

The formulation for the QUAD4 isoparametric quadrilateral element 

incorporates a bilinear variation of geometry and deformation within the 

element. The QUAD4 element has 5 degrees of freedom (DOF) per node, i.e., the 

stiffness for rotation about the normal to the mid-surface at each node is not 

defined. Furthermore, it is assumed that plane sections remain plane and that 

the variation of strains through the thickness is linear. Direct strain 

through the thickness is neglected (assumed to be zero). 

The QUAD4 element may be used to model either membrane or bending 

behavior, or both. Transverse shear flexibility may be requested as well as 

the coupling of membrane and bending behaviors using nodal offsets or linear 

variation of material properties through the thickness. In addition, the 

QUAD4 element is capable of representing laminated composite materials, with 

an option to compute interlaminar shear stresses and layer failure indices. 

The transverse shear stiffness is numerically conditioned to enhance 

the accuracy of the element for a wide range of modeling practices including 

very thick or thin elements, high aspect ratio elements and skewed elements. 

Numerical conditioning of the out-of-plane shear strains is discussed in 

Appendix A. 

QUAD4 provides lumped or, optionally, consistent mass matrices.  The 

equivalent pressure and/or thermal loads are also calculated.  Thermal effects 
i 

are accounted for in the element stress and force recovery.  ' 

Design sensitivity matrices, constraints and gradients of constraints 

are computed for use in the structural optimization procedure. The element 

membrane thickness or, for composites, individual layer thickness are the 

design variables. Only membrane stiffness sensitivity is used in the optimi- 

zation procedure. 
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5.1.5  Solid Elements 

Three isoparametric hexahedron solid elements have been implemented in 

ASTROS.  These are the 8 noded IHEX1, the 20 noded IHEX2, and the 32 noded 

IHEX3.  These three elements are essentially identical to the COSMIC/NASTRAN 

elements of the same names (see Subsection 5.13 of Reference 1).  Typically, 

the IHEXi elements would be used to model geometrically complex thick-walled 

components. 

Solid elements cannot be designed due to their not having any dimen- 

sional parameters such as thickness or cross sectional area, which can be 

modified without violating inter-element compatibility. Nevertheless, these 

elements may still be utilized in optimization runs although they, themselves, 

will not be designed. 

The "isoparametric" designation follows from the fact that the same 

interpolating functions are used for both the element geometry and the element 

deformation. The interpolating functions are either linear, quadratic, or 

cubic, and are used to represent the IHEXI, IHEX2, and IHEX3 elements, respec- 

tively. These functions are chosen so as to ensure interelement compatibili- 

ty and i.o catisfy the constant-strain convergence criteria. 

The stiffness, mass and load equations for the IHEXi elements are 

derived using the principle of virtual work.  The equations are then evaluated 

by application of Gaussian Quadrature.  The number of integration points used 

to evaluate the stiffness, mass and load matrices defaults to 2x2x2 for the 

linear element, 3x3x3 for the quadratic element, and 4x4x4 for the cubic 

element.   Optionally, other integration mesh sizes may be specified.  All 

computations are performed in the basic coordinate system, and the resulting 

matrices are then transformed into the global coordinate system in preparation 

for the element matrix assembly. 

Element stresses, strains, and strain energies are calculated based on 

the displacements determined in the global analysis of the structure. The 

stresses and strains are calculated in the basic coordinate system at the 

eight corner points and at the center of the element. Stresses and strains 

are calculated also at the center of each edge in the case of IHEX2 and IHEX3 

elements. In addition, the principal stresses and strains, principal direc- 

tion cosines, and mean and octahedral stresses and strains are computed at 

each of the above points. 
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5.2    APPLIED LOADS 

Three types of loads can be applied in a static analysis: (1) mechan- 

ical or concentrated external loads, (2) gravity loads, and (3) thermal loads. 

These load types may be applied separately or in combination. The last two 

load types have the potential to vary with the structural design and this fact 

is recognized in the generation of these loads. Each of the load types is now 

briefly discussed. 

5.2.1   Mechanical Loads 

External loads are applied to the structural model in ASTROS through 

the use of input entries which define forces, moments and pressure loadings. 

The forces are applied at specified grid points and in a direction either 

defined explicitly in the input or by reference to two grid points which 

define a direction along which the force acts. Similarly, moments are applied 

at specified grid points and in a direction either defined explicitly in the 

input or by reference to two grid points which define an axis about which the 

load is applied. 

Pressure loads are defined by specifying a pressure and an area over 

which it acts. The area is specified by reference to three or four grid 

points. In the case of three grids, the area of the resulting triangle is 

computed and the resulting force is distributed equally to the three grids. 

For the case of four grids, the surface is defined by two sets of overlapping 

triangles, half the pressure is applied to each set and the triangle algorithm 

is then applied. Input data descriptions for the FORCE, MOMENT, FORCEl, 

M0MENT1, and PLOAD in the ASTROS User's Manual entries contain further infor- 

mation on the preparation of this static loads data. 

5.2.2  Gravity Loads 

The gravity load is specified by a user defined acceleration and a 

direction. This acceleration vector is then applied to each grid point's 

translational degrees of freedom to obtain a global acceleration vector. No 

rotational accelerations are applied. The gravity loads are then computed by 

multiplying the mass matrix by this acceleration vector. Subsection 5.4 

discusses the special treatment of gravity loads when the mass matrix is a 

function of the design variables. 
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5.2.3  Thermal Loads 

A basic capability to consider thermal effects has been implemented in 

ASTROS through the specification of temperatures at grid points. For comput- 

ing the thermal loads, this temperature is differenced from a reference 

temperature that is specified by the user for each material that is used in 

the structure. 

For each finite element, a thermal load sensitivity vector is generat- 

ed, as discussed in Subsection 5.1. If the element is designed, this vector 

is computed for the fixed value of the local design variable. Subsection 5.4 

discusses the assembly of these thermal load components into a global load 

vector. 

5.3    STRENGTH CONSTRAINTS 

As discussed in Subsection 2.2.2.1, ASTROS supports three basic forms 

of element dependent strength constraints: (1) von Mises stress, (2) Tsai-Wu 

stress, and (3) principal strain. The following structural elements may be 

constrained: 

BAR von Mises 
QDMEM1 all forms 
QUAD4 all forms 
ROD von Mises, Principal Strain 
SHEAR von Mises, Principal Strain 
TRMEM all forms 

The Tsai-Wu constraint is not available for the one-dimensional 

elements and the shear panel since these elements support only isotropic 

material properties. The principal strain constraint for the bar has not been 

implemented. The solid elements (IHEX1, 2, and 3) may not be constrained in 

the design task and the scalar spring element's stress constraint is imposed 

as a displacement constraint. The principal strain constraint generates two 

constraints for each element or composite laminate, one for each principal 

strain value. All other constraints generate one constraint per finite 

element, layer of a composite element, or stress computation point within an 

element. 

Just as in the case of stiffness and mass matrices, it is desirable to 

compute the design invariant terms useful in stress/strain computations in 

order to speed processing within the design iteration loops.  In ASTROS, this 
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takes place in the EMG module in which the matrix [SMAT], that relates stress 

or strain components for each constrained element to the global displacements, 

is formed. Note that it is not necessary to design an element in order to 

impose a stress or strain constraint. The [SMAT] matrix is very similar to 

that formed in MSC/NASTRAN for the matrix method of stress recovery in dynamic 

response analyses (see Subsection 4.7 of Reference 15). It is used both to 

evaluate the strength constraints and to evaluate the constraint sensitivities 

to the global displacements according to the following expression: 

[a]     -     [SMAT]T (ug) (5-5) 

where [a] represents the element stress or strain components which are then 

ccnbined to compute the particular strength constraint. Obviously, a similar 

combination of [SMAT] columns is used in computing the constraint sensitivity. 

The following subsections present the details of the [SMAT] calculations for 

each of the structural elements. 

5.3.1  Bar Element 

The bar element stress constraint matrix calculations are performed 

much like those in the standard element data recovery as shown in Subsection 

8.2 of Reference 3. The only difference is that the combinatorial operations 

relating the element static forces to the stresses are performed on the 

matrices relating the forces to the displacements rather than on the forces 

themselves. The 6x1 vector of element forces, [P] , is related to the dis- 

placements by: 

[P]  -  [Sa] (ua) + [Sb] {ub} (5-6) 

where a and b denote ends A and B of the bar element, respectively. Merging 

this expression to avoid distinguishing between nodal displacement vectors 

gives: 

[P]  • •  [Sa | Sb] {^S)  - 
ub 

[S] lug) (5-7) 

The 6x12 matrix [S] is computed from the element stiffne ss matrix as shown in 

Refe rence 3. Note that the effects of thermal loads are omitted from Equation 

5-7. Unlike all other elements in ASTROS, the stress contribution due to 

thermal loads is design dependent for the bar element. This feature of the 
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bar element is not supported in ASTROS with the result that design optimiza- 

tion with constrained bar elements under thermal loads is inaccurate. The 

resultant stress constraints and constraint sensitivities are self-consistent 

but neither account for the stress-free strain arising from the thermal load. 

The bar element stresses are normally computed through combinations of 

the components of [P], the user input stress computation points C, D, E, and 

F, the moments of inertia, 11, 12, and 112 and the bar element length. In 

order to form the [SMAT] matrix, these linear combinations are instead per- 

formed on the rows of the matrix [S]. Using the notation [S±) to denote the 

itn row of [S], the [SMAT] columns relating to the stress components at ends A 

and B for the computation point defined by the user input points C^ and C2 

are: 

do C I  - CI.       C I  - C I 
—sa _ _±J2 2_1 {s5j + -L-2 2_12. (s6) (5-8) 
3u      I I  - l2 I I  - l2 

1 2   12 1 2   12 

3gcb _ C1I12 - C2T1 
3u i  i     -  i2 

12 12 

{S5}+i(S3) + y2 • yI2 
I  I     -  l2 
12 12 

(S6J-1(S2) (5-9) 

The remaining six stress components are computed in a similar manner. 

In evaluating the stress constraints, the columns of [SMAT] are 

multiplied by the displacement vectors to obtain the stress components. For 

the bar, each component then generates a single von Mises stress constraint. 

It is important to note that each bar element generates eight stress con- 

straints for every load condition and that any coincident stress computation 

points will generate redundant constraints. The bar element principal strain 

constraint is not supported. 

5.3.2  ODMEM1 Element 

The isoparametric quadrilateral membrane element stress/strain con- 

straint matrix calculations are performed much like those in the standard 

element data recovery as shown in Subsection 8.19 of Reference 3. Four 3x3 

matrices that relate stresses to the individual nodal displacements are 

computed as: 

[Si]  -  ([G] [A] [B]T [E]T)i [Ti]; i - 1, 2, 3, U (5-10) 
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where 

[G]  is the 3x3 stress-strain matrix 

[A] is the 3xb strain-displacement matrix evaluated at the intersec- 
tion of the element diagonals 

[B] is the 8x12 matrix relating nodal displacements to displacements 
in the element mean plane 

[E]  is tbs 12x12 matrix relating nodal displacements in the basic 
coordinate system to element coordinates 

[T]  is the appropriate 3x3 transformation matrix from basic to global 
coordinates 

The subscript i in Equation 5-10 denotes the appropriate matrix or matrix 

partition for the itn node. The three stress components for the QDMEM1 

element may be computed (neglecting thermal strains) from the matrices [SI 

rxy MECH 

^ [Si] {ugl} (5-11) 

which more clearly shows that [SMAT] is formed directly from the rows of [S] 

if it is rewritten as: 

•    a y 
rxy 

" ui " 

- [S! | S2 | S3 | S4 ] • "2 

KECH I "3 
u4 

- [SMAT]T (ue)    (5-12) 

The product of [SMAT] and the global displacements yield, for the QDMEM1 

element, the three stress components in the element coordinate system. If 

thermal loads are applied, these components must be decremented by the amount 

of stress arising from the thermal strains. This is accomplished by separate- 

ly storing the "thermal stress sensitivity" [St] vector for the element: 

[St]  -  [G] (a) (5-13) 

where (a) is the 3x1 vector of thermal expansion coefficients. This vector is 

then used in the stress constraint evaluation to compute the actual stress 

components as: 

"y 
rxy . 

-  [SMAT]T {uK} - [St] (T - T0) (5-14) 

TOT 
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The stress components are then used to evaluate the von Mises or Tsai- 

Wu stress constraints. The columns of [SMAT] are also used to compute the 

stress constraint sensitivities. The thermal stress terms contribute only to 

ths constraint evaluation and not to the constraint sensitivity. 

For principal strain constraints, the operations of Equations 5-10 

through 5-12 are carried out in an identical manner except that the stress- 

strain matrix [G] is omitted from Equation 5-10.  This results in the computa- 

tion of the three strain components for the element rather than the stress 

components.   There is no correction required for thermal loads since the 

thermal strains are included in the calculation of the constraint. 

5.3.3  0UAD4 Element 

The quadrilateral plate bending element stress/strain constraint 

matrix is formed from the stress-strain and/or strain-displacement and the 

appropriate coordinate system transformation matrices presented in Appendix A. 

The three components of stress or strain in the element coordinate system at 

the origin of the element coordinate system at the user specified fiber 

distances are thus related to the nodal displacements. These terms form the 

columns of the [SMAT] matrix. 

If thermal loads are applied, however, the stress components must be 

decremented by the amount of stress arising from the thermal strains.  This is 

accomplished by separately storing the "thermal stress sensitivity" [St] 

vector for the element: 

[St]  -  [G] {a) (5-15) 

where {a) is the 3x1 vector of thermal expansion coefficients. 

The stress or strain components can then be computed exactly as they 

are for the QDMEM1 element, with the exception that there are two sets of 

components for each element (one for each fiber distance). Those components 

are then used to evaluate the von Mises, Tsai-Wu or Principal Strain con- 

straint. 

For designed composite laminates, each ply is treated as a separate 

(membrane only) element with the result that each layer is treated exactly 

like a QDMEM1 element. For other laminates, the stress or strain constraint 

is applied to the element using the equivalent laminate properties and so is 

treated exactly as are metallic QUAD4 elements. 
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5.3.4  ROD Element 

The rod element stress/strain constraint matrix calculations are 

performed much like those in the standard element data recovery as shown in 

Subsection 8.27 of Reference 3. The two sets of 3x3 matrices relating stress- 

es to the individual nodal translations and rotations are computed exactly as 

shown in the reference giving four matrices: 

t 
[Sa]  -  Stress-displacement matrix for translations at end A 

t 
[St,]  - Stress-displacement matrix for translations at end B 

r 
[Sa]  -  Stress-displacement matrix for rotations at end A 

r 
[Sfc]  -  Stress-displacement matrix for rotations at end B 

The tensile and torsional stress constraint sensitivity components for the rod 

element are then formed as 

(5-16) l^MECH  ~ [Sa Sbl 
uL 

ut 
b 

lr) [Sa Sbl 
ur 

(-ft) 
ur 
b 

(5-17) 

which show [SMAT] to be formed directly from the rows of [S]. In the case of 

thermal loads, the tensile stress values computed from the product of [SMAT] 

and the global displacements must be decremented by the amount of stress 

arising from the thermal strain. This is accomplished by separately storing 

the "thermal stress sensitivity" [St] vector for the element: 

where 

[St]  ~ QE (5-18) 

E   is the Young's Modulus for the material 

a   is the thermal expansion coefficient 

This vector is then used in the stress constraint evaluation to compute the 

actual stress component as: 

aT0T ~  [SMAT]T{ug) - aE (T - T0) (5-19) 
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Both the tensile and torsional components are used to evaluate the von 

Mlses stress constraints. The columns of [SMAT] are also used to compute the 

stress constraint sensitivities. The thermal stress terms contribute only to 

the tensile stress component in the constraint evaluation and not to the 

constraint sensitivity. 

For principal strain constraints, the operations of Reference 3 that 

generate the [S] matrices are modified to compute the strains rather than the 

stress components. The tensile and torsional strain components are used to 

compute the two principal strain values with no correction for thermal loads 

since the thermal strains are included in the calculation of the strain 

constraints. 

5.3.5   Shear Panel 

The shear panel stress/strain constraint matrix calculations are 

performed much like those in the standard element data recovery as shown in 

Subsection 8.3 of Reference 3. The average stress along the first side of the 

shear panel is computed as: 

*        t 
SA ~  S [Si] |Ui) (5-20) 

where 

[S^]     are the stress/strain displacement matrices for each node as 
shown in Reference 3. 

t 
[ujj     are the nodal translations in global coordinates . 

From S^, the corner stresses are computed based on four scalar coefficients P^ 

whose values are computed to account for parallelogram, trapezoid or general 

quadrilateral geometries. The average shear stress or strain, which is used 

in ASTROS for the constraint evaluation, is then computed as the average of 

the four corner stress/strain values. In order to compute the [SMAT] terms, 

the corner stress calculations and averaging operation were merged with the S^ 

computations to give: 

PPPPPP fUl 
- 1 (-2 + -1 + -L2 + -J-i)[s1 I s2 I s3 | 84] \  u2 

P2    P2 I u3 
3     4 U4 

Pi  ?2 
(5-21) 
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The product of [SMAT] and the global displacements yield, for the SHEAR 

element, the average stress or strain for the shear panel. The shear panel 

does not support any thermal strains so no corrections are needed to the 

stress value. The average stress or strain is then used to evaluate the von 

Mises or Principal Strain constraints. 

5.3.6  TRMEM Element 

The constant strain triangular membrane element stress/strain con- 

straint matrix calculations are performed much like those in the standard 

element data recovery as shown in Subsection 8.4 of Reference 3.  The three 

3x3 matrices relating stresses to the individual nodal displacements are 

computed as: 

- [G] [CJi [E]T [Til; i - 1, 2, 3 

where 

[Si]  -  [G] [CJi [E]1 [Ti]; i - 1, 2, 3 (5-22) 

[G]  is the 3x3 stress-strain matrix 

[C]  is the appropriate 3x2 strain-displacement matrix 

[E]  is the 3x2 matrix relating nodal displacements in the basic 
coordinate system to element coordinates 

[T]  is the appropriate 3x3 transformation matrix from basic to global 
coordinates 

The subscript i in Equation 5-22 denotes the appropriate matrix or matrix 

partition for the itn node. The three stress components for the TRMEM element 

may be computed (neglecting thermal strains) from the matrices [Si] as 

xy MECH 
"  ^ [Si] (ugi) (5-23) 

which more clearly shows that [SMAT] is formed directly from the rows of [S^ 

if it is rewritten as: 

xy 
- I Sx | s2 | s3 ] . 

MECH 

ul 
u2 

L u3 J 
(5-24) 

The product of [SMAT] and the global displacements yield, for the TRMEM 

element, the three stress components in the element coordinate system. If 

thermal loads are applied, these components must be decremented by the amount 
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of stress arising from the thermal strains. This Is accomplished by separate- 

ly storing the "thermal stress sensitivity" [St] vector for the element: 

[St]  -  [G] (a) (5-25) 

where (a) is the 3x1 vector of thermal expansion coefficients. This vector is 

then used in the stress constraint evaluation to compute the actual stress 

components as: 

(?) 
I rxv J 

-  [SMAT]T (ug) - [St] (T - T0) (5-26) 

xy JTOT 

The stress components are then used to evaluate the von Mises or Tsai- 

Wu stress constraints. The columns of [SMAT] are also used to compute the 

stress constraint sensitivities. The thermal stress terms contribute only to 

the constraint evaluation and not to the constraint sensitivity. 

For principal strain constraints, the operations represented by 

Equations 5-22 through 5-24 are carried out in an identical manner except that 

the stress-strain matrix [G] is omitted from Equation 5-22. This results In 

the computation of the three strain components for the element rather than the 

stress components. There is no correction required for thermal loads since 

the thermal strains are included in the calculation of the constraint. 

5.4    GLOBAL ASSEMBLY OF MATRICES 

This section describes the assembly of the global mass, stiffness and 

applied loads matrices. The automated design capability in ASTROS makes it 

desirable to perform this assembly in two stages. In the first stage, matri- 

ces are assembled that are invariant with respect to the global design varia- 

bles. In the second stage, these Invariant matrices are multiplied by the 

current values of the global design variables to give the final matrices. 

Mathematically, for the stiffness matrix, the first stage entails forming a 

stiffness design sensitivity matrix of the form: 

nle 
[DKVJi  -  S Pij [KEE]j (5-27) 

j-1   J      J 

where 

DKV  -    the stiffness design sensitivity matrix 

Pij  -    the scalar linking factor defined in Equation 2-6 
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KEE • the element stiffness matrix 

1 - subscript for the ltn global design variable 

j - subscript for the jtn local design variable 

nle - number of local variables linked to the global variable 

The DKV are global matrices and have rows and columns equal in number 

to the degrees of freedom in the g-set and are, therefore, potentially large, 

sparse matrices. These matrices are stored in ASTROS as unstructured entities 

with an associated relation providing information that identifies the degrees 

of freedom with which the global design variable is associated. 

An equation similar to that of Equation 5-27 is used for the mass 

matrix: 

nle 
[DMV]t  -  Z Pi1 [MEEh (5-28) 

j-1  J     J 

where 

DMV  -    the mass design sensitivity matrix 

MEE  -    the element mass matrix 

Since the DKV and DMV matrices are independent of the values of the 

global design variables, the assembly process indicated in Equations 5-27 and 

5-28 needs to be performed only once for a given design task.  Another motiva- 

tion for forming these matrices is that they are required in the sensitivity 

calculations. 

Inside the design loop, a second assembly takes place to form the 

final global matrices: 

:>W 
ndv ndv QJ 

E vi   [BKV]| +  Z V4  [DKBVh (5-29) 
i-0 j-1  J       J 

ndv 
[Mgg]  -  I *i [DMV]t (5-30) 

where the M, K, and v terms are defined in Subsection 4.3, ndv is the number 

of global design variables and i and j identify the design variable. The 

second summation of Equation 5-29 corresponds to the special case of bar 
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elements as described in Subsection 5.1.3.2.  The Equation 5-4 relation, in 

particular, indicates the source of this term and 

nke       £ 
DKBVi -  2 pij[KEE]j 

If there are no bending effects, this DKBV term is, of course, not present. 

A further note is the specification in the assembly operations of a 

zeroth design variable. This refers to the elements that have been left 

undesigned and the associated VQ is a pseudo design variable that has a value 

of unity. 

The global stiffness and mass matrices are typically sparse and 

strongly banded; i.e., the nonzero terms are located close to the matrix 

diagonal. These facts are utilized by both the data base in its handling of 

sparse matrices and by the large matrix utilities when these matrices, and 

their partitioned forms, undergo addition, multiplication, decomposition, etc. 

The assembly of the global loads matrix takes a similar path. Outside 

the design loop, design invariant portions of the loads are assembled once as 

part of the preface operations. For the mechanical loads, there is no design 

dependent portion so that the entire assembly process essentially takes place 

at this time. The one exception to this is that ASTROS retains the NASTRAN 

concept of "simple" and "combined" loads that permit the user to specify a 

total loading condition that is the sum of several load vectors: 

{Pg}  - S0 S Si (L)i (5-31) 

where P is the total load vector, SQ and Si are scalar multipliers and Lisa 

simple load.  If this summation is required, it is performed inside the design 

loop to accommodate the possibility that a simple load may be required in more 

than one P vector. 

The gravity and thermal loads are clearly design dependent. The 

gravity loads are treated by first constructing design independent load 

vectors of the form: 

{DPGRJi -  [DMVJi {ag} (5-32) 

where DPGR is the gravity sensitivity vector, ag is the global applied accel- 

eration vector and DMV"i and i have been previously defined. 
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The global thermal sensitivity vectors are a somewhat complicated 

combination of the element thermal vectors, Tee, the grid point temperatures, 

TGRID- and the material reference temperatures, TREF- 

nle 
(DPTH)i -  Z P1J [Tee]j <TGRID - TREF)j (5-33) 

This notation is merely representational, since the actual operations entail 

significant bookkeeping operations involving relations and unstructured 

entities. 

The simple gravity and thermal loads are then assembled as: 

ndv 
pg>GRAV -  Z VJ. {DPGR)i (5-34) 

ndv 

(Pg>THERM " JJo Vi <DPTH>i <5"35> 

As mentioned, these simple loads can be combined with other 

loads. In addition, a given boundary condition may have a number of subcases 

so that the load vector becomes a load matrix with g-size rows and nlc (number 

of load cases) columns. 
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SECTION VI 

STATIC ANALYSIS 

The static analysis capability in ASTROS provides the capability to 

analyze and design linear structures subjected to time invariant loading. 

This section emphasizes the matrix algebra that is used in this analysis. 

This algebra is straightforward and should be familiar to most analysts, but 

it is described in some detail here since it is basic to the operation of the 

procedure, particularly as it applies to the standard MAPOL sequence described 

in Appendix C of the User's Manual.  The presentation given here includes 

inertia relief terms throughout, even though this is a somewhat esoteric 

concept in structural analysis.  It is included both because it provides the 

most general formulation and because it foreshadows the discussion of static 

aeroelasticity where inertia relief is central to the discussion of free 

flying aircraft.  The notation of Subsection 4.3 is used extensively in this 

discussion and only the terms which have not been previously defined are 

defined here. 

6.1    MATRIX EQUATIONS FOR STATIC ANALYSIS 

The equilibrium equation for ASTROS static analysis in the g-set are. 

[Kgg]{Ug) + [MggliUgJ  -  (Pg) (6-1) 

Although the loads and the responses are denoted as vectors, they can 

also be expressed in matrix terms if more than one subcase is present. 

Following the hierarchy of Figure 8, the g-set is partitioned into m- 

and n-sets. The relationship between these dependent and independent degrees 

of freedom is given by matrix Tmn: 

<um)  ~  (TnmHun) (6-2) 

An identical relation holds for the accelerations. 

These multipoint constraints produce forces on the structure which are 

designated {cg}.  The work performed by these forces must be, by definition, 

equal to zero.  Subsection 5.4 of Reference 1 demonstrates that this work 

consideration leads to a condition that the constraint forces have an equation 

similar to Equation 6-2: 
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(cg) 
Lmn 

«qm) (6-3) 

where the {qm} are unknown forces that are included in the solution process. 

Equations 6-1, 6-2, and 6-3 can be combined to give: 

Tin Rnm Amn 

Kmn ^mn -I 

'mn "* 0 

un 

*m 

I ^m J 

-  + 

^nn ^nm 

^mn ^mm 
"n 

*   « 
•• 

— 

r p  i rn 

Pm 

T   -T Lmn x 
. TD . 

. o , 

where the bar over the certain terms refers to the elements in the partitions 

of g-size matrix before reduction to the n-set. This notation is used 

throughout this section. These equations can be solved for i^ and UJJ in terms 

of ^m. um. and um to give: 

[Knn)(un> + [Mnnl^l  "  <Pn> (6-4) 

l^nnl  "  l^nn + ^nm^mn + ^mn^nm + ^mm^mn) 1 

lMnnl  ~  tMnn + MnmTmn + Tmn(Mmn + MmraTmn)1 

(Pn)   -  (Pn + TmnPm) (6-5) 

The next set of reductions involve the forces of single-point con- 

straint.  These constraints are of the form: 

(us)  -  (Ys) (6-6) 

The accelerations associated with these degrees of freedom are zero. 

If these constraints are placed in Equation 6-4, the partitioned 

equations are: 

Kff Kfs 1 uf 
1 • + 

Ksf Kss - I Ys J 
Mff Mfs 

Msf Mss 

Uf 

0 
_ 

Pc 
(6-7) 

and the reduction to the f-set is done by retaining the first row of Equation 

6-7: 

[KffJIUf] + [Mff]|Uf)  -  <Pf) (6-8) 

70 



where 

lPf)  -  (Pf) - [Kfs](Ys> (6-9) 

The reduction to the a-set involves further partitioning of Equation 

6-8 to give: 

^aa ^ao 

^ao  ^oo J 

• + 
**aa Mao 

L ^ao ^oo 

r "    *\ ua f   P      1 ra 
< •            a            " 

•• 
I uo J I  Po J 

(6-10) 

In a manner consistent with Guyan reduction, the mass matrix is 

reduced using a static condensation transformation of the mass matrix to 

relate the omitted and retained degrees of freedom: 

<u'o>  "  [Roo Koa] 
{**]     "  [G°] {"*] (6~U) 

The stiffness reduction is performed using the exact form: 

-1 -1 
(u0>  -  [Kao]   (P0) - [K00 Koa] (ua) (6-12) 

These reductions can be applied with Equation 6-10 to give: 

[Kaa] (ua) + (Maa] (ua>  -  (Pa) (6-13) 

where 

[K aa t^aa + ^ao G0] 

(Pa) (Pa) • [Go! lpo) (6-14) 

[M aa. [Maa + Moa G0 + G0 Moa + G0 M00 G0) 

We need to emphasize that the Guyan reduction of Equation 6-13 is 

approximate in that deformations due to inertia forces applr'ed to the omitted 

degrees of freedom are neglected. The specification of the a-set degrees of 

freedom is therefore critical and places a burden on the user to take care in 

this specification. The dynamic reduction technique, described in Subsection 

7.1, provides an alternative that is less demanding of the user. A final 

point on the reduction to the a-set is that the reduction of Equation 6-13 is 

exact if there are no mass terms.  Therefore, if a modal analysis and a static 
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nalysis, without inertia relief, share a boundary condition, the static 

nalysis results will be the same as if no reduction took place and the modal 

nalysis can benefit from the efficiency considerations associated with a 

educed size eigenanalysis. 

With the matrices in the a-set, the final partition is to the I -   and 

•sets: 

Hi    Hr 

Krjj  Krr _ 

ui 
• + 

f "     1 1 u* f H 1 < _ 

[ "r J I Pr J 
(6-15) 

Mf£  Mfr 

MrjJ Mrr 

The r-set contains degrees of freedom equal in number to the number of 

igid body modes in the structure. ASTROS differs from NASTRAN in the way the 

-set displacements are calculated, and therefore, in the solution methodol- 

gy. In NASTRAN, the r-set displacements are arbitrarily set to zero while in 

STROS the a-set displacements are determined by requiring that these elastic 

eformations be orthogonal to the rigid body motions. In terms of internal 

oads, these two approaches are equivalent since only the elastic deformations 

roduce these loads. The orthogonality condition has been imposed to make the 

nertia relief analysis consistent with the static aeroelastic trim analysis, 

bich requires this orthogonality to produce aerodynamic stability derivatives 

hat are independent of the degrees of freedom included in the r-set (see 

ubsection 9.1). The static aeroelastic capability used in MSC/NASTRAN 

Reference 16) provided the basis for this concept. 

A consequence of this revised formulation is that inertia relief loads 

lust always be included in the ASTROS analysis whereas NASTRAN can solve for 

lastic deformations for free bodies without considering the mass terms. This 

s in consequence of the orthogonality condition, which requires the mass 

latrix in its specification. The NASTRAN formulation could be used in ASTROS 

iy a modest modification to the standard MAPOL sequence. 

With these remarks, the ASTROS methodology for solving Equation 6-15 

tarts from a determination of the rigid body mode shapes.  These shapes can 

>e determined from a direct consideration of the geometry of the structure, 

iut they are determined in NASTRAN and ASTROS by solving for the displacements 

if an unloaded structure using the stiffness matrices: 

(uf)  -  -[Kft]'
1 [K|r] (ur) (6-16) 
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with 

[D]  "  -[K^T1 [K|r] (6-17) 

designated the rigid body transformation matrix. Since the accelerations 

include only rigid body motions, it is possible to specify a relationship for 

the accelerations of Equation 6-15: 

fttf)  -  [D] {'ur) (6-18) 

The orthogonality constraint between elastic deformations and rigid body 

motions is specified by: 

I] 

Mu Mir 
f                  \ 

"a Mrr . ur 

-  (0) (6-19) 

If Equation 6-18 is substituted into Equation 6-15 and Equation 6-19 is 

adjoined to these equations, the following relationship results: 

K|£        Kir      M£iD + Mlr j f u| j     fPj' 

Krf        Krr      Mr£D + Mrr  • ur '    = - Pr «  (6-20) 

DTMit + Mrj  D
TM*r + Mrr     0       [ ur J     [ 0 

If (a) the first row of this equation is multiplied by D, (b) added to the 

second, and (c) the second and third rows arc interchanged, a simplified form 

of Equation 6-20 results: 

K it it*, MWD *  Mir 

0 • ur • = • 

ITlj- 
• • 
Uv 

where 

DTM^   + MrJj     DTM£r + Mrr 

0 0 

[DTM£jjD +  DTM|r + MrJjD + Mrr] 

n 
0 

[DTPJJ + Pr 

•  (6-21) 

(6-22) 

is the rigid body mass matrix.  The 31 term of the left-hand matrix of Equa- 

tion 6-21 is zero based on the definition of the D matrix given in Equation 6- 

17.  The 32 term, which is 

[DTKjjr + Krr] (6-23) 

is zero because it represents the work performed on the structure when it 

undergoes a rigid body displacement. 
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The third row of Equation 6-21 can be solved for the accelerations in 

le r-set and these can then be substituted into the first two rows to solve 

Lrectly for (ua), the elastic deformations in the a-set.  Equation 6-18 is 

sed to recover the accelerations in the £-set, which are then merged with the 

-set accelerations to give {ua}. 

Before continuing the recovery process, it should be noted that the 

slution process when no inertia terms are included is simply (from Equation 

-13) 

[Kaal <ua>  -  (Pa> (6-24) 

id it is possible to solve for (ua) directly. 

Once the displacements and accelerations have been computed in the a- 

2t, it is a simple matter to recover to the g-set. The o-set accelerations 

re recovered directly using Equation 6-11: 

«W©1  ~  [G0] (ua) (6-25) 

lile the o-set displacements recovery first requires that the applied loads 

2 modified to include the inertia effects: 

i 
<Po>  ~  - («oo u'o + Moa «a>  -  [IB] {ua) (6-26) 

lere 

[IFM]  -  [M00 G0 + Moa] (6-27) 

juation 6-12 then gives 

,       i 
1«©J  ~  [Kool"1 <po + po) + [Gol <ua> (6-28) 

Merging the a- and o-set degrees of freedom results in f-set displace- 

irxts and accelerations. The s-set accrlerations are zero and the displace- 

;nts are contained in the (Ys) vector of Equation 6-6 so that recovery of n- 

2t degrees of freedom is immediate. Finally, the m-set dependent displace- 

2nts and accelerations are recovered using Equation 6-2 and those are merged 

Lth the n-set vectors to give the displacements in the g-set. 

.2    CONSTRAINT EVALUATION 

Static analyses have the potential of producing displacement and 

trength constraints. Given the global displacement vector recovered in the 

revious subsection, it is possible to evaluate these constraints directly. 
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Separate modules in ASTROS pvaluate the two types of constraints.  The dis- 

placement constraints can be evaluated directly using the definition given in 

Equation 2-18.   Strength constraints are evaluated in a two step process 

wherein the stress (or strain) components are first obtained by performing the 

matrix multiply of Equation 5-5 

[a]     =  [SMAT]T (ug) (6-29) 

and then the constraints themselves are computed, based on the constraint type 

and the element type, as discussed in Subsections 2.3 and 5.3. It can perhaps 

be appreciated that the majority of the effort involved in evaluating these 

constraints is of a bookkeeping nature. 

6.3     SENSITIVITY ANALYSIS 

The final portion of the static analysis is the determination of the 

sensitivity of the constraints to changes in the design variables. The static 

analysis constraints can be expressed as functions of the design variables and 

the static response: 

g -  f(u,v) (6-30) 

The sensitivity of the jtn constraint to a change in the itn design 

variable is given by 

df.       3fT du 
(6-31) th df.     afT 3u 

3v£ 3v^         3u avi 

Static constraints are not directly dependent on the design variable so that 

the afj/av^ term is zero for this discipline. In fact, the only ASTROS 

constraint type that has a nonzero value for thi* term is the thickness 

constraint. Since this has not been discussed previously, thickness con- 

straint sensitivities will be briefly discussed here. 

Minimum thickness constraints are represented in ASTROS as 

g - 1.0 - t/tmin (6-32) 

where t is the local variable value and tm^n is the prescribed lower bound on 

the thickness. As indicated in Subsection 2.3, the local variable is an 

algebraic sum of the global variables, so the jtn thickness constraint can be 

written in terms of the global design variables as: 
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ndv 

Sj 1.0 2 Pii viA 
i-1 

min (6-33) 

the sensitivity of this constraint to the ith design variable is then simply 

—      "Pij/tmin (6-34) 

A similar derivation can be given for the maximum thickness constraints which 

are expressed as 

6 t/t max - 1.0 (6-35) 

Returning to Equation 6-31, strength constraint sensitivities are 

evaluated using only the second term. The df/du. portion is computed using 

straightforward chain rule operations. Calculation of this term for displace- 

ment constraints and von Mises stress constraints are given here as examples 

that should be adequate for motivating how the term would be evaluated for the 

remaining constraints. 

Upper bound displacement constraints are defined in ASTROS as (see 

Equation 2-18) . 

ndisp 
g -   2  ajUi/DALL - 1.0 (6-36) 

i-1 

where DALL is the allowable upper bound. 

The df/3u term is a vector that is computed in the global analysis 

set. The only nonzero terms in this vector are associated with the degrees of 

freedom of the displacements included in the constraint. These values are 

a£/DALL. 

Von Mises constraints are defined in ASTROS as (see Equation 2-8) 

The 3f/3u term for this constraint is derived to be 

1.0 (2-8) 

M - 
du 
 1   r (2ox  _ _ox_\   d£x 
2(g + 1.0)  [ |i?  S1S2J  3u 

+  (2fX - gx ] daw +  2TXV 3rxv " 
IS?  S1S2J 8u      ~F? du    . 

(6-37) 
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Equation 6-29 is used to supply the gradients of the stress components with 

respect to the displacements. They are columns of the SMAT matrix. The 

overall df/du vector is therefore the weighted sum of up to three columns in 

the SMAT matrix depending on the terms used in the constraint. 

It would appear that the remaining task to complete the sensitivity 

analysis is the computation of the 3u/3v vector. In many cases, this is true, 

but ASTROS also contains an alternative analysis procedure that does not 

require the explicit calculation of this vector. These two alternatives, 

designated the gradient and the virtual load methods, are now described in a 

qualitative manner. This is followed by a more detailed formulation of the 

methods as they are implemented in ASTROS. References 17 and 18 provide a 

more general formulation and discussion of the two methods. 

The basic equation for static analysis is 

[K] {u}  -  {P} (6-38) 

This equation is written without regard to displacement set, hence, 

its qualitative nature. The sensitivity of the displacements to a design 

variable can be written as 

[K1 {i^1   "   (§?> " iftl ^ <6-^) 

Note that Equations 6-38 and 6-39 have the same stiffness matrix on 

the left-hand side and this similarity is exploited in ASTROS by storing the 

decomposed stiffness matrix when it is computed during the solution of Equa- 

tion 6-38 and then retrieving this matrix for the solution of Equation 6-39. 

This straightforward approach to obtaining du/dv is designated the gradient 

approach in ASTROS terminology. 

The alternative, virtual loads method, solves for the virtual dis- 

placements that would result if the df/du vector were applied as a load to the 

structure: 

[K] (w)  - (di/dn) (6-40) 

where w is the virtual displacement and, again, the similarity of Equation 6- 

38 to Equation 6-40 is used to avoid unnecessary decompositions of the stiff- 

ness matrix. If Equations 6-31, 6-39 and 6-40 are combined, the constraint 

sensitivity can be written as 
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fig   -    {w)T \{2£) -  [8&]  {u}l (6-41) 
av [ av       av       J 

If inertia relief effects are included in the static analysis, the 

virtual load approach to sensitivity analysis does not apply since the [K]"l 

[K] - [I] simplification required in Equation 6-41 is no longer possible. The 

gradient approach is therefore always used for the somewhat esoteric task of 

designing a structure while including inertia relief effects. For the more 

standard static analysis without inertia relief, the standard MAPOL sequence 

selects the approach that requires the fewer forward-backward substitutions; 

i.e., whether Equation 6-39 or 6-40 has the fewer right-hand sides. For 

Equation 6-39, the number of right-hand sides is equal to the number of active 

load cases times the number of design variables. For Equation 6-40, the 

number of right-hand sides is equal to the number of active displacement 

dependent constraints. It is difficult to generalize as to which approach 

will be chosen in a typical, real world design task, but it should be obvious 

that, for a large problem, one method could be significantly more efficient 

than the other. The actual calculations used in ASTROS for these two ap- 

proaches are now given. 

6.4.1  The Gradient Method 

As indicated above, the gradient method of sensitivity evaluation is a 

straightforward application of derivative operations. In ASTROS, the formula- 

tion starts from taking the derivative of Equation 6-1 with respect to a 

design variable: 

au aii ap BK aM 
—6}  +   [MK„]   (—2)  -  {—&)   -   [_6g]{uE)   -   [—i 
av &&    av av av      6 av [KggJ{T-S)  +   tMKgl   {—g)  '  <—S)   "   [—66]{uK}   -   [—&S]   (u£)   (6-42) 6&       fiv &6 A\r Air Sir o a-ir & 

This equation has been written with the known terms on the right-hand 

side and the unknowns are the sensitivities of the displacements and accelera- 

tions in the g-set. Equation 6-42 is solved by going through a reduction and 

recovery process much like that given in Subsection 6.2 for the solution of 

Equation 6-1. In fact, the left-hand side reductions of the mass and stiff- 

ness matrices are identical in the two solutions so that these reductions are 

not repeated here, nor are they repeated in the ASTROS procedure. 

The first term on the right-hand s^de is the sensitivity of the 

applied loads to the design variables.  Subsection 5.4 shows that only gravity 
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and thermal loads can vary with the design and that the sensitivity of these 

loads to the ltn design variable Is simply 

3P 
—& 
3v^ 

3P 

8V4 

GRAV 
-  {DPGRJi 

JDPTHJi 

(6-43) 

THERM 

Similarly, the sensitivity of the stiffness matrix to the itn design 

variable is, from Equation 5-29 

3K 
-££ 

3V4 

(a-D 
-  [DKVJi + QVi    [DKBVJi (6-44) 

where the second term is zero except for the special case for the design of 

bars.  The sensitivity of the mass matrix is, from Equation 5-30 

3M 
JUL 

3vi 
:DMV]i (6-45) 

For ease of notation, the right hand side of Equation 6-42 is desig- 

nated {DP„)j[ in the following, where 

<o-l) 
{DPgli - (DPGRJi+JDPTHli+dDKVJi+avi    [DKBV]) {ug} + [DMV] jjug}      (6-46) 

The specification of this pseudo-load in other displacement sets then 

follows the previous convention of using DP to indicate the vector and the 

subscript to indicate the set. 

The inertia relief formulation of Subsection 6.1 requires a further 

sensitivity calculation. This calculation is related to the Equation 6-19 

imposition of the orthogonality of the elastic deformations to the rigid body 

displacements.  The sensitivity of this equation to a design variable is 

anu   aM. 

[D I] 

Ma  M*r 

Mr| Mrr 

3u£/3v 

3ur/dv 
- -[D I]' 

dv 

3M 

3v 

.  3M 
rl   rr 

3v 3v 

u* 
(6-47) 
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where the fact that the D matrix Is invariant with respect to the design 

variable is utilized. This equation will ultimately be included as a con- 

straint in the solution of Equation 6-42; for now, it is necessary to realize 

that Equation 6-47 creates a need for calculating 

3M 
[_££] {u„}  -  [DMVJi (u„) 
3v 

(6-48) 

This vector is designated (DMUg)^ in the following. 

The reduction of these two vectors to the n-set follows that given for 

the applied loads in Subsection 6.1: 

{DPn)i  -  (DPn)i + [Tmn]T(Pm,1 

{DMUn)j.  -  {DMUnJi + [Tmn]T[DMUB]t 

(6-49) 

The single point constraints are removed by a partition of the n-set vectors 

to give {DPf)i and (DMUfl^ while the omitted degrees of freedom contribute to 

the a-set: 

(6-50) 
{DPa)i  -  {DPa)i + [GQUDPO),. 

(DMUa)i  -  {DMUaJi + [GoKDMUoli 

These pseudo-load vectors can be further partitioned into the i- and 

r-sets and an equation equivalent to that of Equation 6-21 can be written: 

K U K|, MllD+Mi, 

DTMff+Mr£     DTMjjr+Mrr 

0 0 

DUr 

DUD r) 

DPj 

DTDMU$ +DMUr 

[  DTDP1+DPr . 

(6-51) 

where the DU vectors and their accompanying subscripts designate the sensitiv- 

ity of the particular displacement set to the itn design variable and the DUD 

vectors similarly designate the sensitivity of accelerations.  For example, 

(DU r'l {d\ir)/dvi 

The third row of Equation 6-51 can now be solved for (DUDr}i, the 

sensitivities of the accelerations in the r-set, and these can then be substi- 

tuted into the first two rows to solve directly for (DUa)^, the sensitivities 

of the elastic deformations in the a-set.  {DUD }  i-s (from Equation 6-18) 
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equal to [D](DUDr)i. Unlike the analysis equations, it is not necessary to 

further recover the accelerations since, as Equation 6-31 indicates, the 

constraint sensitivity information is only a function of the displacement 

sensitivities. Another subtle point is that the vector multiplication indi- 

cated by the second term in Equation 6-31 gives the same scalar result in the 

f displacement set as it does if the calculations are performed in the signif- 

icantly larger g-set. A substantial efficiency can then result when it is 

considered that this vector multiplication (which can have hundreds to thou- 

sands of terms) is required for the sensitivity of all the active constraints 

with respect to all the design variables. Therefore, the displacements are 

recovered up to only the f-set, which requires computing the sensitivities of 

the omitted degrees of freedom in a fashion similar to Equation 6-28. 

(DU0)i - [K00]-l[(DP0}i - [IFMKDUDaJi] + [G0]{DUa)i       (6-52) 

and {DUf}^ is obtained by merging the o- and a-set vectors. 

A remaining step is the reduction of the {df/du} vector to the f-set. 

This reduction also follows that of the applied loads so that, using the 

notation 

{DFDUgJj  =  {3fj/3ug) (6-53) 

the reductions are: 

{DFDUn)j  =  {DFDUn)j + [Tmn]T{DFDUm} (6-54) 

and (DFDUf)j is obtained irom a simple partitioning operation. 

All the terms are now in place to calculate the constraint sensitivi- 

ty. The mechanics of this calculation are rather complex since, ■'.nough this 

discussion has been in terms of calculating the sensitivity of a single 

constraint to a single design variable, the calculations are performed in 

ASTROS in a much more terse fashion. For example, the load sensitivity 

vectors for all the design variables are computed simultaneously so that the 

(DPg) vector becomes a matrix and the reduction and forward/backward substitu- 

tion processes are matrix operations. Similarly, the {DFDUg} vectors for all 

the constraints are computed and reduced simultaneously. The matrix which 

gives the sensitivities of all the constraints to all the design variables is 

[AMAT]T -  [DFDUf]
T [DUf] (6-56) 
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where AMAT has a row dimension equal to ndv, the number of global design 

variables and a column dimension equal to nac, the number of active con- 

straints. DFDU is of dimension f-size, the number of degrees of freedom in 

the f-set, by nac, and DU is of dimension f-size by ndv times nalc. The nalc 

term is the number of active load cases. The matrix multiplication indicated 

in Equation 6-56 is not conformable when nalc is greater than one. It is 

therefore necessary to perform partitioning operations inside an ASTROS module 

to subdivide the matrices into the p^'-ier conforming form. 

Note that the AMAT matrix of Equation 6-56 contains only the con- 

straints produced by the static analyses.  Thickness, frequency and aeroelas- 

tic constraint sensitivities must be appended onto this matrix before the 

redesign process can take place. 

6.3.2  The Virtual Displacement Method 

As indicated by Equation 6-40, the virtual displacement method entails 

solving for right-hand side vectors that are based on the sensitivity of the 

constraint to the displacement. These vectors must be reduced to the a-set 

(recall that inertia relief is not supported for this option so that reduction 

beyond the a-set is not possible or necessary). The reduction to the f-set 

has already been described in Equation 6-54 and the accompanying text. The 

reduction from the f-set to the a-set is simply 

(DFDUa)j  -  (DFDUali + [GoHDFDUoJi (6-57) 

Given these vectors, the virtual displacements are calculated from 

[KM] {wa}j  -  (DFDUa}j (6-58) 

The omitted virtual displacements are recovered using 

(w0)j  -  [KooP
1 (DFDU0) + [G0]{wa}j (6-59) 

A merge operation produces {wf}4 and Equation 6-41 is used to generate the 

constraint sensitivity information: 

f\ a T 

—i    -     {wfh (DPfJi (6-60) 
3vj        J 

where the DPf vector has been previously derived following Equation 6-49 and, 

again, the absence of inertia relief means that the mass terms used to gener- 

ate the pseudo-load vectors are also absent. 
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Equation 6-60 can be expressed In matrix form to give 

[AMAT]T -  [WVRT]T [DPFV] (6-61) 

where WVRT and DPFV are matrices made up of vectors given in the corresponding 

term in Equation 6-60. The comments regarding matrix compatibility and 

manipulation given after Equation 6-56 apply to the Equation 6-61 calculation 

as well. 
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SECTION VII 

MODAL ANALYSIS 

The modal analysis feature in ASTROS provides the capability to 

analyze and design linear structures for their modal characteristics; i.e., 

eigenvalues and eigenvectors. The design aspect of ASTROS places limits on 

the frequencies of the structures (see Subsection 2.3). The modal analysis is 

not only useful in its own right, but also provides the basis for a number of 

further dynamic analyses. Flutter and blast response analyses in ASTROS are 

always performed in modal coordinates. As detailed in Section XI, transient 

and frequency response analyses can be performed in either modal or physical 

coordinates, at the selection of the user. 

Modal analyses typically are performed with degrees of freedom much 

fewer in number than static analyses. The following subsection discusses an 

alternative reduction procedure to the Guyan reduction technique described in 

Section VI. The user has the option of selecting which ASTROS option is to be 

used for a particular analysis. The Givens method of eigenanalysis is also 

briefly discussed in this section, as are the design aspects of modal response 

in terms of constraint evaluation and sensitivity analysis. 

7.1    GENERALIZED DYNAMIC REDUCTION 

Generalized Dynamic Reduction (GDR) is a relatively new method that 

has been formulated for reducing degrees of freedom (DOF's) by using so-called 

generalized DOF's to represent the dynamic behavior the structural model. The 

displacements of these generalized DOF's are internally computed. GDR re- 

quires fewer dynamic DOF's than the Guyan reduction method for comparable 

accuracy and, more importantly, it eliminates the burden of user selection of 

appropriate dynamic DOF's. 

GDR performs dynamic reduction by a combination of three methods: the 

Guyan reduction, the inertia relief shapes and the subspace iteration tech- 

niques. The user has the option to select any combination of the three 

methods. The Guyan reduction has already been discussed and can be character- 

ized as using the static displacement shapes as the generalized DOF's and, in 

GDR, allows the user to retain some of the physical DOF's in the generalized 

DOF's.   The inertia relief shapes use the displacement shapes due to the 
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nertia loads as the generalized DOF's. Finally, the general subspace itera- 

ion techniques are used to compute a set of approximate eigenvectors and 

hese approximate eigenvectors are used as the generalized DOF's. 

Of the three methods, the general subspace iteration technique results 

n the most accurate eigenvalues and eigenvectors, while Guyan reduction is 

vailable to allow the user to retain specific physical DOF's.  For transient 

esponse analyses, the inertia relief shapes can be used to reduce modal 

runcation errors and therefore, generate improved element stress results. 

Physical DOF's in the f-set are related to the generalized DOF's by 

he following equation: 

{uf}  = uk 

J > 

•    "  [Gfq]{uq)  (7-1) 
10   0 

uo J    L Goa Gok Goj J 

here the a- and o-sets have been defined previously and 

(ujj) are generalized DOF's representing approximate eigenvectors 

[XXA) are generalized DOF's representing inertia relief shapes 

{Uq} is the union of (ua), (u^), and (ui) 

[Goa] is the Guyan reduction constraint relationship 

[GQj]  is the transformation to define the inertia relief generalized 
DOF's 

(Gokl  ^s tne transformation to define the approximate eigenvectors 

[Gfq]  is the 'overall transformation matrix such that the stiffness 
matrix and the mass matrix in the generalized coordinates are 

[Kqq]  -  [Gfq]
T[Kff][Gfq] (7-2) 

[Mqq]  -  [Gfq]
T[Mff][Gfq] (7-3) 

The [Goa] matrix is identical to the [G0] matrix of Equation 6-11 and 

rherefore does not require further discussion. The [G0^] and [G0-j ] matrices 

ire discussed in the following subsections. 

'.1.1   Inertia Relief Shapes 

In most transient response problems, the Guyan reduction gives a 

reasonable approximation to the acceleration responses if the retained DOF's 

ire appropriately selected.  However, the stress responses are likely to bo 
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laccurate unless large number of DOF's are retained for analysis.  One method 

5 improve the stress responses is by using the inertia relief shapes. 

The inertia relief shapes are the displacement shapes of the eliminat- 

J DOF's (u0) obtained by imposing an acceleration field on the structural 

Ddel. Two types are treated here: (1) inertia relief shapes due to the 

:celeration of the origin of the basic coordinate system and (2) inertia 

lapes due to an acceleration field caused by specified DOF's. The user can 

sleet either or both types. The DOF's to be eliminated are related to the 

nertia relief DOF's {UJ} by 

f 
c 

c s 
(u0>     -     [GojHuj)     -     [Goj     Goj 

UJ 
s 

U4 

(7-4) 

c 
here (UJ) denotes the  inertia relief shape DOF's due to coordinate accelera- 

s 
ion and (UJ) denotes  those due to acceleration caused by user specified 

c        s 
OF's.  [Gojl anc* [Gofl are corresponding transformations. 

c 
The calculation of the [G0j] matrix begins by assuming that the origin 

f the basic coordinate system (see Subsection k.1) is subjected to an accel- 

ration {uc), where (uc) has six DOF's.  The inertia force on the structural 

odel is 

(Fg)  =  [Mgg][Ggc](uc} (7-5) 

here [Ggc] is a rigid body transformation matrix to transform displacements 

t the origin to displacements at the physical DOF's and can be easily comput- 

d based on geometric data. Equation 7-5 represents an applied load where 

esponse can be computed using the same techniques as those given in Subsec- 

ion 6.1.  The basic equilibrium equation is 

[Kgg] (ug)  -  [Mgg] [Ggc] (uc) (7-6) 

A reduction of this equation produces an equation for the {u0) vector 

f Equation 7-4: 

T 
[K00]lu0J  =  [Mog + Tmo Mmg][Ggc]{uc) (7-7) 
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• e [Mog] , [Tmo] and [Mmg] are partitions of the Mgg and Tmn (the multi- 

it constraint matrix) matrices.  Note that the [G0]{ua) term of Equation 6- 

Ls absent in this equation.  This is because this term is redundant with 

effects produced by the [Goa] matrix of Equation 7-1. 

The (uc) vector contains the generalized DOF's due to accelerations of 

origin of the basic coordinate system, i.e: 

(uj)  -  (uc) (7-8) 

Equation 7-7 therefore, provides the required transformation: 

(u0>  -  IGOJ] (uj) (7-9) 

:e 

c T 
[G0j]  -  [Kool'^Mog + Trao Mmg][Ggc] (7-10) 

s 
The calculation of the [G0j] matrix follows a similar path and starts 

specifying that certain retained degrees of freedom are given a unit 

ileration: 

{UJ)  -  {ua} (7-11) 

The response of the omitted degrees of freedom to acceleration is 

lined from 

[K00] 
,uo>  "  -tMool <u0> " [Moa] (ua) (7-12) 

re again we have neglected the effect of the displacement of the analysis 

since this information is redundant with the [Goa] matrix. 

If we make the usual assumption of Guyan reduction that (cf. Equation 

3) 

(u'o>  -  (Goal (u'a> (7"13) 

-i Equation 7-1, 7-11, 7-12, and 7-13 combine to give 

[Gojl  -  -[KOOI'MMOO Goa + Moa] (7-14) 
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As a final note on the inertial relief shapes, experience has shown 

it it is necessary that the degrees of freedom which are used to create 

sse shapes must be included as a-set degrees of freedom. 

..2  Approximate Eigenvectors 

The [GQJJ matrix of Equation 7-1 contains column vectors that approxi- 

:e the lowest eigenvectors of the structural modal. A general theoretical 

rivation of this matrix is now given and this is followed by a discussion of 

lie of the detailed considerations that go into making this powerful tech- 

iue a practical one. The discussion given here follows one given in Subsec- 

>n 2.4 of the MSC/NASTRAN Application Manual of Reference 19. The reasons 

: this duplication are that (1) Reference 19 is relatively inaccessible and 

) there are subtle differences in tne ASTROS implementation of the tech- 

}ue. 

The standard structural eigenvalue problem is written as 

[K - AM] [*]  -  [0] (7-15) 

Successive iterations of an inverse power approach for the computation 

eigenvalues and eigenvectors of Equation 7-15 provide approximate eigenvec- 

rs.  This approach applies a recursion relation of the form 

[K - ASM] {u1+1)  - 1- [M] (ttjj (7-16) 
ci 

sre c^ is the maximum component of (u^) and As is a shift point that is 

fined subsequently.  The subspac^ made up of these vectors is 

[G]  =  [u0, u1( -9,   %_!] (7-17) 

If the complete set of eigenvectors (or modes) is given by [$], then 

:h of the (un) vectors can be expressed as 

<un+l>  "  [*1 <Qn+l> 
(7-18) 

tun)  -  [*] |an) 

The mode shapes are orthogonal so that 

f*i if i-J 
l#i) [K] l*j)  - (7-19) 

[O.O if l*j 
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Jl-0 if i-j 

|o.O if ifj 
{*i> [M] (*j>  - \ (7-20) 

|o.O if ifj 

If Equation 7-18 is placed into Equation 7-16 and the resulting 

equations are pre-multiplied by [*]T, the Equations 7-19 and 7-20 relations 

give 

tt1.n+l (7-21) 
aj,n     cn<Aj - As> 

where the notation ajn indicates the jtn element of the (an) vector. Equa- 

tion 7-21 indicates that the relative proportion of an eigenvector in succes- 

sive trial vectors increases inversely to the magnitude of its shifted eigen- 

value. The series therefore converges to the eigenvector closest to the shift 

point. The series of vectors given by Equation 7-17 are used to generate 

lGokl by setting the first column of G^ to the last vector computed in the 

iteration process. The next to last vector is mass orthogonalized with 

respect to the last vector to give the second column of GQ^. This process is 

repeated for preceding vectors of Equation 7-17 until the desired number of 

approximate eigenvectors are obtained. 

Details that are needed to complete the algorithm are (1) specifica- 

tion of number of iterates (m in Equation 7-17), (2) specification of Xs, (3) 

specification of UQ, and (4) rejection of parallel vectors. Each of these is 

now briefly discussed. 

Number of Iterates 

Though the set of vectors given by Equation 7-17 should contain all 

the approximate eigenvectors, they are not necessarily a good basis for G^. 

This is because some of the vectors may be parallel to one another to within 

the accuracy of the computer and others may be a linear combination of two or 

more other vectors. Therefore, it is necessary to determine more vectors in 

Equation 7-17 than there are eigenvectors and use the mass orthonormalization 

to select out an appropriate reduced set. 

*f *max *-s tne highest frequency of interest, then Sturm sequence 

properties can be used to determine Nmax, the number of eigenvalues below 

Amax-  A safety factor of kf is then applied to give 
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m - kf Nmax (7-22) 

A safety factor of 1.5 Is used In ASTROS. 

Determination of As 

Computer accuracy considerations also determine As. If the range of 

eigenvalues varies from 0 to Amax, Equation 7-21 indicates that the a values 

at the mtn Iteration range from 

a. — A   ^ m 
-J-JS -  f § 1  - e (7-23) 
aJ.o 

f S—] 
l^max " *sj 

If the precision of the computer is less than «, then the components 

of the vector series differ from one another In an insignificant, random 

fashion. Therefore, to ensure meaningful results, the shift value can be 

computed from 

As -  ">ax ec  (7-24) 
1 - ecV» 

where 10"^ is selected in ASTROS as a representative value for «c, the preci- 

sion of the computer. 

Specification of Starting Vector 

The UQ vector in Equation 7-17 needs to be selected so that it con- 

tains all the approximate eigenvectors.  This is done by generating an initial 

vector using a random number generator.  To provide added assurance, six 

distinct initial vectors are generated in this way and the orthonormalization 

process interweaves results from each of the six series of vectors. 

Rejection of Parallel Vectors 

Despite the precautions taken to ensure orthogonal vectors, it is 

still possible for the iterative algorithm to produce parallel results. This 

is checked in ASTROS by rejecting vectors whose norm is less than a specified 

threshold. In ASTROS, this threshold is computed by reference to Equation 7- 

23 and by assuming that the kf factor will produce a maximum eigenfrequency of 

kfAmax.  This gives a rejection threshold of 

A      n 
(7-25) r 1 1 

|^-AS + kf Amax J 

91 



and when As is substituted from Equation 7-24, this gives 

e 
c (7 ■26) er 

(kf + (1 - kf)«cVn)n 

Substantial testing of the dynamic reduction algor ithm on large problems has 

shown that this value of er performs well, while use of ec directly rejects 

too many candidate vectors. 

7.2    THE GIVENS METHOD OF EIGENANALYSIS 

The eigenanalysis in ASTROS solves the general problem: 

[Kaa -f*AJ Maa] [#a]  -  [0] (7-27) 

where the a subscript is used to indicate matrices that have been obtained by 

the Guyan reduction of Equations 6-14 and 6-15 or from the Dynamic Reduction 

to the q-set of Equations 7-2 and 7-3. 

A Givens (or Tridiagonal) method of eigenanalysis is employed. This 

well known algorithm is briefly summarized here, with more detailed informa- 

tion available in Subsections 9.2 and 10.2 of Reference 1 and Subsection 13.5 

of Reference 14. 

If there are rigid body modes, it is recommended that the support 

concepts of Equations 6-16 through 6-18 be used to define these modes. The 

calculated rigid body modes are: 

[*r]
T [mr] [*r]  -  [ 1 ] (7-29) 

and mr is the rigid body mass matrix of Equation 6-22. 

The Given's method of eigenanalysis can be divided into six steps. In 

the first step, the mass matrix is decomposed into Choleski factors: 

[Maa]  -  [C][C]T (7-30) 

and this is substituted into Equation 7-27 to give: 

[Kaa - ACcT][*a]  -  [0] (7-31) 

In the second step, intermediate vectors are defined as 

[a]  -  [CT *a] (7-32) 

and Equation 7-31 is multiplied by C"^- to give 
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[J - XI] [a] - [0] (7-33) 

where 

[J]     -     [C1 KaaC"T]                                                                                         (7-34) 

and the -T indicates inverse transpose. 

In the third step, the J matrix is reduced to tridiagonal form using 

the Given's method as described in Subsection 10.2.2 of Reference 1. The 

fourth step entails using a Q-R iterative algorithm to further transform this 

matrix to a diagonal form, where the diagonal terms are the eigenvalues of the 

system. 

Given the eigenvalues, the eigenvectors art obtained in the fifth and 

sixth steps. The number of eigenvectors that are to be determined is speci- 

fied by the user. If eigenvectors are requested, the fifth step entails 

placing the extracted eigenvalue in Equation 7-33 and solving for the corre- 

sponding eigenvector. Although it would appear that this equation could be 

solved by direct substitution, this technique has been shown to be unpredicta- 

ble and an alternative, iterative procedure based on an algorithm given on 

pages 315 - 330 of Reference 20 is used. 

In the sixth step, the eigenvector in the a-set degrees of freedom are 

calculated based on Equation 7-32: 

[*al " Wl[»] (7-35) 

Recovery of the modes to the global set is similar to that given for 

the displacement recovery in Subsection 6.2. If Dynamic Reduction has been 

used, the f-set degrees of freedom are calculated from Equation 7-1 jhile a 

similar recovery is used for Guyan Reduction: 

(*f)  -  T1 1 {*al (7-36) *! - gj 
where G0 is given by Equation 6-11. 

Recovery to the n-set entails merging in any enforced displacements 

while the m-set displacements are obtained in a manner similar to Equation 6-2 

[*ml  "  tTmn][*n] (7-37) 

The eigenvectors in the g-set are then obtained by merging m- and n- 

set DOF's 
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*m 
[*K]  - (7-38) 

*n 

7.3    CONSTRAINT EVALUATION 

Given the eigenvalues, the constraint values are determined as: 

,2x£, .  . .2 
g1  - 1.0 - I Mghi_ (7-39) 

for upper bound constraints and 

8J 
.2irf.  .2 

- i i3lQ_ - 1.0 (7-40) 

for lower bound constraints, where fhigh ana ^low are tne frequency limits as 

specified in Equation 2-21 and Aj is the extracted eigenvalue. The extracted 

value has been placed in the denominator because there is a desire (see Sub- 

section 13.1) to express constraints in a form that make them linear in the 

inverse of the design variable. The assumption made here is that non-struc- 

tural mass makes the eigenvalue much more sensitive to changes in the struc- 

tural stiffness than to mass changes. The stiffness, in turn, is assumed to 

be a linear function of the design variable. Obviously, there are cases where 

these assumptions do not apply. 

7.4    FREQUENCY CONSTRAINT SENSITIVITIES 

The calculation of sensitivities of frequency constraints to changes 

in design variables begins by differentiating Equation 7-39 or 7-40. For 

Equation 7-39, this gives 

dg, /2wf,, ,.2 8X. .1.0 - g.. dX. 
-Zj. - 1 high)   1 - i !lil  1 (7-41) 
Kt X2 ^        *j     ^ 

j 

The determination of dAj/dvj is performed using well known relationships 

(Reference 21) that can be represented conceptually by starting with the basic 

modal equation: 

[K - AjM] (^j)  - 0 (7-42) 

Taking the derivative of 7-42 with respect to v^ gives 
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dX<   ..   .  au , d* 
I**- - -J- M - Xj 2M- 1 i^) + lK - AM] l-li)  - 0        (7-43) 

T 
If this equation is premultiplied by ^j and the self-adjoint nature of the 

symmetric eigenvalue problem is utilized, i.e., 

T 
*j [K - AjM)  - 0 (7-44) 

then Equation 7-43 becomes 

-J. -  (#j, [£. - Xj |M_] (^}/((^)T[M] (^)) (7-45) 

Equation 7-45 is evaluated in ASTROS in the g-set, thereby allowing 

use of the DKVi and DMVt matrices of Equations 5-23 and 5.24 and the vectors 

of [^g] of Equation 7-38 that are associated with the constrained eigenvalues. 

95 



SECTION VIII 

AERODYNAMIC ANALYSES 

Accurate aerodynamic analyses are a critical component in the perform- 

ance of the multidisciplinary analysis capability contained in ASTROS. This 

section describes the generation of the steady and unsteady aerodynamic 

matrices that are present in ASTROS while subsequent sections describe the 

application of these aerodynamics. The splining techniques that are used to 

couple the aerodynamic and rtructural models are also described in this 

section. 

8.1     STEADY AERODYNAMICS 

Steady aerodynamics are used in ASTROS for the computation of loads on 

an aircraft structure. The selection of an appropriate algorithm for comput- 

ing these forces is not an easy task since methods vary in complexity from 

"back-of-the-envelope" calculations to sophisticated computational fluid 

dynamics algorithms. The USSAERO (Unified Subsonic and Supersonic Aerodynamic 

Analysis) algorithm of Reference 22 was selected primarily because it repre- 

sents an algorithm of medium complexity, consistent with the preliminary 

design role of ASTROS, and because it is an algorithm that has been used 

extensively in the performance of aerodynamt- and aeroelastic analysis. In 

particular, the USSAERO code had been integrated with a dynamic structural 

response capability in the performance of an Air Force supported contract in 

the area of maneuver loads (Reference 23) and this experience was directly 

applicable to the ASTROS integration task. 

8.1.1   USSAERO Capabilities 

USSAERO determines the pressure distributions on lifting wing-body- 

tail combinations using numerical methods. The solid boundaries are repre- 

sented by a number of discrete panels as depicted in Figure 15. The flow 

around the solid boundaries can be estimated by the superposition of source 

type singularities for non-lifting bodies and vortex singularities for wing- 

like singularities. The USSAERO algorithm has undergone a number of updates 

and only a subset of the  total capabilities have been implemented in ASTROS. 

97 



Figure 15.  Aerodynamic Paneling in USSAERO 

Therefore, it is necessary that the capabilities of the ASTROS implementation 

be defined.  Among the features supported are: 

(1) Subsonic and supersonic analyses. 

(2) Symmetric and antisymmetric analyses. 

(3) Multiple lifting surfaces, both coplanar and non-coplanar. 

(4) Body elements can be used to represent fuselage and pod (e.g., 
nacelles or stores) components. 

(5) Pitch,  roll and yaw control surfaces can be specified (one 
surface each). 

(6) Pitch, roll and yaw rates can be specified. 

(7) Thickness and camber effects of the lifting surfaces. 

(8) Aerodynamic influence coefficients (AIC). 

It is equally useful to list capabilities that have been installed in 

USSAERO versions that are not supported in ASTROS: 
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(1) 

(2) 

(3) 

There is no asymmetric capability, either in terms of the config- 
uration or the aerodynamic forces. 

The nonplanar option for representing thick lifting surfaces has 
not been supported. This option is inconsistent with the aerody- 
namic influence coefficient requirements for ASTROS. 

AIC's are not computed for body components. 

Subsection 3.3 of the Applications Manual contains guidelines for 

generating aerodynamic models and therefore, has more specific information 

about the USSAERO capabilities in ASTROS. 

8.1.2  USSAERO Methodology 

The formulation of the methodology used in ASTROS is contained in 

Reference 22 while this writeup provides an overview which defines the aerody- 

namic matrices which are generated for the steady aeroelastic analyses. 

The basic equation in USSAERO is given by: 

Abb 

. Awb 

Ab w 

^ww -l;l (8-1) 

where 

7 

A 

denotes body 

denotes lifting surface 

velocities at the panels due to a prescribed boundary condition 

source singularities on the body 

vortex singularities on the lifting surfaces 

normal velocity influence coefficients 

Terms in the A matrix provide the normal velocity that is produced at 

a receiving panel due to a unit value of the singularity at a sending panel. 

This matrix can be computed from the superposition of individual velocity 

influence coefficients, which in turn can be computed from geometric consider- 

ations and the prescribed Mach number. The boundary conditions can account 

for airfoil camber and thickness, angle of attack, control surface settings 

and aircraft rates. 
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Once the values of the singularities have been determined, the veloci- 

ty components can be computed and pressure coefficients at each of the panels 

are calculated us ing: 

Cpi - _^2 , 

7M2 

p 

1 + 1^1  M2 (1 - qi) 
2 

7-1    | 
- 1 [           (8-2) 

where 

M Hach number 

7  -  Specific heat ratio 

2     2   2   2 
°.i  "  ui + vi + wi 

U£  -  u0 + Au^ (backwash) 

VJ[ - v0 + Av£ (sidewash) 

wi  * wo + ^wi (upwash) 

uo> vo and wo are tne components of the onset flow in the reference axis 

system and are normalized with respect to  the freestream velocity.  Perturba- 

tion velocities at each panel, Auj, Av^, Aw^, are also normalized with respect 

to the freestream velocity.  For lifting surfaces, the calculation of Equation 

8-2 is repeated for the upper and lower surfaces. 

As a final step, these pressure coefficients are dimensionalized and 

converted to forces. These forces are output in matrix AIRFRC, the rows of 

which are the panels and the columns correspond to individual boundary condi- 

tions.  This matrix is discussed further in Subsection 9.1. 

The AIRFRC matrix provides loads that are applicable if the aircraft 

is structurally rigid.  A second matrix, AIC, is generated in the USSAERO 

module to provide for the incremental loads created by the structural deforma- 

tions.  This matrix is generated in ASTROS by making the approximation that 

the pressure expression of Equation 8-2 is 

-2Au. 
cPi - -jr-1 (8-3) 

This equation is developed by assuming that u0 - 1, Auj « 1, vj_ « 1, w^ « 1 

and uses the mathematical approximation that (1 + t)a ■ 1 + at■ 
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Only loads on the wing are computed using this approximation; body 

forces are ignored. The total force on a wing panel can be derived from 

Equation 8-3. 

Fi - 2Cpi At - -4 Aui Ai / U. (8-4) 

where A^ is the area of the panel and equal contributions from the upper and 

lower surface account for the factor of two. 

The AIC matrix calculation is then 

-1 

[AIC]  -  -4 [ AREA ] [U] (8-5) 
Abb  ^bw 

^wb  "ww J 

where [U] is the influence coefficient matrix for the velocity in the stream- 

wise direction due to singularities of the panels. In order to ignore body 

forces, portions of this matrix are set to zero: 

[U]  - 
0  0 

C  D 
(8-6) 

where the C matrix gives the velocities on the wing panels due to singulari- 

ties on the body and D gives velocities on the wing panels due to singulari- 

ties on the wing. 

In the context of multidisciplinary design, a single design task may 

require analyses at a number of Mach numbers and both symmetric and antisym- 

metric conditions.  This is accommodated in ASTROS by creating separate AIC 

and AIRFRC matrices for each Mach number required in the task and, for anti- 

symmetric analyses, creating an AAIC matrix which is generated by differencing 

contributions from the left and right sides of the aircraft (rather than 

adding them for symmetric analyses) in the A matrix of Equation 8-1 and the U 

matrix of Equation 8-6. 

8.2    UNSTEADY AERODYNAMICS 

Unsteady aerodynamics are used for a variety of purposes in ASTROS, 

each of which has its own requirements.  The flutter analysis requires un- 

steady aerodynamic influence coefficients to integrate the effects of the 

structural deformations and the aerodynamic forces in an assessment of dynamic 

stability.  The gust analysis requires aerodynamic forces, both to generate 
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the loads that the gust creates on the structure and to estimate the aeroelas- 

tic effects in the response to this load. The blast analysis is similar to 

the gust analysis, but the methodology for the blast analysis integrated into 

ASTROS requires these matrices in a slightly different form (See Appendix B). 

Because there are fewer candidates, the selection of the algorithms to 

provide the unsteady aerodynamic operators was simplified, relative to the 

steady case. For subsonic applications, the Doublet Lattice Method (DLM) 

algorithm of Reference 24 was selected because it has become an industry 

standard and because its implementation in NASTRAN provided a resource for 

ASTROS code development. For supersonic applications, a comparable standard 

algorithm does not exist, but an obvious candidate did emerge: the constant 

pressure method (CPM) of Reference 25. The primary attraction of CPM is that 

its geometrical input and its matrix output is consistent with doublet lattice 

so that the majority of the code required for the two algorithms can be 

shared. Another attribute is that Northrop has tested the CPM algorithm 

extensively, with favorable results (Reference 26). In particular, CPM's cap- 

ability to address interfering and intersecting surfaces was shown to perform 

well. As in the steady aerodynamics case, the referenced documents are cited 

as sources of detailed information on methodology employed in these algo- 

rithms. This manual emphasizes the generation of matrices required in ASTROS 

applications. 

8.2.1  Unsteady Aerodynamics Capabilities 

The DLM and CPM procedures calculate matrices which provide forces on 

panels as a function of deflections at these panels.  As this implies, the 

discretization of an aircraft into a number of panels, in a fashion similar to 

the steady aerodynamics model of Figure 15, is the basis for these methods. 

Capabilities of the codes include: 

(1) Symmetric, antisymmetric and asymmetric analyses with respect to 

the aircraft centerline are available. 

(2) Symmetric and asymmetric analysis with respect to the x-y plane 

is also provided by DLM. Symmetric analysis represents a ground 

effect option.  Only asymmetric analyses are available in CPM. 

(3) The DLM permits the use of slender body theory and interference 

panels to model the effects of bodies. Bodies are not modeled in 

CPM. 
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(4) Multiple lifting surface can be analyzed. 

(5) No thickness or camber effects are included in unsteady analyses 

so that lifting surfaces are analyzed as flat plates. 

8.2.2  Unsteady Aerodynamics Methodology 

The essence of the unsteady aerodynamics methods resides in the 

development of three basic matrices (see Subsection 17.5 of Reference 1): 

|w)  -  [A] «P) (8-7) 

lw)  -  [D] (u) (8-8) 

IF)  -  [S] (P) (8-9) 

where 

w -  Downwash (normal wash) at the aerodynamic control point 

A  - Aerodynamic influence matrix (ASTROS actually computes A^) 

P  -  Pressure on the aerodynamic panel at the vortex line 

D -  "Substantial differentiation" matrix 

u -  Displacements at the aerodynamic grid points 

F -  Forces and moments at the aerodynamic grid points 

S  -  Integration matrix 

The goal of the unsteady aerodynamic theory is to determine the forces due to 

a given set of displacements. Simply stated, this is done by first determin- 

ing the downwash using Equation 8-8, then solving for the pressure correspond- 

ing to this downwash using Equation 8-7 and a predetermined A matrix and, 

finally, using Equation 8-9 to integrate the pressures over the panels to 

determine the forces. The details of this development are substantially more 

involved and will not be presented here. In particular, the development of 

the A matrix involves integrations of a kernel over the lifting surfaces. The 

presence of bodies further complicates this evaluation. For purposes of this 

discussion, it suffices to say that the A matrix is a function of both Mach 

number and reduced frequency (k - wb/U, where w is the frequency of oscilla- 

tion, U is the free stream velocity and b is the length of a reference semi- 

chord). The D matrix is a straightforward function of the panel geometry 

(with the exception noted in the following paragraph) with real and imaginary 
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components corresponding to the spatial and time derivatives of the displace- 

ments.  The S matrix is a simple function of geometry when only lifting sur- 

faces are present, but becomes a function of M and k when bodies are present 

and has a separate representation for subsonic and supersonic Mach numbers. 

The implementation of the unsteady aerodynamics method occurs in two 

stages: (1) Generation of geometry and related information and (2) Generation 

of the aerodynamic matrices A, D, and S of Equations 8-7 through 8-9. The 

definitions associated with these equations specify three points for each 

panel: the aerodynamic control point, the vortex line and the aerodynamic 

grid point. The location of each of these points, as a percentage of panel 

chord, is given in Table 6. This information is key to the proper generation 

of the S and D matrices. 

TABLE 6.  AERODYNAMIC PANEL POINTS 

POINT 
METHOD 

DOUBLET LATTICE CONSTANT PRESSURE 

VORTEX 0.25 0.50 

GRID 0.50 0.50 

CONTROL 0.75 0.95 

The application of the A, D, and S matrices requires further, disci- 

pline dependent, processing. Additional relations that are required for this 

processing include: 

(ua) - [UG] {us} 

(Fs) - [UG]T (Fa) 

lus) - [*] lqs) 

(Fq) - [*1T <FS) 

(8-10) 

(8-11) 

(8-12) 

(8-13) 

In thj.s idiosyncratic notation, the a subscript refers to aerodynamic 

degrees of freedom and s refers to structural degrees of freedom. 

Table 7 identifier all the terms used in Equations 8-7 through 8-13 

and gives their dimensions, where the sizes refer to: 
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TABLE 7.  MATRICES USED IN THE GENERATION OF UNSTEADY AERODYNAMIC FORCES 

MATRIX 
NO. OF 
ROWS 

NO. OF 
COLUMNS TYPE DESCRIPTION 

* na nm Real Retained normal modes 

UG nk na Real Spline matrix relating aerodynamics to 
structural dof's 

S nk nj Real Integration matrix 

A nj nj Complex Aerodynamic influence matrix 

D nj nk Complex Substantial derivative matrix 

us na 1 Complex Displacements at structural points 

ua nk 1 Complex Displacements at aero grid points 

qs 
nm 1 Complex Modal generalized coordinates 

FS na 1 Complex Forces at structural points 

Fa nk 1 Complex Forces at aerodynamic grids 

Fq nm 1 Complex Generalized forces 

nj 

nk 

na 

nm 

total number of aerodynamic panels 

total number of degrees of freedom in the aerodynamic 
coordinate system 

number of degrees of freedom in the user's analysis set 

number of retained modes 

The value of nk is typically two times nj , but bodies may add addi- 

tional degrees of freedom. The spline matrix, UG, is discussed in Subsection 

8.3 while the normal modes are discussed in Subsection 7.2. 

For flutter and gust analyses, a generalized aerodynamic force matrix 

is computed for each Mach number and reduced frequency: 

[Qhhl  -  1*T[UG]T S [A]'1 D[UG]*] (8-14) 

The design loop of ASTROS makes it efficient to break this calculation 

into steps that are independent of the structural design and those that are 

dependent.  For example, the [S[A]"*D] matrix is independent of the structure 
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and is therefore calculated once In the preface portion of ASTROS and is iden- 

tified as Qkk- The spline matrix is independent of the structure in the g- 

set, but goes through set reductions which depend on the stiffness and there- 

fore the reduced spline matrix is recalculated after each design. The normal 

modes, of course, are a strong function of the design and are completely 

recalculated for each design iteration. 

Gust analyses, as discussed in Subsection 11.2.3, require an addition- 

al matrix for each Mach number and reduced frequency: 

[Qhjl  ~  t*T t«G]T S[A]-1] (8-15) 

This matrix is also computed in stages, with [S][A]"1 identified as [Qkj1• 

Blast analyses, as discussed in Appendix B, require [A]'*- directly. 

Appendix B and Section Xll discusses further processing of the aerodynamic 

forces. 

8.3    CONNECTIVITY BETWEEN AERODYNAMIC AND STRUCTURAL MODELS 

The steady and unsteady aerodynamics quantities are computed at 

aerodynamic grids that typically do not coincide with the structural grid 

points. The transfer of displacements and forces from one set of grids to the 

other has been a troublesome task, with no universally accepted technique. 

ASTROS has implemented two techniques, with the primary interconnection 

algorithm being the surface spline technique of Reference 27. 

A secondary algorithm performs a simple equivalent force transforma- 

tion from the aero panels to a specified structural grid. Each of these 

algorithms is now discussed. 

8.3.1  Surface Spline 

The methodology associated with this spline is simple enough that its 

derivation, as given in Subsection 17.3.1 of Reference 1 is essentially 

repeated here. 

A surface spline is used to find a function w(x,y) for all points 

(x,y) when w is known for a discrete set of points, W£ - w(x£,yj_). An infi- 

nite plate is introduced to solve for the total deflection pattern given 

deflections at a discrete set of points. This surface spline is a smooth 

continuous function which is nearly linear in x and y at large distances from 

the points (x^,y^).  Furthermore, the problem can be solved in closed form. 
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The deflection of the plate Is synthesized as the response due to a 

set of point loads on the infinite plate.  The response due to a single load 

is called a fundamental solution.   The fundamental solutions have polar 

symmetry.  If the load is taken at xj_ - yj - 0, and polar coordinates are used 

(x - r cos 0,  y - r sin 9),   the governing differential equation is 

D V4* - Dl-dj 
r dr I dr 

1 _sl r & 
r dr  dr 

- q (8-16) 

The load q vanishes except near r - 0.  A solution to the general spline 

problem, formed by super-imposing solutions of Equation 8-16 is given by 

N 
w(x,y)  - ao + ape + a2y + 2 Ki(x,y)Pi (8-17) 

where 

2    2 
K^x.y) - (l/16ffD)ri In ri , rt - (x-xi)

2 + (y-yi)2 

and 

Pi - concentrated load at (x^.y^). 

The N+3 unknowns (ag, a\,   &2>   **!• *■"!•**) are determined from the N+3 equations 

S Pi - S xiPi - S y^Pi - 0 

and 

N 
WJ  - a0 + alXj + a2yj + 2 Kij Pi   (J-l.N) (8-18) 

where 

K^  - Ki(xj.yj) 

Note that Kij - Kji, and that K^ - 0 when i-j.  The details of the derivation 

are given in Reference 27. 

These equations can be summarized in matrix form 
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w(x,y) -  [l.x.y,  K1(x,y),K2(x,y)  KN(x,y)] < 

The vector of a's and P's is found by solving 

' 0 ' 

0 

0 

— 
wl 
W2 

WN 

0 0 0 1 I 

0 0 0 X! •  XN 

0 0 0 yi •   YN 

1 X! yi 0 

1 x2 y2  . K2N 

1 xN yN KN1  .  .  0 

a0 

al 

a2 

Pi 
P„ 

*0 

al 
a„ 

Pi 
?2 

PN 

(8-19) 

-  [C]{P}   (8-20) 

The interpolation to any point in the plane (x,y) is then achieved by 

evaluating w(x,y) from Equation 8-17 at the desired points. This gives an 

overall equation of the form: 

1 xla yia Kla,l Kla,2  .. 

1 x2a y2a K2a,l *2a,2  •• 
(w)a - 

^la,n r o ' 
0 

K2a,n 
[C]"l ■ 

0 
wl 
W2 

^na,n . w' - 
n 

• (8-21) 

1 Xna xna Kna i    Kna,^2 

Slopes of the aerodynamic panels, which are the negative of the slopes 

of the displacements, are also required. These can be determined by differen- 

tiating Equation 8-21 with respect to x: 

(a)a -   -{flH)a - 
ox 

0    1    0    DKu.l   •••     DKla,n 

0    10 DK na, 1 DK na,n 

[c]-i - 

r o ' 
0 
0 
wl 

. wn < 

(8-22) 
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where 

3k.(x.,y.)     x-x.       2 
DKi A     -   1  1 J- -  (—-i) (1+ nri) (8-23) 

,J        3x 8wD 

The preface modules of ASTROS use the relations of Equations 8-21 and 

8-22 to create the required spline matrices. Steady and unsteady aerodynamics 

have different requirements and therefore different splines are created. For 

unsteady aerodynamics, displacements and slopes are required at the aerodynam- 

ic grid points so that the spline matrix interleaves results of Equations 8-21 

and 8-22 to give a matrix with the number of rows equal to two times the 

number of lifting surface panels. (Surface splines are not used to compute 

displacements on body panels.)  Symbolically 

{wa}  -  [UG]{ws> (8-24) 

where the a subscript refers to displacements and slopes at the aerodynamic 

grid points and the s subscripts refers to structural displacements. Condi- 

tions of virtual work can be applied to derive the fact that the transpose of 

the UG matrix relates forces in the two sets: 

(Fs)  -  (UG]T{Fa) (8-25) 

where the Fa vectors contain forces and moments at the aerodynamic panel and 

Fs contains the out-of-plane forces at the structural grid points. 

For steady aerodynamics, ASTROS has generated AIC matrices that relate 

forces on aerodynamic panels due to slopes at the panel.  Two separate matri- 

ces are generated in this case.  The first utilizes Equation 8-22 to compute 

aerodynamic slopes: 

(aa)  -  [GS] (ws) (8-26) 

while the second uses Equation 8-21 to compute structural forces: 

<FS)  -  [G] (Fa) (8-27) 

8.3.2   Equivalent Force Transfer 

A second means of transferring loads from aerodynamic panels to the 

structure has been implemented for the frequently encountered case where no 

structural model exists for a particular aerodynamic component. The sketch of 

Figure 16 shows an example where the aerodynamic model contains a wing and 

horizontal tail surface while only the wing is modeled for the structural 

design task. 
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Figure 16.  Application of ATTACH Option 

This is done when only wing structural design is of interest, but the aerody- 

namic trim requires the determination of aerodynamic loads on the entire 

aircraft. The ATTACH bulk data entry of ASTROS permits the transfer of the 

loads from the aerodynamic panels to a specified grid in the structural model. 

This is done by a simple geometric transfer of the panel forces: 

(F)R - 

(M}R - 

NBOX 
2   (Fli 
i-1 

NBOX 

tl%    IRli tFJi 

(8-28) 

where the R subscript refers to the structural grid and the i subscript 

identifies the individual aerodynamic box. The R matrix to compute the 

equivalent moments is simply: 

0   -(zi-zR)  (yi-yR) 

i     -    (Zi-ZR)     0    -(xi-xR) 

. -(yi-yR)  <xi"xR)    ° 
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The transformations of Equations 8-28 are integrated with the spline 

transformation of Equation 8-25 or 8-27 so that every aerodynamic load is 

transferred to the structure. 
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SECTION IX 

STATIC AEROELASTIC ANALYSIS 

The static aeroelastic analysis features In ASTROS provide the capa- 

bility to analyze and design linear structures in the presence of steady 

aerodynamic loading. This provides the ASTROS user with a self-contained 

capability to compute loads experienced by a maneuvering aircraft and to 

redesign the structure based on these loads. The capabilities available for 

steady aerodynamics design include specifying limits on (1) the allowable 

stress or strain response due to a specified trimmed maneuver, (2) the flexi- 

ble to rigid ratio of the aircraft's lift curve slope, and (3) the aileron 

effectiveness of the flexible aircraft. This section first defines the basic 

equations used for static aeroelastic analyses and then contains individual 

subsections for each of the listed design aspects. 

9.1    MATRIX EQUATIONS FOR STATIC AEROELASTIC ANALYSIS 

The equations for static analysis given in Subsection 6.1 can be 

easily adapted for steady aerodynamic analysis. In fact, Equations 6-1 

through 6-9 are equally applicable to static and steady aerodynamic analysis, 

since there is no interaction between mass, stiffness and aerodynamic terms in 

the reduction to the f-set. Reduction of the aerodynamic forces to the a-set 

does require coupling with the stiffness matrix so that it is at the f-set 

that the aerodynamic and structural stiffnesses are joined. The spline 

matrices of Equations 8-25 and 8-26 do require reduction to the f-set and 

these reductions are similar to the reduction of the applied loads given in 

Equations 6-5 and 6-9: 

[Gjn]
T "  [GjnlT + [Tmn GJm] 

_        T   T <9-D 
[GSjn]T -  [GSjn]T + [Tmn GSJm] 

[Gjf]T  -  [G,f]T 

_ (9-2) 
[GSjf]

T -  [GSjf]
T 

where the transposed matrices are used for convenience and the assumption is 

made that there are no nonzero enforced displacements. The j subscript 

denotes the panels in the aerodynamic model. 
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The aerodynamic forces and influence coefficients of Subsection 8.1.2 

are then applied to the structure through the following splinlng relation: 

[PAf]  - q [Gjf]
T [AIRFRC] (9-3) 

[AlCSff] - q [GJf]
T [AIC] [GSjf] (9-4) 

where 

PA  - Unit aerodynamic load matrix 

AICS - Aerodynamic influence coefficient matrix 

q   -   Dynamic pressure 

The aerodynamic terms are added to the structural terms to give: 

[Kff - AICSff](uf) + [Mff]{uf)  -  [PAf] [6) (9-5) 

where 6 is a vector of configuration parameters, such as angle of attack and 

elevator angle. The 6 vector is explicitly defined for the symmetric and 

antisymmetric cases in Subsections 9.2 and 9.3, respectively. 

It is convenient to define a new matrix which is the difference of the 

structural and the aerodynamic stiffnesses: 

[KAff]  -  [Kff - AICSff] (9-6) 

The reduction of Equation 9-5 to the |- and r-sets is very similar to 

the formulation of Equations 6-10 through -22 and this similarity is drawn on 

here. 

Dynamic reduction of the steady aeroelastic equations is not support- 

ed, while the Guyan reduction relationships of Equations 6-11 and 6-12 require 

modification to account for the aerodynamic stiffness: 

{u0}  -  -[KAot) KAoa]{ua)  -  [GA0](Ua) (9-7) 

. -1 
(u0)  -  [KA00]-

1[PA0](6) - [KA00 KAoa](ua) (9-8) 

[KAaaH
ua> + [Maa]('ua)  -  [PAa]{«) (9-9) 
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where 

[KAaa]  -  {KAaa 

(PAa)  -  (PAa) - 

KAao GA0] 

-1 
[KAao KA00] [PA0] 

- T T     T 
[Maa]  -  [Maa + Moa GA0 + GA0 Mao + GA0 M00 GA0] 

(9-10) 

Note that since the KA matrix is not symmetric, it is necessary to retain both 

the KAoa and KAao portion of this matrix for subsequent operations. 

Equation 9-9 can be partitioned into r- and 1-set degrees of freedom: 

KAJM  RAJ,.] [uf\        [Mil  Mfr1 'iifl     [PA* 

KAT 

KAjtrl |ujgl        |M||     M|rl 'u*| 

KArrjWJ       LM    "rrJ t«rJ PAT 
(«) (9-11) 

As in the inertia relief formulation, u.  and vir are related through the 

equation. 

{u4}  -  [D] {ur) (6-18) 

Note that elastic accelerations are not treated in this formulation. 

At this point, the constraint that the elastic deformations are to be 

orthogonal to the rigid body motions is imposed. This produces results that 

are independent from the selection of the r-set degrees of freedom. If this 

constraint was not imposed, and the equations were instead solved relative to 

a null ur vector, the physical meaning of the stability derivative information 

would be suspect. If Equation 6-18 and the orthogonality condition of Equa- 

ti<  6-19 are inserted into Equation 9-11, the resulting equation is 

KA!*      KA|r 

DTMjM+Mr|  D
TMjjr+Mrr 

M|AD+MAr 

0 

f             \ 
uA ' PA* 

- ur •    - PAr 

• • 
V         L     J 

0 

(5) (9-12) 

These equations can be solved in a variety of ways, with a particular 

algorithm entailing multiplying the first row of Equation 9-12 by D^ and 

adding it to the second row. This new second row is interchanged with the 

third equation to give the following system: 
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KAjijj        KAjjr 

DTMjf| +Mr   D
TM|r+Mrr 

DTKAjM+KAr£ D
TKAj{r+KA, 

MjjfD+M|r 

0 Ur 

U, 

pAje 

o 

DTPA£+PAr 

[6)     (9-13) 

*rr    ,ur Jlur J 

where mr is the reduced mass matrix of Equation 6-22 and, unlike the static 

analysis equation of Equation 6-21, the 31 and 32 terms of Equation 9-13 have 

nonzero contributions from the aerodynamic corrections. 

Equation 9*13 is redefined in order to simplify the notation based on 

the partitions given in the equation: 

KU     K12 ■ 
< 

ul ' Pi " 

K21    K22 . I "2 J L P2 J 
6) (9-14) 

The first row of Equation 9-14 can be solved for u^ in terms of 6  and 

U2 to give 

[KllT1 [[Pll (6) - [Ki2] lu2J] (uj) (9-15) 

If Equation 9-15 is substituted Into the second row of Equation 9-14 

and terms are rearranged then: 

[K22 - K2iK11-
1K12] (u2)  -  [P2 - KilKll"1?!] («} (9-16) 

Equation 9-16 is the basic equation for static aeroelastic analysis. 

The next two subsections discuss particular applications of this equation. 

9.2 SYMMETRIC ANALYSES 

Symmetric steady aerodynamic analyses are applied in ASTROS for 

longitudinal trim and subsequent stress analysis and for analysis and design 

of an aircraft's lift effectiveness parameter. For symmetric analyses, the 5 

vector has four rows: 

(1) Thickness and camber effects 

(2) Pitch control surface 

(3) Pitch rate 

(4) Angle of attack 

Thickness and camber effects refer to the airloads produced when the 

other members are zero and can be thought of as giving zero angle-of-attack 

effects.  The value of this term is always 1.0.  The pitch control surface 
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governs the motion of the aerodynamic panels that trim the pitching moment of 

the aircraft. These could represent an elevator or an all moving stabilizer 

on a canard or tail surface. This term is designated as 5e. Pitch rate is 

designated as q, while the angle of attack parameter is denoted by a. 

9.2.1  Trim Analysis 

For the trim analysis, Equation 9-16 is solved for U2 and 6. The U2 

vector has as many terms as there are in the r-set (nr). Two options are 

supported in ASTROS. In the first option, a single equation (nr-1) is solved 

for the angle of attack that provides the lift required to meet a user speci- 

fied load factor, nz. In this case, U2 Is a scalar equal to gnz, where g is 

the gravitational constant. The pitch rate and pitch control terms are 

ignored in this case so that only thickness, camber and angle of attack 

aerodynamic effects are included in the trim analysis. Thickness and camber 

is fixed and a is the single unknown. 

In the second option, two equations (nr-2) are solved for the angle of 

attack and control surface setting that provides lift sufficient to meet a 

user specified load factor and that produces a ne^ pitching moment of zero. 

In this case, the U£ vector contains one term based on the user specified load 

factor and a second term of zero corresponding to zero pitch acceleration. Of 

the configuration parameters, thickness and camber effects are fixed and pitch 

rate is specified by using: 

g(n - 1) 
<l    ~     ^  (9-17) 

The equations are then solved for angle of attack and control surface setting. 

Given the values for the U2 and 6 vectors, the recovery of the elastic 

deformations is straightforward. The u^ vector of Equation 9-14 is the ua 

vector of Equation 9-9 so that supported and nonsupported deformations are 

both recovered using Equation 9-14 while the |-set accelerations are computed 

using Equation 6-18. Further recovery of the omitted degrees of freedom and 

the single and multiple point constraints proceeds as detailed in Subsection 

6.1. One difference from that formulation is in how loads applied to omitted 

degrees of freedom affect the omitted displacements. These aerodynamic loads 

are computed using 
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{P0}  -  [PA0] {6} (9-18) 

where PA0 is the matrix of rigid aerodynamic loads on the omitted degrees of 

freedom and S is the vector of trim parameters determined during the trim 

process. These omitted loads are then used to recover omitted displacements 

in the standard fashion: 

o        -1 
{u0}  -  [KA00] [{P0J - [M00GA0 + Moa] (ua)] (9-19) 

(u0)  -  [GA0] {ua} + (u°) (9-20) 

where GA0 is defined in Equation 9-7. 

Recovery of accelerations and displacements in the f- and g-sets 

proceeds normally. Given the displacements in the g-set, displacement con- 

straints can be calculated and Equation 6-29 can be used to recover the 

components used in computing strength constraints. 

9.2.2  Lift Effectiveness Constraint 

The lift effectiveness constraint in ASTROS places bounds on the ratio 

of the flexible to rigid lift curve slope of the aircraft 

emin < T—f < <max (2-24) 
CS 

Subsection 2.2.2.2 defines the terms used in this equation. 

Equation 9-16 contains the basic information required to evaluate this 

constraint. Conceptually, the flexible lift curve slope is obtained by 

setting the term corresponding to the angle of attack in the 6 vector to unity 

and the remaining terms in the vector to zero and then determining the result- 

ing values of U2- These are the accelerations of the aircraft and, when 

multiplied by the matrix mr, give the force and moment acting on the struc- 

ture. These can then be nondimensionalized to stability derivatives with the 

force term translating to the lift derivative.  In mathematical terms: 

- [mr][K22-K2lK11-
1K12]-

1[P2-K2iK11-
1P1]{«a}     (9-21) 

2 
'S 

cCm 
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Where 6a  is the configuration vector 6  with a unit value of the angle 

of attack: 

U«> - 
0.0 
0.0 
0.0 

I 1.0 J 

S is the wing reference area and c is the wing reference chord. The factor of 

two on the left-hand side of Equation 9-21 is due to the fact that the right- 

hand side equations account for only one side of the aircraft. 

Rigid stability derivatives are determined from a less complex matrix 

equation: 

2 W) " tp2l (*a> (9-22) 

The lift effectiveness constraint is calculated using 

g - a + be (9-23) 

where « is the flexible to rigid ratio of Equation 9-21.  The a and b coeffi- 

cients are listed in Table 8 for upper and lower bound constraints and re- 

quired effectiveness values («req) that are positive, negative or zero.  REQI 

in this table is 1.0/«req. 

TABLE 8.  COEFFICIENTS FOR THE LIFT EFFECTIVENESS 
CONSTRAINT 

SIGN OF 
£req 

CONSTRAl [NT TYPE 
U 'PER LOWER 

a b a b 

POS 
NEG 
ZERO 

-1.0 
1.0 
0.0 

REQI 
-REQI 
1.0 

1.0 
-1.0 
0.0 

-REQI 
REQI 
-1.0 

Specification of upper bound limits on the effectiveness and negative 

and zero values of the required effectiveness have been included for complete- 

ness.  It is anticipated that these particular features will rarely be used. 
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9.3    ANTISYMMETRIC ANALYSES 

Antisymmetric steady aerodynamic analyses are applied in ASTROS for 

the analysis and design of an aircraft's roll performance. For antisymmetric 

analyses, the 6  vector of Equation 9-16 has two components: 

(1) Roll control surface 

(2) Roll rate 

The roll control surface, or aileron, is designated 6a while the roll 

rate is denoted by p. 

Roll performance requirements frequently drive the design of aircraft 

wing structures. This factor has been recognized in ASTROS by the incorpora- 

tion of an aileron effectiveness constraint. Aileron effectiveness, following 

terminology used in Reference 9 can be defined as the ratio of roll due to 

aileron deflection over roll due to roll rate: 

«eff "  -<Ct«a)f/( Ek)f (2-25) 

where Subsection 2.2.2.2 provides a definition of the terms used in this 

equation. 

The effectiveness parameter is as a measure of the steady state roll 

rate achievable for a unit value of aileron deflection.  In a manner similar 

to the lift effectiveness, the user can specify that the aileron effectiveness 

be within a specified range: 

<min ^ <eff < emax (9-24) 

The stability derivatives required by Equation 2-25 can be determined 

using the right-hand side of Equation 9-16. The left-hand side of Equation 9- 

16 does not enter into this computation due to the specification that the 

effectiveness is computed for steady state roll (i.e., roll acceleration and 

therefore, U2, is zero). Explicitly, the right-hand side of Equation 9-16 

is: 

•** CUa    -     1*2 - K2lKll"lpl] lO.Ol (9-25) 

■jk- C-igb " 1*2 - Wll"1*!] <l'.0> <9-26) 
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where 

*AIL 

and 

«P 

are configuration vectors with unit values of aileron deflection and 

nondimensional roll rate, respectively.  The columns of rigid aerodynamic 

loads for the roll rate contained in ?2  and Pj are computed for p/V - 1.0. 

For this reason, an additional b/2 factor is required in the multiplication of 

the nondimensional stability derivative in Equation 9-26. 

Given the stability derivatives of Equations 9-25 and 9-26, Equation 

2-25 is used to determine the aileron effectiveness.  The evaluation of the 

constraint is similar to that of Equation 9-23 and Table 7 with Equation 2-24 

used for e   and REQI equal to 1.0/CREQ, the inverse of the required aileron 

effectiveness. 

9.4    SENSITIVITY ANALYSIS 

Calculation of gradient information for static aeroelasticity is quite 

similar to the derivation for static analysis sensitivities given in 

Subsection 6.3. This similarity is enhanced by the fact that the aerodynamic 

matrices of Equations 9-3 and 9-4 are invariant with respect to changes in the 

structural design. Another simplification is that the acceleration vector is 

zero in the case of the aileron effectiveness constraint and is fixed by the 

value of the user specified load factor for the aerodynamic trim analysis. In 

these cases, the acceleration vector is also invariant and its sensitivity is 

computed only for the case where the sensitivity of lift effectiveness con- 

straint is required. Finally, the S vector sensitivity needs to be computed 

only as part of the trim analysis sensitivity calculation since S is fixed for 

effectiveness calculations. 

The meaning of a displacement set also varies, depending on the design 

condition. For the trim analysis, the displacements have the standard physi- 

cal meaning of deformations induced by the specified flight condition. For 

the effectiveness constraints, these displacements give the deformation that 
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would result from 60, *AIL« an<* *p (see Equations 9-21, 9-25, and 9-26).  For 

the Sa  case, there is also an acceleration vector that results from the unit 

angle of attack.  These displacements and accelerations for the effectiveness 

constraints have minimal physical meaning, but their calculation is required 

to perform the sensitivity analysis. 

With these remarks, the sensitivity of Equation 9-6 with respect to 

the itn design variable in the f-set of displacements is 

[KAff] (DUf)! + [Mff] (DUDf)! - [PAfl (DDELli + [DPf]t (9-27) 

where the DU and DUD notation follows that given in Equation 6-51, DPf has 

been defined following Equation 6-49 and 

(DDEL)! -  (££-} 
Svi 

(9-28) 

For steady aerodynamic analyses, gravity and thermal loads are not 

allowed so that only the last three terms of Equation 6-46 contribute to DPf 

(i.e., only the stiffness and mass sensitivity values). 

The reduction of these equations to the a-set and subsequent parti- 

tioning into the - and r-sets parallels the formulation given by Equations 

6-50 and 6-51 and uses the notation of Equation 9-13 to give: 

KAij?        KAjj,. 

DTM|jj+Mrjf  DTMjjr+Mrr 

DTKAjfX+KAr| D
TKA|r+KArr 

Mj^D+Mjj. 

0 

mr 

DU! 

DU„ 

DUD r J 

PA| 

0 

I       |DTPA£+PAr 

{DDEDi 

DP 

DTDMU +DMUr (9-29) 

DTDP +DPr 

This equation can be rewritten, using the notation of 9-14 to become 

Kll     K12 

L *21    K22 
ri - l DU2  Ji 

Pi 

L *2 
I DDEDi  + ri l DP2 J i 

(9-30) 

The concluding portion of the sensitivity calculations differ for the 

various constraint types and are therefore presented individually. 
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9.4.1 Trim Sensitivity Analysis 

For the trim sensitivity, DU2 is zero so that it is possible to solve 

for DUi using the first row of Equation 9-30: 

{DUiJi -  tKnl4 ([Pi] IDDEL)! + {DP^!) (9-31) 

and this can be substituted into the second row of Equation 9-30 to solve for 

DDEL: 

[P2 - K2iK11-
1P1){DDEL)i - -{DP2)i + [KnKn*

1] (DP^       (9-32) 

Note that the matrix on the left-hand side of Equation 9-32 is identi- 

cal to the one on the right-hand side of Equation 9-16 and therefore, does not 

require recomputation. Equation 9-32 is solved for changes in the angle of 

attack to changes in the design variables for the first trim option described 

in Subsection 9.2.1 and for changes in both the angle of attack and pitch 

control setting in the second option. Given DDEL, Equation 9-31 is used to 

solve for (DUa)^, the sensitivities of the displacements in the analysis set. 

The sensitivities in the f-set are computed by merging omitted and 

analysis set degrees of freedom, where the omitted set is, based on Equations 

9-19 and 9-20: 

{DU0)i -  [GAoKDUaJi + [KAooJ-ltPAoKDDEDi (9-33) 

Further recovery to the f-set is a merge operation with the single 

point constraint degrees of freedom. Equation 6-56 can then be used to 

complete the sensitivity analysis for strength and displacement constraints 

with steady aerodynamics. 

9.4.2 Lift Effectiveness Sensitivity 

The calculation of the lift effectiveness sensitivity is most under- 

standable if the third row of Equation 9-13 is used to compute the flexible 

lift curve slope: 

CT 

as 
2 

„ ^ \  " [mr](Ur) - [P2]l«a> - (K21]{u?} (9-34) 
lcC*afJ 

a 
where (u^} is the pseudo deformation that results when the 6a   vector is 

applied to the free-free aircraft. 
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The sensitivity of Equation 9-34 gives: 

lacVM . _[K21]HL 

f DUx |     f DPx | 

1 DU2 Ji    1 DP2 Ji 
(9-36) 

1 j cac^ - l ■ -lK2l] * - k (9'35) 

Note that P2, fia and K2i are invariant with respect to the design 

variable.  The K2i matrix is invariant because the stiffness terms that are 

contained in this matrix  (as defined by Equation 9-13) sum to zero, leaving 

a 
only the design independent aerodynamic terms.  To determine 8\i\/dv,    it is 

necessary to revisit Equation 9-30 and set 86/dv  to zero to obtain 

Kn  K12 

K21 K22 

The first row of this equation gives 

(DUxli -  [Kul'l-UDP!)! - [K12}(DU2)i) (9-37) 

and this is substituted into the second row of Equation 9-36 and rearranged to 

give: 

[K22 - K21K11-
1K12]{DU2}i - {DP2>i - [K2iKii-

1]{DP1}1      (9-38) 

Note that the matrix on the left-hand side of this equation is identical to 

the matrix on the left-hand side of Equation 9-30 and therefore, does not 

require recomputation. After solving Equation 9-38 for (DU2)i, Equation 9-37 

can be used to determine (DU^J^ and Equation 9-35 is used to solve for the 

sensitivity of the stability derivative. 

9.4.3  Aileron Effectiveness Sensitivity 

In a manner similar to the lift effectiveness constraints, a more 

understandable formulation of the aileron effectiveness sensitivity can be 

gained by rewriting Equations 9-25 and 9-26 

*&    Ct6    -    fttH'AXL) - [K2lM"l  1                    (9-39) 
2     a 

• 

*P" CtDb "  [P2l<*p> - (K2i){u?)                       (9-40) 

where {UJAILJ an(j (U^P) are the pseudo deformations that result when the 6/^JL 

and 6p vectors are applied, rsspectively.  The sensitivity calculation there- 

fore, requires the calculation and recovery to the g-set of these additional 
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displacement vectors.  The sensitivity of these stability derivatives are 

simply: 

8C* AIL 

-I-4* " -fc lK2l) (DU1  }i <9"41> 3v£      qSb 

ac ai. ._* ». -a- [K2iJ (DUxJi (9-42) 
3vi      qSb2 

where the DU^ vectors are the sensitivity of the pseudo displacements to the 

design variables and are calculated from Equation 9-30 using: 

AIL ,   AIL 
(DUx  )i -  [KnP1 {DPi )± (9-43) 

{DUili -  [Kn]"1 {DPi)i (9-44) 

where the DP^ are obtained from the pseudo load vectors based on the pseudo 

displacements. The simplified form of Equation 9-30 results from the fact 

that the DU2 and DDEL vectors are null for the steady-state roll case. 
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SECTION X 

FLUTTER ANALYSIS 

Flutter analysis In ASTROS provides the capability to assess the 

aeroelastic stability characteristics of the designed structure and to correct 

any deficiencies in a systematic fashion. Both subsonic and supersonic 

analyses are available and, reflecting the multidisciplinary character of the 

procedure, the design task can be performed with any number of boundary 

conditions and flight conditions. In this way, all critical flutter condi- 

tions can be analyzed and designed for simultaneously. This section first 

describes the flutter analysis that has been implemented in ASTROS and then 

describes the unique specification of the flutter constraints and the algo- 

rithm implemented to evaluate this constraint and the corresponding sensitivi- 

ty calculation. 

10.1    THE P-K FLUTTER ANALYSIS 

The flutter analysis capability was implemented by combining software 

resources from FASTOP (Reference 5) and NASTRAN (Reference 1). The p-k method 

of flutter analysis was implemented based on an equation of the form. 

[<?)   P
2
 [MhhJ + [Khhl - &r (tQhhl +? fQhhJ)] Uh»   -  °   <10-D b 2 k 

where 

V - selected airspeed 

b - reference semi-chord 

p-k (7+i) - complex response frequency and eigenvalue 

**hh - generalized mass matrix 

Khh " generalized stiffness matrix 

Qhh " generalized aerodynamic matrix - ( [Q^] + i[Q*] ) 

p - air density 

k - reduced frequency 

qh - eigenvector of modal coordinates 
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7   -   damping factor 

1   -   J~ 

Equation 10-1 is similar to the equation used in Reference 5 with the 

exception of the p/k multiplier on the out-of-phase portion of the aerodynam- 

ics. This change was made to allow the proper evaluation of the aircraft's 

response at low, damped frequencies such as those required to estimate the 

aircraft's short period frequency. 

The generation of the modal mass and stiffness matrices is performed 

as part of the dynamic matrix assembly described in Subsection 11.1. Options 

provided in this assembly allow for the possibility of direct matrix input and 

extra point degrees of freedom that can contribute to the off-diagonal terms 

in these matrices, but they are typically zero. A more commonly used feature 

is the specification of structural damping, which makes the stiffness matrix 

complex. Finally, although not specifically indicated in Equation 10-1, 

ASTROS has retained the FASTOP capability to omit designated modes from the 

flutter analysis. This feature is particularly useful when modes do not 

participate in the aeroelastic response and only obfuscate the interpretation 

of the analysis. 

The computation of the Q^h matrix at a number of Mach number and 

reduced frequency values is given in Equation 8-14. For a given Mach number, 

this matrix is calculated at a series of reduced frequencies (k's). Equation 

10-1 requires this matrix as a continuous function of k, since the determina- 

tion of values of p and k which satisfy Equation 10-1 is the basis of the p-k 

method. The method of interpolation of the Q^^ matrix used in ASTROS was 

taken from NASTRAN and entails fitting a cubic spline through the known values 

of the Qhh matrix to obtain intermediate values. The interpolation starts 

with the determination of a matrix with the following elements: 

0        for i-j-nhdpts+1 

Gij - • 1 for i-nhdpts+1 or j-nhdpts+1   (10-2) 

|ki-kj|3 + |ki+kj|3 for i or j < nhdpts 

where nhdpts is the number of hard points (i.e., points at which Q^^ has been 

calculated) and the kj are the reduced frequency values for these points. A 

weighting vector C is then determined 
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(C)  -  [G-l] (pv) (10-3) 

where 

(1 for j - nhdpts + 1 
(10-4) 

|kest-kj|
3 + lkest+kj|3 for j < nhdpts 

where kest is the reduced frequency value to which the aerodynamics are to be 

interpolated.  The generalized aerodynamic matrix is then computed using 

nhdpts     R i 
Ahh(kest) "   *        Cj [Qhh (kj) + i_Qhh (kj)] (10-5) 

I T 
where QhhAj is fic rather than Qhh directly since the former quantity is a 

much smoother value of k and because it is needed in the formulation of 

Equation 10-1. 

The solution algorithm for Equation 10-1 follows the one used in 

FASTOP. Figure 17 presents a basic flow chart of this process which involves 

solving the equation for a series of user defined velocity values. The figure 

shows two alternative paths through the program, based on whether a flutter 

analysis or a flutter design task is being performed. The two differ in that 

the analysis refines the user defined velocities to obtain a high quality 

display of the flutter response and, in particular, to determine the lowest 

flutter speed to a high degree of accuracy. As will be shown shortly, the 

design path does not require this refinement. 

Equation 10-1 is solved by determining values of p for which the 

determinant of the equation is zero. FASTOP employs an algorithm based on 

Muller's method (Reference 19, pp 435-438). ASTROS adopted this algorithm, 

with the insertion of a capability to extract real roots that was not present 

in the Reference 5 software. The occurrence of real roots in the solution is 

not uncommon, and with the increasing use of active controls, is becoming more 

frequent.  For real roots, the estimated damping is given by: 

7 - p/ln(2) (10-6) 

10.2   FLUTTER CONSTRAINT EVALUATION 

Flutter constraints are specified in ASTROS as 

-,      _7 j-l,2,...nv 
g . In ZiMQ < o do-7) 

GFACT 1 -  1,   2,   ...   nroot 
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where 711 is a damping value given by Re(p)/k for the ltn root at the jtn 

velocity. "TjREQ is tne user defined, required damping value, with the j 

subscript indicating that the user can specify this requirement to be a 

function of velocity. Most typically, the required value would be zero for 

all velocities. GFACT is a scale factor that converts the damping numbers 

into a range consistent with other constraints in the design task. This is 

also a user input with suggested values in the range of 0.1 to 0.5. 

The user specifies that this constraint be satisfied at a series of 

velocities up to, and perhaps above, the required flutter speed. Four or six 

velocities should be adequate. The advantages of this method of specifying 

the flutter analysis and constraint evaluation compared to various alternative 

methods are: 

(1) There is no requirement for the computation cf the flutter speed. 

The exact computation of this speed can consume substantial 

resources. 

(2) By using the p-k method of flutter analysis, solutions are 

obtained only at the velocities of interest. 

(3) The constraint is evaluated at multiple velocities to handle the 

appearance of "hump" modes that could become critical at veloci- 

ties well below the required flutter speed. Flutter analysis at 

speeds that are 0.5, 0.75, 0.9, 1.0, and 1.1 times the required 

speed should be adequate for proscribing this undesirable behav- 

ior. 

(A) In a similar fashion, the simultaneous consideration of a number 

of branches in the flutter solution handles the complication of 

more than one branch becoming critical. Also, when a number of 

modes are considered, there is no necessity for tracking a 

specific mode, with its attendant increase in logical complexity. 

(5) There is no large penalty associated with the calculation of the 

nroot x nv constraints given by Equation 10-6. This is because 

only the critical 7j 1 conditions require gradient information. 

Very few such constraints are active for a typical design itera- 

tion. 
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10.3   SENSITIVITY OF FLUTTER CONSTRAINTS 

The derivative of the constraint given by Equation 10-6 with respect 

to a design variable is 

te L.!lUL 
avi    GFACT d^i 

(10-8) 

The gradient of 7-n , in turn is, from the definition following Equa- 

tion 10-1 is 

37 11 - I 
dwi k 

3Re(p) n t>Im(p) 
3v£ 

(10-9) 

The gradients of the eigenvalues are based on Equation 10-1, which can 

be condensed to 

[Fhhl Uh> - 0 (10-10) 

with an adjoint relation 

<yh>T [Fhhl - 0 (10-11) 

The h subscript is suppressed for clarity In the remaining formula- 

tion.  The derivative of Equation 10-10 with respect to design variable v^ Is 

ajXl (q) + [F] £iai  -   0 (10-12) 
3v£ dv± 

This equation can be pre-multiplled by {y)T to give 

(y)T Mil (q) + {y)T (F] MOJL . 0 
dv± 3v£ 

(10-13) 

The second term in Equation 10-13 Is zero from Equation 10-11.  Expanding the 

first term gives 

ly) 

.<£ 

(Y)2 p2 mi + (Y) 2p [M] -&. + any. 
b     dv± b        3v£   3vt 

(10-14) 

3[AR1 + p 3[A
1! + _ifi [AI 

3v^      3v^   3v^ 
(q)  - 0 

where AR and AJ are the real and Imaginary portions of Equation 10-5, respec- 

tively.  The velocity is fixed during the gradient evaluation so that the term 

(3V)/(3v1) Is zero. 
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Left- and right-hand flutter eigenvectors in the global displacement 

set can be expressed as 

<yg> - l*ghJ w 
and (10-15) 

A 

(qg) -   Ughl (qh) 

Equation 10-14 can then be written in the g-set and the relations for 

the mass and stiffness gradients given by Equations 6-44 and 6-45 can be used. 

The solution of 10-14 is straightforward in the sense that the only unknown is 

the 3p/3v^ term. This can be solved for by two simultaneous linear equa- 

tions, with the real and imaginary parts of the derivative the two unknowns. 

The notation for this is rather complex however, and it is convenient to 

define intermediate expressions: 

MRi + iMIi - (yg)
T [DMVJi (qg) (10-16) 

KRi + iKIi - {yg)
T ([DKVJi + av^-1 [DKBVJi) (qg)         (10-17) 

GMR + iGMI - (yg)
T [Mgg] {qg) (10-18) 

AIR + iAII - (yh)T [AhhI] <qh) (10-19) 

PR + iPI - p (10-20) 

2 2 
P2R + 1P2I - E_V_ (10-21) 

b2 

Note that these terms are all complex scalars. 

The aerodynamic matrix is a function of the design variables through 

the reduced frequency.  That is 

2141 _ 4IA1 _2k (10-22) 
3v^      3k 3v^ 

then, continuing to define simplified notation: 

DAIR + iDAII  -  <yh)
T flfA 1 (qh) (10-23) 

3k 

DARR + iDARI  -  {y^1 d[A 1 (qh) (10-24) 
3k 
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and noting that k - Ira(p), further define 

DRi + iDii - 2P- - iikod + i2k- 
3v£     3v^    dv£ 

(10-25) 

The gradient of the aerodynamic matrices with respect to k is a 

straightforward application of chain rule differentiation of Equation 10-5, 

with only the C^ term variable. The G matrix of Equation 10-3 is also invari- 

ant so that it is only the pv vector of Equation 10-4 that requires differen- 

tiation: 

dp v. 

3k 
- 3a(kest - kj)2 + 3(kest + kj)' (10-26) 

where a is the sign of (kest - kj) 

To further ease notation, the i subscript is implied in the following, 

with the understanding that Equation 10-14 must be solved for each active 

flutter constraint with respect to each design variable. With all this, 

Equation 10-14 becomes: 

P2RMR - P2IMI + KR 

where 

DF11 DF12 

DF21 DF22 P2RMI + P2IMR + KI 
(10-27) 

DFU     -     qAIR   -   22-   (PRGMR   -   PIGMI) 
b2 

DF2i     -     qAII   -  2V-   (PRGMI  +  PIGMR) 
b2 

DF12     "     q(-AII  +  PRDAIR   -   PIDAII  + DARR) 

+ 2V_(PR-GMI   +  PIGMR) 
b2 

DF22  "  q(AIR + PRDAII + PIDAIR + DARI) 

(10-28) 

22-  (PRGMR - PIGMI) 
b2 
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where q is the dynamic pressure and the relation 8V./dv± - DI, from Equation 

10-25, has been used. Note that the right-hand side of Equation 10-27 is 

independent of the design variable, so that these terms need to be calculated 

only once for each active flutter constraint. 

Once Equation 10-27 has been solved for DR and DI, the required 

constraint gradients are computed using Equation 10-8 and 10-9 so that 

-Zli - 1 (DR - 711DI) (10-29) 
dv^    k       J 
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SECTION XI 

DYNAMIC ANALYSIS 

Dynamic analysis In ASTROS refers to analyses where the applied 

loading is a function of time or frequency. The section describes the ASTROS 

capability to perform transient and frequency analyses, with gust analysis 

treated as a special case of the frequency analysis. The additional special 

case of an aircraft's response to a blast type of loading is described in 

Section XII. Unlike the analyses described in the preceding five sections, 

there is no provision for considering the results of the dynamic response 

analysis in the design phase of ASTROS. The dynamic analysis capability is 

provided primarily to permit the checking of the final designs using these 

further analyses and to provide a more complete analysis package for general 

applications. The methodology described in this section borrows heavily from 

that developed for NASTRAN, with the MSC/NASTRAN Handbook for Dynamic Analysis 

(Reference 15) a particularly good source for further information. 

The basic equation for transient analysis is given by 

[M] (u)   + [B] (u) + [K] (u)  -  (P(t)) (11-1) 

and for frequency analyses by 

[-w2M + iwB + K + Q] (u)  -  (P(o>)) (11-2) 

where M, B and K are the mass, damping and stiffness matrices and Q is the 

aerodynamic matrix that is used in the flutter and gust analyses. 

This section first discusses the generation of the matrices on the 

left-hand side of these equations and then the generation of the time or 

frequency dependent load vectors on the right-hand side. The methods of 

solution used for each of the options developed for ASTROS is then given. 

11 1    DYNAMIC MATRIX ASSEMBLY 

The dynamic disciplines in ASTROS: flutter, transient response and 

frequency response, require additional operations to assemble the mass, 

damping, stiffness properties of the dynamic system(s) under analysis. This 

is done to accommodate those properties of the dynamic system which cannot be 

modeled directly using structural elements. The ASTROS dynamic matrix assem- 

bly is patterned after that in NASTRAN (Section 3 and Subsection 4.3 of 
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Reference IS) and supports extra points, user defined direct matrix input and 

transfer function matrix input as well as several damping options to model the 

dynamic characteristics of the system. ASTROS does not provide damping 

elements (like the NASTRAN CVISC or CDAMP), nor is the NASTRAN feature for 

element dependent structural damping available in ASTROS. In keeping with the 

multidisciplinary nature of this code, ASTROS has introduced the innovation of 

having the extra point definitions include an "extra point set identification" 

which is used in the boundary condition definition. The damping definition is 

also boundary condition dependent in ASTROS. These features allow several 

different dynamic systems to be analyzed simultaneously. 

Dynamic matrix assembly in ASTROS and NASTRAN has a large number of 

options and so becomes very complex.  Rather than duplicate the extensive 

discussion of this topic contained in Reference 15, this document emphasizes 

those features that are unique to ASTROS or are different than those in 

NASTRAN. 

The analyses of the dynamic response disciplines can be done (in 

general) using either a direct or a modal formulation, although ASTROS does 

not support a direct formulation of the flutter analysis.  Using NASTRAN as a 

guide to define the forms of the dynamic matrices, two forms of the mass and 

damping matrices (a direct form and a modal form) and four forms of the 

stiffness matrix:  the transient and frequency response forms are different 

for both direct and modal formulations are available.  Any or all of these 

eight matrices may be computed within each boundary condition in ASTROS, 

depending only on the selected dynamic disciplines and discipline options. 

Flutter analysis and optimization in ASTROS makes use of the modal frequency 

response form of the stiffness matrix and does not Include the damping matrix. 

These forms are shown in Equations 11-3 through 11-10. 

Direct forms: 

1      2 
[Mdd]  -  [Mdd] + (Mddj (11-3) 

(Bddl  "  [Bdd] + -*   [Kdd] (11-4) 
u>3 
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1      2 
[Kdd^ -  [Kddl 

+ tKddl (H-5) 

[Kdd]
f - (1 + ig)[Kdd] + [Kdd] (11-6) 

Modal forms: 

(Mhhi  -  r*h.] + [*dhiT [Mddi i^dhi (u-7) 

[Bhhl  *  I'bh.l + (^dhlT [Rdd) [*dhl (U-8) 

[Khhl' - V*h.)   + [^dhjT [Kdd] (^dh) (11-9) 

[Khhlf "  (1 + ig) I kh ] + [^dh]T [Kdd] [*dh] (11-10) 

where the subscripts "d" and "h" denote direct (d-set) and modal (h-set) 

forms, respectively and the superscripts "t" and "f" denote transient and 

frequency forms, respectively. The superscript "1" is used to denote those 

terms derived from the assembly of the structural elements and "2" to denote 

those terms obtained from direct matrix input or from transfer function input. 

The terms "g" and "0)3" refer to the general structural damping and the radian 

frequency used to define equivalent viscous damping, respectively. 

The n»h are the generalized mass terms augmented with zeros for extra 

point degrees of freedom and ^d^ is the matrix of eigenvectors from the real 

eigenanalysis expanded to include extra points. The bn are the expanded 

generalized modal damping terms obtained from an optional modal damping table, 

g(w^), defined by the user: 

bh " g(wh) "h ■% (11-11) 

and kh are the generalized stiffness terms from the real eigenanalysis. Note 

that the expressions for the direct damping matrix and both frequency response 

stiffness matrices (Equations 11-4, 11-6 and 11-10) include both a complex 

structural damping and the viscous damping g/u>2. These terms are, however, 

mutually exclusive damping forms. If 103 is nonzero, viscous damping is used 

as in Equation 11-4 while a zero value for C03 results in the complex structur- 

al damping of Equations 11-6 and/or 11-10. More details on the ASTROS damping 

options are given in Subsection 11.1.3. 
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11.1.1 Direct Matrix Input 

Direct matrix input allows the user to modify any or all of the 

dynamic mass, damping and stiffness matrices. ASTROS provides two mechanisms 

for the user to define direct matrix input. The most general is the direct 

matrix input option in which the user directly defines the matrices [M2ddl. 

[B2dd]. and/or K2ddl In Equations 11-3 through 11-10. The second is through 

the definition of transfer functions. When these two methods are used in the 

same boundary condition, the resultant direct matrix input will be formed from 

the superposition of both sets of input. 

Both direct matrix input and transfer functions refer to the physical 

or p-set degrees of freedom (where the p-set is the union of the structural 

degrees of freedom and the extra point degrees of freedom). In fact, the 

direct matrix input selected for dynamic matrix assembly must be square and of 

the order of the number of p-set degrees of freedom. The user can, therefore, 

couple structural degrees of freedom with the extra point degrees of freedom 

through both input mechanisms. The ASTROS feature for extra point sets adds a 

complication in that the size of the physical set varies between boundary 

conditions. 

11.1.2 Reduction of Direct Matrix Input 

The direct matrix input from all sources, which is formed in the p- 

set, is reduced to the dynamic set prior to Its inclusion in the assembly 

process indicated in Equations 11-3 through 11-10. The extra point degrees of 

freedom create a complication in that the standard reduction matrices [Tmn] 

and [G0] do not include extra points. In addition, matrix [G0] may represent 

the result from either static condensation or from generalized dynamic reduc- 

tion. The presence of extra points also requires that additional columns and 

rows be appended to the matrix of eigenvectors [^aiJ that is output from the 

real eigenanalysis.  These operations are: 

[TBn]  "  [Tnm I 0] (11-12) 

d 
[Golstatic  ~  [Go I 0] (11-13) 

d 
[Golgdr 

' G0   |   0 ■ 

. 0     |   I . 

(11-14) 
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!#dh] - 
*ai 

(11-15) 

in which the "d" superscript or subscript denotes that the transformation 

applies to the reduction to the dynamic degrees of freedom (d-set).  ASTROS 

has imposed the restriction that the extra point degrees of freedom follow all 

the structural degrees of freedom in the sequence list, so these operations 

can be performed by simply appending the proper terms to the appropriate 

partitioning vectors and transformation matrices. 

Following this expansion of the transformation matrices, the standard 

matrix reductions are applied to the direct input matrices with the extra 

point degrees of freedom carried along in the independent, free and analysis 

sets. The modal transformations are applied in a separate step to the d-set 

direct input matrices if the modal forms of the dynamic matrices are required. 

11.1.3 Damping Options 

The damping options that are available in dynamic matrix assembly are 

sufficiently numerous that they merit additional clarification. Three means 

of specifying damping terms are available in ASTROS: (1) the definition of a 

direct input damping matrix B2PP, a complex direct input stiffness matrix, 

K2PP and/or specification of first order transfer function terms; (2) the 

specification of a structural damping value "g" and/or a radian frequency for 

equivalent viscous damping; and (3) the specification of a modal damping 

table. The second and third options are selected for each boundary condition 

through the solution control boundary condition DAMPING option. For options 

two and^three, the DAMPING option refers to VSDAMP and TABDMP1 bulk data 

entries, respectively. These damping options may ALL coexist in a single 

boundary condition. 

To understand the damping matrices that result for combinations of 

damping options, it is useful to understand the steps involved in the assembly 

of the damping and stiffness matrices. The direct input damping matrix [B^^l 

is formed first from the transfer function and B2PP data, if any are selected 

in the solution control boundary condition definition. The direct damping 

matrix [B^dl Is then assembled as shown in Equation 11-4 with the second term 

omitted unless both "g" and "(03" are defined through the DAMPING option.  This 
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assembly process does not depend on whether the modal or direct formulation is 

desired since the second term in Equation 11-8 is the modal transformation of 

the full direct damping matrix. Thus, when equivalent structural damping is 

selected, it will appear in both the direct and modal damping matrices. 

Once the direct damping matrix is formed, the assembly of the modal 

damping matrix may proceed. Unless a modal damping table is referenced by the 

DAMPING option, the modal damping matrix is merely the modal transformation of 

the direct damping matrix. If, however, the DAMPING option refers to a modal 

damping table (note that the DAMPING option can refer to both VSDAMP and a 

modal damping table in the same boundary condition), the b^ terms are formed 

and included in the assembly of the modal damping matrix. 

For both direct and modal frequency response (and flutter analysis), 

the complex structural damping option is available. In this case, the complex 

multiplier is applied to the structural stiffness matrix or the generalized 

stiffness matrix as shown in Equations 11-6 and 11-10. The multiplier will 

be unity, however, if the equivalent viscous damping option has been selected 

instead. That is the case if both "g" and "0)3" are nonzero on the referenced 

VSDAMP entry or if there is no VSDAMP entry selected. The frequency response 

forms of both the modal and direct stiffness matrices might not, therefore, be 

complex matrices if the imaginary term is zero. There is no restriction, 

however, that the direct matrix input of K2PP be real, so that complex struc- 

tural damping input through direct matrix input can coexist with the equiva- 

lent structural damping of Equation 11-4. Therefore, the frequency response 

modal and/or direct stiffness matrices may be complex even though the equiva- 

lent structural damping option is selected. 

11.2    DYNAMIC LOADS GENERATION 

ASTROS has adapted NASTRAN loads generation concept to define the 

right-hand sides of Equations 11-1 and 11-2. The formats used in ASTROS for 

the preparation of the user input for these loads has been modified from the 

NASTRAN formats and can be quite involved.  Subsection 3.5 of the Applications 

Manual provides guidance on this preparation.  This subsection is limited to a 

specification of the types of loads input that are available for the dynamic 

response analyses. 
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11.2.1  Transient Loads 

For transient loads, the P(t) vector of Equation 11-1 Is specified as 

the weighted sum of any number of component loads: 

P(t)  - S0 Z Si Lt(t) (11-16) 

where S0 and S^ are scalar multipliers. Note that this Is similar to the 

static loads generation of Equation 5-27. The L(t) vector, in turn, can be 

represented as the product of a spatial component and a time varying component 

L(t)  -  [SPT] [T] (11-17) 

where this matrix notation is meant to convey r.he information that any number 

of time functions can be specified for a given model. The SPT matrix has as 

many rows as there are degrees of freedom in the p-set and as many columns as 

there are unique time functions. The T matrix has as many rows as there are 

unique time functions and a column for each time step that the user has 

requested. There are two distinct formats for specifying the rows of the T 

iratrlx.  The first is a general form of 

?ij  " Fi <tj " rO (11-18) 

where f£ is a user input and the F^ functions are input as a tabular function 

of time.  The second format is the specialized form of 

-bet 
tj   1  e   L J   cos(Witj   + ^i) 0<tj<T2   _T1 

ij (11-19) 
0>tj and tj>T2 -1\ 

where t*     -  t< - T^  • f£, r£, ¥f, «£, IN, 4±,   Tj  and T2 are user inputs 
J     J     i 1      i 

and the Fj functions of Equation 11-18 are input as a tabular function of 

time.   The actual input of the special functions using Equation 11-19 is 

perhaps easier in practice than it is in theory.  This is because most of the 

input terras are likely to be zero for particular wave forms. 

ASTROS generates the SPT matrix of Equation 11-17 in the p-set. 

Before the multiplication by the T matrix is performed, the SPT matrix is 

reduced to d- or h-size, depending on whether a direct or modal formulation 

has been specified.  The scalar multiplications of Equation 11-16 are also 
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performed on the spatial matrices prior to multiplication by the T matrix. 

Following the multiplication, the loads are stored on the data base for later 

retrieval In the response calculation.  The P(t) matrix has dimensions of 

either d-size by NSTEP, the number of time steps in the response, or of h-size 

by NSTEP. 

11.2.2 Frequency Dependent Loads 

In a manner similar to the transient loads, the frequency dependent 

loads of Equation 11-2 are generated as the weighted sum of any number of 

component loads: 

P(w)  - S0 E St  Li (w) (11-20) 

where S0 and S^ are scalar multipliers. The L(w) matrix is, in turn, repre- 

sented as the product of a spatial component and a frequency dependent compo- 

nent: 

L(w)  -  [SPF] [FQ] (11-21) 

where this matrix notation Is meant to convey the information that any number 

of frequency functions can be specified for a given model. The SPF matrix has 

as many rows as there are degrees of freedom in the p-set and as many columns 

as there are unique frequency functions. The FQ matrix has as many rows as 

there are unique frequency functions and NFREQ, the number of frequencies 

required for the response analysis, columns. As in the transient load case, 

there are two formats for specifying elements in the FQ matrix.  The first is 

i(0.-2wf.r.) 
FQij  '  (Ci(fj) + i Di(fj)] e  i        J1 (11-22) 

while  the  second is 

i*.(f.)       l(0.-2*f.r.) 
FQij     -     (Bi(fj)  e     i    J   ]   e       * J1 (11-23) 

where B^, ^, C^ and D^ are input as tabular functions of frequency and 6± and 

r^ are user inputs. The fj values are the user specified frequencies at which 

the response is to be calculated. 

ASTROS generates the SPF matrix of Equation 11-21 in the p-set. 

Before the multiplication by the FQ matrix is performed, this matrix is 

reduced to d- or h-sizes, depending on whether a direct or modal formulation 
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has been specified. The scalar multiplications of Equation 11-20 are also 

performed prior to the multiplication by the FQ matrix. Following the multi- 

plication, the loads are stored on the data base for later retrieval in the 

response calculation. The P(u>) matrix has dimensions of either d-size by 

NFREQ or h-slze by NFREQ. 

11.2.3 Gust Loads 

Gust analysis in ASTROS is performed as a special type of frequency 

analysis. As discussed in Subsection 8.2.2, if a gust analysis is being 

performed, the Qhh matrix of Equation 8-14 is computed to provide forces due 

to aeroelastic deformations while the Qhj matrix of Equation 8-15 is computed 

to provide the gust loads on the rigid aircraft. 

The overall gust load Is computed by combining these Qh< data with a 

downwash vector and a frequency dependent shaping function, as described in 

the following paragraphs. 

A one-dimensional sinusoidal gust field produces a downwash vector, 

WJ, at the aerodynamic panels that has elements of the form 

-iw(x,-x )/V 
WJj(w)  - cos 7j e    J  ° (11-24) 

where 

w - Frequency 

j - Panel number 

7 - Panel dihedral angle 

Xj - x0  - Distance from the user input reference plane to the 
aerodynamic panel 

V       - Vehicle velocity 

The downwash vector can be thought of as a mode shape which can be multiplied 

by the Qhj aerodynamic operator to give unit gust loads in modal coordinates: 

[PDEL(o>)]  -  [Qhj(«)J [WJ(«)J (11-25) 

As in the flutter analysis, the O^i matrix is required at a number of 

frequencies while it typically has been computed at a different, smaller set 

of frequencies. The interpolation scheme described in Equations 10-2 through 

10-5 for the Qhn matrix Is applied to the Qhj matrix as well. 
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As a final step in gust load generation, the PDEL matrix can be 

modified by a user defined function of frequency and by a gust velocity scale 

factor: 

[PHF(w)]  -  g wg PP(u>) [PDEL(w)] (11-26) 

where 

PHF(w)   - Gust load vector in modal coordinates and is equivalent 
to the matrix of Equation 11-19 

q        - Dynamic pressure 

w„      - Gust scale factor 

PP(w)    - A frequency dependent weighting function matrix 

where the PP(w) function is defined using one of the tabular forms specified 

by Equations 11-22 or 11-23. 

11.3    TRANSIENT RESPONSE ANALYSIS 

As described in the preceding subsection, Equation 11-1 can be speci- 

fied in terms of modal or direct coordinates. If a modal analysis is speci- 

fied, ASTROS checks whether the equations are coupled or uncoupled. This is 

done by checking if the M, B and K matrices are all diagonal. If they are, 

then the equations are solved in a relatively efficient manner using analyti- 

cal equations. If they are coupled, the Newmark-Beta numerical technique is 

employed. Each of these methods is now discussed using terminology given in 

Subsection 4.6 of Reference 15. The further option of using Fast Fourier 

Transform techniques to perform the transient analysis is also described. 

11.3.1  Solution of Uncoupled Transient Response Equations 

If the modal equations are uncoupled, it is possible to write each row 

of Equation 11-1 separately: 

Mi q'i + bi qi + ki <Ii ~ pi(t) (11-27) 

which can be put into a more standard form as 

2 
qi + 20  qi + a)0 qi - Pi(t)/Mi (11-28) 

146 



where 

0    - bi/2mi 

2 

Equation 11-28 can be solved for the response at any time in terms of the 

displacement and velocity at specified times tn and a convolution integral of 

the applied load: 

t 
qi(t) - F(t-tn) qi n+G(t-tn) qi n + 1- J G(t-r) Pi(r) dr       (11-29) 

mi ^ 

where the F and G functions are combinations of the homogeneous solutions 

(-0 ± \fi2   - w2)(t-t ) 
qi(t) - e °    n (11-30) 

F and G satisfy, respectively, the initial conditions for unit displacement 

and unit velocity. 

It is assumed that the load varies linearly between tn and n+i, so 

that, in Equation 11-29 

*i<*> ~ Pi.n + I  (Pi.n+1 - Pi.n) C11"31) n 

For this form of the applied load, the integral in Equation 11-29 can 

be evaluated in closed form.  The general form of the solutions at the next 

time step, t-tn+i, in terms of the initial conditions at t-tn and the applied 

loads, is 

qi,n+l - F qiin + G qin + A ?i>n  + B Pin+1 (11-32) 

qi,n+l    "     F'   qin + G'   qin + A'Piftl + B'Pin+1 (11-33) 

The coefficients are functions of the modal parameters, m^, 0, uQ', 

and of the time increment, h. The uncoupled modal solutions are evaluated at 

all time steps by recurrent application of Ecjuations 11-32 and 11-33. The 

accelerations are calculated by solving for q from Equation 11-28: 

q'i,n+l - ■ij!±1 - 20 q1>n+i - u>0 qi.n+1 (11-34) 
mi 
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The algebraic expressions for the coefficients in Equations 11-32 and 

11-33 depend on whether the homogeneous solutions are underdamped (w0
2 > />2), 

critically damped (w0
2 - /92), or overdamped (w0

2 < {$■). in addition, a 

separate set of expressions is used for undamped rigid body modes (w0 - /90 - 

0). As an example, these terms are defined here for the most frequently 

encountered case of underdamped solutions while Subsection 11.5 of Reference 1 

provides definition for all four cases. 

F - e"0n(coswh + £ sinwh) 
u 

G    -    I e"0hsinwh 

A- JL.U-fa LL£ - h/i 
hkw 

hkw 

{• wr 

2   a2 

w, 

sinuh - 

o      ) 

2n£ + hw 
2 w 

coswh 

sinwh + 2<£&  coswh 
w 2 wo 

„ 2 

+ wh 2&> 
w, O  V 

(11-35) 

where 

F'  - --P- e-^sinwh 
U) 

G'  - e-^Ccoswh - £ sinuh) 
to 

A'  - -L-   [e-0h{(p m  hw0
2)sinwh + wcoswh) - w] 

hkw 

B'  - -i- [-e_^h(^sinwh + wcoswh) + «] 
hkw 

w2 - w0
2 - ^2  and  k - w0

2m£ 

11.3.2 Solution of Coupled Transient Response Coupled Equations 

If the modal equations contain off-diagonal terms or if the direct 

method of analysis is used, the uncoupled formulation of the preceding subsec- 

tion is not applicable. Instead a numerical procedure must be adopted and 

ASTROS has selected the Newmark-Beta algorithm used in NASTRAN. This method 

transforms Equation 11-1 to a discrete equivalent of the form 

(Al l'^n+1) " * (Pn+1 + Pn + *Vl> ♦ (cl <"n> + [D] (%.!)   (11-36) 
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where 

ui - displacement response at the ltn time step 

[A] - T-i_ M + -1- B + 1 Kl 
ht2    2At     3 J 

» [C] - fe"-iK] 
^ [D] - \--L- M + -L.   B - 1 K] 

L At2    2At     3 J 

At - time step 

For a fixed time step, matrices A, C and D need to be computed only once. 

Additionally, A is decomposed so that the loop on the time step only requires 

forward/backward substitutions to solve Equation 11-36. 

Equation 11-36 requires the response and the load at two previous 

steps, as well as the load at the current time step. In order to initiate the 

calculation, starting values are calculated using 

{u.!)  -  (u0) - (u0) At 

(P-l)  -  [K] (u.i) + B {u0) (11-37) 

(po>   ~ \   [Po + [K] (u0) + [B] {u0)] 

where P0 is the user input load vector at the initial time.  Initial condi- 

tions (i.e., u0 and u0) are available only for the direct method.  When the 

time step changes, the matrices of Equation 11-36 need to be recomputed. 

Also, the starting values need to be adjusted to: 

(u.x)  -  (un) - At2 (u0) + i At^ |u0) 1 At-2 i",; 

(11-38) 
(P.!)  -  [K] (u.!) + [B] {u0 - At2 u0) + [M] (u0) 

where 

At2  -  new time step 

(u0)  =  -L-  {un - un_i) 
Ati 
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(u0)  -  -L- (Un - 21^.! + 1^.2) 
At2 

1 

n    -  last time of the old time step 

At^  -  old time step 

Equation 11-35 provides displacement information. If velocity and 

acceleration information are also required, these vectors are calculated using 

<un>  - -i- (un+1 - «„.!) (11-39) 
2At 

lu»1 - -i- {Un+1 - 2u„ + un.xl (11-40) 
At2 

11.3.3  Solution of Transient Equations Using Fast Fourier Transforms 

A third transient analysis technique transforms the time dependent 

loads into the frequency domain and using Fast Fourier Transform (FFT) tech- 

niques, solves the equations using the frequency response techniques of 

Subsection 11.4 and then transforms the resulting response functions back to 

the time domain.  Appendix C contains a description of the FFT algorithms. 

If the FFT option is specified, the time dependent loads of the T 

matrix in Equation 11-18 or 11-19 are computed as equal time intervals as 

specified by the user. Each row of the T matrix is transformed independently. 

No restrictions are imposed by ASTROS on the form of this time function, but 

it must conform to the restrictions of periodicity or be of sufficiently short 

duration that FFT methods are applicable. 

Once the frequency response has been calculated, the inverse FFT 

algorithm is applied separately to each degree of freedom in the response. 

This provides the response of the displacement. The response of the velocity 

is obtained by multiplying the frequency domain data by iw, the imaginary 

constant times each frequency value, and performing the inverse FFT on the 

resulting frequency vector. Similarly, the acceleration response is obtained 

by performing the inverse FFT on the displacement response in the frequency 

domain multiplied by -u>2. 

11.4   FREQUENCY RESPONSE ANALYSIS 

As in the transient response case, the frequency response calculation 

of Equation 11-2 can be performed in terms of direct or modal coordinates.  If 
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a modal analysis is specified, a determination is made whether the equations 

are coupled or uncoupled by checking if the M, B or K matrices are all diago- 

nal. If they are, then the equations can be solved independently in a rela- 

tively efficient fashion. The following subsections described the response 

calculations for both the uncoupled and the coupled formulations. The special 

case of performing gust analysis in the frequency domain is treated in a 

separate subsection. 

11.4.1 Solution of Uncoupled Frequency Response Equations 

If the modal equations are uncoupled, it is possible to write each row 

of Equation 11-2 separately: 

(-w2 mi + iwbi + ki) qi     -    ?t   (w) (11-41) 

Equation 11-41 is solved for each frequency and mode combination to 

give the overall frequency response. 

11.4.2 Solution of the Coupled Frequency Response Equations 

If the matrices given in Equation 11-2 are coupled, the response is 

calculated using 

(u)  -  [-w2M + iwB + K]"1 (P(w)} (11-42) 

This indicates that a separate decomposition of the matrix must be performed 

for each frequency in the analysis. Standard decomposition and for- 

ward/backward substitution routines are used in ASTROS to solve Equation 11- 

42. 

11.4.3 Solution of Frequency Response Equation Including Gusts 

If gust loads are present for the analysis, the solution technique of 

Equation 11-42 can still be applied, but it is necessary to add terms repre- 

senting the aerodynamic effects.  The direct solution option is not supported 

for this case so that the equation to be solved is 

o K  I R 

[-u>2Mhh + ico(Bhh - Ob Ahh) + Khh - Qhh](uh) - (PHF(u>)}      (11-43) 
v 

where the Ann
R and Ann* matrices are the real and imaginary parts of Equation 

10-5 and the PHF vector is defined in Equation 11-26. 
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SECTION XII 

NUCLEAR BLAST RESPONSE 

12.1    INTRODUCTION 

A further dynamic analysis Incorporated Into ASTROS, but not discussed 

in the previous section, is the calculation of an aircraft's response to an 

encounter with a blast created by a nuclear explosion. Although this repre- 

sents a very specialized analysis, the nuclear blast response calculation has 

a high degree of commonality with the core ASTROS disciplines; i.e., results 

from the structural analysis, unsteady aerodynamics and transient analysis 

calculations already discussed in the previous sections all provide pieces of 

the information required for this Integrated analysis. The implementation of 

this capability into ASTROS was affected through a combination of Northrop 

supplying the basic ASTROS system and integration tasks while Karaan AviDyne, 

in a subcontractor capacity, supplied the code that performs the specialized 

calculations related to nuclear blast encounters. This section presents an 

overview of the blast response calculations while Appendix B contains a Kaman 

AviDyne prepared description of the details of the fitting process which 

converts frequency dependent aerodynamics into the time domain. 

Figure 18 presents a block diagram of the general form of the blast 

response calculations.  As the figure indicates, the overall calculations are 

divided into two distinct sections.  The first Is a preprocessing section 

shown in the lower portion of the figure which converts frequency dependent 

aerodynamic influence coefficient matrices into a number of lndlclal functions 

from which the gust load can be computed as a function of time.  The lower 

portion contains the capability to convert forces acting on individual boxes 

to generalized forces acting on structural modes.  The upper portion depicts 

the actual calculation of the blast response.  There Is a feedback loop in 

this calculation in that the total forces acting on the structural modes are a 

function not only of the blast wave and the aircraft position, but also of the 

structural modes themselves.  The following two subsections briefly describe 

how each of these portions was integrated into the ASTROS system. 
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12.2    THE AERODYNAMICS PREPROCESSOR 

The calculation of the aircraft response during an encounter with a 

nuclear blast is computed in ASTROS in the time domain. This is in contrast 

to the related atmospheric gust response calculation of Subsection 11.4.2 

which was performed in the frequency domain. The selection of the time domain 

was partially done for historical reasons, since the V1BRA series of computer 

programs that have been developed by Kaman AviDyne (Reference 27) all compute 

the response as a function of time. More importantly, nonlinear effects can 

be readily accounted for once the equations are in the time domain. While the 

current implementation of the blast response calculations is linear, it does 

serve as a basis for more complex formulations if they become necessary. 

As discussed in Subsection 8.2.2, the unsteady aerodynamic calcula- 

tions are performed in the frequency domain. This necessitates a transforma- 

tion to the time domain and this transformation is the subject of Appendix B. 

If the algorithm of Appendix B is considered a "black box," its inputs are the 

A matrices of Equation 8-7 at a series of reduced frequencies and its outputs 

are a new set of matrices that represent the indicial response of a receiving 

box due to a disturbance at a sending box. Equation B-10 can be written in 

matrix form as: 

N 
[F(t,t')]  -  [MATSS] + Z  [MATTR]n exp(-0n(t-t')) (12-1) 

n-1 

where 

F     -  Matrix of forces at receiving points at time t due a unit 
normal wash at a sending point at time t'. 

MATSS  -  Matrix of steady-state influence coefficients 

MATTR  -  Matrices of transient influence coefficients 

/3n    -  Exponential coefficient 

N     -  Number of terms used for transient influence coefficient 
representation 

t     - Time 

t'     -  Time of application of the disturbance 
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To retain physical insight into the calculations, it was necessary to 

replace the rigid body mode shapes calculated as part of the eigenanalysis 

with mode shapes that represent the rigid pitch and plunge of the aircraft 

about the support point. The two sets of modes will be the same if the 

support point is at the center of gravity of the aircraft, but it must be 

assumed that the center of gravity location is either not known in a typical 

application or that there is no grid point at the particular location. The 

eigenanalysis modes can be represented as 

[*EIGl  -  [*R l*El (12-3) 

where the R and E subscripts refer to rigid and elastic modes, respectively. 

The blast analysis replaces the extracted ^R with new modes: 

D I 
*BL ~ I *E 

I I 
(12-4) 

where the D matrix is the rigid body transformation matrix first discussed in 

Equation 6-17.  With these new mode shapes, the generalized mass matrix needs 

to be recomputed and is likely to have off-diagonal terms for the rigid body 

modes.  The generalized stiffness matrix is unchanged since the terms related 

to rigid body modes are null. 

The computation of the MATSS and MATTR matrices is the function of the 

middle box in the preprocessor portion of Figure 18. Each of these matrices 

is a square matrix with a dimension equal to the number of boxes in the 

aerodynamic model. To make the blast response calculations less demanding of 

computer storage and CPU usage, a reduction of these matrices to a generalized 

form is performed: 

[GMATSS]  -  [*BL]T(BGJa][MATSS] 
(12-2) 

[GMATTR]  -  [*BL]
T[BGja][MATTR] 

where BGja is the spline matrix. This matrix is derived from the UG matrix of 

Equation 8-24 by retaining rows that correspond to displacements (i.e., by 

deleting rows associated with slopes). 

12.3 

The a ircraft starts from a specified maneuver condition which pro- 

vides initial conditi ons for a blast response calculation. The trim ana lysis 
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Is much like the one already given for steady aerodynamics analysis in Sub- 

section 6.2.2 with the important distinction that analyses are done in modal 

coordinates for this case.  The governing equation of motion is 

[MJ {r,}   + [K + q Q] [r,)     -    q [FR] (5) (12-5) 

The M and K matrices are the generalized mass and stiffness matrices 

just discussed while Q is the generalized aeroelastic correction matrix, which 

is calculated using 

[Q]  -  [GMATSS] [BGSja] [*BL] (12-6) 

where BGSja is the counterpart of the BG matrix of Equation 12-2 that only 

contains terms from the VG   matrix that provide slopes at   the aerodynamic 

panels. 

The FR matrix contains rigid body load vectors for unit values of the 

angle of attack, pinch rate and trim surface angle, much like the AIRFRC 

matrix of Subsection 8.1.2.  This matrix is calculated from 

[FR] [GMATSS] [DWN] (12-7) 

where the DWN matrix contains the downwash vectors for each of the aerodynamic 

parameters discussed above.  Completing the description of Equation 12-3, if is 

a vector of generalized coordinates while q is the dynamic pressure. 

It is necessary to distinguish between rigid body and flexible coordi- 

nates in the solution of Equation 12-5: 

M rr 

M ee 

' 1r 1       [ °      q Qre      If »»r 1       _[ FRr 

. 9« J        L 0    Kee+qQee J 1 rje J I ™e 
16} (12-8) 

Note that Qrr and Qre are set to zero since the rigid body aerodynamic forces 

are already contained in the FR matrix. For the trimmed condition, r}e - 0 so 

that the second row of Equation 12-8 can be solved for t)e  in terms of 6: 

lt#J  ~ q [Kee + qQeei"
1 I^e) <«> (12-9) 

This is then substituted into the first row of Equation 12-9 to give 

[Mrr] 15)  -  [FRr - q-2Qre[Kee + qQeel"
1 ^el <*> (12-10) 

For a trimmed flight condition, the rigid body acceleration vector is 

known (the pitch acceleration is zero and the plunge acceleration is given by 
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the load factor), as is the pitch rate. The angle of attack and trim surface 

angle can then be solved for, and Equation 12-9 can be used to calculate the 

elastic deformations and therefore complete the trim solution. 

12.4   BLAST RESPONSE 

The basic equation used for the blast response can be written as: 

(M) {'n)  + [K] it,)     -  (FTOT) (12-11) 

This is a gross simplification of the blast response formulation in 

that the force terms on the right-hand side of this equation are a combination 

of a number of factors: 

{FTOT}  -  IFGRAV) + {FAERO} (12-12) 

where the gravity force can be considered to act on the first one or two modes 

only 

(FGRAV)  -  g ' 

Mll 
M21 
0 

0 

(12-13) 

while the aerodynamic force is a combination of blast, aircraft configuration 

and aircraft motion effects. These transient aerodynamic effects can be 

computed at time t in terms of the downwash at the current time plus contribu- 

tions from the discrete changes in the downwash from all previous steps using 

a Duhamel integral applied to the indicial representation of Equation 12-1: 

t'-t N 
(FAERO(t)} - [GMATSS]{W(t)J +  E  S  (GMATTR]n 

t'-O n-1 

exp(-0n(t-t»)/(AW(t')) (12-14) 

where W(t) is the downwash at the current time and AW(t') is the change in the 

downwash at previous time so that 

t'-t 
W(t)  -   E AW(t) 

t'-O 
(12-15) 

A recursion relation can be established for the second term of Equa- 

tion 12-14 by defining 
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t'-t 
DWn(t)  -   2    exp(-0n(t-t') {AW(f )) (12- 16) 

Then the aerodynamic force at a later time, t + At, can he expressed as 

(FAERO(t+At)) - [GMATSS]{w(t)+Aw(t+At)} 

N 
+ E  (exp (-0nAt) [ GMATTR] {DWn 

n-1 
(t)} + [GMATTR](Aw(t+At)} (12 17) 

This process is continued using 

DWn(t+At)  - exp(-^nAt){DWn(t))-
1(AW(t+At)) (12-18) 

The downwash vector W(t) is computed at each time step by forming the dot 

product, at each aerodynamic box, of the total velocity at the box and the box 

normal: 

-♦      -» 

Wj(t)  - Vj(t) • ,,j(t) (12-19) 

-♦ 

where IJJ is a combination of the jig shape of the aircraft plus additional 

slopes caused by the elastic deformations and control surface deflections. 

The velocity vector is the sum of four components: 

v ~ VBLAST + VTRAN + vROT + VELAS (12-20) 

where 

-» 

^BLAST   "   velocity caused by the blast 

-♦ 

^TRAN    *   velocity caused by vehicle translation at a reference 
point 

-♦ 

VROT     "   velocity caused by vehicle rotation at a reference 
point 

-» 

^ELAS    '   velocity caused by elastic deformations. 

The blast velocity is computed by the algorithm given in Reference 28, while 

the aircraft translation and rotation and the elastic velocities at the box 

locations are all computed from initial conditions and the solution of Equa- 

tion 12-11. 
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The Newmark-Beta procedure described in Subsection 11.3.2 is used to 

perform the numerical integration of Equation 12-11 as well.  There is no 

provision for a modal damping matrix in this case so that the definitions of 

the A and D matrices in Equation 11-35 are somewhat simplified.  A final 

comment is that the loading for the transient response calculation is a 

function of the displacement in this case, while the formulation of Subsection 

11.3.2 has assumed that the loading is not affected by the displacements. 

Extended testing of the algorithm is required to determine whether this 

approximation is adequate for this response calculation. 
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SECTION XIII 

AUTOMATED DESIGN 

The role of automated design in ASTROS is to apply resizing algorithms 

to drive the design toward one that satisfies user specified criteria in an 

optimal manner. Section II has discussed the multidisciplinary optimization 

task of ASTROS in terms of the problem. From Section II, the overall design 

task is specified as: find the set of design variables, {v} , which will 

minimize 

F(v) (2-1) 

Subject to: 

gj(v) < 0.0 j - 1, neon (2-2) 

lower        upper 
VJL    < V£ < v^        i - 1, ndv (2-4) 

This section discusses two alternative methods for solving this task: 

mathematical programming and fully stressed design.  These techniques are 

complementary in the sense that mathematical programming techniques are quite 

general in the problems they can solve, but are computationally intensive. 

Fully stressed design provides an efficient means to solve large design tasks, 

but this technique is limited to problems that contain only stress (or strain) 

constraints.  Although only these two methods are present in ASTROS at this 

time, it is recognized that there are other algorithms that could be used to 

perform the automated design task.  Notably, there are a number of algorithms 

which can be thought of as representing a synthesis between mathematical 

programming methods and physical optimality criteria, such as fully stressed 

design.  These further methods could be classified as mathematical optimality 

criteria methods in that they base their redesign on mathematical criteria 

that are known to hold true at the optimum.  References 29, 30 and 31 contain 

algorithms that fit in this category although they are quite distinct from one 

another.  These alternatives are not discussed here, but their potential for 

performing automated design is recognized with further research required to 

specify exactly how they fit into the ASTROS environment. 
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13.1   MATHEMATICAL PROGRAMMING 

Mathematical programming techniques can be characterized as search 

techniques which progress toward an optimum based on information available for 

the current design. A variety of algorithms are available to perform this 

search, with the MICRO-DOT algorithm of References 32 and 33 selected for use 

in ASTROS. This algorithm combines features from feasible directions (Refer- 

ence 34) and generalized reduced gradient (Reference 35) algorithms to provide 

an efficient and powerful overall procedure. The MICRO-DOT algorithm can be 

characterized as a direct method in that constraint information is used 

directly in the optimization process. Indirect methods, such as the interior 

penalty function method, first adjoin the constraints to the objective and 

then apply an unconstrained optimization procedure. 

Optimization algorithms can also be partially characterized by the 

method they employ in the one-dimensional search that is required to determine 

the distance to be traveled along a direction that has been determined to give 

an improved design. The MICRO-DOT algorithm employs a technique wherein 

bounds on the move direction are first determined and a polynomial interpola- 

tion technique is used to find the minimum within these bounds. 

As mentioned, the generality of mathematical programming algorithms is 

offset by the amount of computer resources required in their application. The 

remainder of this subsection discusses techniques that are employed in ASTROS 

to minimize the size of the optimization task, to wrest the maximum amount of 

usefulness out of each analysis of a particular design and to find the balance 

between performing too many structural analyses and too few. Reference 6 

provided the basis for many of the concepts discussed here. 

13.1.1 Reduction of the Number of Design Variables 

As discussed in Subsection 2.2.1, design variable linking is used to 

permit the application of mathematical programming algorithms to practical 

structural design problems. There is no fixed limit on the number of design 

variables a mathematical programming algorithm can handle in general, nor does 

ASTROS, in particular, impose any limits. The limits are indirect in that 

computer resource requirements are a nonlinear function of the number of 

design variables and constraints. Experience has indicated that problems with 

two to three hundred design variables approach the practical limit of problem 

size that can be attempted.  This limit is both subjective, in the sense that 
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different investigators have different tolerances for what they will endure, 

and machine dependent, with a supercomputer just becoming effective at about 

the same point that a microcomputer or a workstation is becoming untenable. 

13.1.2 Reduction of the Number of Constraints 

The number of constraints given by Equation 2-2 that are generated in 

ASTROS for even a moderate problem can number in the thousands.  Each finite 

element can generate one or more constraints for each load case, while the 

remaining constraints of Subsection 2.2.2 also contribute to the total number. 

Typically, only a small percentage of these constraints will affect the final 

design and it is necessary to exploit this fact, both to reduce the size of 

the mathematical programming task and to limit the effort required to compute 

the constraint sensitivities.  The basic concept is to retain only those 

constraints for the design task that could play an active role in the design 

process.   The selection of these critical constraints requires making a 

judgment, but one with minimal risk if the retention criteria are sufficiently 

broad.  Two retention criteria are applied in ASTROS: 

(A) All constraints with a value greater than a specified value, «, 

are retained. 

(B) The most critical NRFAC x ndv constraints are always retained, 

where NRFAC is a user specified parameter and ndv is the number 

of global design variables. 

Default values of NRFAC - 3.0 and e - -0.10 are specified in the 

standard MAPOL sequence. These values can be tailored to a specific applica- 

tion by editing this standard sequence. 

When shape functions are used, the thickness constraints specified on 

DCONTHK data entries (See Subsection 2.2.2.3) are retained in addition to 

those previously selected. This is because the retention criteria are not 

adequate to predict whether these crucial constraints will drive the design. 

If they are not retained and become violated during the redesign process, the 

design can be driven to physically unrealistic values that would make further 

analyses incorrect. 

Following the determination of the active constraints, a sorting 

operation takes place in each boundary condition that can provide significant 

efficiencies if some of the operations performed during the analysis phase do 
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not require sensitivity calculations. For example, for a run with multiple 

boundary conditions, one or more of the boundary conditions may not contain 

any active constraints. In this case, there would be no need to process the 

inactive boundary condition(s). Further, within a boundary condition, certain 

disciplines may contain active constraints while others do not. Again, the 

inactive disciplines do not require further processing. Finally, within a 

discipline, some subcases may not contain active constraints and therefore are 

not included in the sensitivity evaluation. 

13.1.3 The Approximate Design Problem 

Once information on the current design is obtained, it is passed to 

the MICRO-DOT procedure for processing five basic pieces of information: 

F0       -   the current value of the objective 

{v0}     -   vector of current values of the design variables 

(g0)     -   vector of current values of the active constraints 

{9F/dvjJ  -   vector of gradients of the objective with respect to 
the design variables 

[A]      -   Matrix of the gradients of the active constraints with 
respect to the design variables [dg0/dv0] 

where the o subscript indicates that quantities have been calculated for the 

current value. Note that the gradient of the objective is invariant with 

respect to the design variables so that the o subscript is unnecessary for 

this item. 

Since the analysis phase of ASTROS is the most costly, it is important 

to minimize the number of complete analyses that are performed. This is done 

by performing the redesign under the assumption that the gradients are invari- 

ant with respect to changes in the design variable. This is equivalent to 

performing a first order Taylor series expansion about the original design and 

using this information in the redesign. It is, therefore, very important that 

the gradient information be of high quality. As discussed in Reference 6, one 

way of ensuring this quality is to consider the physical nature of the con- 

straint and, in particular, to recognize that stress and strain are nearly 

linearly proportional to the inverse of the physical design variables (for 

determinate structures, the linear relation is exact).  It is for this reason 
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that ASTROS, In the case of unique linking and physical linking (see Subsec- 

tion 2.2.1) defines a new variable that is the inverse of the global variable: 

Xi - 1/vi (13-1) 

In terms of the supplied data, the MICRO-DOT procedure then uses 

objective function and constraint information calculated as: 

ndv 
F -  S 15L (13-2) 

i-1 x^ dv^ 

ndv A..(x. - x ,) 
gj  " Soj - £  1* ^  °* (13-3) 

oi 

While for gradient information 

3_L_ - -i-    ML (13-4) 
3Xi     x2 3vi 

i 

3g 

3xi      x2 
i- An (13-5) 
2 
oi 

where A*±   is the element in the A matrix that corresponds to the sensitivity 

of the jtn constraint to the itn design variable. 

For the constraint gradient sensitivity calculation of Equation 13-5, 

MICRO-DOT makes its own determination as to which constraints are expected to 

be active during the design and request gradient information only for this 

reduced set.  This results in a slight efficiency in terms of the calculations 

required by Equation 13-5; more importantly, the efficiency of the MICRO-DOT 

procedure is strongly affected by the number of constraints it retains. 

The relations given by Equations 13-2 and 13-4 are exact while Equa- 

tions 13-3 and 13-5 are high quality approximations. The fact that this does 

entail approximations is recognized by imposing constraints on the movement 

of the inverse design variables: 

-fti- < Xi < MOVLIMxoi (13-6) 
MOVLIM 

where a default value of MOVLIM-2.0 is specified in the standard MAPOL se- 

quence and can be changed by the user by editing this sequence.  MOVLIM must 
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always be greater than 1.0. As a final comment on move limits, If the upper 

and lower bounds specified by Equation 13-6 exceed user specified values on 

the variable 

_L_ < xi < —1- (13-7) 
vmax .yinln 
1 1 

the user specified values are used as the side constraints In MICRO-DOT.  The 

max mln 
vj  v^  are user Input values for the maximum and minimum allowed values for 

the itn direct design variable. 

If shape function linking is used, the inverse design variable concept 

cannot be used.  The physical significance of using the inverse variable is 

not clear In this case, but more importantly, the design variable values can 

pass through zero so that the inverse variable would be infinite.  The func- 

tion and gradient evaluations for this case are then: 

(13-8) 

(13-9) 

(13-10) 

(13-11) 

Side constraints on the shape function design variables are defaulted 

F    - 
ndv 
2    v* 

1-1     1 
4E_ 
avi 

ndv 
gj     ■ "    8oj  + 2 

1-1 
Aji Vi 

an 
3vi 

-    2£_ 
dvi 

3Ji -    Aji 

to 

1020 < Vi < 1020 (13-12) 

The only function these limits perform Is to avoid numerical problems and it 

is most likely a sign of an error in input or coding if these limits are ever 

attained. 

13.1.4 Termination Criteria 

The decision as to when to terminate an automated design procedure is 

a subjective one. The goal is to find a balance between premature termination 

before the design has converged on the one hand and performing wasteful 
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iterations after the design has, for all practical purposes, reached an 

optimum on the other hand. Termination criteria are imposed at two levels 

within the ASTROS procedure. The first is within the redesign phase of Figure 

1 and uses MICRO-DOT criteria to terminate this phase. Since MICRO-DOT has 

solved an approximate problem, a number of iterations are required to find a 

converged optimum. For the second level, it is therefore necessary, following 

each redesign, to check whether the design can be considered converged. 

The termination criteria within MICRO-DOT are based on changes in the 

objective function. If the absolute value of the change in the objective 

function is less than MICRO-DOT parameter DABOBJ or the relative change in the 

objective function is less than MICRO-DOT parameter DELOBJ for ITRMOP itera- 

tions, the MICRO-DOT procedure is terminated. Default parameters, which may 

be overridden by bulk data input, for the three parameters are DABOBJ-0.001 

F0, DELOBJ-0.001 and ITRMOP-2. F0 is the initial value of the objective when 

MICRO-DOT is invoked. 

Following the MICRO-DOT redesign, an initial determination is made as 

to whether the design has converged. The criteria used here is similar to the 

MICRO-DOT criteria in that the design is tentatively judged to be converged if 

| AF |  < 0.005 (13-13) 

or if 

j AF |  <  0 01 CNVLIM (13-14) 
Fo 

where AF is the change in the objective for the current redesign and CNVLIM is 

defined in the standard MAPOL sequence to be 0.5. Equation 13-14, therefore 

specifies convergence when less than a 0.5 percent change is made in the 

weight of the structure. 

So far, the discussion has been in terms of changes in the objective 

function, but clearly the values of the constraints have to be considered 

before a final convergence determination can be made. If an initial test of 

Equation 13-13 or 13-14 is satisfied, it is necessary to make a further analy- 

sis of the redesigned structure to see if all the constraint conditions are 

satisfied. These constraints could be violated because MICRO-DOT was not able 

to achieve a feasible design based on the information given to it. Alterna- 

tively, all the constraints of the approximate problem given by Equation 13-5 
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or 13-9 may be satisfied, but a reanalysls may find them violated. Final 

convergence is determined to have occurred when one of the conditions of 

Equation 13-13 or 13-14 is satisfied and the largest constraint value, follow- 

ing reanalysis, satisfies 

2.0-CTL < gnax < 3.0-CTLMIN (13-15) 

where CTL is a MICRO-DOT parameter used to designate whether a constraint is 

active and CTLMIN is a MICRO-DOT parameter that is used to designate whether a 

constraint is violated. These parameters are initially set by the user or to 

default value of CTL--0.003 and CTLMIN-0.0005. MICRO-DOT can reduce these 

numbers further as part of the optimization process so that the criteria of 

Equation 13-15 are quite stringent. The factors of two and three given in 

Equation 13-15 allow for some leeway in differences caused by the approxima- 

tion to the constraints. 

Note that a lower bound limit is applied in Equation 13-15 to avoid 

the case of the procedure termination when there are no active constraints. 

If none of the constraints are active, the current design is not optimal.  The 

final ASTROS design termination criteria is based on the number of analysis 

cycles that have been made.  This criteria is imposed to safeguard against the 

case where the redesign process is unable to converge.  It can also be used to 

limit the number of iterations that are made when there is uncertainty as to 

whether the design problem has been properly posed.  The default value for the 

maximum iterations is MAXITER-15, with experience indicating that termination 

rarely occurs because this number is exceeded. 

13.2    FULLY STRESSED DESIGN 

A Fully Stressed Design (FSD) resizing option has been provided in 

ASTROS to complement the standard mathematical programming optimization 

methods. While ASTROS is primarily a multidisciplinary optimization tool and 

FSD methods are, by definition, severely limited in scope, this method was 

included because of its rapidity in achieving a feasible strength design and 

because it represents a relatively well known optimization method. The 

Implementation of FSD in ASTROS recognizes the inherent limitations of this 

method, however, and no attempt was made to make this option handle the full 

range of optimization problems that ASTROS supports. Instead, the FSD option 

is intended to be used as a preliminary step to achieve a feasible or near 
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optimal strength design from which to continue the optimization using the more 

general methods. It is, of course, useful in its own right for problems in 

which only stress constraints for static disciplines are applied. 

The utility of the FSD resizing option in ASTROS is that, for problems 

where static strength constraints play an important role in determining the 

structural sizes, FSD can find a reasonable initial design very quickly. 

Therefore, while the FSD method itself can treat only the static stress 

constraints, the FSD option may be used in almost any optimization problem in 

ASTROS where stress constraints are applied.  There is only one restriction to 

the use of FSD:  it cannot be used in combination with shape function design 

variable linking.  This restriction is discussed further in Subsection 13.2.2. 

Since the determination of an initial design is the typical purpose for FSD in 

ASTROS, the algorithm has been implemented in such a way that the user selects 

some number of initial design cycles to be performed using FSD.  After these 

cycles have been completed, ASTROS automatically reverts to mathematical 

programming methods until convergence or the maximum number of iterations is 

reached.  The -user who wishes to use only FSD methods can easily direct that 

all iterations use the FSD option. 

13.2.1 The FSD Algorithm for Local Design Variables 

In the ASTROS implementation of the FSD resizing concept, the new 

local design variable (which represents the physical property of one finite 

element; e.g., the thickness of a shear panel) is found based on the ratio of 

stress to the allowable stress: 

tinew - maximum { (—2-)° H^,   Hmin  ) (13-16) 
''all * 

The stress ratio a/oa\\ is determined in ASTROS from the applied von Mises 

and/or Tsai-Wu stress constraints. These constraints have been formulated 

such that: 

(—2-)i - gi + 1.0 (13-17) 
CTall 

where "g^" represents the current stress constraint value. By substituting 

Equation 13-17 into 13-16, it is possible to very quickly determine a new set 

of local design variables. The only difficulty in performing this operation 

is in the bookkeeping to determine which stress constraint corresponds to a 
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particular local design variable. Mora important is tha treatment of stress 

constraints appliad to undasignad alamants for which thara la no correspond- 

ing local variabla. Sinca tha ASTROS Implementation of thla method Is intend- 

ed to ba approximate, we decided to ignore these stress constraints in the 

computation of the new local design variable vector. This is consistent with 

the fact that all the other constraint types are also ignored. 

To offer an improved convergence behavior for this FSD algorithm, the 

exponential factor, a, has been provided in Equation 13-16.  Small values of a 

result in better convergence at the expense of additional iterations.  The 

value of thla parameter is user selectable in ASTROS, but defaults to 0.90. 

This value was chosen for its rapid movement toward a fully stressed design in 

the initial iterations.  If FSD is intended to be used to achieve a final 

converged solution, a value of 0.50 or less is preferred. 

13.2.2 Global Design Variable Determination 

The local design variables, (t), may be linked in ASTROS to the global 

design variables, (v), through a number of options described in Subsection 

2.3.  After the new set of local variables have been determined using the al- 

gorithm described in the preceding subsection, an additional step is required 

to determine the new set of global design variables. The method of determin- 

ing the new global variables is based on the linear linking relationship: 

(t)  -  [P] (v) (2-6) 

In the unique linking and physical linking options in ASTROS, each 

local variable is uniquely associated with one global variable, although a 

global variable may control many local variables. In these cases, a set of 

global variables is found from the new local variables by using the following: 

VJnew " maximum { tinew/PiJI over all nonzero terms in   (13-18) 
the jth column of [P] 

This determines a conservative set of global variables which satisfy the 

resizing as defined in Equation 13-18. 

In the third, shape function, linking option in ASTROS, a single local 

design variable may be controlled by many global design variables. Therefore, 

there is no straightforward method to determine the optimal set of global 

design variables to satisfy the linking relationship of Equation 2-6.  While 
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such a determination could be made, the current implementation of FSD in 

ASTROS does not support this linking option. In such cases, the ASTROS 

procedure will automatically revert to mathematical programming methods. 
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APPENDIX A 

THE 0UAD4 ELEMENT 

This appendix provides the theoretical development for the QUAD4 

element that has been installed into ASTROS.  An overview of this element is 

given in Subsection 5.3.3, while this appendix provides detailed information 

on the element.  This detail is necessary because, unlike the other elements, 

the ASTROS QUAD4 element has not been documented elsewhere. 

A.l    DISPLACEMENT FUNCTIONS 

The QUAD4 element has two distinct element coordinate systems. These 

are the "user defined" element coordinate system as defined by the element 

connectivity data and the "internal element" coordinate system, which is 

defined as having its origin at GQ (X°E, Y°E, Z°E). This origin is computed 

by taking the average of the grid point coordinates. The positive X- and Y- 

axes of the internal element coordinate system are defined with the aid of two 

points, GX£ and GyE described below. 

*      + 
V^3 and V24 are defined as the unit diagonal vectors as illustrated in 

Figure A-l.  Thus, the coordinates cc points GxE and GyE are given by the 

following: 

\E    -     {(X° + X'), (Y° + Y'), (Z°)} 
E   E    E   E    E 

GYE 

(A-l) 
<(X° - Y'), <Y° + X'), (Z°)) 

E   E    E   E    E 

where, X°E, Y°E and Z°E are the coordinates of the origins of the internal 

coordinate system and X E and Y E are the components of the bisector vector of 

the unit diagonals V13 and V24. 

The coordinates of points G0, GxE and GyE, are used to define the 

transformation from the internal element coordinate system to the coordinate 

system in which the grid points are defined. The internal element coordinate 

system is necessary to correctly handle irregular-shaped and non-planar 

elements and is henceforth referred to as the "element" (E) coordinate system. 
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Using 2-D interpolation functions, the geometry field at any point (£, 

»;) in the element cross-section (see Figure A-2) is defined, where the nodal 

curvilinear coordinates are related to the nodal cartesian coordinates system 

in the element coordinate system by the following relationship: 

* i 
<XE(£,»>)} - S !*!(£,,,)<XE} 

where i refers to grid point i, and 

i 
(XE)  -  {XE, YE, ZE) at node i, 

N(£,»?)) are the interpolation (shape) functions which define the con- 

tribution of each node at a given point with the element. 

These functions and their derivatives are: 

Ni - 1/4(1 + KtfXl  + r,ni) 

3N 
- kid + *?»?i) (A-2) 

or) 4 

The deformations of the element are also represented with the identi- 

cal interpolation functions: 

* i 
1UE<*.1>>  -  2 Ni<*.»»)(%) (A-3) 

where  lU1^;} - {UE, VE, WE,  *xE, 
6yE,     *zE)

T represents the vector of 

displacements at grid point i in the element coordinate system. 

A.2    STRAIN-DISPLACEMENT RELATIONSHIP 

The QUAD4 element incorporates a reduced solid theory for thick 

shells. According to this theory, the element has five dof at each grid, 

defined in a coordinate system whose X-Y plane is tangent to the mid-surface 

of the shell at the given grid point. The z-axis, therefore, is the normal to 

mid-surface at that point. In our nomenclature, this is called the "C" system 

(Figure A-2 and A-3). 

A generalization of the "C" system, called "I" system, incorporates 

the characteristics of the "C" system at a general point on the mid-surface of 

the shell element, normally the integration point (Figure A-2). 

178 



In ord-^r to establish a common definition for "I" and "C" systems, 

consider the following steps: 

(A)  The tangents to mid-surface at a given point (£,r/) are: 

3  - 

(VtD  - 

x 

H 
£ -  E  t < 

i-1 3£ 

t \ i 

(A-4) 

f    -\ 
X 

lvt2) - 

where 

3t» 
I -  S —J 

i-1 dr, 

* \ i x x 

(A-5) 

x ' 
•    are the coordinates of grid points in "E" system. 
E 

(B)  The axes of the new system then follow: 

IZ>I/C 
(Vt } x {Vt ) 

-  {Vn) ^1 h- 
|<VtlJ x {Vt2J| 

{X)1/c - 
(Y)EX (Z)I/C 

|{Y)E x {Z)I/C| 

(Yll/C -  (Z)l/C x {X)I/C 

(C)  Finally: 

[TIE]  -  [{X)I{Y)I(Z)I]
T 

[TCE]1 -  [(XjitYjilZ)1]1 

c  c  c 

(A-6) 

(A-7) 

(A-8) 

Note that the "C" system is not necessarily invariant when we go 

from one grid to the next. This is due to the possible warping 

of the element. 

Since the ultimate goal of this discussion is to establish a relation- 

ship between the element strains (which are defined in the "I" system), and 

nodal displacements (defined in the "E" system),  it is necessary to 

lop a   series of transformations along with the strain-displacement rela- 
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Consider the five dof's in the "C" system at each grid point "i" to be 

arranged in the following manner (Figure A-3): 

(U) [8)       - i 
c [fii 

(A-9) 

In order to be compatible with the other dof's in the model, these are 

related to the six dof at that grid point, defined in the "E" system, by the 

relationship: 

1 i       i 

(U)   -  [TCE]MU) 
c E 

(A-10) 

If) 
0 10 

■10 0 
[TCE]1!*} 

The extra transformation in the rotational case is a result of the 

difference in the definition of rotations for "C" and "E" systems (Figures A-3 

and A-4). 

The same five dof's are related to six dof's in the "I" system by 

using the transformations developed in Equations A-7 and A-8. Considering 

Equation A-10 and A-3: 

4 T  i 4     i 
(U)j     -  [TIE] E Ni[(TCE)

i] (U)   -  [TIE] Z NifU) 
i-1 i-1 

S NjJTldJ) 
i-1 E 

(A-ll) 

and 

4 T       i ^* T 
{8)i    -     [TIE]   ENi[(TCE)i]   {8}       -     [TIE]   SNi[(TCE)i] 

i-1 c i-1 

0  10 

-10 0 
[TCE]1!*) 

4 i        £ 
2 NjjAlM*) 

i-1 

(A-12) 

Note that while [T] is invariant, [A] depends on the direction of the normal 

to mid-surface at each grid point. 
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At a point along the Z-axis of "I" system, at a level of Z - rti/2. 
where, 

tl 
4 
E 
i-1 

Niti 

is the thickness of the element e valuated at this par ticular i ntegration 

point, the dof's in "I" sy stem may be written in the following form 

{uM}!  -  (u)!     ;    (URJ!  - St1/2l9)I (A-13) 

The strain-displacement relationships can now be developed, using 

these rearranged dof's: 

l«M>I ~ 

uB>i - 

<7S>I - 

£x M du/dx - M "a/ax o o' 

£y - • dv/dy - o a/ay o (uM)T (A-14) 

^xy- I du/dy+dv/dx I d/ay d/dx  0 

£x B du/dx B d/dx   o  o" 

ey - «■ dv/dy - 0  a/3y 0 (UB)! (A-15) 

-Txy. I du/dy+dv/dx I _a/3y d/dx  0 

Uzx. L-l 
'8% i/dy+dv/dz 

i/dx+du/dzj 

*    ■ 

o o a/ay| o a/az o" 
1 

o o a/ax|a/az o    o 
• 

-UB. 

>  (A-16) 

I 

Inserting Equations A-11 through A-13 into Equations A-14 through A- 

16, and considering the following: 

az      az 
8)l 

and (A-17) 

' d/dx  ' 

a/ay 

l 

4 
Z 
i-1 

aNj/ax 

aNi/ay 

Ni 

we arrive at the following general relationships: 

aNj/ax  0   0 

o      aNj/ay o 

aNjyay aNjyax o 

{eM)i   -    s 

i-1 
[T]{U) (A-18) 
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(7s>I  " 

or, collectively: 

rt 4 
2 

2  i-1 

4 
2 
i-1 

[e)l  - 

-M 

£B 

7s 

h 2 
i-1 

aNi/ax o  o 

o  aNi/ay o 

. 3Ni/ay aNi/ax o 

0 0 aNi/ay | 0 Ni 0 
I 

o o aNi/ax | Ni o o 

aNi/ax o  o 

o aNi/ay o 

aNi/ay aNi/ax o 

i  i 
[A] [$) 

E 

[T] |  0 

0  | [A]i 

(A-19) 

(A-20) 

o aNi/ay 

o aNi/ax 

f^ 

aNi/ax o  o 

o aNi/ay o 

aNi/ay aNi/ax o 

o 

Ni 0 

0 

0 

[T] 

[A] 

w 

(A-21) 

Since the shape functions Ni are defined in terms of the curvilinear 

coordinates (£,rj), the shape function derivatives are related to the corre- 

sponding Cartesian derivatives in the element [E] coordinate system, by using 

the rules of partial differentiation, as: 

3Ni/ac 

aNi/a»j 

aNj/af J 

dx/d£    dy/di    dz/d£ 

dx/dri     dy/dt}     dz/dt) 

dx/ds   ay/ac az/ac 

' aNi/ax ' 

aNi/ay 

I 3Ni/az j 

(A-22) 

The first and second rows of the transformation matrix (or Jacobian 

matrix [J]) are the tangent vectors to the surface r - constant and the third 

row is the interpolated values of the nodal normals. (Note the nodal normals 

are evaluated by carrying out the cross product of the two tangent vectors at 

the node point.) 

From Equation A-7 the coordinates in the "1" system are related to the 

coordinates in the "E" system by the following: 

tO)j -  (TIE]{U)E 
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Therefore, the derivatives are given by: 

I aNi/az j 

6Ni/arj 

where (A-23) 

[*]  -  [TIE] [J]"l - 

^11 ^12  ° 

^21 ^22  ° 

^31 ^32 ^33 . 

Note that 3Nj_/af and dH^/dz will be zero when the Interpolated normal at the 

Integration point coincides with the normal to the raid-surface; e.g., in the 

case of the flat plate ($31 and ^32 are zero). The zero terras in [4>] , i.e., 

<f>l$  and ^23- result from dot products of perpendicular vectors. 

A.3    STRESS-STRAIN RELATIONSHIPS 

Stresses are related to the previously defined strains by the elastic- 

ity matrix [G] (where [G] is partitioned to give separate membrane stresses). 

1 

• - 

" Gi 0 

G2 

0 

0 

G3. 

• 

p       1 
£M 

£B 

. TTS . 

►       — < 

MEC 

eM 

ffB 0 £B " 

. TTS . 0 0 . 0 . 

or 

where 

(A-24) 

Ml ~    [G]i((€)MEC - (<T)I 

(CT^) Membrane stress vector 

(ag) Bending stress vector 

(TTS' Transverse shear stress vector 

[G]J Membrane moduli matrix 

[G2] Bending moduli matrix 

[G3] Transverse shear moduli matrix 

and subscripts "MEC" and "T" refer to mechanical and thermal, respectively. 
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The membrane-bending coupling moduli matrix [G4j will be incorporated 

into the [G] matrix following this discussion of the uncoupled matrices. 

All anisotropic, orthotropic and isotropic material properties are 

supported. The elastic modulus matrix [G]^ is defined In the material coordi- 

nate system and transformed into the user defined element coordinate system by 

means of a transformation angle, $^, which references the user defined element 

X-AXIS or the material coordinate system ID (MCSID) specified by the user. 8^ 

is in the X-Y plane of the element as shown In Figure A-5. 

The elastic modulus matrix in the element coordinate system is: 

[Gh  -  [U]T[G]M[U] (A-25) 

(Note that since the projection of Xj onto the Xjr-Yg plane is parallel to Xg, 

no extra transformations are required between the "E" and "I" systems.) 

The transformation matrix for [G\],   [G2] and [G4] is: 

cos^flfl      sin^^M     cos^sin^ 

[U]J  -      sin^flfl      cos2flM     -cosflflsinflM 

-2sin0MCos0M 2sin0flCOS0M cos^^-sin^^ 

and the transformation matrix for [G3] is 

cos0M sintfty 

-sinflfl COS#M 

For isotropic materials: 

(A)  Membrane 

1 

(u2: 

[Gil     - 

(B)     Bending 

[G2]     - 

l-i/' 

SYM 

0 

0 

l-i/ 

itr101' 

(A-26) 

(A-27) 

(A-28) 

(A-29) 
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(C)  Transverse Shear 

[G3] 
t 

- _£ 
t 

2K 

2K 

(A-30) 

uhere E is the Young's modulus; t is the element thickness at the correspond- 

ing integration point, u is the Poisson's ratio and cs/t is the transverse 

shear factor. 

Note that in matrix [G3], the factor "K" is introduced to compensate 

for the difference in shear distribution though the thickness, which is 

parabolic and not constant as indicated by the displacement function. The 

value of K-1.2 is the ratio of the relevant strain energies. The 0^ factors, 

which are derived numerically, are introduced to compensate for the "locking" 

of the element due to excessive shear stiffness. 

For anisotropic materials: 

(A) Membrane 

[Gl] 

Gil G12 G13 

G22 G23 

SYM      G33 

(A-31) 

(B) Bending 

[G2] - -£_ [GX] 
121 

(C) Transverse Shear 

[G3] 
t 

_ _s 
t 

" Gn 

. G12 

G12 " 

G22 . 

For orthotropic materials: 

(A) Membrane 

' El i/l2E2 0 

[Gl] 1 E2 0 
l-i/; 12*21 

SYM Gi2(l-fi2*21> . 

(A-32) 

(A-33) 

(A-34) 
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(B)  Bending 

IG2: 
121 

(C) Transverse shear 

[G31 
t 

t 

(Gil 

Glz 

0  G2 

(A-35) 

z J 
(A-36) 

where E^ and E2 are the Young's moduli in the principal material axes, v±2 is 

the major Poisson's ration; G^2 *-s tne in-plane shear modulus, G\z and G2Z are 

the out-of-plane shear moduli and ts/t is the transverse shear factor. 

The derivation of the [G4] membrane-bending coupling matrix begins by 

denoting the strains at the mid-surface as: 

<eM>  " 

x 
o 

E 
y 
o 

r xy 

(A-37) 

and the out of plane curvatures as: 

«K}  - 

Kv 

K 

(A-38) 

xy 

Therefore, the strains at a distance z above the mid-surface of the element 

are: 

{€}  -  UM) - z{K) (A-39) 

The corresponding 2-D stresses are: 

(a)     -     [G]j(UMl - z{K)) (A-40) 

where [G]j is a (3x3) matrix of elastic moduli. 

The forces and moments per unit length are therefore given by: 

(F)  - J       [a)   dz  - /  [G]I({e°) - z(K))dz (A-41) 
za 2a 

(F)  -  tfGiltt0) + t2[G4](K) 
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zb zb _ 
{M)  - /  (a) zdz - J [G]I(-z(€°J + z

2{K))dz (A-42) 

IM)  -  t2[G4](«°) + I[G2]{K) 

where t is the plate thickness and I is the bending inertia.  Assuming a 

linear variation of elastic properties between top and bottom surface. 

,  , /2       G + GD 
[CX]  - 1 J Gdz -  t   B 

t -t/2 
2 

i  rt/2 3 
[G2]  - 1 / Gdz -  (f-MGxl 

I .t/2 121 

1   rV2 
[G4]  - i_ /   (-z)Gdz - 

t3 -t/2 

Gt-GB 
12 

(A-43) 

(A-44) 

(A-45) 

Note that the membrane-bending stiffness coupling terms vanish for a element 

whose elastic properties are symmetric relative to the mean plane of the 

element. 

By assuming that the elastic modulus has a linear variation between 

the top and bottom surfaces, define: 

G - Gi  +  f/2(GT - GB) 

Therefore, from Equations A-31 and A-32: 

(A) Membrane 

G - GX  + f/2(-12G4) 

G - Gx - 6fG4 

(B) Bending 

G2 - -A— 

(A-46) 

tA-47) 

(A-48) 

121 

G  - 121 G2 - 6fG4 
(A-49) 

Matrix [G3] is not affected since transverse shears are assumed to have no 

coupling action. 
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Therefore,  the stress-strain relationship,  allowing for membrane, 

bending, transverse shear and membrane-bending coupling is: 

(A-50) 

where 

1 

'    - 

Gl 1   G!-6fG4 
1 __._  

o 

< CTTQT G1-6fG4 

1  
1       G2 
i  

.... 
o 

.... 
eB 

rTS    - 0 
1  
1      o G3. i ITS 

(aM) 

uM) 

(«B) 

(ajoTI 

(aTS)     - 

I rxy J 

•{?) I   'XY   J xy JTOT 

-{ 
-I 

) "*xy 

ey 
7xy JB 

(7TS)     ~ 

), 

Membrane stresses 

Total membrane and bending stresses 

Transverse shear stresses 

Membrane strain 

Bending strains 

Transverse shear strains 

A.4 STIFFNESS MATRIX 

The element stiffness matrix is derived by minimizing the total 

potential energy and is given in numerical form by employing the Gauss-quadra- 

ture integration method: 

[K]E - HX [BlTlGKBlW^Wj-det [J] (A-51) 

where (£, fj, {") are the Gaussian integration point coordinates and W^, W^, and 

Wr are the associated weight factors. Det [J] represents the physical volume 

of the element as calculated at this point, B is the strain displacement 

relationship of Equation A-21 and G is the stress strain relationship of 

Equation A-50. 
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Each element stiffness matrix partition in the element coordinate 

system, [K^jlgg, is transformed to the global coordinate system by the follow- 

ing transformation: 

[Kijlc -  [TEGlitKijlEEfTEGli (A-52) 

where [TEG]j is determined by relating the element coordinate system to the 

global coordinate system for grid i through the basic coordinate system: 

[TEG]j_ -  [TEBJitTBGli (A-53) 

A.5    CONSISTENT AND LUMPED MASS MATRICES 

The consistent mass matrix terms are evaluated, neglecting the rota- 

tional inertias associated with the a and 0 degrees of freedom, by the follow- 

ing expression: 

4 
Mi!  -  Z NjN* p|j|tn (A-54) J    n-1   J 

where N^ is the shape function for node i, p  is the mass per unit volume, |j| 

is the physical area of the element and tn is the element thickness at the 

integration point. 

The lumped mass matrix, which is calculated at the pseudo center 

(i.e., the average of the element grid coordinates), is prorated to the edges 

based on the distance of the pseudo center from each edge. 

The terms of the lumped mass matrix are evaluated using: 

4 
Mij  -  S »i p|j|tn (A-55) 

The transformation of the mass matrix to the global coordinate system 

is carried out using the same transformation matrices as used for the stiff- 

ness matrix in Equation A-52. 

A. 6    STRESS RECOVERY 

The element stresses in partitioned form from Equation A-50 are 
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or 

aH 
r 

"TOT •   - 

. rTS    . 

Gl I   Gr6rG4   |     0 
 I I—* 
Gl-6fG4   |        G2 |     0 
 I I"" 

0 | 0 |   G3 

Gl I G4 | 0 

G4 | G2 | 0 

0     |   0     |   G3 

' f         > 
«iT ' 

- - eB ►             —    . «B • 

.TTS. MEC />TS. 

UTSJMEC 17TSJT J 

(A-56) 

For a specified grid point temperature, the thermal strain vector is 

UM)T " ' 
. 7xy 

►  -  (ajKTi - T0) 

T 

(A-57) 

where {aj} - [up^ta^} is a vector of thermal expansion coefficients in the 

element coordinate system.  [U] is the strain transformation matrix given in 

Equation A-26 and {a^} is the vector of thermal expansion coefficients in the 

material axes.  Tt and T0 are the specified grid point temperature and mid- 

surface (stress-free) temperature, respectively. 

For a thermal gradient T', the thermal strain vector (cB)x is: 

(«B)T -  (<*I>(££ T') (A-58) 
2 

For thermal moments {M)T, the thermal strain vector (€B)x is: 

{<B)T - =^  [G2]{M)T (A-59) 

NOTE:  ASTROS does not support thermal gradient or moments so that the above 

equations are provided for completeness only. 

The in-plane stress vector [a)z   at fiber distance z from the mid- 

surface is: 

ia). 
rxy. 

-  (i o 
TxyJ 

+ (I + Z) °y 
rxy. 

(A-60) 

where the stress vectors {ax,ay,rxy)i
T and {ax,ay,rxy)2

T are the bottom and 

top fiber stress vectors, respectively. 
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If a temperature Tj is specified at the point where outer fiber 

stresses are to be calculated, the additional thermal stress due to the 

difference between the specified temperature and a temperature that would be 

produced by a uniform thermal gradient T' or thermal moments {H)j is calculat- 

ed using: 

(Aa)T -  [G2]{aI}(Ti - T0 - T'z) 

for a thermal gradient T', and 

<M}_ 
{Aa)T -  -z I - [G2](a)Ti 

(A-61) 

(A-62) 

A.7 FORCE RESULTANTS 

The forces at the mid-surface are evaluated by taking the average 

stress values over the element thickness: 

(A)  Forces 

IF)  - • F 

xy 
-  <U)Z1 + io)z2)  | (A-63) 

(B)  Moments 

<M)  - 
M: xy 

-  (<*)zl - (")z2> \ (A-64) 

(C)  Transverse Shear Forces 

Qx 
(Q) - 

I Qv J 
-  ((r)zl + lr}z2) | (A-65) 

where stress vectors io)zi , (°)z2 are stresses at the integration points 

(default option) or at grid points (if requested) and, similarly, {r)zi anH 

{r)z2 are the transverse shear stresses. 

A.8    THERMAL LOAD VECTOR 

The thermal load vector is computed as: 

fPT>  " / (B][G]{«)T dv (A-66) 
v 

where  the  load v. :^or  {P-rl   is  defined as: 
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I MT J 
(PT)  - J I (A-67) 

[MT J 

/here {Ff} and (M-p) are the thermal forces and moments, respectively. 

The thermal strain vector is: 

f <MT ]     [OH] 
uT>   -  1 r  "  1 — r AT (A*68) 

I £BT J     [ aB J 

fhere {
C
M)T and |

€
B)T are the thermal membrane and bending strains, and corre- 

spondingly {an)   and (aB) are the thermal coefficients of expansion for mem- 

Drane and bending.  AT is dependent on the temperature loading being speci- 

fied. 

(A) For a specified grid point temperature the thermal membrane 

strain vector, {^MJj, is: 

«<M> "  (aM>(Ti " To> (A"69> 

Tj - Grid point temperature 

T0 - Reference (stress-free) temperature 

(B) For a thermal gradient, the thermal bending strain vector, (eBJT, 

is: 

UB)  -  {aB} (-££ T') (A-70) 
2 

(C) For thermal moments, che thermal bending strain vector, (eB)'p, 

is: 

(eB)  -  [G2](M)T *± (A-71) 

NOTE:  ASTROS does not support thermal gradients or moments so 

that the above equations are provided for completeness only. 

A.9     LAMINATED COMPOSITE MATERIALS 

The capability to model a stack of layers with a single QUAD4 element 

is detailed including the computation of equivalent "single layer" properties, 

i.e., membrane, bending transverse shear and membrane-bending coupling. The 

recovery of element forces, layer and interlaminar shear stresses and the 

computation of ply failure indices is also described in the following overview 

of theory. 
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A.9.1  Overview of Theory 

The calculation of the "overall" properties for the laminated compos- 

ite elements is based on the classical lamination theory with the following 

assumptions: 

(A) Each of the lamina is in a state of plane stress. 

(B) The laminate is presumed to consist of perfectly bonded lamina. 

(C) The bonds are presumed to be infinitesimally thin and non-shear 

deformable. That is, the displacements are continuous across the 

lamina boundaries so that lamina can not slip relative to one 

another. Thus, the laminate behaves as a single layer with 

"special" properties. 

The material properties of laminated composite materials are reflected 

in the following force-strain relationship: 

(A-72) 

F ' 

■    - 

■ t Gx t2G4 0 

* 

r     T £M " <M 

M t2G4 I G2 0 K - KT 

V 
J 0 0 ts G3 . 1 

where 

{F} 

{M} 

(V) 

Membrane forces per unit length. 

Bending moments per unit length. 

Transverse shear forces per unit length. 

and the remaining terms have been defined previously. 

The G\,  G2, and G4 terms are defined by the following: 

Gi - i / [GE] dz 

G2 - I / z2 [GE] dz (A-73) 

G4 - 1 / -z [GE] dz 
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The limit on the integration are from the bottom surface to the top surface of 

the laminated composite. The elasticity matrix [Gg] has the following form 

for isotropic materials: 

[GE - 

l-i/2 l-i/2 

SYM 
l-i/' 

_E_ 
2(l+i/) 

For orthotropic materials, matrix [Gg] is: 

(A-74) 

(A-75) 

[Gg]  - 

r     El 
v\h 

l-«/^i/2 \-v-\Y2 

SYM 
\-v\V2 

G12 

Equation A-73 may be rewritten as: 

N  _ 
[Gijl1 - 1^ [Gij]K (ZK - ZK.i) 

(A-76) 

tGijl - 1_ 
N 

31 K-1 tGij]K (ZK " **l> 
(A-77) 

[Gij] 
2t" 

N  -      2   2 
S  [Gij]K (ZK - ZK-l) 

K-1   J 

where [Gjj]^ is the reduced moduli matrix evaluated for each lamina K after 

transforming the lamina property matrix from the fiber to the element material 

axes. 

ZK and Z^.\ are the top and bottom distances of lamina K from the 

geometric middle plane of the laminate, as illustrated in Figure A-6, and N is 

the number of laminae (or plies). Note that the plies are numbered serially 

starting with 1 at the bottom layer. The bottom layer is defined as the 

surface with the largest -z value in the element coordinate system.  If the 
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option to model membrane-only elements is exercised, matrices [G2], [G3], and 

[G4] are set to zero. 

If the user defined element axis is not coincident with the element 

material axis, the user specified transformation angle Oft, which references 

the element X-axis, is added to the layer orientation angle. The property 

matrices [GjJ, [G2], and [G4] are then transformed to the user defined element 

axis using the following equation: 

[GE]  -  [U]T [GM] [U] (A-78) 

where 

[U]  - 

COS2* 

sin2* 

sin2* 

cos2* 

cos*sin* 

-cos*sin* (A-79) 

[G3]  - (A-80) 

-2sin*cos*  2sin*cos*  cos2*-sin2* 

The transverse shear flexibility (G3] matrix is defined by: 

Gil G12 

G12 G22 

and the corresponding matrix transformed into the user-defined element coordi- 

nate system is given by: 

[G]  -  [W]T [GM] [W] 

where 

cos*  sin* 

(A-81) 

[W]  - 
■sin*  cos* 

(A-82) 

The derivation of the transverse shear flexibility matrix [G3] for the 

laminate is considered next. 

The mean value of the transverse shear modulus, G, for the laminated 

composite is defined in terms of the transverse shear strain energy, U, 

through the depth as: 

U - i - 1| (r(z)l2 d2 
2Gt    2   G(z) 

(A-83) 

A unique mean value of transverse shear strain is assumed to exist for both 

the x- and y-components of the element coordinate system, but for ease of 
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discussion, only the evaluation of an uncoupled x-component of the shear 

moduli will be illustrated here. From Equation A-83, the mean value of 

transverse shear modulus is written in the following form: 

,     ,.      N M       (r     (z))2 

Gx    v
2 i"1  i'1 

x 
<Gx>i 

(A-84) 

where G is an "average" transverse shear coefficient used by the element code 

and (Gx)i is the local shear coefficient for layer i. To evaluate Equation A- 

84, it is necessary to obtain an expression for [rzx(z)]. This is accom- 

plished by assuming that the x- and y-components of stress are decoupled from 

one another. This assumption allows the desired equation to be deduced 

through an examination of a beam of unit cross-sectional width. 

ax + dax 

The equilibrium conditions in the horizontal direction and for total 

moment are: 

ar           da 
 xz x 
dz    3x 

(A-85) 

Vx + 
dM 

ax 
_x - o (A-86) 

If the location of the neutral surface is denoted by zx and p  is the radius of 

curvature of the beam, the axial stress, ax,   is expressed in the form: 

E (z -z) 

(EDx 
M, (A-87) 

196 



Equation A-87 is differentiated with respect to x and combined with Equations 

A-85 and A-86. For constant Ey, the result is integrated to yield the follow- 

ing expression: 

xz -    Ci + 
(El), 

ZvZ  - X x        2 
■Jtj      zi-l<z<zi (A-88) 

Equation A-88 is used in the analysis of n-ply laminates because 

sufficient conditions exist to determine the constants C^ (i-1,2 n) and 

the "directional bending center," zx.  For example, consider the following 

laminated configuration: 

Z 

11 

i - 3 

i » 2 

i - 1 

At the bottom surface (i-1, z-z0, and rXz-0), therefore: 

Cl - 
-     zz 
zxzo " T* Exi 

(EI)X 

and for the first ply at the interface between plies i-1 and i-2 (z-z^): 

(A-89) 

V 2  2 
(fxz)! - —a— [zx(Z1-z0) - 1 (z!-z0)] ^i 

At this interface between plies i-1 and i-2: 

(rxz)2 - C2 + 
Z2l 

zxzl " r1 x2 
(El)x 

and since (rxz>2 - (Txz)i at z-Z]_: 

VE, -     n  2 
C2 -  ('xz)! - -S-*2_ [ZXZ! - 1 Zl)] 

(A-90a) 

(A-90b) 

(A-91) 
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Then,  In the ply,  Z\ < Z < Z2,   the shear is: 

xz 
V E 2 

(z)    -    ('xz)! + -XJtf [z"x<z-Z1)  - 1 (z2-Z!)] 
(EI)X 2 

(A-92) 

In general, for any ply zi-i < z < zj, the shear is: 

V E   — 2 
'xz<z>i " <r*z>i-l ♦ -f^i [zjtCz-Zi.i) - 1 (z2^!.!)] 

(EI;X 2 

At any ply interface, z^, the shear is therefore: 

V l ~      1 
(rxz)i ■ Tiir j-i ^Tj [z' 2 (Z

J 
+ Z

J-
I)1 

where Tj  - z j - z j _ j_. 

Note that the shear at the top face, (rxz)n, is zero and therefore: 

(A-93) 

(A-SO 

lT"y' " 7i^ 
Zy   Z 

('J^JJ jfl HJ TJ j^ ^J TJ -J-J - 0  (A-95) 

Equation A-95 proves that if Zx is the bending center, the shear at the top 

surface must be zero. 

A better form of Equation A-93, for this purpose, is: 

['xz(z>]1 - -a-ai 
(EI)X 

fxj, + z(z-Zi_i) - 1 (z2-z1.1) (A-96) 

where 

i-1 
fxi   -  jh j^ S T

J i*x ■ \ (zj+zj-l>l 

Substituting Equation A-96 into Equation A-84 yields: 

(A-97) 

n 
-L- Z 

(El) 2 i-1 G 
xi 

*i 
(A-98a) 
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where 

Rxi - (Exl)2 Ti (fXl + <zx-Zi-l>
Ti - \  Ti2)fxi + <l(zx-2zi_i) 

♦ 

1    " 3   i  3    i         i  3 3 

- }  Ti) zxTi + (\  Il-l + 1 Zi.iTi + i- Ti)Ti 
4           3       4        20 

4 

(A-98b) 

This expression for the inverse shear modulus for the x-direction is general- 

ized to provide for the calculation of each term in the two-by-two matrix of 

shear moduli as: 

(Gkil  - 

n   i -1 
T „  2 [Gkll  Rki 

(El)2  t-l 
kk 

-1 

(A-99) 

where 

k - 1,2 

1 - 1.2 

Note that if no shear is given, [G*]"l-0, and also that, in Equation A-99: 

                       * 
(BI)xi - 1,1 term of 1 x [G2] 

                      * 
(EI)22 - 2,2 term of I x [G2] 

where [G*2] Is calculated in the same manner as [G3] except that Poisson's 

ratio is set to zero.  The moduli for individual plies are provided through 

user input.  Because G^K^i, In general, an average value is used for the 

coupling terms. 

[G3]  - 
Gil    (C12)AVG ' 

(512)AVG    G22 

(A-100) 

• 
A.9.2  Element Laver Stress Recovery 

• The linear strain variation is given by: 

Ux] - UM> " Z<K>                                   (A-101) 
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where 

<«x> - Layer strain vector in the element coordinate system. 

<<M> - Reference surface strain in the element coordinate system. 

(K) - Reference surface curvatures in the element coordinate 
system. 

» 

Z - Distance of the mid-surface of the layer k from the laminate 
reference surface. 

The individual layer stress vector in the fiber coordinate system is: 

ioL) - [GL] [T] Ux)                                   (A-102) 

where 

ioL) - Layer stress vector in the fiber coordinate system. 

[GL] - Stress-strain matrix in the fiber coordinate system. 

[T] - Transformation matrix to transform strains from element 
coordinate system to fiber coordinate system. 

Ux> - Layer strain vector in the element coordinate system. 

For e lement temperature and/or thermal gradients, the strain vector 

has to be corrected for thermal effects before applying Equation A-103: 

Ux> - Ux) - (a) (T + zT')                              (A-103) 

and foi thermal moments 

Ux) - <«xl " <«x>T                                     (A-104) 

where 

u£i - Mechanical strains. 

la) - Thermal coefficients of expansion in the element coordinate 
system. 

T - Element temperature. 
g 

T' - Element thermal gradient. 
w 

z - Distance from the middle of the layer to the laminate 
reference surface. 

* 

UX)T i   r strains due to thermal moments in the element coordi- 
nate system. 
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The thermal strain vector due to applied thermal moments is determined 

by substituting for (M) in Equation A-73 and solving for the reference surface 

strains and curvatures, [«*M) and (K^), respectively. 

A.9.3   Interlaminar Shear Stresses 

The interlaminar shear stress rvz, rxz can be computed at any ply 

interface from Equation A-96. 

A.9.4  Force Resultants 

Forces and moments for the element are computed using: 

N 
(F)  -  S  (<7X) Ti 

i-1 

i-1, N (No. of layers) (A-105) 

N 

{M)  "  i-1 *ZiTi (*x) 

where 

(F) - In-plane force resultants. 

{M} - Out-of-plane moments. 

(<7X) - Stresses in the element coordinate system. 

Tj^ - Layer thickness. 

Zi   -  Distance from the middle of the layer to the laminate 
reference surface. 

A.9.5  Failure Indices 

Failure indices assume a value of one on the periphery of a failure 

surface in stress space. If the failure index is less than one, the lamina 

stress is interior to the periphery of the failure surface and the lamina is 

assumed "safe" and if it is greater than one the lamina is assumed to have 

"failed." The failure indices represent a phenomenological failure criterion, 

because only the occurrence of failure is predicted. 

The analytical definition of a failure surface in stress space for a 

lamina subjected to biaxial (planar) states of stress is provided via the 

following failure theories. 
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(1) HILL 

(2) HOFFMAN 

(3) TSAI-WU 

(4) MAXIMUM STRESS 

(5) MAXIMUM STRAIN 

In the analysis of laminated composites, which are typically orthotropic 

materials (possibly exhibiting unequal properties in tension and compression), 

the strength of orthotropic lamina is a function of body orientation relative 

to the imposed stress. In order to determine the structural integrity of the 

lamina, a set of intrinsic strength properties (allowable stresses or allowa- 

ble strains) in the principal material directions are defined as: 

Xt  -   Ultimate uniaxial tensile strength in the fiber direction, 

Xc  -   Ultimate uniaxial compressive strength in the fiber direc- 
tion, 

Yt  -   Ultimate uniaxial tensile strength perpendicular to the 
fiber direction, 

Yc  -   Ultimate uniaxial compressive strength perpendicular to the 
fiber direction, 

S   -   Ultimate planar shear strength under pure shear loading, 

Et  -   Ultimate uniaxial tensile strain in the fiber direction, 

Ec  -   Ultimate uniaxial compressive strain in the fiber direction, 

Ft  -   Ultimate uniaxial tensile strain perpendicular to the fiber 
direction, 

Fc  -   Ultimate uniaxial compressive strain perpendicular to the 
fiber direction, and 

Es  -   Ultimate planar shear strain under pure shear loading. 

For most composite materials, the planar shear strengths and strains 

are equal for positive and negative shear loadings. 

The five failure theories and a bonding failure index are now de- 

scribed: 
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Hill'? THEORY 

a\      a\      o.o-       r2 
-1 + -2.  - _L_2 + _12 - FAILURE INDEX (FI) 
X2  Y2   X2   S2 

(A-106) 

and X-Xt if a\   is positive, and Xc if a\   is negative; similarly for y.  For 

the interaction term, (alff2)/X2, X-Xt if a\a2  is positive X-Xc otherwise. 

HOFFMAN'S THEORY 

L. . L. °i i_ . L_ 
CT?    ao T?o  aiao o2 +  —L-  + —2_ + -*£  + -1-1 - FI  (A-107) 
xtxc  YtYc  s2 xtxc 

Note that this theory takes into account the difference in the tensile 

and compressive allowable stresses by using linear terms in the failure 

equation. 

TSAI-WU THEORY 

This quadratic interaction theory allows for the strength predictions 

wherein interaction among stress components can be considered in determining 

strengths in a biaxial field. Thus, in the case of an orthotropic lamina in a 

general state of planar stress: 

2 2 
F\o\  + ¥202  + EllCTl + F22a2 + "2-^\2a\°2  + F66r12 ~ *"! (A-108) 

Fl - i_ 
x„ 

, F2 - 1- - L. 
Yt  Yc 

FU - 
X,-X, 

F22 - 
tAc Y«-Y, t*c 

F66 " \ 
S2 

(A-109) 

and F12 needs to be determined experimentally, from a biaxial test.  However, 

satisfactory results may be obtained by setting it to zero. 

MAXIMUM STRESS 

Failure is assumed to occur when any one of the stress components is 

equal to its corresponding intrinsic strength property. In mathematical form, 

the Maximum Stress theory is given by: 
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ffl i Xt, a\ > 0 

a2 * Yt, a2 > 0 

r12 * s. r12 > ° 

ai i -X^., a^ < 0 

CT2 ^ -Yc, <72 < 0 (A-110) 

T12 £ S, r12 < 0 

where the intrinsic strength properties are as defined previously. 

MAXIMUM STRAIN 

The Maximum Strain theory is analogous to the Maximum Stress theory. 

Failure is assumed to result when any one of the strain components is equal to 

its corresponding intrinsic ultimate strain. In mathematical form the Maximum 

Strain theory is given by: 

£1 St Et, ei >  0   ; ei S Ec, n < 0 

€2  * Ft> €2 >  °  ! £2 - Fc «2 < ° (A-lll) 

712 ^ Es. 712 > °  I  712 * Es> 712 < 0 

where the intrinsic ultimate strains are as defined previously. 

FAILURE INDEX OF BONDING 

The failure index of bonding material is calculated as the maximum 

interlaminar shear stress divided by the allowable bonding stress. 

A.10   CORRECTION OF OUT-OF-PLANE SHEAR STRAIN 

The typical formulation for a QUAD4 type finite element follows a 

standard bilinear isoparametric theory, with directional reduced integration 

for out-of-plane shear strain. However, this formulation has been found to be 

inadequate when the geometry of the element is irregular, and a correction 

defined herein has been implemented in ASTROS to correct this problem. 

The modification is based upon the theory presented by Hughes and 

Tezdayar (Reference A-l), but is generalized to include non-planarity of the 

element, and special features to accommodate ASTROS's structure. The formula- 

tion enforces constant shear along each edge of the element, eliminating the 

need to perform reduced integration. 

The formulation of this modification consists of establishing strain- 

displacement relationships in the element coordinate system. It involves six 

degrees of freedom (dof), the rotational part of which will be modified later 

to include the singularity about the normal to the mid-surface. 
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• 

A.10.1 Geometric Variables 

The following terms are defined for each edge of an Irregular-shaped, 

non-planar element: 

A Unit Normal Vector ( e* ) in the direc- 

tion of the next node as illustrated; 

2 

A Unit Normal Vector ( "n ) which is a 

normalized average of the nodal normals 

to the mid-surface along that edge; 

n3  3 n4A i_^v-y2 

n1 

Length of each edge (h^); and cosine of the internal angle at each 

corner (aj). 

A.10.2 Edge Shears and Shear Vectors 

Given the following numbering sequence: 

At the middle of each edge, the constant shears parallel to edges a, b, c and 

d, respectively, are: 
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g- - J- na • (Ub - Ua) - 1 ea <*b + 9a) 
a    ha 2 

H 

c 

(Ud - Ub) 

- A- n- • (U- - Uc) - 

1 eb <*d + *b> 

\  ec <*a + *c> 

(A-112) 

- 1- nd • (Uc - Ud) - 1 ed (Bc  + *d) 
*a " hd 

where u and 8   are the vectors of translations and rotations at each node, 

respectively, in the element coordinate system. 

The shear vector (-fb) at node (b) is given by: 

or 

"*      1 "*    i "* 
7b " —h:  <8r + B-Ob^b + —*; <8- + ^"b^t 1.02 ^   a       ]_.02  a  ^ 

(A-113) 

7b - 
(l-«2)ha 

b 

■ (ea+orbeb)(naUa) * (ea+obeb) (naUb) 
(l-«?)ha b 

* (eb+<»bea)(nbUb) 
(l-a2)hb b 

i * (eb+orbea) (nbUd) 
(l-a2)hb 

b 

*-r-(ea+arbeb) (ea • Sa) 
2(l-a2) 

b 

(A-114) 

2(l-a2) 
(ea+abeb)(

ea*b)+(eb+orbea)(eb'b) 

i-—(eb-f<!lrbea) ^b' *d> 
2<l-a2) 

b 
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and similarly for the other nodes, by permutations of the a, b, c and d 

subscripts. 

A.10.3 Nodal Contributions of Shear Strain 

The contribution of each node to the total shear strain (7^) evaluated 

at an integration point is: 

7T - * Nm (A-115) 

The "pseudo-contribution" of each edge to the total shear strain (G) has the 

following form: 

-»      ■ -»-»&-»•• 
G_ - —*- (ea + oaec) + —0-  (ea + or^) 
a    i_a2 i.,,2 

a b 

G  - —3-  (eb + erbea) + —3-  (eb + aded) 
° 1-a2 1-a2 

b d 

N N 
G_ - —£- (ec + oced) + —S_ (ec + aaea) 

1-a2 
c 

1-a2 
a 

(A-116) 

N   -»     - N   -     -» 
G_ - —2- (ed + orbeb) + —S- (ed + acec) 
3    1-a2 1-a2 

d c 

Hence, the columns of the [B] matrix partition for shear, corresponding to 

node b, [BSb], are: 

(BSbi) 
n* -»   nA -» 
_& Ga - -a Gb 
ha     hb 

—       e*- -*   *w "* 
tBSbj)  - -« Ga - J> Gb 

i-l,2.3 

j-A.5,6 
(A-117) 

A.10.4 Transformations 

The following transformations have to be performed before the preced- 

ing formulation can replace the existing [B] matrix generation for out-of- 

plane shear. 
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[BSb]  -  [TIE]   [BSb] >»bJ 
(3x6) 

where 

[TIE] 

ID 

[TEE] 

(3x3) (3x6) 

[I] I  0 
 1  

| [TEE1 
(A-118) 

6x6) 

Is the orthogonal transformation between integration 
points and the element coordinate system, required 
since all the strains are calculated in the I system. 

Is a 3x3 identity matrix. 

Is the 3x3 transformation which takes into account the 
following facts 

(A) Hughes' convention for rotations is different than 
the one implemented in ASTROS; and, 

(B) The rotation about the normal to the mid-surface 
at each grid point is singular. 

If NV is the normal vector at a given grid point, then: 

0   -NV3  NV2 

[TEE]       NV3   0  -NV1 (A-119) 

-NV1  NV1   0 
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Figure A-l.  Internal Element Coordinate System 

Figure A-2.  Isoparametric Quadrilateral 4-Node Plate and Shell Element 
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Figure A-3.  Deformations at Grid Point i 

E 

-xE 

Figure A-4.  Deformations in the Giobal Direction 
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Figure A-5. Material and User Defined Element Axes 
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Figure A-6.  Geometry of a N-Layered Element 
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APPENDIX B 

DETAILS OF THE NUCLEAR BLAST ANALYSIS 

This appendix provides a theoretical development for the methodology 

employed in the aerodynamic preprocessor which computes indicial response 

coefficients for use in the blast response calculations. This appendix was 

prepared by Robert F. Smiley of Kaman AviDyne. 

The basic concept of the Aero preprocessor module of Figure 18 of 

Section XII is to obtain the indicial response functions governing the time- 

history loading response of a given computational box on the aircraft struc- 

ture to an indicial normal wash at the same or any other box. This problem is 

addressed by first obtaining the corresponding frequency response functions 

and then transforming these functions to the time domain by appropriate 

Fourier transforms (Reference B-l). For the most part the discussion is made 

with respect to the subsonic case and the doublet-lattice method, but the 

discussion (with some indicated differences) applies also to the supersonic 

case and the constant pressure method (CPM). 

For low frequencies, the frequency response functions are obtained 

from the doublet-lattice (or CPM) method as a function of the reduced frequen- 

cy, k. This procedure is considered valid for practical applications up to 

some upper frequency limit, kmax, which may be estimated by the guidelines of 

References B-2 for the doublet-lattice case. A typical limit for high subson- 

ic speeds is kjj)ax-2. 

The initial indicial response, corresponding to an infinite frequency, 

is obtained using piston theory, which gives a value of lift coefficient slope 

of 4/Mach Number for the effect of a box on itself and zero on other boxes, or 

in terms of a piston theory pressure ?j: 

PT -  (4/M)qa (B-l) 

where, 

a is the indicial angle of attack 

q is the dynamic pressure 

M is the Hach number 
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For frequencies between k^ax and infinity, no practical theoretical 

methods for calculations were identified. However, it is necessary to esti- 

mate (interpolate) the frequency response functions in this intermediate range 

in order to define the time-domain indlcial response coefficients by the Four- 

ier transform with an accuracy sufficient to provide desired time-domain reso- 

lution of local blast loading transients. In particular, it may be required 

to provide time resolution on the order of the diffraction period, correspond- 

ing to the time required for a blast wave to cross a lifting surface, or, for 

higher local resolution, the time to cross a computational box. To meet this 

requirement, a semi-empirical interpolation discussed here was adopted. 

The first case considered is that of the influence of a sending box on 

other receiving boxes, where piston theory gives zero at infinite frequency. 

The doublet-lattice frequencies are extended to infinity from the values 

calculated for V^ax assuming the amplitude of the complex frequency-response 

function varies inversely with frequency as AA + B/k2 for k > V^g^ and that 

the rate of change of the phase of the complex function with frequency is 

constant and has the same value as is obtained from the two highest frequen- 

cies calculated by the doublet-lattice method. The constants A and B in the 

amplitude expressions are chosen so that the magnitude and slope of the 

amplitude function are continuous through kn&x- 

For the case of the response of a box to Itself, a two-stage approach 

is followed to provide a reasonable first approximation to the diffraction 

loading on the lifting surface.  As a first step, the doublet-lattice values 

are extrapolated to higher frequencies than k„wx by assuming constant ampli- 

tude (value at ^ax)   and constant rate of change of phase angle (calculated 

from the value at 1%^) and constant rate of change of phase angle (calculated 

from the value at k,„ax and the next lower frequency). These results are then 

inverted into the time domain by the Fourier transform to obtain raw values 

which are sufficiently accurate for generalized times greater than some 

minimum time designated SDL, of the order 1/kmax-  These raw values are 

corrected in the time-domain to conform to estimates of indlcial response 

values for times preceding SDL, made as described later (in the discussion of 

Equation B-4). 

For all cases, conversion from frequency domain coefficients to time- 

domain coefficients is obtained by the Fourier transform expressed in the 

form: 
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F(S) "if  k KC(k)e^s)dk (B.2) 

s - Ut/b (B-3) 

where, 

C Is the complex frequency response function 

ImO designates the imaginary part of a function 

k is generalized frequency (wb/U) 

u is frequency 

s is generalized time 

b is the reference semi-chord 

U is free stream velocity 

Equation B-2 differs from the form used in Reference B-3 in that the complex 

form of the frequency function is used Instead of the real form. This was 

done because it produced more efficient computations. 

Numerical integration of Equation B-2 is performed by assuming that 

the amplitude and phase angle of the frequenc. function vary linearly between 

calculated values of the complex frequency function for the k < k,„ax and by 

using the inverse k expressions previously described from k^x to infinity. 

The remaining task is to correct the BOX-ON-ITSELF time-domain coeffi- 

cients of Equation B-2 to take into account early time loading (including 

diffraction effects).  Consider a streamwise section of the associated airfoil 

through a sending box.  The total loading contribution L produced by a sending 

box of area S on all receiver boxes is assumed to be given by the expression: 

-1 pT       S < SARR (B-4a) 
L/S 

pT (SARR(S)
A  SARR < S £ SAMM (B-4b) 

where, the first term represents piston theory and the arrival time SARR is 

the generalized time required by a sonic signal from the box to reach the 

leading or trailing edge, whichever is smaller. This is the time up to which 

Equation B-4a is exactly valid.  The upper limit SAMM for Equation B-4b is 
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discussed below. The power lew form of the second expression was selected 

because the exponent n can be evaluated from theoretical expressions for the 

diffraction loading on a two-dimensional airfoil (c.f., Reference B-4). 

integration of Equation B-4 over a streanwlse strip of an airfoil, assuming an 

Infinite number of chordwise boxes, gives the following expression for the 

average pressure on the strip due to indicial motion of the entire strip: 

pav - pT(l - M (n^J c s ) ; S < SAMM (B-5) 

where, 

SAMM - (M/2)(c/b) * 

The corresponding expression from linearized two-dimensional subsonic un- 

steady flow theory (Reference B-4) is: 

S £ 1+M b (B-6) 

where, 

C   -    M  c (B-7) 

c   is chord 

M   is freestream Mach number 

This expression can be modified to take sweep angle (A) into account for wing 

of in nite aspect ratio by calculating the flow process in cross-flow planes 

perpendicular to the leading edge of the wing, which results in a modification 

of Equation B-7 to the form: 

secA - M fe 
C -     M    c (B-8) 

Since Equations B-5 and B-6 have the same form, they may be compared, using 

Equation B-8, to solve for the unknown parameter, n, in Equation B-5 giving: 

n - (secA - M)/M + 2 - secA) (B-9) 

where an average value of secA is used which is the average of the secant of 

the sweepback angle for the leading and trailing edges. Using this value of 

n, Equation B-4 may be now used to calculate total loading produced by any 

sending box up to the time value SAMM when the sonic signals from all sending 

boxes in this strip have reached either the leading or trailing of the strip. 
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The above discussion to justify the use of Equation B-4 for calculat- 

ing total loads at early times is concerned with the two-dimensional case. 

However, the results may be reasonably applied to the three-dimensional case 

for total loads produced by a three-dimensional sending box for the following 

reasons. First, for s < SARR, Equation B-4a is still exactly valid if SARR is 

redefined as the minimum time for a sonic signal from the box to reach any 

lifting surface edge (leading, trailing, tip, root). The implemented prepro- 

cessor algorithm does not take into account either tip or sweep effects on 

SARR since this required more work than appeared justified. Similarly, for 

the range SARR < s < SAMM, Equation B-4b is as valid for the three-dimensional 

case as for the two-dimensional case, aside from effects of sweep and tip/root 

edges. Note that this applies only to the total load produced by a ^ending 

box on a lifting surface. Local loads are, of course, considerably different 

for two- and three-dimensional cases. 

Equation B-4 provides a first approximation for the total loading 

produced by indicial motion of the box. Since this total loading is distrib- 

uted over all receiving boxes (including the sending box), the loading on the 

sending box alone which is consistent with this total loading is obtained by 

subtracting the calculated loading contribution for all receiver boxes other 

than the sender box from the total loading. 

These results apply mainly to the subsonic case. No detailed study 

was made of the supersonic case. However, as a first approximation for the 

supersonic case to be used in conjunction with supersonic constant pressure 

data (replacing doublet-lattice data in the preceding discussion), the same 

procedure is used with the following differences. Equation B-4a still applies 

for less than SARR, where SARR is now M/(l+M)c/b (Reference B-4). Since there 

is no linear decay period for the supersonic case corresponding to Equation B- 

6, the slope C in this equation is taken equal to zero, and SAMM is set equal 

to SARR. 

These results define the time-domain response for generalized times 

less than SAMM and for times greater than some value SDL (presently taken as 

2.0/kmax). As stated previously, the raw calculations based on doublet- 

lattice calculations without piston theory considerations are considered 

adequate for times after SDL. For intermediate periods, the value of the 

time-domain coefficients for all sender boxes are extrapolated to meet the raw 
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doublet-lattice curve using the average curve slope given by Equations B-6 and 

B-8, or (if the curves do not meet) by a straight line connected to the raw 

doublet-lattice value at SDL. 

The procedure presented provides the indicial response function F(s) 

for all sender recei8ver box combinations.  To apply these functions to 

practical blast response problems, it is convenient to express this function 

as a decaying exponential series of the form: 

F(s) - o0 + S a,, exp <-0ns) (B-10) 
n 

(as discussed in Reference B-3). The beta parameters 0n are chosen so that 

the function F(s) in Equation B-10 can be fitted, with a tolerable error, for 

all generalized times of interest, from zero to infinity, using a minimum 

number of fi coefficients. In recent Kaman AviDyne work seven 0 values were 

adequate, having the values: 

01    " bmln - 0.375 bmax - 07    - 10.0 

where, values between bm^n and bnax are logarithmically spaced. These partic- 

ular values are provided as default values in the ASTROS program. 

Values of the coefficients an are obtained by calculating values of 

F(s) in Equatio-. B-10 for M values of generalized time sm and then satisfying 

Equation B-10 by the least-square procedure.  The values of sm are chosen to 

cover the range of interest.  The following values have been used in Kaman 

AviDyne calculations and are provided as default values in the ASTROS program: 

M - 20 

81 - smin - 0.1 s2o - sUx - 20-° 

where, values between sm±n  and smax are logarithmically-equally spaced. 
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APPENDIX C 

THE FAST FOURIER TRANSFORM 

The equation of motion for a transient response dynamic analysis is 

given by: 

[M] <U) + [B] {u} + [K] (u) - (P(t)} (C-l) 

The [M], [B] and [K] are the mass matrix, the damping matrix and the stiffness 

matrix, respectively. (P(t)) is the external load vector in the time domain, 

and (u) is the response displacement vector. Here, Equation C-l is assumed 

reduced to the solution set degrees-of-freedom. In general, Equation C-l can 

be solved by numerical integration. However, another method for solving this 

equation is the Fourier transform technique. In this method, Equation C-l is 

first transformed into the frequency domain with the Fourier transform, the 

response displacement vector is computed in the frequency domain, and finally 

the frequency domain displacement vector is transformed back into the time 

domain by using the Inverse Fourier Transform. 

In general, an external load vector (P(t)) can be transformed to the 

frequency domain using: 

{P(w)> - / (P(t)) e'lwt dt (C-2) 
o 

Equation C-l in the frequency domain is then 

[-w2M + iwB + K] (u)  -  (P(w)} (C-3) 

After the displacement vector (u) is obtained by the frequency response 

method, it can be transformed back into the time domain by 
00 

<u(t)} - 1/ ((u(w)) eiwt) dy (C-4) 
IT  O 

For certain types of problems, the use of the Fourier Transform method 

offers many advantages over numerical integration methods. For periodic 

external load vectors, the Fourier Transform method can be used to obtain the 

accumulated effects on the response displacement vector and, at the same time, 

minimize the computing costs.   Even for nonperiodic external loads, the 
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Fourier Transform method may be more efficient than a numerical Integration 

approach. It should be stressed that while the Fourier Transform is presented 

here in terms of performing transient response of structures, the method has 

wide applicability. Therefore, the availability of Fourier Transform based 

algorithms in ASTROS provides a building block for numerous further disci- 

plines . 

Cl   DISCRETE FOURIER TRANSFORM 

There are two difficulties in practical applications of the Fourier 

Transform method as described by Equations C-2 through C-4. First, the time 

function P(t) is continuous; however, in practice, its values are known only 

at a finite number of time points. Second, while the integration limits in 

Equation C-2 are from zero to infinity, practical applications must have a 

finite time duration. Therefore, the Fourier Transform method needs to be 

reformulated such that it can be managed practically. This form is called the 

Discrete Fourier Transform (DFT). A summary of the theory of the DFT is given 

here while References C-l and C-2 provide more detailed information. 

For a function P(t) defined over the time duration T and with N sample 

points at which the values of the function P(t) are known, i.e., 

Pn - P(tn) (C-5) 

where 

tn - nAt, n - 0,1,2 N 

At - I 
N 

three important parameters in the frequency domain can be derived: the 

incremental frequency, Aff, the number of frequency steps Nf, and the frequen- 

cy duration, Ff: 

Aff - 1 
T 

Nf  - H (C-6) 

Ff  - Nf Aff 

A key requirement for the discrete transform to be valid is that the 

excitation be periodic "in the window," i.e., the time duration T.  This is a 
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rather special case, but a wider range of cases can be considered by recogniz- 

ing that a response that dies out within the window could be considered 

periodic since the responses in successive periods are uncoupled. Clearly, 

for the response to die out, the excitation must be zero for the last portion 

of the period 7. 

The DFT and IDFT (Inverse DFT) can now be defined as: 

H-l      .iw t 
FCofc) ■ 1 Eft f(t„) e  » n (C-7) 

N n-0 

Nf-1 lw t 
f(t„) - F(0) + 2 E Re (F(<V e ■ n) (C-8) 

where 

un - 2wAffm 
(C-9) 

tn - nAt 

Tiutjn)   is typically complex although the F(0) term is seen, from Equation C-7, 

tc be real. 

C.2     FAST FOURIER TRANSFORMS 

The evaluation of the DFT and the IDFT of a function P(t) as given by 

Equations C-7 and C-8 are accomplished by a numerical technique which is known 

as the Fast Fourier Transform (FFT). This procedure is very powerful in that 

it reduces the number of multipliers to compute the transformed quantity from 

N 2/2 to N log2N. Figure C-l shows a comparison of computation times for FFT 

and a brute force approach. 

The following is a conceptual description of the FFT. Additional 

details are found in References C-2 and C-3. The restriction is first made 

that the number of time points is a factor of two. 

N - 2M (C-10) 

where M is an integer.  The transform of Equation C-7 can be written as: 

N-l      .n 
F(m) -  L f(n) Wn (C-ll) 

n-0 
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Figure C-l.  Time Required for the FFT and the Conventional Method 
(Reference C-3) 

where WJJ - e-2wl/N an<j t^e relations of Equation C-6 have been used to replace 

wnjtn with (2mn)/N. The integers m and n can be expressed in binary form as: 

m - m0 + 2mi + 4i»2 . . . + 2M*2 m,^ 

n - n0 + 2nj + 4n2 ... + 21**1 i^.^ 
(C-12) 

where the values of m^ are either 0 or 8.  For illustrative purpose, set N-8, 

so that M-3, then 

m — m0 + 2m^ 

n - nu + 2ni + 4n2 

and Equation C-ll becomes 

1   1   1 
F(m) -ZEE f(n) Wg °  l'  "*<>  L 

n2-0 nj-0 ng-O 

(C-13) 

(m +2m. )(n +2^+4^) 
(C-14) 

If the exponential term is factored by powers of two then 

8",n0 _4mrtn0 „2m, (mrt+2m1) n()(m0+2m1) 
<*8 W8  - W8 1 2 Wg"

0"2 Wj"1'"0 (C-15) 

The first factor on the right hand side is unity since 

81 
W8  - e 

.¥8I_ 
(C-16) 

where I Is an integer.  For the remaining terms, the nj coefficients are 

segregated so that three Intermediate summations can be defined as: 
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F^mo, ni. no) -   Z f(n2. nlf no) W8
n2B0 (C-17) 

n2~0 

where f(n2, nj_, TIQ) is f(n) in Equation C-14. Note that each of the eight 

terms on the left-hand side is computed from two multiply operations. In a 

similar fashion, a second summation is 

i l      1 2n1(mn+2m1) 
F2(mo. mlt no) -   2 Fl(mo. m1( no) W8 1 ° ~ (C-18) 

n^-0 

and the third and final summation is 

F3(mo, mx) -   2 F2(mo. mlf IIQ) W8<>  * ° (C-19) 
no-0 

This final term is the F(m) of Equation C-14. While the process has been 

shown for N-8, it does generalize to N - 2M. 

C.3     IMPLEMENTATION CONSIDERATIONS 

To control the solution of a transient response problem using the FFT, 

two sets of parameters must be input by the user. The first set contains the 

parameters used to control the FFT, which are: T, the total time duration and 

N, the number of time points. With T and N determined, the characteristics in 

the frequency domain are given by Equation C-6. The time points and their 

corresponding frequency list are given by Equation C-9. 

The second set of parameters is the frequency list used in solving 

Equation C-3 to obtain the response vector (u(w)).  This frequency list is: 

w - 2*fo, 2wfi, 2wf2,   2wfn (C-20) 

The frequency lists (^ and w are not necessarily equal.  While setting 

&>„,-<<> will give the most accurate response, it may not be efficient.  To give 

the user complete control over accuracy versus efficiency, two alternative 

methods are used to input the frequency list u.      For the first method, the 

frequency list u  is input via two parameters: 

Aff 
(C-21) 

Rf  - t 
Ff 
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where Af and Aff are incremental frequencies used in the frequency response 

analysis and the FFT, respectively. And F and Ff are total frequency dura- 

tions used in the frequency response analysis and the FFT, respectively. If 
RAf ~ 1-° and Rf "* 10» then the frequency lists w and w,, are equal, which 

gives the most accurate response. For greater efficiency, R^f values greater 

than one may he used. t 

The frequency list w  determined by Equation C-21 has an equal frequen- 

cy interval.  In some cases, the user may desire a frequency list with an 

unequal interval. Therefore, an input option is provided to allow the user to 

input a completely independent frequency list w. 

If the frequency lists u and w,, are not equal, the differences between 

these two lists are reconciled by either linear or cubic interpolation, with 

linear interpolation the default. 
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