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FOREWORD

Contract F33615-83-C-3232, entitled "Automated Strength-Aeroelastic
Design of Aerospace Structures," was initiated by the Analysis and
Optimization Branch (FIBR) of the Air Force Wright Aeronautical Laboratories.
The objective of this contract was to develop a computer procedure which can
assist significantly in the preliminary automated design of aerospace struc-
tures. This report, which is one of a four volume final report is the Theo-

retical Manual that describes the analytical foundations for this procedure.

Northrop Corporation, Aircraft Division, was the primary contractor
for this program with Dr. E. H. Johnson, the Program Manager, and Mr. D. J.
Neill, the Project Co-Principal Investigator. ‘Subcontractors for the program
were Universal Analytics, Incorporated (UAI), with Mr. D. L. Herendeen the UAI
Project Manager, and Kaman AviDyne, with Dr. J. R. Ruetenik, the Project
Manager. At the Air Force, Capt. R. A. Canfield was the Project Manager while

Dr. V. B. Venkayya initiated the program and provided overall program direc-
tion.

Key contributions to this report were made by the following people
in the designated areas:

NAME AFFILIATION SECTION(S)
R. E. Blauvelt Northrop 5.1.5
H. Chang UAIL 7.1, Appendix C
D. L. Herendeen UAI III
R. L. Hoesly UAIl 111
J. Jalil VAL 5.1.4, Appendix A
D. J. Neill Northrop 5.3y 1.1, 23.2
R. F. Smiley Kaman AviDyne Appendix B
Gijs Tremainis Kaman AviDyne 12.1, 12.3

The technical guidance of Dr. W. P, Rodden and Dr. K. Appa is also
gratefully acknowledged.
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SECTION I

INTRODUCTION

The design of aircraft and space structures requires the marshaling of
large teams of engineers to select a design which satisfies all requirements.
Typically this design goes through further refinement or modification as more
knowledge is gained about requirements or as new conditions are imposed. Much
of this effort presently consists of applying laborious "cut and try" proce-
dures wherein the design is perturbed and reanalyzed many times. This rede-
sign frequently is dictated when two or more disciplines have conflicting

demands that require compromise.

The goal of Air Force Contract F33615-C-83-3232 has been to provide an
automated design/analysis procedure that performs the tradeoff and synthesis
tasks in a systematic way. The ASTROS (Automated STRuctural Optimization
System) procedure is the code that has resulted from this effort and this
Theoretical Manual, plus the companion User's, and Applications Manuals,
provide the information required to understand, apply and modify the proce-
dure. This introduction provides a broad overview of ASTROS concepts and
capabilities, discusses the contents of ASTROS documentation and provides

information on supplementary references.
1.1 ASTROS CONCEPTS

ASTROS is a finite element based procedure that has heen designed to
assist, to the maximum practical extent, in the preliminary design of aero-
space structures. A concerted effort has been made to provide the user with a

tool that has general capabilities with flexibility in their application.

A vital consideration in a code of this type is that the key disci-
plines that impact the design must be included in the automated design task.
This multidisciplinary aspect of the code has been implemented in an integrat-
ed way so that all the critical design conditions are considered simultaneous-

ly.

In addition to several disciplines interacting, there is a requirement
that it be possible to treat multiple boundary conditions and, within each

boundary condition, multiple subcases. Additional desirable features of this




code are that the user should not be arbitrarily restricted size and that the
use of the code should conform to the current environment for performing
structural analysis in the aerospace industry. Practical limitations of
available disk space and data processing time restrict the problem size

feature, but this should be left to the user'’s discretion.

These requirements have been addressed by the development of a system
specifically suited to the task. In particular, the multidisciplinary re-
quirement has been addressed by implementing the disciplines in separate
modules and by the use of MAPOL (Matrix Analysis Problem Oriented Language), a
high 1level language, to direct the interactions among the modules. Data
transfer is accomplished using CADDB (Computer Automated Design Data Base)
that has also been developed for this project.

The requirement for large problem size is addressed by the presence of
a Dynamic Memory Manager that allocates memory in a way that eliminates the
need for fixed length arrays. Allocations are made and destroyed dynamically

so that free memory can be shared by the engineering modules.

Finally, the feature of compatibility with the current aerospace
environment is addressed by making the ASTROS procedure resemble that of
NASTRAN in terms of user input and pre- and post-processor interfaces. While
the ASTROS procedure does not contain many of the specialized capabilities
available in NASTRAN, the basic structural analysis features have been includ-
ed. Most importantly, frem a user point of view, the bulk data formats have
been taken directly from NASTRAN and modified only if the design considera-
tions dictate a modification in the data or, in a few cases, if minor changes
result in superior capability. Of course, new bulk data entries have been
created to input design information and data needed to run the steady aerody-

namics and other analyses specific to ASTROS.

1.2 ASTROS CAPABILITIES

The documentation of the engineering analyses within ASTROS 1is the
main function of the balance of this manual. This section gives a brief
overview of the capabilities that are included in the code. The basic disci-

plines that are implemented within this code are as follows:
(1) Static analysis

(2) Modal analysis




(3) Aerodynamic Analysis
(4) Dynamic Analysis
(5) Optimization

The statics analysis methodology is based on a finite element repre-
sentation of the structure, as are all the structural analysis disciplines in
ASTROS. The static analyses compute responses to statically applied mechani-
cal (e.g., discrete forces and moments), thermal and gravity loadings. Static
deformations and their resultant stresses are among the computed responses.
An extensive design capability is provided for the static analysis discipline.

Details of this discipline are provided in Section VI of this report.

The modal analysis capability in ASTROS permits the determination of a
structure’'s eigenfrequencies and normal modes. As outlined in Section VII of
this report, the reduction of the finite element model to a size tractable for
performing an eigenanalysis is performed by one of two techniques. 1In the
first, the degrees of freedom are reduced to a user specified analysis set
through the use of Guyan reduction. The second technique employs Dynamic
Reduction concepts to produce basis vectors that are "rich in the eigen-
vectors" of the structure. The design capability for modal analysis is
limited to the ability to impose limits on the natural frequencies of the
structure. Apart from its inherent usefulness, the modal analysis capability
also serves as the basis for further analyses, such as flutter, transient re-

sponse and frequency response, that can be performed using modal coordinates.

The aerodynamic analyses in ASTROS include both steady and unsteady
formulations. These could be considered as separate disciplines, but they
are linked in this report because of the fact that they share the method for
linking quantities computed in the aerodynamic models to the structural model.
Section VIII first discusses these spline techniques and then separately
discusses the steady and unsteady aerodynamics analyses. Section IX discusses
the use of the steady aerodynamics to provide loads on a free flying aircraft
for specified longitudinal flight conditions and to provide estimates of the
rolling effectiveness of control surfaces in antisymmetric maneuvers. All the
design conditions that can be applied to a static analysis can also be imposed
on the symmetric flight condition. In addition, limits on the aircraft's lift

effectiveness and rolling effectiveness can be imposed.




The unsteady aerodynamics are used for flutter, gust and nuclear blast
analyses. Section X provides a description of the algorithms used to perform
flutter analysis and design. Flutter design requirements are specified in

terms of the required damping levels at user specified velocities.

The dynamic analysis disciplines listed above represent a breadbasket
of methods that are detailed in Sections XI and XII. These methods share the
characteristic that they include time or frequency varying loads as well as
inertial terms (i.e., those proportional to the structure’s acceleration) and
optional damping terms (i.e., those proportional to the structure’s velocity).
Section XI discusses transient and frequency analyses that utilize either a
direct or a modal representation of the structure while Section XII discusses
the specialized dynamic response of an aircraft to a nuclear blast. All the
dynamic analyses in ASTROS share the property that only an analysis capa-
bility, with no design conditions, is provided. The rationale for including
these further analyses, in what is basically a structural design procedure, is
that it allows the user to check the final achieved design for a variety of
other conditions within the context of ASTROS. This is in contrast to requir-
ing the user to understand and develop models for a series of more specialized

procedures.

The final discipline listed above is that of optimization. If only
stress (or strain) constraints are included in the design task, the fully
stressed design option can be efficiently utilized. For more general design
tasks, a mathematical programming approach has been implemented. Section XIII
discusses both of these methods and provides details on the extensive use of
approximation concepts to make the design task tractable when many design

variables and design conditions are used.
13 DOCUMENTATION

This subsection provides a brief description of each of the ASTROS
documentation manuals, as well as other references that are central to the
ASTROS procedure. The ASTROS documentation is divided into the following four

manuals:

(13 VOLUME 1 - Theoretical Manual
(2) VOLYUME 1II - User's Manual

(3) VOLUMF III Applications Manual
(4) VOLUME 71V Programmer’s Manual




This Theoretical Manual contains theoretical background on both the
computer science and engineering analyses of the ASTROS system. Emphasis is
given to the more innovative aspects of the ASTROS system with other sources

relied upon to detail those features that are common to other procedures.

The User’s Manual contains the information needed to run the ASTROS
procedure. The user input is documented, as is information on the output
quantities that can be computed. The user is also provided with information
on how to modify the stand#rd MAPOL sequence or to write a specialized MAPOL
program to tailor ASTROS to a particular application.

The Applications Manual serves a number of functions. The first is to
describe, in some detail, alternate sources of information. Secondly, it
provides guidelines and modeling information on the use of more unique fea-
tures of the procedure. For example, the steady aerodynamic and design
capabilities are discussed in some detail since these are unique to ASTROS.
Finally, the Applications Manual contains a number of sample runs that can be

used to check out the initial installation of the procedure and further guide
ASTROS usage.

The Programmer's Manual is reserved for researchers who wish to make
modifications to the ASTROS code, either to insert a new module or to modify
an existing capability. A large percentage of this manual is the documenta-
tion of the data base entities. Other useful sections of the report are the
definitions of the calls to utility routines. Also, the installation of the

procedure on different machines is presented for the "system administrator.”

In terms of subsidiary documentation, ASTROS relies heavily on NASTRAN
in terms of methodology and as a starting point for code development. NASTRAN
documentation, therefore, is useful in understanding ASTROS. As mentioned,
the ASTROS documentation, and particularly the Theoretical Manual, emphasizes
the more novel aspects of the ASTROS code while relying on this other documen-
tation for the more standard features. For example, this theoretical manual
contains no description of the large matrix utilities while the NASTRAN Manual
of Reference 1 devotes 21 pages to these utilities. This reliance is less
evident in the other manuals. The ASTROS Programmer’'s Manual is considerably
more succinct than the corresponding NASTRAN manual of Reference 2 in terms of
module definition, but does provide some documentation for each module. The

ASTROS User's Manual is intended to be standalone and 1is sufficiently




different from the corresponding manual of Reference 3 that one is advised not
to rely too heavily on preconceptions based on using NASTRAN. On the other
hand, the similarities between ASTROS and NASTRAN inputs are so marked that it
should be extremely easy for a user to go from one system to another.
Subsection 1.3 of the Applications Manual discusses in greater detail how

other reference sources can be used to supplement the ASTROS documentation.




SECTION 11
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The ASTROS system was developed to have maximum impact at the prelimi-
nary design stage of an aerospace structural design. At this stage, the
configuration has been defined and the materials have been selected. The
design task is the determination of structural sizes that will provide an
optimal structure while satisfying the numerous requirements that multiple
disciplines impose on the structure. A key motivation for the development of
a single automated structural optimization tool is that such a tool can
shorten the design cycle (time) and provide better structural designs. This
is particularly true as composite materials come into widespread use. Balanc-
ing conflicting requirements for the structure’s strength and stiffness while
exploiting the benefits of anisotropy (e.g., "aeroelastic tailoring") is per-
haps an impossible task without assistance from an automated design tool. The
use of a single tool can also bring the design task into better focus among

design team members, thereby improving the insight into their overall task.

The development of a system to meet these needs is by no means a new
endeavor. Concepts of automated structural design have been advanced for over
30 years and a number of software procedures have been developed. Notable
among these are the TSO (Reference 4) and FASTOP (Reference 5) procedures that
were developed under Air Force sponsorship. NASA has been very active in this
area and has sponsored, or performed in-house, many programs that have served
to crystalize the methodologies that are applicable in this area (References 6
and 7).

The basic objective in developing the ASTROS system has been to pro-
vide a state-of-the-art design tool that integrates existing methodologies
into a unified multidisciplinary package. Concepts from TSO and FASTOP were
adapted for ASTROS; for example, TSO'’s capability to simultaneously design to
strength, flutter, displacement, and other requirements has been incorporated

into ASTROS, as has FASTOP’S use of finite element structural analysis.

The distinctive attribute of ASTROS is the scope of conditions it can
consider in a design task. Multiple boundary conditions, each permitting a
range of analyses (e.g., statics, modes and flutter) can be treated. Also,

limits on problem size have been removed for the most part.

7




The remainder of this section describes the implementation of
multidisciplinary analysis and design in ASTROS; first by providing an over-
view of the design algorithm and then by defining the design task in a mathe-

matical and a physical sense.
2.1 MULTIDISCIPLINARY OPTIMIZATION
A general optimization task may be defined in a mathematical form as:

Find the set of design variables, (v), which will minimize an objective

function
F(v) (2-1)

subject to constraints:

gj(v) £ 0.0 j =1, ncon (2-2)

hg(v) = 0.0 k=1, ne (2-3)
lower upper _

vy <vi vy i =1, ndv (2-4)

where g specifies the ncon inequality constraints while h refers to the ne
equality constraints. Equation 2-4 specifies upper and lower bounds (side
constraints) on each of the design variables. Subsection 2.2 provides the
physical interpretations of each of these quantities as they are applied in
ASTROS.

Figure 1 presents a schematic diagram of the ASTROS program flow for
the design portion of the procedure and contains a number of key concepts that
need to be understood in order to appreciate the generality and power of the
procedure. The figure indicates that the task is divided into three phases.
In the first phase, an analysis of a specified design is performed. As the
diagram shows, there can be any number of boundary conditions included in this
phase and each boundary condition can contain a number of disciplines.
Further, each discipline could contain a number of subcases. As an example, a
typical design task could be to analyze the structure for strength at a number
of flight conditions (specified by Mach Number, altitude and load factor) and
also to evaluate the flutter behavior at another set of flight conditions for

both symmetric and antisymmetric response. It should be clear that each of
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Figure 1. Multidisciplinary Optimization




these conditions could contain a response that is critical in determining the
design and that all critical conditions must be considered simultaneously to
achieve an overall best design. The inability of previous automated design
procedure to perform this simultaneous analysis ngnkgggnggqn as one of their

primary weaknesses by potential users,

As Figure 1 shows, each of the subcases generates constraints that
quantify the response of the design relative to prescribed limits. In the
second phase, the sensitivities of these constraints to changes in the design
variables are calculated. Note that this discussion of the sensitivity and
the optimization phases pertains only to the mathematical programming option

for design. Subsection 13.2 discusses the alternative Fully Stressed Design
option.

Because of the potentially large number of constraints, a screening
process takes place to select the constraints that can be expected to play a
role in the redesign (see Subsection 13.1). Two important points to be made
for the present discussion are that (1) the sensitivity calculations require a
looping through the same boundary condition, discipline and subcase hierarchy
that was required in the analysis phase and (2) it would be inefficient to
calculate these sensitivities "on the fly" during the analysis phase, since
only a small percentage of the constraints require sensitivities and the
identity of the "active" constraints cannot be determined until all the

constraints are known.

In the optimization phase, the information on the objective and the
active constraints is assimilated into a redesign algorithm so as to meet the
requirements of Equations 2-1 through 2-4. Subsection 13.1 describes how this
information is utilized to the maximum practical degree so that the iterations
through the computationally expensive analysis and sensitivity phases are kept
to a minimum. As a final point on Figure 1, the convergence test for program
termination entails an evaluation of whether the redesign is making progress

in meeting the requirements or if the maximum specified number of iterations

have been made.
2.2 TH SIGN_TASK

Equations 2-1 through 2-4 are general in the sense that they apply to
any optimization task. This subsection describes the meaning of each of these
terms in the equations in ASTROS.
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The objective to be minimized is structural weight. It would be
relatively simple to replace or augment this objective with other response
quantities (as was done in the TSO program of Reference 4), but this require-
ment did not emerge during the project.

There are no equality constraints in ASTROS; therefore, there is no
need to further consider Equation 2-3. The remaining terms require substan-
tially more definition.

2.2.1 Varjables

ASTROS defines desi;n variables at two levels: (1) Physical (or local)
variables, and (2) Global‘Variables. The basic rationale for having these
two levels is to reduce the number of design variables to a number that is
tractable in a mathematical programming context. As will be discussed, a fur-
ther motivating factor is that it provides the user with a means of imposing
constraints on the design task that are desirable due to manufacturing or
other considerations. This is not a new concept; for example Reference 6 pro-

vides a discussion and review of techniques for reducing the number of design

variables.

Local Variables

These variables are properties of the finite elements used in ASTROS.
Table 1 lists the finite element types that can be designed and their associ-
ated design variables.

TABLE 1. PHYSICAL DESIGN VARIABLES

ELEMENT DESIGN VARIABLE
X CROD Area
: CSHEAR Thickness

CQDMEM Thickness(es)
CTRMEM Thickness(es)
CQUAD4 Membrane Thickness(es)
CBAR Area
CONM2 Mass
CELAS1,2 Stiffness
CMASS1,2 Mass

11
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A common feature of all of the physical design variables is that their
associated element mass and stiffness matrices are a linear function of the
design variable. This fact is exploited in ASTROS by computing the invariant
portions of these matrices only once in the preface portion of the procedure
" and then multiplying this portion by the current value of the design variable
during the assembly of the global stiffness and mass matrices. The one
exception to this linearity is for the bar element, where inertial properties
(I} and Iy) are exponential functions of the area (A):

I; = R A®
(2-5)
Ip = Rj A®
Where Rj, Ry and a are user defined quantities. This somewhat artificial
construct permits the introduction of bending elements in the design process
and does model common bar geometries. E.g., a = 1 corresponds to a thin
walled beam while a = 3 corresponds to a solid beam of constant width and

varying depth.

The designed two-dimensional elements include only in-plane (i.e.,
membrane and shear) deformation with bending effects assumed to be negligible.
This is a good approximation for most aerospace applications, although it is
recognized that this represents a shortcoming in the design capability. Meth-
odology for including bending features is considered to be an active area of
research at this time, particularly when composite materials are being de-

signed.

As a final point, the Table 1 references to thicknesses for the
membrane elements refer to the fact that each ply direction for a composite
element can be treated as a separate design variable. This emulates the TSO

(Reference 4) and FASTOP (Reference 5) treatments of composite materials.
Global Variables

These variables are the ones that are directly involved in the design
process. The local variables are linked to the global values through a matrix

relationship of the form
(e} = ([P](v) (2-6)

where t is a vector of nloc local variables, v is vector of ndv global varia-
bles and P is the linking matrix of dimension nloc by ndv. Three linking
options are provided in ASTROS:

12




(1)

(2)

(3)

Unique Linking - In this case, the global variables are the same
as the local variables and there is a single nonzero term in the
corresponding row of the linking matrix and its wvalue 1is the

initial local property value.

Physical_ Linking - One global variable uniquely specifies a
number of local variables. This option is used to permit the
simultaneous variation of finite elements over a region .of the
structure, the rationale being that there is no inherent reason
why each finite element should be independently designed. There
may be manufacturing reasons why this linking should occur or it
may be that the designer knows that uniform properties in certain
areas of the structures are adequate. The corresponding row of
the P matrix for the local variables has a single nonzero term

corresponding to the initial local property value.

Shape Functio ng - A local variable is the weighted sum of

several global variables. In this case, the global variable

" controls the magnitude of a shape function that applies over a

region of the structure. The shape function concept is best
illustrated by reference to TSO’'s representation of the skin
thickness as being the weighted sum of polynomials in the non-
dimensional coordinates § and n of the trapezoidal wing box:

3 3
M) = % i-1 p3-1 2-7
t(&,n) =0 j§1 agy 774 n (2-7)

where the ajj are the desiga variables. ASTROS has expanded this
capability by allowing the user to define any shape function over
any part of the structure. For this third case, a row of the P
matrix can have any number of nonzero terms, and they can be
either positive or negative. These factors are applied to a unit

local property value in computing the local variable.

Further perspective on these aspects can be obtained by referring to

surfaces.

the simple model shown in Figure 2, which is the Intermediate Complexity Wing
(ICW) used by Grumman in the development of the FASTOP procedure. The model
has 62 quadrilateral membrane elements that represent the upper and lower skin

Each of these elements contains four layers of composite material.

13




NO. OF NODES NO. OF ELEMENTS NO. OF DOF'S

88 39 RODS 294 CONSTRAINED
55 SHEAR PANELS _234 UNCONSTRAINED
62 QUADRILATERAL MEMBRANE 528 TOTAL
_2 TRIANGULAR MEMBRANE
158 TOTAL

Figure 2. Intermediate Complexity Wing Structure
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A number of different linking concepts can be studied using the ASTROS proce-
dure. In one, all the elements between two ribs could be linked to give the
same thickness, with different thicknesses allowed on the two surfaces. This
would result in 2 (surfaces) x 4 (layers) x 8 (bays) = 64 global design
variables. Alternatively, the user could allow the thickness to vary linearly
in the spanwise direction while holding it constant in the chordwise direc-
tion. This could provide a reasonable design that is also attractive from a
manufacturing standpoint. There would then be one global design variable for
each surface that specifies the level of a uniform distribution of the thick-
ness while a second variable provides the linear taper. This is equivalent to
designating the aj] and aj components of Equation 2-7 as design variables
while setting the remainder of the components to zero. This results in 2

(surfaces) x 4 (layers) x 2 (shapes) = 16 global design variables.

It is recognized that the flexibility provided by these three options
also places a burden on the users in term of defining the design variables.
Subsection 3.1 of the Applications manual discusses the preparation of the
bulk data inputs for these three options in some detail. Subsection 4.7 and
4.8 of the same manual contain results from applying a variety of linking
option to the ICW of Figure 2.

2.2.2 Constraints

Constraints in ASTROS are of two basic types: constraints on response
quantities, as pgiven by Equation 2-2 and side constraints on the design
variables, as given by Equation 2-4. The design variable options described in
the previous subsection complicate the definition of side constraints so that
these constraints are included here in the discussion of thickness con-
straints. The response constraints are divided into those that represent
strength constraints and those that represent stiffness constraints. The
constraints are introduced in this subsection, with more detailed descriptions
deferred until the discussion of their associated disciplines in Sections VI,
VII, IX, and X.

2.2.2.1 Strength Constraints

Three forms of strength constraints are provided in ASTROS:

(1) Von Mises Stress Constraint - This constraint on element stress
is written in the format of Equation 2-2 as:
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b
B [ %2 + (Cxy2 - 2y 4 (xwy2 | - 1.0 (2-8)
S1 So S1S2 Fg
where oy and oy are the normal stresses in the element coordinate
system and Txy is the corresponding transverse shear stress. Fg
is a user defined limit for the shear stress while &) and Sy are
allowables in tension and compression. The tension and compres-
sion limits need not be the same so that, in evaluating Equation
2-8, the sign of the normal stresses must be known before the

appropriate divisor can be selected.

(2) Tsai-Wu Stress Constraint - This constraint on element stress is
based on the Tsai-Wu failure criterion (Reference 8) which states

that a material will fail when
Fij oy 0§ + F{ o4 = 1.0 (2-9)
For the two-dimensional elements of ASTROS, this becomes:
F11012 + 2Fy90109 + F22022

2 (2-10)
+ Fio1 + Fpog9 + Fggr12 = 1.C

where symmetry considerations dictate that the Fyg, Fgg and Fg

terms are zero. The remaining coefficient terms are:

P M 18

C
Fpp = L. . 1. (2-11)
Yt Ye
] - 1
Xt Xc
Fp = =1
Ye Ye
Fee = Lo
)5

where x, y and s are allowables in the longitudinal, transverse
and shear directions for a fiber and the t and ¢ subscripts refer
to tension and compression. The Fj7 term is not defined analyti-

cally, instead it must be provided by experiment for each materi-
al.
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(3)

The Tsai-Wu criterion is utilized in ASTROS by determining the
strength ratios, R, that the stress state must be multiplied by
to exactly satisfy Equation 2-10. This factor is determined by
solving the quadratic equation:

ARZ + BR - 1.0 = 0.0 (2-12)

where

2 2 2
A = F1101 + Foo09 + Fggr12 + 2F120102

and (2-13)
B = Fio1 + Foo9
The constraint is formed as

g - lEQ - 1.0 (2-14)

Prin train Constraint - The implementation of a strain
constraint in ASTROS is based on the two principal strains in a

two-dimensional element:

€ex - % [e] + e + J(el - 52)2 + 5122 ]

(2-15)

€y = % lep + €2 - J(e1 ~ €2)% + €12% )

Two constraints are computed per element based on the strains of
Equation 2-15, with the evaluation dependent on whether the user
has specified a single strain limit or if separate tension and
compression (et and ¢.) allowables are specified.
If ¢, = 0, the constraints are calculated using
Bl = ¢€x/€a11 - 1.0

(2-16)
g2 - ‘y/‘all - 1.0

If ¢. is nonzero, similar formulas are used, with the selection
of €411 based on the sign of the computed strains. For example,

if ¢y is negative, then

g2 = leyl/lecl - 1.0 (2-17)
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2.2.2.2 gtiffness Constraints

A number of the constraints imposed in ASTROS can be thought of as
placing limits on the structural stiffness. Although inertia properties will

play a role in some of these constraints, it is still a convenient distinc-

tion, with displacement, frequency, flutter and static aeroelastic conditions

the available stiffness constraints in ASTROS.

(1)

(2)

cement C ts - Displacement constraints are either

upper bound:

ndésp A .
uy <
ij%y = ia

(2-18)
j=1

11
or lower bound:

ndisp
T Ajyuy 2 84
a

(2-19)
j=1

11

where the Aij are user specified weighting factors on structural
displacement and §§ is the user specified limit. Note that the
summation permits the specification of limits on the shape of a
deformation,. For example, the twist of a wing tip could be
limited by differencing the displacements at the leading and

trailing edges of the structural torque box:
(WLE - Wrg)/CTip £ 0.04 radians (2-20)
where Crip is the chord distance between two displacements.

Frequency Constraints - Limits on the natural frequencies of the

structure can be specified as

fiow £ £1 < fhigh (2-21)

where fj is the computed value of the ith natural frequency and
flow and fhjgh are user specified limits on this frequency. Note
that formulation permits the specification that a frequency be
within a certain band, but it does not allow the exclusion of a

frequency from a range:
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(3)

(4)

(5

£ < flow
or (2-22)

f1 > fhigh
for

flow < fhigh
The difficulty is that ASTROS does not permit the "or" type of
specification. Furthermore, 1f the frequency did lie in the
excluded zone, it is not easy to specify a redesign algorithm
that could determine whether it is better to drive the frequency

up or down.

Flutter Constraint - The flutter constraint in ASTROS is formu-
lated in terms of satisfying requirements on the modal damping

values at a series of user specified velocities:
713 < TjREQ j=1,2 --nvel (2-23)

where T§REQ is the required level of damping at the jth velocity
and i3 is the computed damping level for the 1th branch at the
jth velocity. A further discussion of this constraint is given
in Subsection 10.3, following the development of the flutter
equations. A point to be made here 1is that the constraint
formulation of Equation 2-23 does not require the determination
of the flutter speed.

Lift Effectiveness Constraint - The lift effectiveness constraint
places bounds on the ratio of the flexible to rigid 1lift curve
slope of the aircraft:

€pin < Cluf/cLur £ €pax (2-24)

where CLaf is the flexible 1lift curve slope and includes the
effects of aeroelastic deformation and inertia relief. CL, is
'3

the 1lift curve slope for the rigid aircraft. This constraint
gives the user a direct and physically meaningful way of control-
ling the amount of flexibility in the structure.

Alleron Effectivene Constra - Roll performance requirements
frequently drive the design of aircraft wing structures. This
factor has been recognized in ASTROS by the incorporation of an
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aileron effectiveness constraint. Aileron effectiveness, follow-
ing terminology used in Reference 9 can be defined as the ratio
of roll due to alleron deflection over roll due to roll rate:

ceef = -(“15 )e/(Crpp)e (2-25)
2v

where

Cq2 = Rolling moment about the aircraft centerline
§a = Alleron deflection

P2 - Roll rate nondimensionalized by wing span and air-
2v craft velocity

f = Flexibility effects are included in the derivatives

The effectiveness parameter can be thought of as a measure of the
steady roll rate achievable for a unit value of aileron deflec-
tion. In a manner similar to the lift effectiveness, the user
can specify that the aileron effectiveness be within a specified

range:

€min S €eff < €max (2-26)

An intriguing application of this constraint is its application
to specify a reversed aileron. 1In this case the effectiveness
limits would be negative and active controls would typically be

necessary to augment the aircraft performance.

2.2.2.3 Thickness Constraints

A structural design task requires that limits be placed on the values
over which the physical variables can range. In this discussion, these limits
are generically identified as thickness constraints, but the term also applies
to limits on the cross-sectional areas and concentrated mass variables listed
in Table 1. Without these limits, the optimization algorithm could take the
thickness to unrealistically small (or even negative) values. Unrealistically
large values (e.g., thicknesses greater than the available wing depth) could
also occur. Thickness constraints are specified in one of three ways, as

specified in the following paragraphs.

(1) de Const ts - For the unique and the regional linking
options (options 1 and 2 of the Global Variables discussion of
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(2)

(3)

2.3

Subsection 2.2.1), the global variables are explicitly con-
strained. Physical 1limits, manufacturing considerations or
limits specified by factors not considered in ASTROS (e.g.
fatigue or buckling) can all contribute to defining these con-

straints.

Thickness Constraints - When the shape function design variable
linking option is used, side constraints on the global design
variables cannot be used. Move limits on the physical design
variable (local variable) are instead applied through the defini-
tion of thickness constraints, The value of the thickness
constraint is determined by the user specified move limit or by
the true physical upper or lower bound gauge constraints.
Subsection 3.2 of the Applications Manual discusses the use of
the DCONTHK data entry to explicitly select elements whose
thickness constraints will always be retained in the design task.
Note that the ASTROS procedure automatically generates thickness

constraints for all local design variables linked to shape func-

tions.

Move Limits - The user should be aware of a third type of thick-
ness constraint that 1is internal to the ASTROS procedure.
Approximation concepts (see Subsection 13.2) are based on the
assumption that many response quantities are a linear function of
the design variables, or their inverse. In order to maintain the
validity of this approximation, limits are placed on how much a
local design variable can change during a design cycle. A MAPOL
parameter controls these limits, with a halving or doubling of a
thickness typically permitted. These limits will be most pro-
nounced when a user’s initial design is far from the optimum.
Progress toward the optimum may appear slow in these cases

because the move limits are artificially restricting the design.

ITIV YS

Mathematical programming approaches to the solution of Equations 2-1

through 2-4 typically require the gradients of the objective and the con-

straints with respect to the design variables. That is:
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aF i =1, ndv
and (2-27)

a
_Ei J =1, ncon; i = 1, ndv

Previous ASTROS-like procedures have used one of two approaches to
supply these gradients: (1) finite difference analyses and (2) analytical
analyses. The first approach calculates the gradients by making a perturba-
tion in the design variable, reanalyzing the problem and computing the

gradients based on:

ag1 gi(vi + Avi) - gi(vi)
avy avy

(2-28)

The TSO procedure of Reference 4 uses this technique. Finite differ-
ence calculations become burdensome when there are large numbers of design
variables and constraints, so a significant effort was expended in the ASTROS

procedures to provide analytical gradient information.

The ASTROS objective function of weight is a linear combination of the
design variables:

ndv
F(v) = 121 DOBJ§ vy (2-29)
so that
9E. - poBJy (2-30)
avy

is an invariant factor that is computed once in the preface portion of an
ASTROS run and stored.

Gradients of the constraints require more complex calculations which
are described with their associated constraints in Sections VI, VII, IX, and
X
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SECTION III

SYSTEM ARCHITECTURE

A large, interdisciplinary procedure such as ASTROS necessarily
requires that considerable care and effort be put into the design and imple-
mentation of a system architecture that serves as the basis for construction
and integration of the developed procedure. The detailed specification of
this architecture contains a significant computer science content that is not
only outside the scope of this report, but also not of general interest.
Nonetheless, the ASTROS user should have a basic familiarity with this archi-
tecture, since it permeates the implementation and application of the code.
These basics are provided in this section, while details into particular
aspects of the system design can be found in References 10, 11, and 12.

Figure 3 depicts the components of the ASTROS architecture, emphasiz-
ing its modular form. An additional component that does not fit neatly on the
figure is the Dynamic Memory Manager. Each of these components is now dis-

cussed.
EXECUTIVE SYSTEM
uTILITY / \ DATA
LIBRARY BASE
1 7 Yy
L 4 L 4 L 4
FUNCTIONAL FUNCTIONAL FUNCTIONAL
MODULE MODULE MODULE

Y y

SOLUTION
RESULTS

Figure 3. The ASTROS System Architecture
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Sl UTIVE SY

The executive system is the heart of the software. It initiates the
procedure, controls program flow and terminates execution. It is convenient
to think of the Executive System as a stylized computer with four components

found in an actual computer:

(1) Control unit

(2) High level memory

(3) Execution monitor

(4) Input/output subsystem
3.1.1 The Controller

The controller begins the execution. This is the routine that first
performs standard initiation tasks, such as accommodating machine dependent
idiosyncracies and initiating elapsed time and CPU timers. Subroutines are
also called which initialize the system and engineering data bases and the
dynamic memory manager. An initial pass is made through the user’s input
deck, breaking it into four packets: Debug, MAPOL, Solution, and Bulk Data.
Information on the function and input requirements for each of these packets
is given in the User’s Manual, but the processing of the MAPOL packet needs to
be further explained here in terms of how it effects the initiation and
execution of the ASTROS system.

From the point of view of the user, ASTROS is d¥iven by MAPOL (Matrix
Analysis Problem Oriented Language). Such a control language, similar to the
DMAP of NASTRAN or the typical query language of a data base management
system; has proven to provide maximum flexibility for the user. In particu-
lar, MAPOL provides features that include:

(1; Structured, algorithmic language syntax

(2) sSpecial data types for matrices and relatfons

(3) User-written procedures and an extendible procedure library
(4) Complete run-time utility library

(5) Embedded data base operations.
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Just as for any high level language, the translation of a MAPOL
sequence from the user's input to the form used in controlling the execution
is performed by a compiler. The MAPOL compiler creates two relations. The
first, called MEMORY, is a map of the memory defined by the MAPOL program and
discussed in the next subsection. The second relation, called MCODE, repre-
sents the executable code that performs operations directly and calls the
functional modules within the ASTROS system.

Depending on user input, the controller operates on these two rela-
tions in one of three ways. If the user has selected the standard MAPOL
sequence, there is no MAPOL packet and the MCODE and MEMORY relations con-
tained in the system data base are fed directly to the execution monitor. If
the user has modified the standard sequence, an editing process must take
place on the stored standard sequence. The edited sequence is then recom-
piled, replacing the data in the MCODE and MEMORY relations. Finally, if the
user has supplied a complete customized MAPOL sequence, the data in the two

relations are replaced with new entries created by the MAPOL compiler.
3.1.2 High level Memo

The MAPOL compiler reserves a space in core for the ASTROS memory.
(Note that this is separate from the MEMORY relation just discussed.) This
memory is of a "high-order." This means that, unlike a normal computer
memory, more than one word is used to store a data item. The ASTROS memory
contains entries that are five single-precision computer words in length. The
first word contains the data type and the next four words the actual memory
contents. These contents may be integers, real values, in single or double
precision, complex values, in single or double precision, or character data
defining the names of data base entities. Then, in a manner analogous to most
machines, memory addresses are referenced by the executable code and modified

during execution.

SINe3) Execution Monitor

Following the initiation tasks discussed in Subsection 3.1.1, the
controller invokes the Execution Monitor to drive the ASTROS system. This
monitor, using the instructions contained in the MCODE relation, directs the
tasks specified in the MAPOL sequence. The monitor contains a processor which

performs basic arithmetic and logical operations and also interfaces directly
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with a "run-time library" that performs simple mathematical and data base
operations. For more complex tasks, control is passed to the functional and

utility modules discussed in Subsections 3.5 and 3.6.

3.1.4 Input/Qutput Subsystem

The executive system controls the files that are to be used for input
and output. The principal I/0 is performed by the Computer Automated Design
Data Base (CADDB) discussed in Subsection 3.2. The definition of FORTRAN
logical units used for the user interface is also performed by the executive.
Finally, a limited capability for sending data directly to the user output
file is available from the MAPOL packet.

3172 THE DATA BASE

In a large scale engineering analysis system such as ASTRQOS, the
efficient handling of the voluminous data required is a key element in the
viability of the system. A specifically designed data base, called CADDB
(Computer Automated Design Data Base), was developed for the ASTROS system.
The design of this data base recognized the need for handling three distinct
types of data. First, the structural analysis aspects of ASTROS impose a
requirement for the storage and retrieval of very large, often sparse, matri-
ces. A storage method is needed that minimizes disk storage requirements
while allowing algorithms to be developed that can perform matrix operations
of virtually unlimited size. The second requirement is the need to access
individual data items directly and rapidly with minimum physical I/0. Such
data items include the thickness of a single finite element or the data
defining the properties of a particular material. Finally, there is a need to
access heterogeneous collections of unstructured data very efficiently. This
type typically represents "“scratch" data which is generally used on an all-or-

nothing basis within an individual module.

Existing available data bases provide some, but not all, of these
capabilities. 1In addition, many of these are commercial products with propri-
etary restrictions that are inconsistent with the basic groundrules for
developing the ASTROS system. Therefore, a unique data base was constructed
which supports these three different representations. A significant benefit
that accrued from this customized design was that a common structure was

formulated for accessing the three types of data, i.e., a uniform, common
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applications interface has been provided to support each of the data base
entity classes, For example, a module may position to a specific matrix
column, relational row, or unstructured record. This can then be followed by

fetching all, or part, of the data stored at the current position.

Each of the three data types is now briefly described. Appendix 3 of
Reference 9 contains more detailed information on CADDB and the Programmer'’s

Manual contains applications interface information.

3.2.1 Matrix Entities

ASTROS is based upon the finite element method of structural analysis
extended to include optimization. This method requires that all governing
equations of motion be written in matrix form, thus, allowing complex solu-
tions to be performed using straightforward matrix algebra. Since the order
of these matrices may be very large, it is essential that they be stored in a
compressed, or "packed," format. This format exploits the strongly banded
nature of most structural matrices; the low density of nonzero terms in these

matrices allows enormous saving of storage space.

The "packed" format of matrices is shown in Figure 4. There are
actually two. levels of data compression. Firstly, any null column in a matrix
is completely omitted. This extension to previous methods of packing is well

suited to the extremely sparse matrices arising from sensitivity calculations.

]
]
: ENT1 ENT3 :
DATA ) .
gase — :
] (]
i ENT4 ENTE !
]
] ]
] ]
B e e e T L I
1 m n se e lcco—IEwJ
2 |rRow| n
24 m n se e CQJ.MNS
87 [ROW ] n see [ROW] n | e« [ END |
167 [ROW] n soe | END

Figure 4. The Packed Matrix Format
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Secondly, only strings of nonzero terms in a non-null column are actually
stored. Each string contains a two word "header" which specifies the row
position of the first nonzero term followed by the number of terms appearing.
The header is then followed by the actual numeric values. This method of
storage, pioneered by NASTRAN, has proven to be very effective.

3182052 Relational Entities

Relational entities are essentially tables. The formalization of this
type of data in recent years has found relevance across a wide variety of data
processing applications (Reference 13). Each relation has rows, called
"entries" and columns, called "attributes." [Each attribute is given a de-
scriptive name, a data type, and constraints on the values that the attribute
may assume. These definitions are referred to as the "schema" of the rela-
tion. An example of a relation defining grid point data is shown in Figure 5.
The importance of relational data to design optimization is that a single
entry may be directly accessed based on qualified values of one or more of its
attributes. This minimizes the actual I/0O transfer required when modifying
small amounts of data. CADDB further extends this capability by allowing a
mechanism for rapidly accessing all of the data in a relation, if such access

would be more efficient.
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Figure 5. Example of a Relational Entity
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3.2.3 Unstructured Entities

There are many times that a software module requires temporary, or
scratch, disk space while performing its task. These data are generally
highly local and will not be passed to other modules within the system. To
accommodate this requirement effectively, CADDB supports an unstructured
entity type composed of "records" containing any arbitrary collection of data
as shown in Figure 6. Once again, CADDB has the capability to directly access
each of the records within the entity.

ENT4

CAEI A LN B

Figure 6. An Unstructured Data Entity

3.3 D c Al

A key feature of the ASTROS system, that is not shown in Figure 3, is
the Dynamic Memory Manager. This feature allows modules to be written without
resorting to fixed size arrays. A suite of utility routines is available to
allocate and release blocks of dynamic memory. These blocks reside in the
physically allocated memory region as shown in Figure 7. The actual size of
the memory block is determined at execution time. Modules using this feature
may be designed to allow "spill iogic" which allows operations to be performed
on data that exceeds the size of available memory. Dynamic memory management
is also used by the data base in performing its buffered I/0 functions. This
represents an extension to the NASTRAN open core concept in that the applica-
tion programmer is able to manipulate memory blocks rather than being given

the total memory available in one block.
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Figure 7. Dynamic Memory

3.4 THE U R

The User Input and Solution Results blocks of Figure 3 represent the
user’'s interface with ASTROS. A very brief discussion is provided of these

blocks here since the entire User’s Manual is devoted to the documentation of
these files.

The User Input is a series of optional packets that are interpreted by
the Executive system to direct the design and analysis tasks. The first
packet contains "Debug" directives that can be used by a sophisticated user to
diagnose problems with the execution. This packet should never be required.
The second packet contains the MAPOL sequence which directs the flow of
execution. This packet is also optional, since the standard MAPOL sequence is
available to handle the majority of ASTROS tasks.

A third input packet contains Solution Control directives that select
the design and analysis tasks, including the boundary conditions and the
required analysis disciplines. This packet also provides output requests that
define the majority of the Solution Results outputs. This packet is not

required but is almost always needed to direct the procedure.

The final input packet contains the bulk data which defines the
physical and geometric characteristics of the structural system that is to be

analyzed and designed. The formats of these data entries are compatible with
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those used in NASTRAN, to the maximum extent possible. The bulk data packet
is almost always required, with the exception of certain "restart" runs where

an initial run has completely specified the problem to be analyzed.

The Solution Results that are output to the user are intended to
provide the user with the ability to assess the performance of ASTROS on the
designated task. Since a multidisciplinary design task could potentially
produce an overwhelming amount of output, an effort was made to provide
minimal default output. Instead, Solution Control commands provide a means of
selecting specific quantities for output. Additional output is available by
turning on print requests that are imbedded in calls to functional modules in
the MAPOL sequence. This latter type of output requires a modification to the
standard MAPOL sequence and is typically of minimal interest to a routine
user. Finally, utilities allow the user to print data base information to the

user'’s output.

3.5 ENGINEERING MODULES

The engineering modules of Figure 3 are those which perform the
specific engineering tasks required in the ASTROS system. The remainder of
this report is concerned with describing the algorithms used in these tasks so

that this discussion will be limited to what characterizes an engineering

module.

The concept of modular programming is essentially one of dividing the
overall programming tasks into a number of non-interacting units that can be
separately designed and implemented. Input and output data are rigorously
defined and control is sequentially passed from one module to another. In the
ASTROS system, the Executive System provides this control so that an engineer-
ing module can only be accessed through the MAPOL sequence. Modular independ-
ence is enforced by requiring that (1) each module establish its own base
address in dynamic memory, (2) data base entities required by a module must be
opened before their data can be accessed, (3) all data base entities must be
closed before the module is exited, and (4) all dynamic memcry must be freed
before the module is exited. 1In essence, the requirement of modularity is

that all intermodular data communication take place through rigorously defined

data formats on the data base.
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One exception to this module independence in ASTROS is that there is a
limited amount of data that are passed through common blocks at the system
level. These data include items such as unit number for the read and write
files, engineering constants and conversion factors (e.g., pi and the radian
to degrees conversion) and system dependent numbers, such as number of lines
per page in the output. It would, of course, be possible to independently de-
fine these quantities in each module, but this creates other bookkeeping prob-
lems. This form of communication is considered part of the executive system
since the data are global and the communication is one way. That is, the
executive "tells” a module the output logical unit number, never vice versa.

Also, this form of communication is never used to pass data between modules.

General utilities perform relatively simple functions that are re-
quired repeatedly in any program like ASTROS. Examples are data sort and
search routines, CPU timers, data converters and print controllers. A partic-
ular reason for identifying and segregating these functions is to avoid
duplication of code when two programmers have a similar requirement. Another
reason is that a number of these functions are machine dependent so their

segregation aids in the installation of ASTROS on a new computer system.

Large matrix utilities are a suite of routines that perform operations
on the matrix data base entities discussed in Subsection 3.2.1. It is these
utilities that permit ASTROS to address problems of essentially unlimited
size. Table 2 defines the large matrix utilities available in ASTROS. Since
these functions are required repeatedly in a structural analysis task, these
utilities can be accessed either directly from the executive system or from
the functional modules, as shown in Figure 3. Not all wutilities have this
feature and those that do require an interface routine between the executive
system and the utility. Considering this fact, the distinction between an
engineering module and a utility called by the executive is blurred. As an
example, the large matrix utility to multiply matrices can be viewed as either
an engineering module or a utility. For the purposes of this discussion, it
is designated a utility, with the term engineering module reserved for the
basic engineering tasks. The distinction being that an engineering module may
call a utility through its application interface but may pever call another

engineering module. The executive system may call both engineering modules

and utility modules.
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TABLE 2,

LARGE MATRIX UTILITIES

UTILITY FUNCTION
g e ]
S
SDCOMP (A] - (L}{p)[L)T
FBS [(x] = (ryoyrLhH-1 (8
DECOMP [A] -+ ([L][U]

GFBS [(X] = ([Ljup-l (8]
MXADD [C] = af[A] + B[B]
MPYAD [D] = [A][B] + [C]
TRNSPOSE (B] = (AT

REIG (K - AM)[4] = [0)
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SECTION IV
GEQ D N

This section provides definitions of basic structural analysis terms
as they are used in ASTROS. As has been mentioned, ASTROS concepts and
notation follow those used in NASTRAN to the maximum extent possible. The
contents of this section should therefore be familiar to a typical NASTRAN
user and are redundant with existing NASTRAN documentation, such as that found
in References 1 and 1l4. It is provided here because the use of coordinate
systems and displacement sets are pervasive in the remainder of this manual

and it is therefore necessary to have clear definitions in order to proceed.
4.1 GEOMETRY

The geometry of the structural model is defined by the user in terms
of grid points and scalar points. Grid points are located in space by user
defined coordinates and each point has six degrees of freedom. Scalar points
have a single degree of freedom that has no geometric definition but is
included in the solution set. Scalar points are used to conveniently include

scalar elements, such as springs and mass elements, in the structural repre-

sentation.

The geometry definitions are made in terms of coordinate systems. In
order to simplify input, the user is permitted to define any number of coordi-
nate systems in the bulk data packet and the ASTROS procedure then must
rationalize these systems into a single system for performing the analyses.
The input (and output) coordinates can be specified in terms of rectangular,
cylindrical or spherical systems. The concepts of Local, Global and Basic
coordinate systems also need to be understood in order to prepare ASTROS input

and interpret the results.

A Local coordinate system is one that is chosen for convenience in
specifying element geometries. A given structure is typically divisible into
components and surfaces that naturally present themselves. Each of these is

mcdeled most efficiently through the use of a local coordinate system.

The Global coérdinate system is the single system in which the struc-

tural analysis is performed and the results are presented. It should be
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emphasized that this coordinate system is not necessarily defined by a single
axis system. Instead, it is the collection of all the user specified output
coordinate systems.

The Basic coordinate system is the single system relative to which all
other systems are defined. In this case, it can be depicted by a single axis
system and it is necessary that all geometric points be able to be defined in
this coordinate system before ASTROS can proceed. This definition is done
internally and the user has no need to be aware of the computations required

to get the coordinates into this system.

4.2 DISPLAC S

ASTROS has maintained the NASTRAN terminology in defining displacement
sets in structural analysis. This discussion introduces these sets since
their definition is required in all the disciplines described in the remainder
of this report. It is convenient to divide this discussion into physical,

dynamic reduction, dynamic analysis and unsteady aerodynamic sets.

&.2.1 hysica et

The term physical refers to those sets whose members have a specific
physical meaning and are related directly to the degrees of freedom in the
analysis. Figure 8 depicts the hierarchy of sets that are used in the stan-
dard static and modal analysis disciplines described in Sections VI and VII.

Starting at the top of the figure, the g-set contains all the degrees
of freedom in the structural model. The size of this set is equal the number
of scalar points plus six times the number of grid points. This set can be
divided into one set (the m-set) whose members are defined to be explicitly
dependent on the second, independent set (the n-set). These dependencies are

designated multipoint constraints.

At the next level of division, the n-set degrees of freedom are
divided into those whose displacements are user specified (the s-set) and
those that are left free for solution (the f-set). The specified displace-
ments are most typically used to constrain rigid body motions, either by
setting degrees of freedom with no associated stiffness to zero or by applying
fixity conditions at the structure’s boundary. They can also be used to force

the structure to deform to certain user specified values. It is wuseful to
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Figure 8. Hierarchy of Displacement Sets and Their Degrees of
Freedom (DOF’s)
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‘make a distinction between those degrees of freedom that are constrained for
all boundary conditions (permanent single point constraints) and those that
may be boundary condition dependent.

The next reduction divides the f-set into the omitted (the o-set) and
the analysis (the a-set) degrees of freedom. This reduction is done primarily
to make a modal analysis task tractable and has less utility for a static
analysis. The multidisciplinary nature of ASTROS, however, makes it desirable
to use an a-set in a static analysis if the same boundary condition also
requires dynamic analyses. The selection of degrees of freedom for the two
sets is somewhat arbitrary and therefore puts a burden on the user. Dynamic
Reduction, discussed in Subsection 7.1, is an attractive alternative to this

selection process.

If the structure has rigid body degrees of freedom, such as a complete
aircraft or spacecraft, a further redﬁction is required before the static or
modal response can be obtained. In this reduction, the a-set is divided into
a set that is just sufficient to remove the rigid body motions (the reference

or r-set) and a set of remaining (the left over or l-set) degrees of freedom.
4.2.2 Dynamic Reduction Sets

The Dynamic Reduction technique of Subsection 7.1 defines two further
sets. The first is a set of generalized degrees of freedom for the approxi-
mate eigenvectors of the reduction process and is designated the j-set. The
second is a set of generalized degrees of freedom for the inertia relief

shapes and is designated the k-set.

4.2.3 Dynamic a is Sets

Modal analyses produce generalized coordinates that represent further
sets that are used in subsequent dynamic analyses, such as flutter and fre-
quency response. In addition, the representation of control systems is

effected through the definition of "extra" points that make up a further set. ¢

S r—

The sets involved in dynamic analysis are shown in Figure 9. The set of
generalized coordinates associated with the eigenvectors determined in a modal
analysis is designated the i-set. The extra point degrees of freedom are
contained in the e-set and the union of these two sets is the h-set. Dynanmic
analyses performed directly in the physical degrees of freedom utilize the d-
set, which is the union of the e-set and the a-set. A final set, which is in
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Figure 9. Relation of Dynamic Analysis Sets

addition to those shown in Figures 8 and 9, is the union of the g-set and the

e-set and it constitutes the complete physical degrees of freedom (the p-set).

4.2.4 Unsteady Aerodynamic Sets

As discussed in Section VII, the aerodynamic models are defined
independent of the structural model and therefore have their own degrees of
freedom. For the unsteady aerodynamics model, ASTROS has copied the NASTRAN
convention and refers to these degrees of freedom as the k-set and uses the j-
set to refer to the aerodynamic boxes. Note that the j- and k-sets have been
defined in a different manner in Subsection 4.2.2 and the appropriate defini-

tion must be determined from context.

4.3 NOTATION

Standard notation, as wused in structural analysis 1literature in

general and NASTRAN in particular, has been adopted to the maximum extent
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possible. This section defines matrix and subscript notation as it is used
throughout the balance of this report. This is not a comprehensive list, with
additional definitions for specialized notation provided where the term is
first used. The standard MAPOL sequence also conforms to this notation, with
the limitation that subscripting is not available in the MAPOL language so
that matrix names and their subscripts make up the MAPOL name (e.g., [Mga] in
this document becomes [MAA] in the MAPOL sequence).

4.3.1 Matrices and Vectors

Matrices in the report are denoted by square brackets [ and ] while
vectors are denoted by braces ( and ). The matrices defined in Table 3 are

typically subscripted to indicate the set to which the matrix is referred

TABLE 3. MATRIX NOTATION

(M)ATRIX OR

TERM | (V)ECTOR DESIGNATION
B M Damping
D M Rigid body transformation
G M Transformation matrix, including spline matrices

for steady aerodynamics

K M Structural stiffness
M M Mass
m M Rigid body mass
P v/M Applied load
t v Local thickness variables
u v/M Displacement
UG M Unsteady aerodynamic spline
v v Global design variables
YS v Enforced displacements
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(e.g., the [Mgga] matrix just discussed is in the analysis set while the [M,,]

matrix has rows associated with the omit set and columns associated with the

analysis set).

4.3.2 Subscripts

The subscripts listed in Table 4 correspond, in most cases, to the

displacement sets discussed in Subsection 4.2. Certain of the subscripts are

TABLE 4. SUBSCRIPT NOTATION

SUBSCRIPT DEFINITION
a Analysis set
d Dynamic set
e Extra point set
f Free set
g Global set
h Modal analysis set
i Modal coordinates set or

Design variable identification

h| Inertia relief shape coordinates set or
Constraint identification or
Aerodynamic box set

k Approximate eigenvector coordinates set or
Aerodynamic set
-
L Left over set
m Multipoint constraint set
n Independent set
o Omitted set
P Physical set
r Rigid or support set
s Single point constraint set
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seen to have multiple definitions and the appropriate definition will either
be clear from context or defined explicitly in the text.

4.3.3 Superscripts

Table 5 presents a small set of superscripts that conform to those

used in general structural analysis.

TABLE 5. SUPERSCRIPT NOTATION

SUPERSCRIPT DEFINITION
I Imaginary part
R Real part
T Matrix transpose
-1 Matrix inverse

(Single dot) Time first derivative or velocity

(Double dot) Time second derivative or accelera-
tion

4.3.4 scellaneo tio

The partial derivative symbol, 8, is used extensively in this report
for the sensitivity calculations.
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SECTION V
E 0 G

This section provides a description of the finite elements available
in ASTROS and the algorithms used to assemble the individual elements into
global mass and stiffness matrices. Emphasis is placed on the design aspects
of this modeling. Section 5 of Reference 1 and Section 8 of Reference 2
contain thorough discussions of the elements used in ASTROS. An exception to
this is a complete description of the QUAD4 element in Appendix A. This
element was developed specifically for the ASTROS program and therefore

requires detailed documentation.

5.1 FINITE ELEMENTS

A limited set of elements have been implemented in ASTROS. The
selection of the elements was based primarily on past experience in the
modeling of aerospace structures. Another consideration was the selection of
elements that lend themselves to an automated design task. The discussion
which follows divides the elements into five categories: (1) concentrated
mass elements, (2) scalar elements, (3) one-dimensional elements, (4) two-
dimensional elements, and (5) three-dimensional elements. The discussion in
this subsection is primarily devoted to the formation of the element stiffness
and mass matrices and the thermal load sensitivity vectors (referred to below
as the thermal vectors). Subsection 5.2 contains a discussion of the calcula-
tion of stress and strain constraints for the ASTROS'’ elements while Subsec-
tion 7.2.1 of the User’s Manual discusses the output that is available for

each of the elements.
Sl Concentrated ss E ents

These elements allow for the definition of mass properties without any
associated stiffness. They are useful for modeling the mass properties of a
structure, which are typically defined by a separate group from that used in
the structural stiffness modeling. In the design context, these elements can
be used by the design to size tuning masses when frequency constraints are to

be satisfied or as a mass balance variable in a flutter design task.
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ASTROS has provided two separate forms for specifying concentrated
masses that have been adapted from the CONM1 and CONM2 elements of NASTRAN.
In the CONM1 form, the user inputs the top half of a symmetric mass matrix at
a geometric grid point. The bulk data entry for this element in the User's

Manual completely defines its form. The element cannot be designed.

In the CONM2 form, the user inputs mass data about a center of gravity
point that may be offset from a geometric grid point. The mass matrix at the
grid point is then calculated using:

1 0 0 0 z S a
1 0 -z 0 x
s 1 y -X 0
m] = m +
y2+22 -Xy -Xz
SYMMETRIC x2+z2  .yz
i x24y2 |
(5-1)
0 0
117 -I21 -I3n
Y -I21 Iz2 -I32
i -I31 -I32 I3z |

where x, y, and z are the offset distances from the mass to the associated

grid point in a specified coordinate system, m is the mass value and the Iij
terms are inertias about the mass center of gravity. The mass matrix of
Equation 5-1 is in the input coordinate system. It may be necessary to make a
coordinate transformation to the global coordinate system. Equation 5-1 is

written in the form it is to stress the point that the design variable for

ASTROS for this element is the m value and that the input inertia terms must
be zero when design is being performed. These design features give an element

mass matrix that is linear in the design variable with little loss in general-
ity.
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There are no thermal effects or output recovery for these elements.
5.1.2 Scalar Elements

ASTROS has implemented a scalar spring element and a scalar mass
element based on the CELAS and CMASS element in NASTRAN. The element matrices

for these items are

. 1 -1
[ S (5-2)
-1 1
and
_ 1 -1
[m] = m (5-3)
-1 1

where m and k are user input values and the matrices are in relation to the

two degrees of freedom specified by the user. Both m and k can be design
variables in ASTROS, although the physical meaning of the scalar mass variable
is not clear and its use appears limited. The spring variable can be used to
represent, for example, an actuator stiffness and could be included in the
design process. Note that the sensitivity of the objective (i.e., the weight)
to changes in the scalar spring design variable is zero. This presents no
particular problem, but it may result in a poorly posed problem if the user
naively assumes that infinite stiffness is achievsble in a real world situa-

L. n for no penalty,

There are no thermal effects for these elements, nor are there any
stress constraints in the design task. The user can impose displacement con-

straints which emulate a stress type constraint for the scalar spring element.

Sa 3 One-Dimens lements

Two one-dimensional elements, the rod and the bar, have been imple-
mented in ASTROS.

5.1.3.1 The Rod Element

The rod element of Figure 10 has both extensional and torsional
stiffness with an assumed linear displacement field. This field gives rise to
constant element stresses. The implementation of this element has been based

on that used for the CROD (or CONROD) element in NASTRAN. As the figure
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indicates, the rod has two degrees of freedom at each node in its element
coordinate system. After transformation to the global coordinate system, this
results in either a 6x6 or 12x12 element stiffness matrix, depending on
whether the user has specified only extensional or both torsional and exten-
sional stiffness values. The mass matrix is always 6x6 since only the trans-
lational degrees of freedom have inertia properties associated with them. The
user is given the option as to whether a lumped or a consistent formulation

of the mass matrix is to be used. The thermal vector is 6xl.

Figure 10. The ROD Element

The design variable for the rod element is its area. Two modifica-
tions to the element matrix calculations are made if the element is designed.
The first is that user input values of the torsional stiffness are ignored,
since there ic no general relationship between the rod area and the torsional
stiffness. (A separate, nondesigned element can be specified if it is neces-
sary to have torsional stiffness.) The second modification is that user input
values for the nonstructural mass are ignored when the element is designed, as
they are on all elements. This is done primarily to ensure that the element
mass matrix is a linear function of the design variable. Concentrated mass
elements could fulfill the function of the nonstructural mass input; albeit,

at the cost of increased data preparation for the user.

Stress constraint calculations for designed rods do not include shear
stresses since the torsional stiffness has been disabled. If the user speci-
fies stress constraints on an element that is not designed and that has tor-

sional stiffness, shear stresses are included in the constraint calculation.
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5.1.3.2 The BAR Element

The bar element of Figure 11 includes extension, torsion and bending
in two perpendicular planes with associated transverse shear properties. The
bar element has the following modeling features and limitations, as given in

Subsection 9.5 of Reference 1l4:
(1) The neutral axis may be offset from the grid points.
(2) The neutral axis and shear center coincide.
(3) Pinned connections may be defined.
(4) The area properties are constant.

(5) The principal axes of inertia need not coincide with the local
axes.

(6) Stress can be recovered at four points on the cross section on

each end.

Pinned connections allow the specification of degrees of freedom that
cannot transfer force, thereby creating a hinge. As Figure 1l indicates, six
degrees of freedom are present at each node, resulting in a 12x12 element
stiffness matrix. Rows and columns associated with pinned degrees of freedom
are zeroed out. The element mass matrix is also 12x12 and has off-diagonal
terms if a consistent mass formulation is used or if the beam is offset from
the grid points. The thermal vector is 12x1 and thermal gradients are ne-
glected (i.e., the TEMPBR data entry of NASTRAN is not supported).

If the element is designed, a number of restrictions are placed on the
modeling. As in the rod element, user specifications of torsional stiffness
and nonstructural mass are ignored. In addition, input shear factors and
cross products of inertia values are set to zero. Neither the pin connection
feature nor the offset feature is supported for a designed beam. The key
assumption that is made for the design of beams is the relationship between
the bar’'s area and its moments of inertia that has already been discussed in

Equation 2-5 and is repeated here:
2
I; = rp A®
(2-5)

2
I = 1o A®
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This formulation conforms to an ASTROS groundrule that there be only
one design variable per finite element. Implementation of the relationships
of Equation 2-5 dictates that the total element stiffness matrix is made up of
a term that is linear in the cross sectional area and a second term that is

this same area raised to an exponential power:

E R
[KEE] = A[KEE] + A%[KEE] (5-4)

where the E and R superscripts refer to extensional and rotational stiffness

terms, respectively.

The four stresses computed at the nodes of the bar elements are axial
stresses, at the locations specified in the element coordinate system, due to
axial strain and bending. Limitations imposed on designed bar elements are
imposed on the stress computations for that element as well. If, however, the
user specifies stress constraints on an element that is not designed, the full

finite element capabilities are included in the stress computation.

5.1.4 0-D

Four two-dimensional elements; viz., quadrilateral shear, triangular
membrane, quadrilateral membrane, and quadrilateral bending, have been imple-
mented in ASTROS. The quadrilateral bending element is similar to the MSC/
NASTRAN QUAD4 element and it is anticipated that this element will be selected
for representation of quadrilateral plate elements in ASTROS, since the shear
and membrane capabilities of the QUAD4 provide an equivalence to the SHEAR and
QDMEM1 elements.

5.1.4.1 The Quadrjilatera ear Element

The shear element shown in Figure 12 is a two-dimensional quadrilater-
al element that resists only in-plane shear forces. The element is defined
relative to a mean plane parallel to the plane of the diagonals and located
midway between them. Garvey’s assumption that the shear flow distribution is
constrained to satisfy equilibrium conditions, with no requirement on strain
compatibility, is used (See Subsection 5.3 of Reference 1). This assumption
is exact for rectangular elements and becomes more approximate as the distor-

tion from this rectangular shape increases.

Element stiffness and mass matrices of dimension 12x12 are generated

for the translational degrees of freedom. Only isotropic material properties
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Figure 12. The Quadrilateral Shear Element
(Forces and Element Coordinate System)

are implemented for this element and only a lumped formulation of the mass

matrix can be computed. No temperature effects are included in this element.

The design variable for the shear panel is the element thickness. If
the element is designed, user specified values of the nonstructural mass for
the element are ignored. Stress constraints for the shear element are calcu-

lated based on the average of the shear stresses at the four nodes.

5.1.4.2 The Triangular Membrane Element

The membrane element shown in Figure 13 is a two-dimensional triangu-
lar element that resists only in-plane forces and is equivalent to the TRMEM
element in NASTRAN. The displacement field is assumed to vary linearly in the
coordinates of the element, giving rise to a constant strain state within the
element. Both isotropic and anisotropic materials can be analyzed, with the #§
angle of Figure 13 used to define the property axis for an anisotropic mater-
ial.

Element stiffness and matrices are 9x9 for this triangular element.
Only a lumped mass formulations of the mass matrix is available. The thermal
vector is of dimension 9x1, with the thermal loading taken to be the average

of the temperatures at the three element nodes.
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Figure 13. The Triangular Membrane Element

The design variable for the triangular element is the element thick-
ness. Separate design variables are available for each ply direction if a
composite material is being designed. This is consistent with the FASTOP
formulation of Reference 5, which treats all the plies within a laminate that
are aligned in the same direction as a "layer.” In reality, of course, ply
layup ordering is of critical importance and must be considered in the de-
tailed design of a composite part. If only membrane forces are being consid-
ered, ply order effects do not matter and the lumping of plies is permissible
for analysis purposes. Ply orientation angles are not available as a design
variable. However, there is no limit on the number of ply directions that a
user can specify and it is conjectured that if a user selects a large number
of directions (say six), a winnowing process will take place and desirable
orientation directions will present themselves. If the element is designed,

user specified values of the nonstructural mass are ignored.

5.1.4.3 The Isoparametric Quadrilateral Membrane Element

The membrane element shown in PFigure 14 is a two-dimensional
quadrilateral element that resists only in-plane forces and is equivalent to
the QDMEM1 element in NASTRAN. The element has the following properties, as
discussed in Subsection 5.8.5 of Reference 1:

(1) The stresses and strains vary within the element in an essential-
ly linear manner.

(2) The element may have a warped shape; i.e
not be co-planar.

., the four nodes need
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Figure 14. The Quadrilateral Membrane Element

(3) Gaussian quadrature, with a 4x4 grid, is used to evaluate the
stiffness matrix.

(4) The temperature is assumed to be constant over the element, and

is the average of the nodal temperatures.

The "isoparametric” designation refers to the fact that the equation
which relates the displacements at any point in the element to the displace-
ments at the nodes in terms of parametric coordinates (€, n) is identical in
form to the equation which relates the internal coordinates to the coordinates
of the grid points. Both isotropic and anisotropic materials can be accommo-
dated by the element, with a material axis defining the orientation of the

anisotropic properties.

The element grid points are mapped to a mean plane located midway
between the diagonals of the element, resulting in a planar quadrilateral.
The 12x12 stiffness matrix is then derived for this quadrilateral and then
transformed to the physical grid points. The 12x12 mass matrix is calculated

using a lumped formulation. The thermal vector is of dimension 12x1.

The design variable for the quadrilateral element is the element
thickness. Separate design variables are available for each ply direction if
a composite material is being designed. The comments on composite design just
discussed for the triangular element apply to this element as well. If the

element is designed, user specified values of the nonstructural mass are

ignored.
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5.1.4.4 The Quadrjlateral Shell Element

The QUAD4 element in ASTROS was provided to allow for the inclusion of
bending effects in a quadrilateral elément and to give a general treatment of
composite materials. Since there was no QUAD4 element in COSMIC/NASTRAN, it
was necessary to develop this element. Appendix A provides a detailed theo-

retical treatment of this development, with an overview provided here.

The formulation for the QUAD4 isoparametric quadrilateral element
incorporates a bilinear variation of geometry and deformation within the
element. The QUAD4 element has 5 degrees of freedom (DOF) per node, i.e., the
stiffness for rotation about the normal to the mid-surface at each node is not
defined. Furthermore, it is assumed that plane sections remain plane and that
the variation of strains through the thickness 1is linear. Direct strain

through the thickness is neglected (assumed to be zero).

The QUAD4 element may be used to model either membrane or bending
behavior, or both. Transverse shear flexibility may be requested as well as
the coupling of membrane and bending behaviors using nodal offsets or linear
variation of material properties through the thickness. In addition, the
QUAD4 element is capable of representing laminated composite materials, with

an option to compute interlaminar shear stresses and layer failure indices.

The transverse shear stiffness is numerically conditioned to enhance
the accuracy of the element for a wide range of modeling practices including
very thick or thin elements, high aspect ratio elements and skewed elements.
Numerical conditioning of the out-of-plane shear strains is discussed in

Appendix A.

QUAD4 provides lumped or, optionally, consistent mass matrices. The
equivalent pressure and/or thermal loads are also calculated. Thermal effects
4

are accounted for in the element stress and force recovery. ‘'

Design sensitivity matrices, constraints and gradients of constraints
are computed for use in the structural optimization procedure. The element
membrane thickness or, for composites, individual layer thickness are the
design variables. Only membrane stiffness sensitivity is used in the optimi-

zation procedure.
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5. 1.5 eme

Three isoparametric hexahedron solid elements have been implemented in
ASTROS. These are the 8 noded IHEX1l, the 20 noded IHEX2, and the 32 noded
IHEX3. These three elements are essentially identical to the COSMIC/NASTRAN
elements of the same names (see Subsection 5.13 of Reference l). Typically,

the THEXi elements would be used to model geometrically complex thick-walled

components.

Solid elements cannot be designed due to their not having any dimen-
sional parameters such as thickness or cross sectional area, which can be
modified without violating inter-element compatibility. Nevertheless, these

elements may still be utilized in optimization runs although they, themselves,
will not be designed.

The "isoparametric” designation follows from the fact that the same
interpolating functions are used for both the element geometry and the element
deformation. The interpolating functions are either linear, quadratic, or
cubic, and are used to represent the IHEX1, IHEX2, and IHEX3 elements, respec-
tively. These functions are chosen so as to ensure interelement compatibili-

ty and to catisfy the constant-strain convergence criteria.

The stiffness, mass and load equations for the IHEXi elements are
derived using the principle of virtual work. The equations are then evaluated
by application of Gaussian Quadrature. The number of integration points used
to evaluate the stiffness, mass and load matrices defaults to 2x2x2 for the
linear element, 3x3x3 for the quadratic element, and 4x4x4 for the cubic
element. Optionally, other integration mesh sizes may be specified. All
computations are performed in the basic coordinate system, and the resulting

matrices are then transformed into the global coordinate system in preparation

for the element matrix assembly.

Element stresses, strains, and strain energies are calculated based on
the displacements determined in the global analysis of the structure. The
stresses and strains are calculated in the basic coordinate system at the
eight corner points and at the center of the element. Stresses and strains
are calculated also at the center of each edge in the case of IHEX2 and IHEX3
elements. In addition, the principal stresses and strains, principal direc-

tion cosines, and mean and octahedral stresses and strains are computed at

each of the above points.
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5.2 APPLIED LOADS

Three types of loads can be applied in a static analysis: (1) mechan-
ical or concentrated external loads, (2) gravity loads, and (3) thermal loads.
These load types may be applied separately or in combination. The last two
load types have the potential to vary with the structural design and this fact
is recogﬁized in the generation of these loads. Each of the load types is now
briefly discussed.

5.2.1 Mechanical lLoads

External loads are applied to the structural model in ASTROS through
the use of input entries which define forces, moments and pressure loadings.
The forces are applied at specified grid points and in a direction either
defined explicitly in the input or by reference to two grid points which
define a direction along which the force acts. Similarly, moments are applied
at specified grid points and in a direction either defined explicitly in the

input or by reference to two grid points which define an axis about which the
load is applied.

Pressure loads are defined by specifying a pressure and an area over
which it acts. The area is specified by reference to three or four grid
points. In the case of three grids, the area of the resulting triangle is
computed and the resulting force is distributed equally to the three grids.
For the case of four grids, the surface is defined by two sets of overlapping
triangles, half the pressure is applied to each set and the triangle algorithm
is then applied. Input data descriptions for the FORCE, MOMENT, FORCEl,
MOMENT1, and PLOAD in the ASTROS User’s Manual entries contain further infor-

mation on the preparation of this static loads data.

S 20N2 Gravity loads

The gravity load is specified by a user defined acceleration and a
direction. This acceleration vector is then applied to each grid point’s
translational degrees of freedom to obtain a global acceleration vector. No
rotational accelerations are applied. The gravity loads are then computed by
multiplying the mass matrix by this acceleration vector. Subsection 5.4
discusses the special treatment of gravity loads when the mass matrix is a

function of the design variables.
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5. 238 1 Load

A basic capability to consider thermal effects has been implemented in
ASTROS through the specification of temperatures at grid points. For comput-
ing the thermal loads, this temperature is differenced from a reference
temperature that is specified by the user for each material that is used in

the structure.

For each finite element, a thermal load sensitivity vector is generat-
ed, as discussed in Subsection 5.1. If the element is designed, this vector
is computed for the fixed value of the local design variable. Subsection 5.4
discusses the assembly of these thermal load components into a global load

vector.

5.3 STRENGTH CONSTRAINTS

As discussed in Subsection 2.2.2.1, ASTROS supports three basic forms
of element dependent strength constraints: (1) von Mises stress, (2) Tsai-Wu

stress, and (3) principal strain. The following structural elements may be

constrained:
BAR von Mises
QDMEM1 all forms
QUAD4 all forms
ROD von Mises, Principal Strain
SHEAR von Mises, Principal Strain
TRMEM all forms

The Tsai-Wu constraint is not available for the one-dimensional
elements and the shear panel since these elements support only isotropic
material properties. The principal strain constraint for the bar has not been
implemented. The solid elements (IHEX1, 2, and 3) may not be constrained in
the design task and the scalar spring element’s stress constraint is imposed
as a displacement constraint. The principal strain constraint generates two
constraints for each element or composite laminate, one for each principal
strain value. All other constraints generate one constraint per finite

element, layer of a composite element, or stress computation point within an

element.

Just as in the case of stiffness and mass matrices, it is desirable to
compute the design invariant terms useful in stress/strain computations in

order to speed processing within the design iteration loops. 1In ASTROS, this
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takes place in the EMG module in which the matrix [SMAT], that relates stress
or strain components for each congtrained element to the global displacements,
is formed. Note that it is not necessary to design an element in order to
impose a stress or strain constraint. The [SMAT] matrix is very similar to
that formed in MSC/NASTRAN for the matrix method of stress recovery in dynamic
response analyses (see Subsection 4.7 of Reference 15). It is used both to
evaluate the strength constraints and to evaluate the constraint sensitivities

to the global displacements according to the following expression:
[o] = [SMAT)T (up) (5-5)

where [o] represents the element stress or strain components which are then
cembined to compute the particular strength constraint. Obviously, a similar
combination of [SMAT] columns is used in computing the constraint sensitivity.
The following subsections present the details of the [SMAT] calculations for

each of the structural elements.

5.3.1 Bar Element

The bar element stress constraint matrix calculations are performed‘
much like those in the standard element data recovery as shown in Subsection
8.2 of Reference 3. The only difference is that the combinatorial operations
relating the element static forces to the stresses are performed on the
matrices relating the forces to the displacements rather than on the forces
themselves. The 6x1 vector of element forces, [P], is related to the dis-

placements by:

[Pl = ([Sg] (ug) + [Sp] (wp) (5-6)

where a and b denote ends A and B of the bar element, respectively. Merging
this expression to avoid distinguishing between nodal displacement vectors

gives:

(P] = [Sa | Sb] (=8) = ([S] (ug) (5-7)
Up
The 6x12 matrix [S] is computed from the element stiffness matrix as shown in
Reference 3. Note that the effects of thermal loads are omitted from Equation
5-7. Unlike all other elements in ASTROS, the stress contribution due to
thermal loads is design dependent for the bar element. This feature of the
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bar element is not supported in ASTROS with the result that design optimiza-
tion with constrained bar elements under thermal loads is inaccurate. The
resultant stress constraints and constraint sensitivities are self-consistent

but neither account for the stress-free strain arising from the thermal load.

The bar element stresses are normally computed through combinations of
the components of [P], the user input stress computation points C, D, E, and
F, the moments of inertia, I1l, I2, and I12 and the bar element length. 1In
order to form the [SMAT] matrix, these linear combinations are instead per-
formed on the rows of the matrix [S]. Using the notation (Sj)} to denote the
1th rou of [S), the [SMAT] columns relating to the stress components at ends A

and B for the computation point defined by the user input points C; and Cjp
are:

3o ST - C.1
P%a - _l_lz____z_l (Ss) + _JHJL___l_ll (Sg) (5-8)
du 1.1 - 12 11 - 12

2 12 12

_GJZ _l_lz_Ll (Ss)+A(s3)| + _1_2__2_12 (sg)-2{S2}{ (5-9)
du 11 -12 1.1 - 12
12 12 12 12

The remaining six stress components are computed in a similar manner.

In evaluating the stress constraints, the columns of [SMAT] are
multiplied by the displacement vectors to obtain the stress components. For
the bar, each component then generates a single von Mises stress constraint.
It is important to note that each bar element generates eight stress con-
straints for every load condition and that any coincident stress computation

points will generate redundant constraints. The bar element principal strain

constraint is not supported.

5.3.2 QDMEM] Element

The 1isoparametric quadrilateral membrane element stress/strain con-
straint matrix calculations are performed much like those in the standard
element data recovery as shown in Subsection 8.19 of Reference 3. Four 3x3

matrices that relate stresses to the individual nodal displacements are

computed as:

[s) = (6] (A) (B)T {E)THyg [T4): £ =1, 2, 3, &4 (5-10)
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where
[G] 1is the 3x3 stress-strain matrix

[A] 1is the 3xb strain-displacement matrix evaluated at the intersec-
tion of the element diagonals

[B] 1is the 8x12 matrix relating nodal displacements to displacements
in the element mean plane

[E] 1is tb2 12x12 matrix relating nodal displacements in the basic
coordinate system to element coordinates

{T] 1is the appropriate 3x3 transformation matrix from basic to global
coordinates

The subscript i in Equation 5-10 denotes the appropriate matrix or matrix

partition for the ith node. The three stress components for the QDMEM1

element may be computed (neglecting thermal strains) from the matrices [S]

ox 4
Oy = igl [si) (Ygi) (5-11)
Txy JMECH

which more clearly shows that [SMAT] is formed directly from the rows of [S]

if it is rewritten as:

Ix vl
{ay } =[Sy 1 S2}S3 | 84) {uz } ~ [sMAT)T (ug)  (5-12)
MECH 33

Txy

The product of [SMAT] and the global displacements yield, for the QDMEM1
element, the three stress components in the element coordinate system. If
thermal loads are applied, these components must be decremented by the amount
of stress arising from the thermal strains. This is accomplished by separate-

ly storing the "thermal stress sensitivity" [S¢] vector for the element:
[S¢) = (6] (a) (5-13)

where {a) is the 3xl vector of thermal expansion coefficients. This vector is

then used in the stress constraint evaluation to compute the actual stress

components as:

g
{ a; } = [SMAT)T (ug) - [Se) (T - To) (5-14)
Txy JTOT
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The stress components are then used to evaluate the von Mises or Tsal-
Wu stress constraints. The columns of [SMAT] are also used to compute the
stress constraint sensitivities. The thermal stress terms contribute only to

the constraint evaluation and not to the constraint sensitivity.

For principal strain constraints, the operations of Equations 5-10
through 5-12 are carried out in an identical manner except that the stress-
strain matrix [G] is omitted from Equation 5-10. This results in the computa-
tion of the three strain components for the element rather than the stress
components. There is no correction required for thermal loads since the

thermal strains are included in the calculation of the constraint.

SY3IN3 QUAD4 Element

The quadrilateral plate bending element stress/strain constraint
matrix is formed from the stress-strain and/or strain-displacement and the
appropriate coordinate system transformation matrices presented in Appendix A.
The three components of stress or strain in the element coordinate system at
the origin of the element coordinate system at the user specified fiber
distances are thus related to the nodal displacements. These terms form the

columns of the [SMAT] matrix.

If thermal loads are applied, however, the stress components must be
decremented by the amount of stress arising from the thermal strains. This is
accomplished by separately storing the "thermal stress sensitivity" [S¢]

vector for the element:

[Se] = [G] (e) (5-15)
where {a) is the 3xl vector of thermal expansion coefficients.

The stress or strain components can then be computed exantly as they
are for the QDMEM]l element, with the exception that there are two sets of
components for each element (one for each fiber distance). Those components
are then used to evaluate the von Mises, Tsai-Wu or Principal Strain con-

straint.

For designed composite laminates, each ply is treated as a separate
(membrane only) element with the result that each layer is treated exactly
like a QDMEM]1 element. For other laminates, the stress or strain constraint
is applied to the element using the equivalent laminate properties and so is

treated exactly as are metallic QUAD4 elements.
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5.3.4 ROD Element

The rod element stress/strain constraint matrix calculations are
performed much like those in the standard element data recovery as shown in
Subsection 8.27 of Reference 3. The two sets of 3x3 matrices relating stress-
es to the individual nodal translations and rotations are computed exactly as

shown in the reference giving four matrices:

[Sz] - Stress-displacement matrix for translations at end A
[S;] - Stress-displacement matrix for translations at end B
[S:] - Stress-displacement matrix for rotations at end A
[S;] - Stress-displacement matrix for rotations at end B

The tensile and torsional stress constraint sensitivity components for the rod
element are then formed as
2 t ut
(oIMecH =~ [(Sa | Spl (-2) (5-16)

ut
b

r r aar
(r) = [Sa | Sp] (&) (5-17)

ur

b
which show [SMAT] to be formed directly from the rows of [S]. In the case of
thermal loads, the tensile stress values computed from the product of [SMAT]
and the global displacements must be decremented by the amount of stress
arising from the thermal strain. This is accomplished by separately storing

the "thermal stress sensitivity" [S¢] vector for the element:

[S¢] = «aE (5-18)
where

E is the Young'’'s Modulus for the material

a is the thermal expansion coefficient

This vector is then used in the stress constraint evaluation to compute the

actual stress component as:

oror = ([SMAT]T(ug) - aE (T - T,) (5-19)
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Both the tensile and torsional components are used to evaluate the von
Mises stress constraints. The columns of [SMAT] are also used to compute the
stress constraint sensitivities, The thermal stress terms contribute only to
the tensile stress component in the constraint evaluation and not to the

constraint sensitivity.

For principal strain constraints, the operations of Reference 3 that
generate the [S] matrices are modified to compute the strains rather than the
stress components. The tensile and torsional strain components are used to
compute the two principal strain values with no correction for thermal loads
since the thermal strains are included 1in the calculation of the strain

constraints.
SIN3INS) Shear Panel

The shear panel stress/strain constraint matrix calculations are
performed much like those in the standard element data recovery as shown in
Subsection 8.3 of Reference 3. The average stress along the first side of the

shear panel is computed as:

4 . t
Sa = Z [S1] {uy) (5-20)
i=1
where
[Sy] are the stress/strain displacement matrices for each node as

shown in Reference 3.
t
[uj] are the nodal translations in global coordinates

From Sy, the corner stresses are computed based on four scalar coefficients Pj
whose values are computed to account for parallelogram, trapezold or general
quadrilateral geometries. The average shear stress or strain, which is used
in ASTROS for the constraint evaluation, is then computed as the average of
the four corner stress/strain values. 1In order to compute the [SMAT] terms,
the corner stress calculations and averaging operation were merged with the Sp

computations to give:

a3

P P PSP BAP
o = 124+ 14+ 124 125y Sy | S3| S4] 4 W2 (5-21)
1 2 3 4
4 Py Py p2 p2 us
4 uy,
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The product of [SMAT] and the global displacements yield, for the SHEAR
element, the average stress or strain for the shear panel. The shear panel
does not support any thermal strains so no corrections are needed to the
stress value. The average stress or strain is then used to evaluate the von

Mises or Principal Strain constraints.

5.3.6 TRMEM Element

The constant strain triangular membrane element stress/strain con-
straint matrix calculations are performed much like those in the standard
element data recovery as shown in Subsection 8.4 of Reference 3. The three

3x3 matrices relating stresses to the individual nodal displacements are

computed as:

[s1] = [6] [c]g (E)T [T4); £ =1, 2, 3 (5-22)
where

[G] 1is the 3x3 stress-strain matrix

[C] 1is the appropriate 3x2 strain-displacement matrix

[E] is the 3x2 matrix relating nodal displacements in the basic
coordinate system to element coordinates

[T] 1is the appropriate 3x3 transformation matrix from basic to global
coordinates

The subscript i in Equation 5-22 denotes the appropriate matrix or matrix
partition for the ith node. The three stress components for the TRMEM element

may be computed (neglecting thermal strains) from the matrices [Sy] as

ox 3
{ oy } - 151 [S1] (Ygi) (5-23)
Txy JMECH

which more clearly shows that [SMAT] is formed directly from the rows of [Si]

if it is rewritten as;

ox Lol
oy = [S1]1S2183] 4 u (5-24)
Txy JMECH u3

The product of [SMAT] and the global displacements yield, for the TRMEM
element, the three stress components in the element coordinate system. If

thermal loads are applied, these components must be decremented by the amount
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of stress arising from the thermal strains. This is accomplished by separate-

ly storing the "thermal stress sensitivity" [S.]) vector for the element:
[(Se] = [6] {a) (5-25)

where (a) is the 3x1 vector of thermal expansion coefficients. This vector is

then used in the stress constraint evaluation to compute the actual stress

components as:

{ Z; } - [SMAT]T (ug) - [Se) (T - To) (5-26)
Txy JTOT

The stress components are then used to evaluate the von Mises or Tsai-
Wu stress constraints. The columns of [SMAT] are also used to compute the
stress constraint sensitivities. The thermal stress terms contribute only to

the constraint evaluation and not to the constraint sensitivity.

For principal strain constraints, the operations represented by
Equations 5-22 through 5-24 are carried out in an identical manner except that
the stress-strain matrix [G] is omitted from Equation 5-22. This results in
the computation of the three strain components for the element rather than the
stress components. There is no correction required for thermal loads since

the thermal strains are included in the calculation of the constraint.
5.4 GLOBAL ASSEMBLY OF MATRICES

This section describes the assembly of the global mass, stiffness and
applied loads matrices. The automated design capability in ASTROS makes it
desirable to perform this assembly in two stages. In the first stage, matri-
ces are assembled that are invariant with respect to the global design varia-
bles. 1In the second stage, these invariant matrices are multiplied by the
current values of the global design variables to give the final matrices.
Mathematically, for the stiffness matrix, the first stage entails forming a

stiffness design sensitivity matrix of the form:

nle
[DKV]g = |2 pyy [KEE) (5-27)
where
DKV - the stiffness design sensitivity matrix
Pij - the scalar linking factor defined in Equation 2-6
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KEE - the element stiffness matrix

i - subscript for the 1th global design variable
3 - subscript for the jth local design variable
nle - number of local variables linked to the global variable

The DKV are global matrices and have rows and columns equal in number
to the degrees of freedom in the g-set and are, therefore, potentially large,
sparse matrices. These matrices are stored in ASTROS as unstructured entities
with an associated relation providing information that identifies the degrees
of freedom with which the global design variable is associated.

An equation similar to that of Equation 5-27 is used for the mass

matrix:
nle
(DMV]; = j§1 Pij [MEE]J (5-28)
where
DMV - the mass design sensitivity matrix
MEE - the element mass matrix

Since the DKV and DMV matrices are independent of the values of the
global design variables, the assembly process indicated in Equations 5-27 and
5-28 needs to be performed only once for a given design task. Another motiva-
tion for forming these matrices is that they are required in the sensitivity

calculations.

Inside the design loop, a second assembly takes place to form the

final global matrices:

ndv ndv o

[Kgg] = 150 vi [DKV]; + j§1 vy [DKBV]J (5-29)
ndv

[Mgg] - iEO vi (DMV]y (5-30)

where the M, K, and v terms are defined in Subsection 4.3, ndv is the number
of global design variables and i and j identify the design variable. The

second summation of Equation 5-29 corresponds to the special case of bar
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elements as described in Subsection 5.1.3.2. The Equation 5-4 relation, in
particular, indicates the source of this term and

nke R
DKBVy = _‘]zl piJ[KEE]J

If there are no bending effects, this DKBV term is, of course, not present. *

A further note is the specification in the assembly operations of a
zeroth design variable. This refers to the elements that have been left

undesigned and the associated vg is a pseudo design variable that has a value

of unity.

The global stiffness and mass matrices are typically sparse and
strongly banded; i.e., the nonzero terms are located close to the matrix
diagonal. These facts are utilized by both the data base in its handling of
sparse matrices and by the large matrix utilities when these matrices, and

their partitioned forms, undergo addition, multiplication, decomposition, etc.

The assembly of the global loads matrix takes a similar path. Outside
the design loop, design invariant portions of the loads are assembled once as
part of the preface operations. For the mechanical loads, there is no design
dependent portion so that the entire assembly process essentially takes place
at this time. The one exception to this is that ASTROS retains the NASTRAN
concept of "simple"” and "combined"” loads that permit the user to specify a

total loading condition that is the sum of several load vectors:

(Pg) = Sp il S (L)g (5-31)

where P is the total load vector, S0 and S4 are scalar multipliers and L is a
simple load. If this summation is required, it is performed inside the design
loop to accommodate the possibility that a simple load may be required in more

than one P vector.

The gravity and thermal loads are clearly design dependent. The

gravity loads are treated by first constructing design independent load
vectors of the form:

(DPGR); = ([DMV]; (ag) (5-32)

where DPGR is the gravity sensitivity vector, ag is the global applied accel-

eration vector and DMV; and i have been previously defined.
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The global thermal sensitivity vectors are a somewhat complicated
combination of the element thermal vectors, Tge, the grid point temperatures,
Terip, and the material reference temperatures, TRgf.

nle

{DPTH}§ = j§1 Pij [Teelj {TgriD - TREF}j (5-33)

This notation is merely representational, since the actual operations entail
significant bookkeeping operations involving relations and unstructured

entities.

The simple gravity and thermal loads are then assembled as:

ndv
{(Py} - Z vy {(DPGR} (5-34)
g!GRAV 120 i i
ndv
{Pg}THERM - 120 vy {DPTH)y (5-35)

As mentioned, these simple loads can be combined with other
loads. 1In addition, a given boundary condition may have a number of subcases
so that the load vector becomes a load matrix with g-size rows and nlc (number

of load cases) columns.
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SECTION VI

STATIC ANALYSIS

The static analysis capability in ASTROS provides the capability to
analyze and design linear structures subjected to time invariant loading.
This section emphasizes the matrix algebra that is used in this analysis.
This algebra is straightforward and should be familiar to most analysts, but
it is described in some detail here since it is basic to the operation of the
procedure, particularly as it applies to the standard MAPOL sequence described
in Appendix C of the User’s Manual. The presentation given here includes
inertia relief terms throughout, even though this is a somewhat esoteric
concept in structural analysis. It is included both because it provides the
most general formulation and because it foreshadows the discussion of static
aeroelasticity where inertia relief is central to the discussion of free
flying aircraft. The notation of Subsection 4.3 is used extensively in this
discussion and only the terms which have not been previously defined are
defined here.

6.1 MATRIX EQUATIONS FOR S C
The equilibrium equation for ASTROS static analysis in the g-set are:

Although the loads and the responses are denoted as vectors, they can

also be expressed in matrix terms if more than one subcase is present.

Following the hierarchy of Figure 8, the g-set is partitioned into m-
and n-sets. The relationship between these dependent and independent degrees

of freedom is given by matrix Tpn:

{(up) = [Tynl{up) (6-2)
An identical relation holds for the accelerations.

These multipoint constraints produce forces on the structure which are
designated (cg). The work performed by these forces must be, by definition,
equal to zero. Subsection 5.4 of Reference 1 demonstrates that this work
consideration leads to a condition that the constraint forces have an equation

similar to Equation 6-2:
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T

'Tmn

lcg) = {qm) (6-3)
I

where the (qp) are unknown forces that are included in the solution process.

Equations 6-1, 6-2, and 6-3 can be combined to give:

- T - —

Knn Kom Tmn Hn Mon Mnm » Pn
Un

Kmn Kpn -1 up ¢ + | Mpn Mmm { e ] - Pn
Uy

Tpn -1 0 dm Tan -1

where the bar over the certain terms refers to the elements in the partitions
of g-size matrix before reduction to the n-set. This notation is wused

throughout this section. These equations can be solved for u, and Sn in terms

of qp, uy, and uy to give:

[Kpn) tun) + [Mppllon) = (Pp) (6-4)

- T
(Knn]l = [Kpn + KnnImn + Tpun(Kpn + KppTpn) )

T
(Mpn] = [Mpn + MonTmn + TmnMpn + MppTon) )

= T
(Py) (P + TppPm) (6-5)

The next set of reductions involve the forces of single-point con-

straint. These constraints are of the form:

(us) - (Ys) (6'6)
The accelerations associated with these degrees of freedom are zero.

If these constraints are placed in Equation 6-4, the partitioned

equations are:

Kef Keg uf Mef Meg uf 3
+ - (6-7)
Ksf Kgg Ys Mg Mgg 0 Pg
and the reduction to the f-set is done by retaining the first row of Equation
6-7:

[Kegllug) + [Mggllug) = {(Pf) (6-8)
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where

(Pg) = (Pg) - [KegllYg) (6-9)

The reduction to the a-set involves further partitioning of Equation

Kaa Ko Ug Maa Mgo Ug P4
T B . = (6-10)
Kao Koo Ug Mao Moo Ug Po

In a manner consistent with Guyan reduction, the mass matrix is

6-8 to give:

reduced using a static condensation transformation of the mass matrix to

relate the omitted and retained degrees of freedom:

(Up) = [Koo Koal Uz} = [Gp] (U,) (6-11)

The stiffness reduction is performed using the exact form:

-1 -1
fug} = [Kao] (Po) - [Koo Koa] {ugy) (6-12)

These reductions can be applied with Equation 6-10 to give:
[Kaal tug) + [Mga) (Uz) = (Py) (6-13)

where
(Kaal = [ﬁaa + Kzo Gol
| 47
(Pa) = (Pa) = [Go] (Po) (6'14)

= T
[Maal = [Maq + Mga Go + Go Moy + Gg Mgo Gol

We need to emphasize that the Guyan reduction of Equation 6-13 is
approximate in that deformations due to inertia forces applied to the omitted
degrees of freedom are neglected. The specification of the a-set degrees of
freedom is therefore critical and places a burden on the user to take care in
this specification. The dynamic reduction technique, described in Subsection
7.1, provides an alternative that is less demanding of the user. A final
point on the reduction to the a-set is that the reduction of Equation 6-13 is

exact if there are no mass terms. Therefore, if a modal analysis and a static

71




nalysis, without inertia relief, share a boundary condition, the static
nalysis results will be the same as if no reduction took place and the modal
nalysis can benefit from the efficiency considerations associated with a

educed size eigenanalysis.

With the matrices in the a-set, the final partition is to the £ - and
-sets:
Kog Koy ug Mgg Mgy | 61 PR
+ - (6-15)
Krg Kyr L Med Mypy L3 Py
The r-set contains degrees of freedom equal in number to the number of
igid body modes in the structure. ASTROS differs from NASTRAN in the way the
-set displacements are calculated, and therefore, in the solution methodol-
gyY- In NASTRAN, the r-set displacements are arbitrarily set to zero while in
STROS the a-set displacements are determined by requiring that these elastic
eformations be orthogonal to the rigid body motions. In terms of internal
oads, these two approaches are equivalent since only the elastic deformations
roduce these loads. The orthogonality condition has been imposed to make the
nertia relief analysis consistent with the static aeroelastic trim analysis,
hich requires this orthogonality to produce aerodynamic stability derivatives
hat are independent of the degrees of freedom included in the r-set (see
ubsection 9.1). The static aeroelastic capability used in MSC/NASTRAN

Reference 16) provided the basis for this concept.

A consequence of fﬁis revised formulation is that inertia relief loads
lust always be included in the ASTROS analysis whereas NASTRAN can solve for
'lastic deformations for free bodies without considering the mass terms. This
s in consequence of the orthogonality condition, which requires the mass
latrix in its specification. The NASTRAN formulation could be used in ASTROS

'y a modest modification to the standard MAPOL sequence.

With these remarks, the ASTROS methodology for solving Equation 6-15
itarts from a determination of the rigid body mode shapes. These shapes can
e determined from a direct consideration of the geometry of the structure,
mut they are determined in NASTRAN and ASTROS by solving for the displacements

'f an unloaded structure using the stiffness matrices:

fug) = -[Kggl L [Kpy) (uy) (6-16)
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with

(D) = -[Kpgl-1l [(Kop) (6-17)

designated the rigid body transformation matrix. Since the accelerations
include only rigid body motions, it is possiblc to specify a relationship for

the accelerations of Equation 6-15:
(ug) = [D] (uy) (6-18)

The orthogonality constraint between elastic deformations and rigid body

motions is specified by:

[ Mg Mpr } { ug }
(pT 1) - (0) (6-19)
Mpp Myr Uy

If Equation 6-18 is substituted into Equation 6-15 and Equation 6-19 is

adjoined to these equations, the following relationship results:

Koy Kor MggD + Mg, ug Py
Keg Ker MpgD + My, uy - Py (6-20)
DTMgp + Mpp DIME, + My, 0 Uy 0

If (a) the first row of this equation is multiplied by D, (b) added to the
second, and (c) the second and third rows .arc interchanged, a simplified form

of Equation 6-20 results:

Ke Ker MpgD + Mpr| fup ] Pe
DTMgp + Myp DTMg, + My, 0 Uy ¢ = 0 (6-21)
Y 0 my s pTB, + Py
where
[me] = (DTMgyD + DTMg, + MygD + My, ] (6-22)

is the rigid body mass matrix. The 31 term of the left-hand matrix of Equa-
tion 6-21 is zero based on the definition of the D matrix given in Equation 6-
17. The 32 term, which is

(DTRgy + Kpyl (6-23)

is zero because it represents the work performed on the structure when it

undergoes a rigid body displacement.
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The third row of Equation 6-21 can be solved for the accelerations in
1e r-set and these can then be substituted into the first two rows to solve
irectly for {(u,}, the elastic deformations in the a-set. Equation 6-18 is
sed to recover the accelerations in the L-set, which are then merged with the |,

-set accelerations to give (u,).

Before continuing the recovery process, it should be noted that the

>lution process when no inertia terms are included is simply (from Equation
-13)

[Kaal fua) = (Pg} (6-24)
nd it is possible to solve for (u,} directly.

Once the displacements and accelerations have been computed in the a-
2t, it is a simple matter to recover to the g-set. The o-set accelerations

re recovered directly using Equation 6-11:
(Ug) = [Go] (Ugm) (6-25)

1ile the o-set displacements recovery first requires that the applied loads

e modified to include the inertia effects:

(Po) = - (Mg Up + Mga Uy} = [IFM] (U,) (6-26)
lere
[IFM] = [Mge Go + Mogal (6-27)

Jjuation 6-12 then gives

i
(U} = [Kool ! (Py + Po) + [Go] (ug) (6-28)

Merging the a- and o-set degrees of freedom results in f-set displace-
:nts and accelerations. The s-set accelerations are zero and the displace-
(nts are contained in the (Yg} vector of Equation 6-6 so that recovery of n-
2t degrees of freedom is immediate. Finally, the m-set dependent displace-
®nts and accelerations are recovered using Equation 6-2 and those are merged

ith the n-set vectors to give the displacements in the g-set.

52 CONSTRAINT EVALUATION

Static analyses have the potential of producing displacement and
trength constraints. Given the global displacement vector recovered in the

revious subsection, it is possible to evaluate these constraints directly.
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Separate modules in ASTROS evaluate the two types of constraints. The dis-
placement constraints can be evaluated directly using the definition given in
Equation 2-18. Strength constraints are evaluated in a two step process
wherein the stress (or strain) components are first obtained by performing the

matrix multiply of Equation 5-5
() = [SMAT]T (up) (6-29)

and then the constraints themselves are computed, based on the constraint type
and the element type, as discussed in Subsections 2.3 and 5.3. It can perhaps
be appreciated that the majority of the effort involved in evaluating these

constraints is of a bookkeeping nature.
6.3 SENSITIVITY ANALYSIS

The final portion of the static analysis is the determination of the
sensitivity of the constraints to changes in the design variables. The static

analysis constraints can be expressed as functions of the design variables and

the static response:

g = f(u,v) (6-30)

The sensitivity of the jth constraint to a change in the ith design

variable is given by

ag. af.  afT au
=4 "o Al e e (6-31)
aVi aVi du avi

Static constraints are not directly dependent on the design variable so that
the afj/avi term is zero for this discipline. In fact, the only ASTROS
constraint type that has a nonzero value for this term is the thickness
constraint. Since this has not been discussed previously, thickness con-

straint sensitivities will be briefly discussed here.
Minimum thickness constraints are represented in ASTROS as
g = 1.0 - t/tpin (6-32)

where t is the local variable value and tpi, is the prescribed lower bound on
the thickness. As indicated in Subsection 2.3, the local variable is an
algebraic sum of the global variables, so the jth thickness constraint can be

written in terms of the global design variables as:

75




ndv

gj = 1.0 - -21 Pij vi/tnin (6-33)
1=

the sensitivity of this constraint to the ith design variable is then simply

ag.

=il - 'Pij/tmin (6-34)

ax4

A similar derivation can be given for the maximum thickness constraints which

are expressed as
g = t/tpax - 1.0 ‘ (6-35)

Returning to Equation 6-31, strength constraint sensitivities are
evaluated using only the second term. The 3f/8u portion is computed using
straightforward chain rule operations. Calculation of this term for displace-
ment constraints and von Mises stress constraints are given here as examples
that should be adequate for motivating how the term would be evaluated for the

remaining constraints.

Upper bound displacement constraints are defined in ASTROS as (see
Equation 2-18),

ndisp
g - 2 ajuy/DALL - 1.0 (6-36)

where DALL is the allowable upper bound.

The 3f/3u term is a vector that is computed in the global analysis
set. The only nonzero terms in this vector are associated with the degrees of
freedom of the displacements included in the constraint. These values are

aj/DALL.

Von Mises constraints are defined in ASTROS as (see Equation 2-8)

2 2 z 2 .k
S I B - o B IR I
51 52 5152 \Fg
The 3f/3u term for this constraint is derived to be
dfs = 1 204 Oy doy
du 2(g + 1.0) [ [§I7 5152] 3u
& £E¥ . Oy doy + 214y ATyy (6-37)
S92  S1S9) du  Fg? du
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Equation 6-29 is used to supply the gradients of the stress components with
respect to the displacements. They are columns of the SMAT matrix. The
overall 3f/3u vector is therefore the weighted sum of up to three columns in

the SMAT matrix depending on the terms used in the constraint.

It would appear that the remaining task to complete the sensitivity
analysis is the computation of the du/dv vector. In many cases, this is true,
but ASTROS also contains an alternative analysis procedure that does not
require the explicit calculation of this wvector. These two alternatives,
designated the gradient and the virtual load methods, are now described in a
qualitative manner. This is followed by a more detailed formulation of the
methods as they are implemented in ASTROS. References 17 and 18 provide a

more general formulation and discussion of the two methods.

The basic equation for static analysis is
[K] tu) = (P) (6-38)

This equation is written without regard to displacement set, hence,
its qualitative nature. The sensitivity of the displacements to a design

variable can be written as

(K] (4%) - (4B) - (ZK) (u (6-39)

Note that Equations 6-38 and 6-39 have the same stiffness matrix on
the left-hand side and this similarity is exploited in ASTROS by storing the
decomposed stiffness matrix when it is computed during the solution of Equa-
tion 6-38 and then retrieving this matrix for the solution of Equation 6-39.
This straightforward approach to obtaining du/3dv is designated the gradient

approach in ASTROS terminology.

The alternative, virtual loads method, solves for the virtual dis-

placements that would result if the 3f/du vector were applied as a load to the

structure:
[K] tw) = (38£f/8u) (6-40)

where w is the virtual displacement and, again, the similarity of Equation 6-
38 to Equation 6-40 is used to avoid unnecessary decompositions of the stiff-
ness matrix. If Equations 6-31, 6-39 and 6-40 are combined, the constraint

sensitivity can be written as
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% - (T [(_a__r:, - (2 (u}] (6-41)
av av av

If inertia relief effects are included in the static analysis, the
virtual load approach to sensitivity analysis does not apply since the [K]-1
[RK}] = [I] simplification required in Equation 6-41 is no longer possible. The
gradient approach is therefore always used for the somewhat esoteric task of
designing a structure while including inertia relief effects. For the more
standard static analysis without inertia relief, the standard MAPOL sequence
selects the approach that requires the fewer forward-backward substitutions;
i.e., whether Equation 6-39 or 6-40 has the fewer right-hand sides. For
Equation 6-39, the number of right-hand sides is equal to the number of active
load cases times the number of design variables. For Equation 6-40, the
number of right-hand sides is equal to the number of active displacement
dependent constraints. It is difficult to generalize as to which approach
will be chosen in a typical, real world design task, but it should be obvious
that, for a large problem, one method could be significantly more efficient
than the other. The actual calculations used in ASTROS for these two ap-

proaches are now given.
6.3.1 The Gradient Method

As indicated above, the gradient method of sensitivity evaluation is a
straightforward application of derivative operations. 1In ASTROS, the formula-
tion starts from taking the derivative of Equation 6-1 with respect to a

design variable:
(K ](.__zau )+ [M (._.zaﬁ ) (_gaP ) Heg Megy (i) (6 42)
+ = o o -
g8’ '35 gg! (55 3v [53B]tug) - [—58] (ug) (

This equation has been written with the known terms on the right-hand
side and the unknowns are the sensitivities of the displacements and accelera-
tions in the g-set. Equation 6-42 is solved by going through a reduction and
recovery process much like that given in Subsection 6.2 for the solution of
Equation 6-1. In fact, the left-hand side reductions of the mass and stiff-
ness matrices are identical in the two solutions so that these reductions are

not repeated here, nor are they repeated in the ASTROS procedure.

The first term on the right-hand s.de 1is the sensitivity of the

applied loads to the design variables. Subsection 5.4 shows that only gravity
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and thermal loads can vary with the design and that the sensitivity of these
loads to the ith design variable is simply

aP
{ —£ } = {DPGR}{
Vi )Grav

oP
{ £ } - (DPTH){
Vi )THERM

Similarly, the sensitivity of the stiffness matrix to the ith design

(6-43)

variable is, from Equation 5-29

3K (a-1)
—82 - [DKV]j + avy [DKBV] § (6-44)
avy

where the second term is zero except for the special case for the design of

bars. The sensitivity of the mass matrix is, from Equation 5-30

M
[_zs ] - [pMv]4 (6-45)
avy

For ease of notation, the right hand side of Equation 6-42 is desig-
nated {DPg)i in the following, where

(a-1)
(DPg); = (DPGR) ;+(DPTH) +( [DRV] j+avy [DKBV]) {ug)+[DMV]§ (ug) (6-46)

The specification of this pseudo-load in other displacement sets then
follows the previous convention of using DP to indicate the vector and the

subscript to indicate the set.

The inertia relief formulation of Subsection 6.1 requires a further
sensitivity calculation. This calculation is related to the Equation 6-19
imposition of the orthogonality of the elastic deformations to the rigid body

displacements. The sensitivity of this equation to a design variable is

. .

aMln aMgr
Mpp Mgy|([dug/dv av av u
(p 1T % z { ! = (D 1]T| M aM £ (6-47)
Myg Myy] Buyp/dv —rk —IE uy
av av

79




where the fact that the D matrix is invariant with respect to the design
variable is utilized. This equation will ultimately be included as a con-
straint in the solution of Equation 6-42; for now, it is necessary to realize

that Equation 6-47 creates a need for calculating

aM
(B8] (ug) = [DMV]j (ug) (6-48)
avi

This vector is designated (DMUg)}j in the following.

The reduction of these two vectors to the n-set follows that given for

the applied loads in Subsection 6.1:

(DPp)j = (DPplj + [TpnlTtPplg
(6-49)
(DMUpn}y = (DMUp){ + [TpnlT(DMUL]g
The single point constraints are removed by a partition of the n-set vectors
to give (DPf)}j and (DMUg}; while the omitted degrees of freedom contribute to

the a-set:

(DPa); = (DPa)i + [Gol(DPg)y

R (6-50)
{(DMUaz)j; = (DMU,)j + [Go}(DMU,)
These pseudo-load vectors can be further partitioned into the - and

r-sets and an equation equivalent to that of Equation 6-21 can be written:

Kop Koy MggD+My, | DUy f  DPp
DTMgp+Myg DTMp,+M,y 0 DU, - {pTpMug +DMU,. (6-51)
0 0 my DUDy) { DTDPy+DP, J;

where the DU vectors and their accompanying subscripts designate the sensitiv-
ity of the particular displacement set to the ith design variable and the DUD

vectors similarly designate the sensitivity of accelerations. For example,
{DU,}i = (dup)/dvy

The third row of Equation 6-51 can now be solved for (DUD,}j, the
sensitivities of the accelerations in the r-set, and these can then be substi-
tuted into the first two rows to solve directly for (DU,)j, the sensitivities

of the elastic deformations in the a-set. {DUDR}i is (from Equation 6-18)
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equal to [D]{DUDy,}j. Unlike the analysis equations, it 1is not necessary to
further recover the accelerations since, as Equation 6-31 indicates, the
constraint sensitivity information is only a function of the displacement
sensitivities. Another subtle point is that the vector multiplication indi-
cated by the second term in Equation 6-31 gives the same scalar result in the
f displacement set as it does if the calculations are performed in the signif-
icantly larger g-set. A substantial efficiency can then result when it is
considered that this vector multiplication (which can have hundreds to thou-
sands of terms) is required for the sensitivity of all the active constraints
with respect to all the design variables. Therefore, the displacements are
recovered up to only the f-set, which requires computing the sensitivities of

the omitted degrees of freedom in a fashion similar to Equation 6-28.

(DUp)i = [Koo) "L[(DPo)y - [IFM](DUD4}i] + [Gol(DUy)g (6-52)
and {DUg)j is obtained by merging the o- and a-set vectors.

A remaining step is the reduction of the {df/du)} vector to the f-set.

This reduction also follows that of the applied loads so that, using the

riotation

{DFDUg)j = [6fj/6ug) (6-53)

the reductions are:

(DFDUn)j = (DFDUp)j + [Tpn)T(DFDU,) (6-54)
and {DFDUf)j is obtained {rom a simple partitioning operation.

All the terms are now in place to calculate the constraint sensitivi-
ty. The mechanics of this calculation are rather complex since, #!fnough this
discussion has been in terms of calculating the sensitivity of a single
constraint to a single design variable, the calculations are performed in
ASTROS in a much more terse fashion. For example, the load sensitivity
vectors for all the design variables are computed simultaneously so that the
{DPg) vector becomes a matrix and the reduction and forward/backward substitu-
tion processes are matrix operations. Similarly, the {DFDUg) vectors for all
the constraints are computed and reduced simultaneously. The matrix which

gives the sensitivities of all the constraints to all the design variables is

(aMAT)T - ([DFDUE]T [DUg) (6-56)
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where AMAT has a row dimension equal to ndv, the number of global design
variables and a column dimension equal to nac, the number of active con-
straints. DFDU is of dimension f-size, the number of degrees of freedom in
the f-set, by nac, and DU is of dimension f-size by ndv times nalc. The nalc
term is the number of active load cases. The matrix multiplication indicated
in Equation 6-56 is not conformable when nalc is greater than one. It is
therefore necessary to perform partitioning operations inside an ASTROS module

to subdivide the matrices into the pr~ner conforming form.

Note that the AMAT matrix of Equation 6-56 contains only the con-
straints produced by the static analyses. Thickness, frequency and aeroelas-
tic constraint sensitivities must be appended onto this matrix before the

redesign process can take place.
6.3.2 The Virtual Displacement Method

As indicated by Equation 6-40, the virtual displacement method entails
solving for right-hand side vectors that are based on the sensitivity of the
constraint to the displacement. These vectors must be reduced to the a-set
(recall that inertia relief is not supported for this option so that reduction
beyond the a-set is not possible or necessary). The reduction to the f-set
has already been described in Equation 6-54 and the accompanying text. The
reduction from the f-set to the a-set is simply

(DFDUz)y = (DFDUa)s + [Go)(DFDU,)g (6-57)
Given these vectors, the virtual displacements are calculated from
[Kaal (Waly = (DFDUg) (6-58)
The omitted virtual displacements are recovered using

(Wo)j = [Kool™1 (DFDU,) + [Go)twa)y (6-59)

A merge operation produces (Wf)J and Equation 6-41 is used to generate the

constraint sensitivity information:

dg T

—1 - (wg)y (DPg)g (6-60)
avi

where the DPg vector has been previously derived following Equation 6-49 and,
again, the absence of inertia relief means that the mass terms used to gener-

ate the pseudo-load vectors are also absent.
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Equation 6-60 can be expressed in matrix form to give

(AMAT)T = [wvrT}T [DPFV) (6-61)

where WVRT and DPFV are matrices made up of vectors given in the corresponding

term in Equation 6-60. The comments regarding matrix compatibility and

manipulation given after Equation 6-56 apply to the Equation 6-61 calculation
as well,
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SECTION VI1
MODAL ANALYSIS

The modal analysis feature in ASTROS provides the capability to
analyze and design linear structures for their modal characteristics; i.e.,
eigenvalues and eigenvectors. The design aspect of ASTROS places limits on
the frequencies of the structures (see Subsection 2.3). The modal analysis is
not only useful in its own right, but also provides the basis for a number of
further dynamic analyses. Flutter and blast response analyses in ASTROS are
always performed in modal coordinates. As detailed in Section XI, transient
and frequency response analyses can be performed in either modal or physical

coordinates, at the selection of the user.

Modal analyses typically are performed with degrees of freedom much
fewer in number than static analyses. The following subsection discusses an
alternative reduction procedure to the Guyan reduction technique described in
Section VI. The user has the option of selecting which ASTROS option is to be
used for a particular analysis. The Givens method of eigenanalysis is also
briefly discussed in this section, as are the design aspects of modal response

in terms of constraint evaluation and sensitivity analysis.

7.1 GENERALIZED DYNAMIC REDUCTION

Generalized Dynamic Reduction (GDR) is a relatively new method that
has been formulated for reducing degrees of freedom (DOF’s) by using so-called
generalized DOF’s to represent the dynamic behavior the structural model. The
displacements of these generalized DOF's are internally computed. GDR re-
quires fewer dynamic DOF’'s than the Guyan reduction method for comparable
accuracy and, more importantly, it eliminates the burden of user selection of

appropriate dynamic DOF's.

GDR performs dynamic reduction by a combination of three methods: the
Guyan reduction, the inertia relief shapes and the subspace iteration tech-
niques. The user has the option to select any combination of the three
methods. The Guyan reduction has already been discussed and can be character-
ized as using the static displacement shapes as the generalized DOF’s and, in
GDR, allows the user to retain some of the physical DOF’'s in the generalized

DOF's. The inertia relief shapes use the displacement shapes due to the

85




nertia loads as the generalized DOF’s. Finally, the general subspace itera-
ion techniques are used to compute a set of approximate eigenvectors and

hese approximate eigenvectors are used as the generalized DOF's.

Of the three methods, the general subspace iteration technique results
n the most accurate eigenvalues and eigenvectors, while Guyan reduction is
vailable to allow the user to retain specific physical DOF’'s. For transient
esponse analyses, the inertia relief shapes can be used to reduce modal

runcation errors and therefore, generate improved element stress results.

Physical DOF’'s in the f-set are related to the generalized DOF’s by

he following equation:

Uy 1 0 0 u,
(ug) = - ug ¢ = [Ggqllug) (7-1)
Yo Goa Gok Goj Uj

here the a- and o-sets have been defined previously and
{uy) are generalized DOF's representing approximate eigenvectors
(Uj) are generalized DOF's representing inertia relief shapes
{uq) is the union of {ug}, {uy), and (uj)
[Goa] 1is the Guyan reduction constraint relationship

[Goj] is the transformation to define the inertia relief generalized
DOF's

G is the transformation to define the approximate eigenvectors
ok PP g

[qu] is the ‘overall transformation matrix such that the stiffness
matrix and the mass matrix in the generalized coordinates are

[Kqq] = [GgqlT[Kgg](Ggq] (7-2)
Mqq) = [G£q]TMeg](Cgq] (7-3)

The [Goa] matrix is identical to the [G,] matrix of Equation 6-11 and
therefore does not require further discussion. The [Gyk] and [Goj] matrices

ire discussed in the following subsections.

sL. 1 Inertia Relief Shapes

In most transient response problems, the Guyan reduction gives a
teasonable approximation to the acceleration responses if the retained DOF's

ire appropriately selected. However, the stress responses are likely to be
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1accurate unless large number of DOF’s are retained for analysis. One method

> improve the stress responses is by using the inertia relief shapes.

The inertia relief shapes are the displacement shapes of the eliminat-
i DOF’'s {u,) obtained by imposing an acceleration field on the structural
>del. Two types are treated here: (1) inertia relief shapes due to the
cceleration of the origin of the basic coordinate system and (2) inertia
napes due to an acceleration field caused by specified DOF's. The user can
elect either or both types. The DOF's to be eliminated are related to the

nertia relief DOF's (uj) by

c
c s Uj

{ug) = [Goj](uj) = [Goj Goj] s (7-4)
]

c
here (uj) denotes the 1inertia relief shape DOF’s due to coordinate accelera-
s
ion and {(uj} denotes those due to acceleration caused by user specified
c s
OF's. [Goj] and [Gof] are corresponding transformations.

c
The calculation of the [Goj] matrix begins by assuming that the origin
f the basic coordinate system (see Subsection 4.1) is subjected to an accel-
ration (Ug), where (U) has six DOF's. The inertia force on the structural

odel is

(Fg) B [Mgg][ch](aé) (7-5)

here [ch] is a rigid body transformation matrix to transform displacements
t the origin to displacements at the physical DOF’s and can be easily comput-
d based on geometric data. Equation 7-5 represents an applied load where
‘esponse can be computed using the same techniques as those given in Subsec-

iion 6.1. The basic equilibrium equation is
[Kgg] (Ug) = [Mgg] [ch] (Gé) (7-6)

A reduction of this equation produces an equation for the (ugy) vector

f Equation 7-4:

T o0
[Kool(Ug) = [Mog + Tmo Mgl [Ggel (i) (7-7)

87




‘e [Mog], (Tmo) and [Mpg)] are partitions of the Mgy and Tpn (the multi-
it constraint matrix) matrices. Note that the [G,]{uy) term of Equation 6-
ls absent in this equation. This is because this term is redundant with

effects produced by the [G,,] matrix of Equation 7-1.

The {u.) vector contains the generalized DOF’'s due to accelerations of

origin of the basic coordinate system, i.e:

Cc
(uj) = (ug) (7-8)

Equation 7-7 therefore, provides the required transformation:

Cc Cc
(uo) = [Gojl fuj) (7-9)

C 1 T
[Goj] = [Kool~ [Mog + Tmo Mmg][ch] (7-10)

s
The calculation of the [Goj] matrix follows a similar path and starts

specifying that certain retained degrees of freedom are given a unit

sleration:

S -e
(uj) = () (7-11)

The response of the omitted degrees of freedom to acceleration is

ained from

(Kool fug) = -[Mggl {Ug) - [Mga] f{uz) (7-12)

te again we have neglected the effect of the displacement of the analysis

since this information is redundant with the [G,,;] matrix.

If we make the usual assumption of Guyan reduction that (cf. Equation

5)

(Upg) = [Goa] (ug) (7-13)

n Equation 7-1, 7-11, 7-12, and 7-13 combine to give

S
[Goj]l = -[Koo) 1Moo Goa + Moal (7-14)
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As a final note on the inertial relief shapes, experience hkas shown
it it is necessary that the degrees of freedom which are used to create

tse shapes must be included as a-set degrees of freedom.

L.2 Approximate Eigenvectors

The [Gyok] matrix of Equation 7-1 contains column vectors that approxi-
e the lowest eigenvectors of the structural modal. A general theoretical
rivation of this matrix is now given and this is followed by a discussion of
ne of the detailed considerations that go into making this powerful tech-
Jjue a practical one. The discussion given here follows one given in Subsec-
om 2.4 of the MSC/NASTRAN Application Manual of Reference 19. The reasons
¢t this duplication are that (1) Reference 19 is relatively inaccessible and
) there are subtle differences in the ASTROS implementation of the tech-

jue.
The standard structural eigenvalue problem is written as
[K - aM] [¢] = [O] (7-15)

Successive iterations of an inverse power approach for the computation
eigenvalues and eigenvectors of Equation 7-15 provide approximate eigenvec-

ts. This approach applies a recursion relation of the form

[K - AgM] (uj41) = 1o [M] (up) (7-16)
ci

exre c¢j is the maximum component of ({uj} and Ag is a shift point that is

fined subsequently. The subspace made up of these vectors is

[G] = [ug, uy, wg, - up-1] (7-17)

If the complete set of eigenvectors (or modes) is given by [®], then

:h of the (u,)} vectors can be expressed as

lupt1) = [@] (ep41)

(7-18)
{un} = [®] (ap)
The mode shapes are orthogonal so that
Ay 1f i=j
(¢} [K] (45) = (7-19
0.0 1f imj
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1.0 if i=j
(61) [M] {45) = (7-20)

0.0 if iwmj
If Equation 7-18 is placed into Equation 7-16 and the resulting
equations are pre-multiplied by (#]T, the Equations 7-19 and 7-20 relations
give

a

Lodl - 1 (7-21)

@y n cn(Aj - Ag)

where the notation @y n Indicates the jth element of the {a,) vector. Equa-
tion 7-21 indicates that the relative proportion of an eigenvector in succes-
sive trial vectors increases inversely to the magnitude of its shifted eigen-
value. The series therefore converges to the eigenvector closest to the shift
point. The series of vectors given by Equation 7-17 are used to generate
[Gok) by setting the first column of Gyi to the last vector computed in the
iteration process. The next to last vector is mass orthogonalized with
respect to the last vector to give the second column of Gyx. This process is
repeated for preceding vectors of Equation 7-17 until the desired number of

approximate eigenvectors are obtained.

Details that are needed to complete the algorithm are (1) specifica-
tion of number of iterates (m in Equation 7-17), (2) specification of Ag, (3)

specification of ugp, and (4) rejection of parallel vectors. Each of these is

now briefly discussed.

Number of Iterates

Though the set of vectors given by Equation 7-17 should contain all
the approximate eigenvectors, they are not necessarily a good basis for G,y.
This is because some of the vectors may be parallel to one another to within
the accuracy of the computer and others may be a linear combination of two or
more other vectors. Therefore, it is necessary to determine more vectors in
Equation 7-17 than there are eigenvectors and use the mass orthonormalization

to select out an appropriate reduced set.

If Apax is the highest frequency of interest, then Sturm sequence
properties can be used to determine Np,., the number of eigenvalues below

Mmax- A safety factor of kg is then applied to give
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S A T : (7-22)
A safety factor of 1.5 is used in ASTROS.

Determination of Ag

Computer accuracy considerations also determine Ag. If the range of

eigenvalues varies from 0 to Apax, Equation 7-21 indicates that the a values

at the mth iteration range from

- m
Yom o s A \ (7-23)
@j,o Amax - As

If the precision of the computer is less than ¢, then the components
of the vector series differ from one another in an insignificant, random

fashion. Therefore, to ensure meaningful results, the shift value can be

computed from

by Ama cC (7 24)
s ' 1 - ecl/m

where 108 .is selected in ASTROS as a representative value for ¢., the preci-

sion of the computer.
Specification of Starting Vector

The up vector in Equation 7-17 needs to be selected so that it con-
tains all the approximate eigenvectors. This is done by generating an initial
vector using a random number generator. To provide added assurance, six
distinct initial vectors are generated in this way and the orthonormalization

process interweaves results from each of the six series of vectors.

Rejection of Parallel Vectors

Despite the precautions taken to ensure orthogonal vectors, it is
still possible for the iterative algorithm to produce parallel results. This
is checked in ASTROS by rejecting vectors whose norm is less than a specified
threshold. In ASTROS, this threshold is computed by reference to Equation 7-
23 and by assuming that the k¢ factor will produce a maximum eigenfrequency of
kfdpax: This gives a rejection threshold of

- n
€&y - S
-Ag + Kf Apax

(7-25)
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and when Mg is substituted from Equation 7-24, this gives

€&r = ‘e (7-26)
(kg + (1 - kg)eL/mn

Substantial testing. of the dynamic reduction dlgorithm on large problems has
shown that this value of ¢, performs well, while use of ¢, directly rejects

too many candidate vectors.
7.2 THE GIV METHOD OF EIGEN
The eigenanalysis in ASTROS solves the general problem:
[Kaa -[FAd] Maal [®2] = (0] (7-27)

where the a subscript is used to indicate matrices that have been obtained by
the Guyan reduction of Equations 6-14 and 6-15 or from the Dynamic Reduction
to the q-set of Equations 7-2 and 7-3.

A Givens (or Tridiagonal) method of eigenanalysis is employed. This
well known algorithm is briefly summarized here, with more detailed informa-
tion available in Subsections 9.2 and 10.2 of Reference 1 and Subsection 13.5

of Reference 14.

If there are rigid body modes, it is recommended that the support
concepts of Equations 6-16 through 6-18 be used to define these modes. The
calculated rigid body modes are:

(0] [mp) (8] = [ 1] (7-29)
and my is the rigid body mass matrix of Equation 6-22.

The Given’s method of eigenanalysis can be divided into six steps. In

the first step, the mass matrix is decomposed into Choleski factors:

Maa] = [c1[€)T (7-30)
and this is substituted into Equation 7-27 to give:

[Kaa - AcCcT)(®,] = [0] (7-31)
In the second step, intermediate vectors are defined as

[a] = [cT &) (7-32)

and Equation 7-31 is multiplied by ¢l to give
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(3 - AI] [a] = (O] (7-33)
where |

(3] = (61 KaeCT) : (7-34)
and the -T indicates inverse transpose.

In the third step, the J matrix is reduced to tridiagonal form using
the Given's method as described in Subsection 10.2.2 of Reference 1. The
fourth step entails using a Q-R iterative algorithm to further transform this

matrix to a diagonal form, where the diagonal terms are the eigenvalues of the

system.

Given the eigenvalues, the eigenvectors are obtained in the fifth and
sixth steps. The number of eigenvectors that are to be determined is speci-
fied by the user. If eigenvectors are requested, the fifth step entails
placing the extracted eigenvalue in Equation 7-33 and solving for the corre-
sponding eigenvector. Although it would appear that this equation could be
solved by direct substitution, this technique has been shown to be unpredicta-
ble and an alternative; iterative procedure based on an algorithm given on

pages 315 - 330 of Reference 20 is used.

In the sixth step, the eigenvector in the a-set degrees of freedom are

calculated based on Equation 7-32:
[#a) = [C]-}{a) - (7-35)

. Recovery of the modes to the global set is similar to that given for
the displacement recovery in Subsection 6.2. If Dynamic Reduction has been
used, the f-set degrees of freedom are calculated from Equatibn 7-1 while a

similar recovery is used for Guyan Reduction:

(@) = [1 ] (8,) (7-36)
GO )

where G, is given by Equation 6-11.

Recovery to the n-set entails merging in any enforced displacements

while the m-set displacements are obtained in a manner similar to Equation 6-2
(8m] = (Tmnl}{®n] (7-37)

The eigenvectors in the g-set are then obtained by merging m- and n-
set DOF's g
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dm ]
(@p] = (7-38)
g o,

7.3 CONS VALUATION

Given the eigenvalues, the constraint values are determined as:

' 2xf 2
g = 1.0 -  high)~ (7-39)

X
for upper bound constraints and

2nf 2 :
g - low - 1.0 (7-40)

A3
for lower bound constraints, where fhjgn and fjoy are the frequency limits as
specified in Equation 2-21 and Aj is the extracted eigenvalue. The extracted
value has been placed in the denominator because there is a desire (see Sub-
section 13.1) to express constraints in a form that make them linear in the
inverse of the design variable. The assumption made here is that non-struc-
tural mass makes the eigenvalue much more sensitive to changes in the struc-
tural stiffness than to mass changes. The stiffness, in turn, is assumed to
be a linear function of the design variable. Obviously, there are cases where

these assumptions do not apply.

7.4 FREQUENCY CONSTRAINT SENSITIVITIES

The calculation of sensitivities of frequency constraints to changes
in design variables begins by differentiating Equation 7-39 or 7-40. For
Equation 7-39, this gives

a 2nf 2 X, 1.0 - ax
b = L0 ) . o 7Y (7-41)
3Vi a2 avy '\j avy

]

The determination of BAj/avi is performed using well known relationships
(Reference 21) that can be represented conceptually by starting with the basic

modal equation:
[K - A4M] (45) = O (7-42)

Taking the derivative of 7-42 with respect to vj gives
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ax
Fﬂs_ el TV 2j M ] (é1) + [K - M) (ifi) -0 (7-43)
vy avy avy ] avy

T
If this equation is premultiplied by ¢j and the self-adjoint nature of the
symmetric eigenvalue problem i{s utilized, i.e.,

i
45 (K - AM) = 0 (7-44)

then Equation 7-43 becomes

F)\ T
= = 9K _ . aM_ T .
v (45) [avi Aj avil (8517512 [M] (45)) (7-45)

Equation 7-45 is evaluated in ASTROS in the g-set, thereby allowing
use of the DKVj and DMV; matrices of Equations 5-23 and 5.24 and the vectors
of [¢g] of Equation 7-38 that are associated with the constrained eigenvalues.
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SECTION VIII

0 C ANALYSES

3
.

Accurate aerodynamic analyses are a critical component in the perform-
ance of the multidisciplinary analysis capability contained in ASTROS. This
section describes the generation of the steady - and unsteady aerodynamic
matrices that are present in ASTROS while subseduént sections describe the
application of these aerodynamics. Thé splining techniques that are used to
couple the aerodynamic and ctructural models are also described in this

section.

8.1 STEADY AERODYNAMICS

Steady aerodynamics are used in ASTROS for the computation of loads on
an aircraft structure. The selection of an appropriate algorithm for comput-
ing these forces is not an easy task since methods vary in complexity from
"back-of-the-envelope" calculations to sophisticated computational fluid
dynamics algorithms. The USSAERO (Unified Subsonic and Supersonic Aerodynamic
Analysis) algorithm of Reference 22 was selected primarily because it repre-
sents an algorithm of medium complexity, consistent with the preliminary
design role of ASTROS, and because it is an algorithm that has been used
extensively in the performance of aerodynami- and aeroelastic analysis. In
particular, the USSAERO code had been integrated with a dynamic structural
response capability in the performance of an Air Force supported contract in
the area of maneuver loads (Reference 23) and this experience was directly

applicable to the ASTROS integration task.

B 15318 USSAERQ Capabilities

USSAERO determines the pressure distributions on 1lifting wing-body-
tail combinations using numerical methods. The solid boundaries are repre-
sented by a number of discrete panels as depicted in Figure 15. The flow
around the solid boundaries can be estimated by the superposition of source
type singularities for non-lifting bodies and vortex singularities for wing-
like singularities. The USSAERO algorithm has undergone a number of updates
and only a subset of the total capabilities have been implemented in ASTROS.
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Figure 15. Aerodynamic Paneling in USSAERO

Therefore, it is necessary that the capabilities of the ASTROS implementation

be defined.
(1)
(2)
(3)
(4)

(3)

(6)
(7)
(8)

Among the features supported are:

Subsonic and supersonic analyses.

Symmetric and antisymmetric analyses.

Multiple lifting surfaces, both coplanar and non-coplanar.

Body elements can be used to represent fuselage and pod (e.g.,
nacelles or stores) components.

Pitch, roll and yaw control surfaces can be specified (one
surface each).

Pitch, roll and yaw rates can be specified.
Thickness and camber effects of the lifting surfaces.

Aerodynamic influence coefficients (AIC).

It is equally useful to list capabilities that have been installed in

USSAERO versions that are not supported in ASTROS:
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(1) There is no asymmetric capability, either in terms of the config-
uration or the aerodynamic forces.

(2) The nonplanar option for representing thick lifting surfaces has
not been supported. This option is inconsistent with the aerody-
namic influence coefficient requirements for ASTROS.

(3) AIC's are not computed for body components.
) p Yy

Subsection 3.3 of the Applications Manual contains guidelines for
generating aerodynamic models and therefore, has more specific information

about the USSAERO capabilities in ASTROS.

8.1.2 USSAERO Methodology

The formulation of the methodology used in ASTROS is contained in
Reference 22 while this writeup provides an overview which defines the aerody-

namic matrices which are generated for the steady aeroelastic analyses.

The basic equation in USSAERO is given by:
Apb  Apw o wb

= (8-1)
Avb Ay v Wy

b - denotes body

where

w - denotes lifting surface

w - velocities at the panels due to a prescribed boundary condition
o - source singularities on the body

¥ - vortex singularities on the lifting surfaces

A - normal velocity influence coefficients

Terms in the A matrix provide the normal velocity that is produced at
a receiving panel due to a unit value of the singularity at a sending panel.
This matrix can be computed from the superposition of individual wvelocity
influence coefficients, which in turn can be computed from geometric consider-
ations and the prescribed Mach number. The boundary conditions can account
for airfoil camber and thickness, angle of attack, control surface settings

and aircraft rates.
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Once the values of the singularities have been determined, the veloci-

ty components can be computed and pressure coefficients at each of the panels

are calculated using:

.

2 -1
Cpy - —=2 1+ 2L M2 (1 - q4) -1 (8-2)
M2 2
where

M - Mach number
v - Specific heat ratio

2 2 2 2
qi - uj t+ vj + wy
uj - ugy + Auj (backwash)
Vi - Vg + Avj (sidewash)
Wi - Wg + Awy (upwash)

Uy, Vo and w, are the components of the onset flow in the reference axis
system and are normalized with respect to the freestream velocity. Perturba-
tion velocities at each panel, Auj, Avy, Awj, are also normalized with respect
to the freestream velocity. For lifting surfaces, the calculation of Equation

8-2 is repeated for the upper and lower surfaces.

As a final step, these pressure coefficients are dimensionalized and
converted to forces. These forces are output in matrix AIRFRC, the rows of
which are the panels and the columns correspond to individual boundary condi-

tions. This matrix is discussed further in Subsection 9.1.

The AIRFRC matrix provides loads that are applicable if the aircraft
is structurally rigid. A second matrix, AIC, is generated in the USSAERO
module to provide for the incremental loads created by the structural deforma-
tions. This matrix is generated in ASTROS by making the approximation that

the pressure expression of Equation 8-2 is

-2Au

C - i (8-3)
Pi e

This equation is developed by assuming that ug = 1, Auj << 1, vj << 1, wy << 1

and uses the mathematical approximation that (1 + €)@ = 1 + ac.
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Only loads on the wing are computed using this approximation; body
forces are ignored. The total force on a wing panel can be derived from

Equation 8-3.
Fi = 2Cpy Ay = -4 Aug Ay / Uy (8-4)

where Aj is the area of the panel and equal contributions from the upper and

lower surface account for the factor of two.
The AIC matrix calculation is then
Abb  Abw ]'1
Ayb  Ayw

where [U] is the influence coefficient matrix for the velocity in the stream-

[AIC] = -4 [ AREA ] [U] [ (8-5)

wise direction due to singularities of the panels. 1In order to ignore body

forces, portions of this matrix are set to zero:

0 o
o), = (8-6)
C D

where the C matrix gives the velocities on the wing panels due to singulari-

ties on the body and D gives velocities on the wing panels due to singulari-

ties on the wing.

In the context of multidisciplinary design, a single design task may
require analyses at a number of Mach numbers and both symmetric and antisym-
metric conditions. This is accommodated in ASTROS by creating separate AIC
and AIRFRC matrices for each Mach number required in the task and, for anti-
symmetric analyses, creating an AAIC matrix which is generated by differencing
contributions from the left and right sides of the aircraft (rather than
adding them for symmetric analyses) in the A matrix of Equation 8-1 and the U

matrix of Equation 8-6,
8.2 UNSTEADY AERODYNAMICS

Unsteady aerodynamics are used for a variety of purposes in ASTROS,
each of which has its own requirements. The flutter analysis requires un-
steady aerodynamic influence coefficients to integrate the effects of the
structural deformations and the aerodynamic forces in an assessment of dynamic

stability. The gust analysis requires aerodynamic forces, both to generate
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the loads that the gust creates on the structure and to estimate the aeroelas-
tic effects in the response to this load. The blast analysis is similar to
the gust analysis, but the methodology for the blast analysis integrated into
ASTROS requires these matrices in a slightly different form (See Appendix B).

Because there are fewer candidates, the selection of the algorithms to
provide the unsteady aerodynamic operators was simplified,'relative to the
steady case. For subsonic applications, the Doublet Lattice Method (DLM)
algorithm of Reference 24 was selected because it has become an industry
standard and because its implementation in NASTRAN provided a resource for
ASTROS code development. For supersonic applications, a comparable standard
algorithm does not exist, but an obvious candidate did emerge: the constant
pressure method (CPM) of Reference 25. The primary attraction of CPM is that
its geometrical input and its matrix output is consistent with doublet lattice
so that the majority of the code required for the two algorithms can be
shared. Another attribute is that Northrop has tested the CPM algorithm
extensively, with favorable results (Reference 26). 1In particular, CPM's cap-
ability to address interfering and intersecting surfaces was shown to perform
well. As in the steady aerodynamics case, the referenced documents are cited
as sources of detailed information on methodology employed in these algo-

rithms. This manual emphasizes the generation of matrices required in ASTROS

applications.

8.2.1 Unsteady Aerodynamics Capabilities

The DLM and CPM procedures calculate matrices which provide forces on
panels as a function of deflections at these panels. As this implies, the
discretization of an aircraft into a number of panels, in a fashion similar to
the steady aerodynamics model of Figure 15, is the basis for these methods.
Capabilities of the codes include:

(1) Symmetric, antisymmetric and asymmetric analyses with respect to

the aircraft centerline are available.

(2) Symmetric and asymmetric analysis with respect to the x-y plane
is also provided by DLM. Symmetric analysis represents a ground
effect option. Only asymmetric analyses are available in GCPM.

(3) The DLM permits the use of slender body theory and interference
panels to model the effects of bodies. Bodies are not modeled in
CPM.
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(4) Multiple lifting surface can be analyzed.

(5) No thickness or camber effects are included in unsteady analyses

so that 1lifting surfaces are analyzed as flat plates.

8.2.2 Unsteady Aerodynamics Methodology

The essence of the unsteady aerodynamics methods resides in the

development of three basic matrices (see Subsection 17.5 of Reference 1):

{w) = [A] (P) (8-7)

{w) = [D] {u) (8-8)

{F} = [S] {P) (8-9)
where

w - Downwash (normal wash) at the aerodynamic control point

A - Aerodynamic influence matrix (ASTROS actually computes AT)

P - Pressure on the aerodynamic panel at the vortex line

D - "Substantial differentiation" matrix

u - Displacements at the aerodynamic grid points

F - Forces and moments at the aerodynamic grid points

S - Integration matrix

The goal of the unsteady aerodynamic theory is to determine the forces due to
a given set of displacements. Simply stated, this is done by first determin-
ing the downwash using Equation 8-8, then solving for the pressure correspond-
ing to this downwash using Equation 8-7 and a predetermined A matrix and,
finally, using Equation &-9 to integrate the pressures over the panels to
determine the forces. The details of this development are substantially more
involved and will not be presented here. In particular, the development of
the A matrix involves integrations of a kernel over the lifting surfaces. The
presence of bodies further complicates this evaluation. For purposes of this
discussion, it suffices to say that the A matrix is a function of both Mach
number and reduced frequency (k = wb/U, where w is the frequency of oscilla-
tion, U is the free stream velocity and b is the length of a reference semi-
chord). The D matrix is a straightforward function of the panel geometry

(with the exception noted in the following paragraph) with real and imaginary
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components corresponding to the spatial and time derivatives of the displace-
ments. The S matrix is a simple function of geometry when only lifting sur-
faces are present, but becomes a function of M and k when bodies are present

and has a separate representation for subsonic and supersonic Mach numbers.

The implementation of the unsteady aerodynamics method occurs in two
stages: (1) Generation of geometry and related information and (2) Generation
of the aerodynamic matrices A, D, and S of Equations 8-7 through 8-9. The
definitions associated with these equations specify three points for each
panel: the aerodynamic control point, the vortex line and the aerodynamic
grid point. The location of each of these points, as a percentage of panel
chord, is given in Table 6. This information is key to the proper generation

of the S and D matrices.

TABLE 6. AERODYNAMIC PANEL POINTS

METHOD
POINT DOUBLET LATTICE CONSTANT PRESSURE
VORTEX 0.25 0.50
GRID 0.50 0.50
CONTROL 0.75 0.95

The application of the A, D, and S matrices requires further, disci-
pline dependent, processing. Additional relations that are required for this

processing include:

{ug) = [UG] (ug) (8-10)
(Fg) = [UG]T (Fy) (8-11)
tug) = [®] {qg] (8-12)
(Fq) = [®1T (Fs) (8-13)

In this idiosyncratic notation, the a subscript refers to aerodynamic

degrees of freedom and s refers to structural degrees of freedom.

Table 7 identific. all the terms used in Equations 8-7 through 8-13

and gives their dimensions, where the sizes refer to:
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TABLE 7. MATRICES USED IN THE GENERATION OF UNSTEADY AERODYNAMIC FORCES

NO. OF NO. OF
MATRIX ROWS COLUMNS TYPE DESCRIPTION
® na nm Real Retained normal modes
UG nk na Real Spline matrix relating aerodynamics to
structural dof's
S nk nj Real Integration matrix
A nj nj Complex|Aerodynamic influence matrix
D nj nk Complex|Substantial derivative matrix
ug na 1 Complex|Displacements at structural points
Uy nk 1 Complex|Displacements at aero grid points
qg nm 1 Complex{Modal generalized coordinates
Fg na 1 Complex|Forces at structural points
Fa nk 1 Complex]Forces at aerodynamic grids
Fq nm 1 Complex|Generalized forces
nj - total number of aerodynamic panels
nk - total number of degrees of freedom in the aerodynamic

coordinate system
na - number of degrees of freedom in the user’'s analysis set
nm - number of retained modes

The value of nk is typically two times nj, but bodies may add addi-
tional degrees of freedom. The spline matrix, UG, is discussed in Subsection

8.3 while the normal modes are discussed in Subsection 7.2.

For flutter and gust analyses, a generalized aerodynamic force matrix

is computed for each Mach number and reduced frequency:
fonh] = (8T(ue)T s (a)-1 pfuc)e) (8-14)

The design loop of ASTROS makes it efficient to break this calculation
into steps that are independent of the structural design and those that are

dependent. For example, the [S[A]'ID] matrix is independent of the structure
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and is therefore calculated once in the preface portion of ASTROS and is iden-
tified as Q. The spline matrix is independent of the structure in the g-
set, but goes through set reductions which depend on the stiffness and there-
fore the reduced spline matrix is recalculated after each design. The normal
modes, of course, are a strong function of the design and are completely

recalculated for each design iteration.

Gust analyses, as discussed in Subsection 11.2.3, require an addition-

al matrix for each Mach number and reduced frequency:
[Qnj) = (8T [ue)T s[a)-1) (8-15)
This matrix is also computed in stages, with [S][A]‘1 identified as [ij].

Blast analyses, as discussed in Appendix B, require [A]'1 directly.
Appendix B and Section XII discusses further processing of the aerodynamic

forces.
8.3 (ol0) \Y N AERO RUC ODELS

The steady and unsteady aerodynamics quantities are computed at
aerodynamic grids that typically do not coincide with the structural grid
points. The transfer of displacements and forces from one set of grids to the
other has been a troublesome task, with no universally accepted technique.
ASTROS has implemented two techniques, with the primary interconnection
algorithm being the surface spline technique of Reference 27.

A secondary algorithm performs a simple equivalent force transforma-
tion from the aero panels to a specified structural grid. Each of these

algorithms is now discussed.

8.3.1 Surface ine

The methodology associated with this spline is simple enough that its
derivation, as given in Subsection 17.3.1 of Reference 1 is essentially

repeated here.

A surface spline is used to find a function w(x,y) for all points
(x,y) when w is known for a discrete set of points, wj = w(xy,yq). An infi-
nite plate 1is introduced to solve for the total deflection pattern given
deflections at a discrete set of points. This surface spline is a smooth
continuous function which is nearly linear in x and y at large distances from

the points (xy,yj). Furthermore, the problem can be solved in closed form.
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The deflection of the plate is synthesized as the response due to a
set of point loads on the infinite plate. The response due to a single load
is called a fundamental solution. The fundamental solutions have polar
symmetry. If the load is taken at xj = yj = 0, and polar coordinates are used

(x =Y cos 6, y =r sin 8), the governing differential equation is

DVw = pl d¢, d|1_d,dw - q (8-16)
r dr dr | r dr dr
The load q vanishes except near r = 0. A solution to the general spline

problem, formed by super-imposing solutions of Equation 8-16 is given by

N
w(x,y) = ag + ajx + ayy + 121 Kj(x,y)Py (8-17)

where

Ki(x,y) = (1/16wD)ri In ri , ri - (x-x1)2 + (y-yp)?

and
Py = concentrated load at (xi,yi).

The N+3 unknowns (ag, aj, aj, Py, i=1,N) are determined from the N+3 equations
TPi = Zx4Pj = ZyjPy = 0

and

N
wy = ag + a1xy + a2y + 151 Kij Py (j=1,N) (8-18)

where
Kij = Kilxj,y3)

Note that Kjj = Kji, and that Kjj = O when i=j. The details of the derivation

are given in Reference 27.

These equations can be summarized in matrix form
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W(x-y) o [l.x.y.

Ky(x,y),Ko(x,y),...

The vector of a's and P’'s is found by solving

-

[0 ) 0
0 0
0 0

] -
wi 1
w2 1
w

g | 1

0

0

0

0 1
0 X1

0 »n

x1 y1 O
Xy Yo

XN YN Kni

1 9
XN
YN

Kin
Kon

. Kyn(x,y)] {—2-}-

It

= [C)(P)

(8-19)

(8-20)

The interpolation to any point in the plane (x,y) is then achieved by

evaluating w(x,y) from Equation 8-17 at the desired points,

overall equation of the form:

‘W)a =

1 x1a ¥1a Kia,1 Kia,2

1 x2a y2a K2a,1 Kza,2

1  Xpa *na Kna,1 Kna,12 -

Kla,nT (0 )
0
K2a,n 0
[C]'1 {1 w1 L
w2
Kna,n. L wr'1 y

This gives an

(8-21)

Slopes of the aerodynamic panels, which are the negative of the slopes

of the displacements, are also required.

tiating Equation 8-21 with respect to x:

(a)g = -(&¥), ~ -
ax

0 1 0 pg

108

[0 1 0 DKg,.q ...

na'l e

DKla,n-

DKpa,n

J

[ NN

[C]'1 1 w1

These can be determined by differen-




where
dk, ) - 2
DKy - ——lﬁfi—Zil - (f—fl) (1+ nry) (8-23)
J ax 8xD

The preface modules of ASTROS use the relations of Equations 8-21 and
8-22 to create the required spline matrices. Steady and unsteady aerodynamics
have different requirements and therefore different splines are created. For
unsteady aerodynamics, displacements and slopes are required at the aerodynam-
ic grid points so that the spline matrix interleaves results of Equations 8-21
and 8-22 to give a matrix with the number of rows equal to two times the
number of lifting surface panels. (Surface splines are not used to compute

displacements on body panels.) Symbolically
(wg) = [UG](wg) (8-24)

where the a subscript refers to displacements and slopes at the aerodynamic
grid points and the s subscripts refers to structural displacements. Condi-
tions of virtual work can be applied to derive the fact that the transpose of

the UG matrix relates forces in the two sets:
(Fg) = [UG)T{Fy) (8-25)

where the Fy vectors contain forces and moments at the aerodynamic panel and

Fg contains the out-of-plane forces at the structural grid points.

For steady aerodynamics, ASTROS has generated AIC matrices that relate
forces on aerodynamic panels due to slopes at the panel. Two separate matri-
ces are generated in this case. The first utilizes Equation 8-22 to compute

aerodynamic slopes:

{lag} = [GS] (wg) (8-26)
while the second uses Equation 8-21 to compute structural forces:

{(Fg) = [G] (Fg) (8-27)
8.3.2 Equivalent Force Transfer

A second means of transferring loads from aerodynamic panels to the
structure has been implemented for the frequently encountered case where no
structural model exists for a particular aerodynamic component. The sketch of
Figure 16 shows an example where the aerodynamic model contains a wing and
horizontal tail surface while only the wing is modeled for the structural
design task.
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Figure 16. Application of ATTACH Option

This is done when only wing structural design is of interest, but the aerody-
namic trim requires the determination of aerodynamic loads on the entire
aircraft. The ATTACH bulk data entry of ASTROS permits the transfer of the
loads from the aerodynamic panels to a specified grid in the structural model.
This is done by a simple geometric transfer of the panel forces:

NBOX

{F) - 2z {F)
R i=1 i

(8-28)
NBOX
{(Mlg = 121' [R]j (F}j

where the R subscript refers to the structural grid and the i subscript
identifies the individual aerodynamic box. The R matrix to compute the

equivalent moments is simply:
0 -(zy-zp)  (¥i-yR)
(Rl3 = (zi-2R) 0 - (Xi-%g) (8-29)

-(yi-yr)  (x4-xp) 0
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The transformations of Equations 8-28 are integrated with the spline
transformation of Equation 8-25 or 8-27 so that every aerodynamic load is

transferred to the structure.
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SECTION IX

STATIC AEROELASTIC ANALYSIS

The static aeroelastic analysis features in ASTROS provide the capa-
bility to analyze and design linear structures in the presence of steady
aerodynamic loading. This provides the ASTROS user with a self-contained
capability to compute loads experienced by a maneuvering aircraft and to
redesign the structure based on theéé loads. The capabilities available for
steady aerodynamics design include specifying limits on (1) the allowable
stress or strain response due to a specified trimmed maneuver, (2) the flexi-
ble to rigid ratio of the aircraft’s lift curve slope, and (3) the aileron
effectiveness of the flexible aircraft. This section first defines the basic
equations used for static aeroelastic analyses and then contains individual

subsections for each of the listed design aspects.
gl TRIX EQUATIONS FO RO c YSIS

The equations for static analysis given in Subsection 6.1 can be
easily adapted for steady aerodynamic analysis. In fact, Equations 6-1
through 6-9 are equally applicable to static and steady aerodynamic analysis,
since there is no interaction between mass, stiffness and aerodynamic terms in
the reduction to the f-set. Reduction of the aerodynamic forces to the a-set
does require coupling with the stiffness matrix so that it is at the f-set
that the aerodynamic and structural stiffnesses are joined. The spline
matrices of Equations 8-25 and 8-26 do require reduction to the f-set and
these reductions are similar to the reduction of the applied loads given in

Equations 6-5 and 6-9:

T I R T
[Gjn] - [Gjn] + [Tpn Gjm] (9-1)
Fi T .1 :
[6S§n]T = [(GS§nlT + [Tpn GSjm)
[63£1T = (65517
; i_ (9-2)
[6s5¢1T = [GS3£1T

where the transposed matrices are used for convenience and the assumption is
made that there are no nonzero enforced displacements. The j subscript

denotes the panels in the aerodynamic model.
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The aerodynamic forces and influence coefficients of Subsection 8.1.2

are then applied to the structure through the following splining relation:

[PAf] = q [Gy£]T [AIRFRC) (9-3)

[A1CSgf) = q [Gy£)T [AIC) [GSjf) (9-4)
where

PA - Unit aerodynamic load matrix

AICS - Aerodynamic influence coefficient matrix .

E c Dynamic pressure

The aerodynamic terms are added to the structural terms to give:
[Kgg - AICSgg)(ug) + [Mgg)(Ug) = [PAg) () (9-5)

where § is a vector of configuration parameters, such as angle of attack and
elevator angle. The 6§ vector is explicitly defined for the symmetric and
antisymmetric cases in Subsections 9.2 and 9.3, respectively.

It is convenient to define a new matrix which is the difference of the

structural and the aerodynamic stiffnesses:
[RAge] = [Kee - AICSgf) (9-6)

The reduction of Equation 9-5 to the &- and r-sets is very similar to
the formulation of Equations 6-10 through :-22 and this similarity is drawn on

here.

Dynamic reduction of the steady aeroelastic equations is not support-
ed, while the Guyan reduction relationships of Equations 6-11 and 6-12 require

modification to account for the aerodynamic stiffness:

' o 1 .

(Ug) = -[KAgy KAgallug) = [GAg)lug) (9-7)
=l

{ug) = [KAgo) l[PAg)(6) - [KAyo KAgal{ug) (9-8)

[KAga) (ua) + [Maallug) = [PAL)(8) (9-9)
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where

[KAga]l = (KAy; - KAyq GAp)
— -1
= SIS YTy T
[Mag]l = [Maga + Mga GA, + GAp, My, + GAG My GAg)

Note that since the KA matrix is not symmetric, it is necessary to retain both

the KAy, and KA, portion of this matrix for subsequent operations.

Equation 9-9 can be partitioned into r- and l-set degrees of freedom:

KAgp KAg, ](we Mgg Mp,' Up PAg
+ J - (8) (9-11)
KAy  KApp|lur Mg Mpef Uy PAy
As in the inertia relief formulation, ﬁl and U, are related through the

equation.
(Ug) = [D] (up) ' (6-18)
Note that elastic accelerations are not treated in this formulation.

At this point, the constraint that the elastic deformations are to be
orthogonal to the rigid body motions is imposed. This produces results that
are independent from the selection of the r-set degrees of freedom. If this
constraint was not imposed, and the equations were instead solved relative to
a null u, vector, the physical meaning of the stability derivative information
would be suspect. If Equation 6-18 and the orthogonality condition of Equa-
tics. 6-19 are inserted into Equation 9-11, the resulﬁing equation is

KALg KAgy  MggD#My, ug PAQ
KAyg KAyy My gD+My Uy, - PA, {6) (9-12)
DTMgg+Mpg DTMy M,y 0 Uy 0

These equations can be solved in a variety of ways, with a particular
algorithm entailing multiplying the first row of Equation 9-12 by DT and
adding it to the second row. This new second row is interchanged with the
third equation to give the following system:
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KApp KAp, MpgD+Mp | [ up PAp
DTMpg+M,  DTMy 4, 0 ur t = 0 (6) (9-13)
DTRApp+KA g DTKA g, +KA,, my Up DTPAQ+PA,

where m, is the reduced mass matrix of Equation 6-22 and, unlike the static
analysis equation of Equation 6-21, the 31 and 32 terms of Equation 9-13 have

nonzero contributions from the aerodynamic corrections.

Equation 94113 is redefined in order to simplify the notation based on
the partitions given in the equation:

Ki1 Kiz uy 131
- (6) (9-14)
K21 K22 up P2

The first row of Equation 9-14 can be solved for u; in terms of § and

uy to give

tup) = (K117 ((P1] (8) - [Ky2]) (up)] (9-15)

If Equation 9-15 is substituted into the second row of Equation 9-14

and terms are rearranged then:
[K22 - Kp1K117 1K12] (ug) = [P2 - Kp1K1171P1) (6) (9-16)

Equation 9-16 is the basic equation for static aeroelastic analysis.

The next two subsections discuss particular applications of this equation.

9.2 SYMMETRIC ANALYSES

Symmetric steady aerodynamic analyses are applied in ASTROS for
longitudinal trim and subsequent stress analysis and for analysis and design

of an aircraft’s 1ift effectiveness parameter. For symmetric analyses, the §

vector has four rows:
(1) Thickness and camber effects
(2) Pitch control surface
(3) Pitch rate
(4) Angle of attack

Thickness and camber effects refer to the airloads produced when the
other members are zero and can be thought of as giving zero angle-of-attack

effects. The value of this term is always 1.0. The pitch control surface
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governs the motion of the aerodynamic panels that trim the pitching moment of
the aircraft. These could represent an elevator or an all moving stabilizer
on a canard or tail surface. This term is designated as §,. Pitch rate is

designated as q, while the angle of attack parameter is denoted by a.

gisarsilk im Analysi

For the trim analysis, Equation 9-16 is solved for up and §. The up
vector has as many terms as there are in the r-set (nr). Two options are
supported in ASTROS. 1In the first option, a single equation (nr=1) is solved
for the angle of attack that provides the 1ift required to meet a user speci-
fied load factor, n. In this case, uy is a scalar equal to gn,, where g is
the gravitational constant, The pitch rate and pitch control terms are
ignored in this case so that only thickness, camber and angle of attack
aerodynamic- effects are included in the trim analysis. Thickness and camber

is fixed and a is the single unknown.

In the second option, two equations (nr=2) are solved for the angle of
attack and control surface setting that provides lift sufficient to meet a
user specified load factor and that produces a net pitching moment of zero.
In this case, the up vector contains one term based on the user specified load
factor and a second term of zero corresponding to zero pitch acceleration. Of
the configuration parameters, thickness and camber effects are fixed and pitch

rate is specified by using:

g(nz - 1)
v

q - (9-17)

The equations are then solved for angle of attack and control surface setting.

Given the values for the uy and § vectors, the recovery of the elastic
deformations is straightforward. The u] vector of Equation 9-14 is the u,
vector of Equation 9-9 so that supported and nonsupported deformations are
both recovered using Equation 9-14 while the f{-set accelerations are computed
using Equation 6-18. Further recovery of the omitted degrees of freedom and
the single and multiple point constraints proceeds as detailed in Subsection
6.1. One difference from that formulation is in how loads applied to omitted

degrees of freedom affect the omitted displacements. These aerodynamic loads

are computed using
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(Po) = [PAg] (6) (9-18)

where PA, is the matrix of rigid aerodynamic loads on the omitted degrees of
freedom and § is the vector of trim parameters determined during the trim
process. These omitted loads are then used to recover omitted displacements

in the standard fashion:

o -1
o
(ug) = [GAg] (ug) + (ue) (9-20)
where GA, is defined in Equation 9-7.

Recovery of accelerations and displacements in the f- and g-sets
proceeds normally. Given the displacements in the g-set, displacement con-
straints can be calculated and Equation 6-29 can be used to recover the

components used in computing strength constraints.

9.2.2 Lift Effectiveness Constraint

The 1ift effectiveness constraint in ASTROS places bounds on the ratio
of the flexible to rigid 1lift curve slope of the aircraft
‘Lo
emin € —F < epay (2-24)
‘Lo
R

Subsection 2.2.2.2 defines the terms used in this equation.

Equation 9-16 contains the basic information required to evaluate this
constraint. Conceptually, the flexible 1lift curve slope is obtained by
setting the term corresponding to the angle of attack in the § vector to unity
and the remaining terms in the vector to zero and then determining the result-
ing values of uj. These are the accelerations of the aivcraft and, when
multiplied by the matrix m,, give the force and moment acting on the struc-
ture. These can then be nondimensionalized to stability derivatives with the
force term translating to the 1ift derivative. In mathematical terms:

‘Lo
= £} = Ime)[KRp-Ko1K11 1Kyp1-1[Pp Ko1K 1" IP11M8e)  (9-21)

cC
My
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Where 6, is the configuration vector § with a unit value of the angle
of attack:

(60, =

- O OO0
[eNeNoNa)

S is the wing reference area and ¢ is the wing reference chord. The factor of
two on the left-hand side of Equation 9-21 is due to the fact that the right-

hand side equations account for only one side of the aircraft.

Rigid stability derivatives are determined from a less complex matrix

equation:
Clq
§§{_B} = (P2] (6q) (9-22)
2 cha

R

.

The 1lift effectiveness constraint is calculated using
g = a+ be (9-23)

where ¢ is the flexible to rigid ratio of Equation 9-21. The a and b coeffi-
cients are listed in Table 8 for upper and lower bound constraints and re-
quired effectiveness values (freq) that are positive, negative or zero. REQI
in this table is 1.0/¢yeq-

TABLE 8. COEFFICIENTS FOR THE LIFT EFFECTIVENESS

CONSTRAINT
SIGN OF CONSTRAINT TYPE
€req UPPER LOWER
a b a b
POS -1.0 REQI 1.0 -REQI
NEG 1.0 -REQI -1.0 REQI
ZERO 0.0 1.0 0.0 -1.0

Specification of upper bound limits on the effectiveness and negative
and zero values of the required effectiveness have been included for complete-

ness. It is anticipated that these particular features will rarely be used.
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9.3 ANTISYMMETRIC ANALYSES

Antisymmetric steady aerodynamic analyses are applied in ASTROS for
the analysis and design of an aircraft’s roll performance. For antisymmetric

analyses, the § vector of Equation 9-16 has two components:
(1) Roll control surface
(2) Roll rate

The roll control surface, or aileron, is designated 6§, while the roll

rate is denoted by p.

Roll performance requirements frequently drive the design of aircraft
wing structures. This factor has been recognized in ASTROS by the incorpora-
tion of an aileron effectiveness constraint. Aileron effectiveness, following
terminology used in Reference 9 can be defined as the ratio of roll due to

aileron deflection over roll due to roll rate:

C‘l
ceff = -(Crga)£/( g%)f (2-25)

where Subsection 2.2.2.2 provides a definition of the terms used in this

equation.

The effectiveness parameter is as a measure of the steady state roll
rate achievable for a unit value of aileron deflection. In a manner similar
to the 1ift effectiveness, the user can specify that the aileron effectiveness

be within a specified range:

€min £ €eff < €max (9-24)

The stability derivatives required by Equation 2-25 can be determined
using the right-hand side of Equation 9-16. The left-hand side of Equation 9-
16 does not enter into this computation due to the specification that the
effectiveness is computed for steady state roll (i.e., roll acceleration and

therefore, uj, is zero). Explicitly, the right-hand side of Equation 9-16

is:
95~ 152 = [P2 - K21K317'P1] (0.0} (9-25)
asb? ¢ 1 0.0
s g " [P2 - K21K117'P1) (1.0} (9-26)
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where

1.0
a1 -

0.0

0.0
6 -
L 1.0

are configuration vectors with wunit values of aileron deflection and

and

nondimensional roll rate, respectively. The columns of rigid aerodynamic
loads for the roll rate contained in Py and P} are computed for p/V = 1.0.
For this reason, an additional b/2 factor is required in the multiplication of
the nondimensional stability derivative in Equation 9-26.

Given the stability derivatives of Equations 9-25 and 9-26, Equation
2-25 is used to determine the aileron effectiveness. The evaluation of the
constraint is similar to that of Equation 9-23 and Table 7 with Equation 2-24
used for ¢ and REQI equal to 1.0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>