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Section 1.0

INTRODUCTION

This section presents a brief overview of:

. Study scope
9 Vehicle system requirements
* Mission requirements
* Engine systems studied
* Study goals and findings
e Life cycle cost analysis assumptions and findings
* Scaling of configurations of various takeoff gross weight/gross lift off weight

(TOGW/GLOW) vehicle classes
* Recommendations for future work
* Study approach
* Contents of the report

1.1 Study Overview

The "Combined Cycle" engines that are the subject of study here integrate airbreathing
and rocket propulsion systems into a single engine system. These types of engines are referred to
as being "Rocket Based Combined Cycle" engine systems or RBCC engines. These engines
transition from initial air-augmented rocket mode takeoff and initial acceleration to ramjet to
scramjet and finally to rocket propulsion to orbital insertion velocity.

Limited study of rocket based combined cycle engine systems was carried out in the
1960s under USAF and NASA sponsorship. These studies focused primarily on missile, aircraft
and multiple stage space transportation systems. This report focuses on single-stage-to-orbit
(SSTO) vehicle systems powered by rocket based combined cycle (RBCC) engine systems.

A significant effort in hypersonic propulsion is presently included in the National
Aerospace Plane (NASP) or X-30 project. The overall design approach of the NASP/X-30
vehicles is inferred to be based upon non-axisymmetric vehicle configurations, i.e., similar to
conventional aircraft geometries. This study, for reasons that will be discussed later, focuses on
axisymmetric designs, similar to most rocket propelled vehicles, but with lifting surfaces.

The study effort focused on the analysis of past work in the field of rocket based
combined cycle engine systems, the selection of five RBCC engines for further evaluation and an
investigation of design approach alternatives which integrate these engines into a vehicle system,
The vehicle integration study considered engine/vehicle integration alternatives, vehicle structure
and subsystems concepts including propellant tank designs (integral and non-integral), thermal
protection systems (TPS), and crew compartment and payload module integration. A number ofcandidate designs evolved from this effort. For these candidate configurations, trajectory andaerothermodynamic analyses were conducted in support of the TPS design.

The study also assessed the technology requirements unique to the axisymmetric RBCC

designs. A subscale engine development and vehicle development plan were prepared. The
findings of these tasks provided the information needed to carry out a preliminary life cycle costanalysis.

The cost analysis carried out in this study of the axisymmetiie RBCC vehicle system is different
from that of aircraft cost analysis. In the axisymmetric vehicle configuration studied, the


