AD NUMBER

ADB116203

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution limited to U.S. Gov’t. agencies only; Administrative/Operational Use; 31 Jul 87. Other requests must be referred to U.S. Army Medical Research and Development Command, Attn: SGRD-RMI-S, Ft. Detrick, Frederick, MD 21701-5012.

AUTHORITY

USAMRMC ltr dtd 26 Jan 2000

THIS PAGE IS UNCLASSIFIED
Colonization and Containment of Hyalomma Marginatum Rufipes For Studies on the Transmission of Crimean-Congo Hemorrhagic Fever

Final Report

Daniel E. Sonenshine, Ph.D.

July 31, 1987

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-86-C-6169

Old Dominion University Research Foundation
P.O. Box 6369
Norfolk, Virginia 23508

Distribution limited to U.S. Government Agencies only; Administrative/Operational Use, July 31, 1987. Other requests for this document must be referred to Commander, U.S. Army Medical Research and Development Command, ATTN: SGRD-RMI-S, Fort Detrick, Frederick, Maryland 21701-5012

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
 Colonization and Containment of Hyalomma Marginatum Rufipes For Studies on the Transmission of Crimean-Congo Hemorrhagic Fever

Final Report

Daniel E. Sonenshine, Ph.D.

July 31, 1987

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-86-C-6169

Old Dominion University Research Foundation
P.O. Box 6369
Norfolk, Virginia 23508

Distribution limited to U.S. Government Agencies only; Administrative/Operational Use, July 31, 1987. Other requests for this document must be referred to Commander, U.S. Army Medical Research and Development Command, ATTN: SGRD-RMI-S, Fort Detrick, Frederick, Maryland 21701-5012

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents
This report describes services for safe handling, colonization and containment of exotic African ixodid ticks at the Disease Assessment Division, USAMRIID, Fort Detrick, Frederick, MD. Diagrams illustrate facilities to be designed, equipment to be fabricated and record keeping forms to be generated. Techniques for tick feeding, colonization of tick species and related matters are described. Training in tick-rearing procedures is also described. Finally, a literature library with over 700 pertinent references was provided with procedures for sorting by author, journal, subject or other desired need.
FOREWORD

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).
TABLE OF CONTENTS

I. STATEMENT OF THE PROBLEM ... 1
II. BACKGROUND ... 2
III. RATIONALE .. 4
IV. METHODS .. 5
V. RESULTS ... 8
VI. DISCUSSION AND CONCLUSIONS ... 19
LITERATURE CITED .. 21
APPENDICES ... 22-89
DISTRIBUTION LIST ... 90

LIST OF FIGURES

Figure .. Page
1 Diagrammatic sketch illustrating the design of the isolation room used for feeding exotic (African) ticks on laboratory animals .. 7
2 Diagram of a portable containment tray to hold exotic ticks during non-feeding stages. The tray can be locked. Numerous holes and perforations provide for air exchange. The interior of the tray is divided into rows for orderly arrangement of specimen vials ... 10
3 Transport cart, with locking cover, for safe transport of exotic ticks between rooms ... 11
4 Moat table with electric shock barrier, moat containing pesticide solution, and metal sides to repel ticks escaping from host animals during infestations with exotic ticks. Animals to be infected were placed in cages in the center of the table ... 12
I. STATEMENT OF THE PROBLEM

The purpose of this contract was (1) to provide the assistance and scientific expertise needed to facilitate the colonization of exotic African tick species, especially *Hyalomma marginatum rufipes* and other *Hyalomma marginatum* subspecies; and (2) to insure the proper containment of these man-biting tick vectors so that they could be used safely to study the mechanisms of transmission of Crimean-Congo Hemorrhagic Fever (CCHF).

To meet these needs, protocols were planned and discussed with USAMRIID personnel. The protocols for colonizing exotic African ticks assumed the following:

(1) a colony of each species was to be created and maintained in such a manner as to provide all necessary specimens for transmission experiments without risk of escape. Containment was regarded as an absolute necessity;

(2) the colony was to be created and maintained at USAMRIID, Fort Detrick, MD. no other sites were to be used;

(3) ticks from the stock colony would be infected and housed in the P-3 infectious area ("hot" area) independent of the stock colony and destroyed when the experiments are completed;

(4) a trial program will be established with a native American species, e.g., *Dermacentor variabilis* (Say) to verify the reliability of the containment procedures. This trial program will be completed in 6 months;

(5) a special room would be designated for the feeding of exotic ticks on hosts, while special incubators, transport devices, and containment equipment would be fabricated as needed.

(6) log books and data forms would be used by the colony maintenance personnel to document the status of each species colonized and the fate of the specimens. When possible, this recordkeeping work would be computerized;

(7) to support the work on colonization of exotic African ticks, especially *Hyalomma marginatum rufipes*, and transmission of CCHF, a review of the literature and a computerized literature data base is needed.
II. BACKGROUND

The basic etiology, epizootiology and epidemiology of Crimean-Congo Hemorrhagic Fever (CCHF) has been the subject of intensive study in recent years. Undoubtedly, the most extensive and thorough review of this subject is that of Hoogstraal (1979). CCHF virus is widespread over vast regions of the Palearctic, Oriental and Ethiopian faunal region, predominantly in steppe, savannah, dry deciduous forest and other semi-arid biotypes favored by its ixodid tick vectors. In Africa, CCHF is enzootic from Senegal, Nigeria, The Central African Empire and Zaire in the western part of the continent eastward to Kenya. Tanzania and Ethiopia in east Africa (Hoogstraal, 1979). Among the various ixodid vectors in tropical Africa, 2 are especially important, *Hyalomma marginatum marginatum* Koch, 1844 and *Hyalomma marginatum rufipes* Koch, 1844 (= *H. rufipes*). The former is established in the Crimea, Astrakhan and other republics of the Soviet Union as well as in southern Europe. *H. m. marginatum* is transported to Africa with migratory birds, where it also survives in the Mediterranean climate zones of North Africa (Hoogstraal, 1979). *H. m. rufipes* is established predominantly in the Ethiopian faunal region, but its range extends to areas of Soviet Central Asia (Hoogstraal et al. 1961). In Africa, its range extends from the South African highlands northward to the Nile River Valley of Egypt and across the Red Sea to scattered localities in Yemen and southern Saudia Arabia. This subspecies, like its close relative, *H. m. marginatum*, is also transported across vast distances by the agency of migratory birds. In Ethiopia, where the tick is widespread, warm but moderately dry lowlands are considered optimum for *H. m. rufipes* (Pegram et al. 1981). Further south, in Kenya, Somalia, Tanzania and Zambia, it is distributed in regions where the annual rainfall ranges from 250-875 mm/year.
According to Hoogstraal (1956), its range in Africa is limited to regions with annual rainfall between "ten to thirty inches a year" or "where a long, severe dry season occurs between an annual rainy season of approximately forty inches."

Hosts for the *Hyalomma marginatum* complex include, predominantly, migratory birds, hares, and hedgehogs for the immatures, and various domestic herbivores for the adults. Adults may also feed on dogs, cats, and even humans (Hoogstraal, 1979). Hoogstraal et al. (1963) report that adults also feed on hares. According to Hoogstraal (1956) this tick assumes a 2-host feeding pattern when allowed to parasitize hares.

There is little evidence of *H. marginatum* seasonal activity in Ethiopia, at least not in the studies done in that country (Pegram et al. 1981). However, this is not the case elsewhere. In Bulgaria, larval and nymphal *H. m. marginatum* exhibit a well defined seasonal activity period, from July to October. The question of seasonal activity in this species, especially in the African subspecies, merits further investigation.

The biology of this tick in the laboratory is poorly known. Hoogstraal (1956) cites studies by Theiler, showing a life cycle of 4-5 months, but details of hosts, incubator temperatures, and relative humidities were not given. Optimum temperatures and relative humidities for melting, oviposition and hatching of *H. m. rufipes* are unknown.

This limited review provides the basis for the proposed work, and also reveals the difficulties that were expected in the colonization of *H. marginatum* subspecies and also other exotic African ticks. However, there was reason to anticipate success in feeding the ticks on laboratory hosts, e.g. rabbits and guinea pigs. Consequently, the limited data available offered optimism in attempting colonization of these species.
Containment procedures for housing tick vectors are generally not available in published documents. Consequently, these procedures had to be developed de novo. Therefore, this document can serve as a convenient model for future use by government agencies planning studies with exotic arthropod vectors.

III. RATIONALE

The rationale was to formulate procedures for (1) housing the ticks in various life stages under strict isolation, (2) transporting ticks for feeding in transport devices that would prevent inadvertent spread in the event of accidents, (3) feeding of ticks on laboratory animals on a specially designed table to minimize escape of ticks during feeding, (4) renovation or modification of the isolation room to exclude escape of any ticks that escaped from the feeding table, and (5) use of native American ticks (uninfected, from a laboratory colony) to test the containment procedures.

When the preliminary stages noted above had been achieved, travel was planned to various countries in Africa to acquire the exotic tick species needed for the research. Upon return, colonization was to be initiated.

Specific personnel were to be designated as responsible for the management of the tick colonies. To facilitate their supervision of this resource and further reduce the risk of accidental escape of exotic ticks, record-keeping forms and log books were planned. Eventually, these would be computerized to facilitate retrieval of information and generate status reports.

A literature data base was recommended in order to provide a knowledge base for questions concerning the biology of these exotic species and their role in the epidemiology of Crimean-Congo Hemorrhagic Fever.
IV. METHODS

The following is a synopsis of methods that were proposed for the performance of these studies. A more detailed description is contained in the original proposal.

The entire stock colonies of exotic tick species were to be maintained in the insectary at USAMRIID, Fort Detrick, MD.

1. Facilities

All specimens were housed in a special area of the insectary which consisted of two adjoining rooms. One room was to contain a specially-designed infestation table. The main room of the insectory contained the incubators where the ticks were housed during the non-feeding stages.

2. Personnel

Qualified laboratory personnel were indoctrinatd into the hazards of uncontrolled tick infestations, safety, precautions, the importance of accurate recordkeeping (including accounting for all vials, hosts, treatments and even all adult ticks), log books for recording data, handling of vials, specimens and animals, and personal hygiene. The colony manager was asked to provide status reports on a regular basis. These were to detail the numbers and physiological stage of all life stages, numbers of vials, infestations in progress, and all other aspects regarding the state of the colony. The colony manager was expected to provide specimens for future experiments.

3. Procedures

Specimens were held in gauze covered vials in the incubator, in special cages (modified from mosquito breeding cages). Temperature, relative
humidity and light:dark cycles were controlled. These cages also served as transport devices.

Infestation was done on an infestation table. This special table was fabricated in accordance with the contractor's recommendations by the USAMRIID metal shop (Mr. Don Smith supervised this task). (Figure 1). Infestations were done under gauze cloth to contain the ticks. The isolation room was also cleared of other tables or furniture with drawers, and the floors, ceiling, drains, and door frames were treated with sticky oils or tape to prevent escape of loose ticks, if any. Animals were tranquilized to minimize violent thrashing or other behavior that might disperse the ticks. A large reflector, made of metal, was installed on the back of the table to reflect ticks thrown from the host that might fall unnoticed behind the table.

Recordkeeping was planned and discussed with the colony supervisor; initially, Mr. John Kondig, was designated for this task. A complex record form was designed that allowed the colony supervisor to record the status of all life stages, their use and ultimate fate, for each species. This form was later simplified. Computer hardware and appropriate software was acquired to support this mission.

Training in tick rearing procedures and recordkeeping methods was regarded as an essential element in the development of these tick colonies and their safe management. The contractor proposed his facilities at Old Dominion University for 3-4 days of training and instruction for designated USAMRIID personnel.

Literature needed to provide the data base for the research was acquired and a reference list constructed in DBASE. The necessary hardware and software noted above made it possible to generate a massive data base.
Fig. 1. Diagrammatic sketch illustrating the design of the isolation room used for feeding exotic (African) ticks on laboratory animals.
and provide retrieval services on any of a wide variety of key fields (e.g. author, journal, etc.). Floppy disks containing this library were furnished to USARAMIID personnel periodically as the library was developed.

V. RESULTS

1. Facilities and Equipment

A plan for colonization and containment of the tick, *Hyalomma marginatum rufipes*, was prepared and presented to Dr. Charles Bailey, Lt. Colonel, U.S. Army, and other personnel of the Department of Arboviral Entomology, USAMRIID, on April 15, 1986. Included in the meeting were personnel from other departments concerned with fabrication of special equipment for the project. A room in the USAMRIID insectary area was designated for this research, and modifications designed to meet work specifications were designed. Mr. John Konig was assigned as manager of the tick colonization program and the contact for consultations with Dr. Sonenshine, project consultant, and Principal Investigator. The design of this room was the result of meetings and discussions between Dr. Sonenshine and USARIID personnel. The room is solid wall construction, pointed, and with a monolithic floor containing a floor drain (covered). The door frame, electrical outlets, and heating ducts were treated with a sticky oil barrier to trap any ticks that might escape during specimen handling or feeding on animals. A work bench, without drawers, but with knee holes, provided the working area where personnel could handle tick specimens. A wall mounted glass cabinet provided a place for storage of only the most essential supplies, well above the work area, and, therefore, unlikely to become contaminated in the event that ticks escaped. A small incubator, free standing, was provided to house tick specimens on a temporary basis (the main incubator was in the main
insectary, the adjoining laboratory). The free-standing cabinet was available to contain bulky supplies that could not readily fit into the wall mounted cabinets. A double sink with a small drain board provided for clean up of vials, other infestation materials and for the technicians to wash after their work. Waste baskets, trash barrels, or containers for dead animals were not housed in the infestation room but could be moved in and out as needed.

A portable containment tray, Figure 2, was also designed to provide a means for storing exotic ticks during their non-feeding stages. The tray was designed to fit in an incubator, and to be removed as a unit when needed for transport to another location. The subdivisions within the tray provided for an orderly arrangement of specimen vials, so that the vials could be entered by row number and this arrangement recorded in a log book. Subsequently, USAMRIID personnel decided to modify existing mosquito breeding cages for this purpose, and these "portable containment trays" were never fabricated.

A cart for safe transport of exotic tick specimens was also designed. (See Fig. 3). This was to be fabricated at USAMRIID, using a commercially available metal or fiberglass cart as a base. The top of the cart was to contain the sides and a locking cover so that the containment trays could be installed, or, if needed, loose specimen vials could be transported safely. This modification was constructed under the supervision of Mr. Don Smith.

An infestation table was also designed and fabricated in the USAMRIID shop facility, under the supervision of Mr. Don Smith. Figure 4 illustrates this table. The purpose of this table was to allow for infestation of animals by ticks so that escape of loose specimens was minimized or impossible. To accomplish this goal, a reflecting wall was build around the sides and
Fig. 2. Diagram of a portable containment tray to hold exotic ticks during non-feeding stages. The tray can be locked. Numerous holes and perforations provide for air exchange. The interior of the tray is divided into rows for orderly arrangement of specimen vials.
Fig. 3. Transport cart, with locking cover, for safe transport of exotic ticks between rooms.
Fig. 4. Moat table with electric shock barrier, moat containing pesticide solution, and metal sides to repel ticks escaping from host animals during infestations with exotic ticks. Animals to be infected were placed in cages in the center of the table.
back of the table; the wall around the front was eliminated (shown in the figure, but eliminated in the design). A solid metal barrier was eventually substituted for the wire screen shown in the figure. Next, a double strip electric shock barrier was installed along the inner margins of the table, controlled by a control panel on the front of the table (to regulate the intensity of the current) and a liquid filled moat surrounded the entire table just inside the reflecting wall. Oil containing a non-toxic pesticide (e.g. Permethrin) could be used to kill any ticks that entered the moat. These barriers were expected to (1) deter ticks that escaped that host or, inadvertently, from the technicians, during feeding (electric shock barrier); (2) kill ticks that crossed the electric shock barrier, or were caught by the reflecting wall (moat); and (3) prevent escape of ticks thrown from the host by violent twitching, jerking or other violent movements of the animal host (metal reflecting barrier).

Incubators (not figured in this report) in the main insectary room adjoining the isolation/tick infestation room were made available to house the tick colonies during their non-parasitic stages.

2. Tick Colonies

Four species of exotic ticks were brought back from East Africa as a result of collecting trips made by USAMRIID personnel. These include *Boophilus decoloratus, Hyalomma plumbeum, Rhipicephalus evertsi evertsi* and *Amblyomma variegatum*. Engorged female specimens of each species were included in the collections, and these laid eggs. Thus, progeny of each of the 4 species are now available for initiating colonies. In addition, at the request of John Konig, I sent ca 100 adults, mixed males and females, of the American dog tick, *Dermacentor variabilis*, from my laboratory colony.
These ticks were to be used for initiating a colony of this species and to serve as the vehicle to practice containment procedures. Additional specimens (ca 100 adults) were provided during the visit by Captain Logan and Mr. Kondig to Old Dominion University (please see below, 3. Training).

Although the training and testing procedures with the native tick, D. variabilis, were to precede the colonization of the African ticks, travel opportunities dictated the need to acquire the latter. Consequently, testing with D. variabilis was initiated and this work was done before actual feeding of the larval stages of the African ticks was allowed. Tests with D. variabilis demonstrated the efficiency of the containment procedures and provided direct "hands on" experience for the USAMRIID personnel engaged in the work.

3. Training

During the week of August 25-28, 1986, John Kondig and Dr. Thomas Logan visited my research laboratory at ODU for training and consultations. Training emphasized breeding techniques, containment procedures, and computerized recordkeeping. Breeding techniques included hands-on experience in infesting rabbits with either American dog ticks, D. variabilis, or Rocky Mountain wood ticks, D. andersoni, and the African tick, Hyalomma dromedarii (camel tick) on rabbits and on rats. Both Mr. Kondig and Dr. Logan prepared the animals for infestation and carried out infestations themselves, thereby gaining direct experience in the techniques we use in my laboratory. To illustrate computerized recordkeeping, a colony notebook was prepared for Amblyomma maculatum, one of the species we have in colony, and one which has the smallest numbers of containers. Prior to the visit of Mr. Kondig and Dr. Logan, I numbered all of the vials of ticks, segregated them
by age and sex, and recorded the data on record forms in the colony logbook. Next, I created a file in DBASE 3 Plus, the computer software used for this purpose. I entered records of several of the vials to illustrate the principals involved in the records transfer techniques. When Mr. Kondig and Dr. Logan arrived, I explained the procedures, and asked them to create a similar file to gain experience in these DBASE procedures. Having set up the file, I asked them to enter records for this species, one record for each vial. The specific fields, e.g., vial number, date of feeding, etc., were reviewed and a discrete number of fields were established to simplify recordkeeping. Finally, the records were entered, creating a file with a complete set of records for all of the vials containing specimens of this species. When completed, I illustrated retrieval techniques. Records were retrieved by date of entry, life stage, or other specific fields that were present in the data base. In this manner, we were able to determine all of the vials for any given life stage, determine how many specimens of a given life stage were available for study, determine the status of specimens (when last fed, when molted, etc.), or other needed information. Finally, I illustrated the report creation procedures. Formal reports were generated giving information on the specific fields where needed.

A more detailed description of this training is contained in Appendix A, "Trip Report," by Captain Logan and Mr. Kondig, dated September 10, 1986.

4. Implementation of the Tick Feeding and Containment Procedures

On December 16, 1986, I travelled to USAMRIID and visited the personnel of the Disease Assessment Division to consult on the progress of the colonization of the four African ticks and their containment. I met with Mr. J. Kondig, Captain T. Logan, Mr. J. Moulton, and Colonel C. Bailey.
Construction of the tick breeding tables had been completed, with one such table located in the non-infected tick colony breeding room, or isolation room, adjoining the insectary, while the other was installed in the "hot suite," a P-3 facility for work with Crimean-Congo Hemorrhagic Fever and other highly infectious organisms. During my visit, I also observed tick feeding on a guinea pig. Specimens of *Amblyomma variegatum* were confined using nylon cloth glued to the shaved back of the animal (i.e., "sleeve" technique). This technique minimizes escape of larvae or nymphs. The infested animal was held on the tick breeding table in the tick colony room.

During my visit, I had an opportunity to inspect the containment procedures used in the tick colony room. The only furniture in the room was the breeding table, a small cabinet and a sink. Sticky tape covered with heavy oil ("Tac Trap") was used liberally around the walls, around the floor drain, around the vent in the ceiling, electric outlets, and even under the door (blocking the door sill). The air vent and floor drain were covered with fine mesh metal screen. Technicians handling ticks or tick infested animals in the room wore special lab coats which were removed and placed in a hamper in the room for subsequent decontamination. This is now routine procedure.

Transport of the ticks from the incubator (see below) to the tick colony room is done with special cages adapted from mosquito rearing cages. This is used instead of the portable containment tray included with the original proposal and appears to work just as well. The ticks are held in the incubator in the outer laboratory, i.e., the same laboratory where mosquito studies are being done and other technicians, working on unrelated projects, also perform their duties. Nevertheless, the fact that the ticks are held in the plastic containers described above insures that the ticks are secured and protected against risk of spread elsewhere into the
incubator. I suggested that some portion of the incubator be designated for the tick colonies, and that this part of the incubator be further subdivided for the containers used for each life stage. It would be also be desirable to concentrate the species intended for immediate study in one incubator, and retain the other species in a separate incubator. This arrangement would avoid overcrowding, and minimize the risk of confusing specimens of different species, resulting in mixed colonies.

5. Recordkeeping Procedures

A computerized tick colony data base record system was created during the first 6 months of the project, using the software package "DBASE3 Plus" by Ashton-Tate. This was done as described in the original project proposal. The record forms were intended for managing a colony of a single species, e.g., Hyalomma marginatum. Provisions were made to track the fate of each life stage, number the vials containing specimens, report the ultimate fate of the tick specimens, note their location, and generate colony status reports. These procedures were considered important to avoid inadvertent loss of tick colony material or confusion regarding specimen location. Training in the recordkeeping procedures was included in the visit by Captain Logan and Mr. Kondig. Subsequently, when it was decided to colonize four species, the complexity of the record forms became a paramount consideration. Mr. James Moulton, of the Disease Assessment Division, was assigned as tick colony manager, replacing Mr. Kondig, and Mr. Moulton produced a more simplified "Tick Colony Log," incorporating many of the items in my original record forms. Both the proposal forms and Mr. Moulton's revised version are shown in Appendix B. The revised form meets the major needs for recordkeeping.
Records are now being maintained by computer as well as in handwritten logs. Copies of suggested data base fields for tick colony records were furnished and training of Department of Arbovirology personnel in development of computerized recordkeeping was also done. Transfer of computerized records via modem between the Department of Arbovirology and ODU was discussed. No suitable telephone is available in the insectary. Although modem to modem transfer could be accomplished by carrying the floppy disk containing the records to a suitably equipped computer system elsewhere in the facility, no plans are being made to do so at this time. The laboratory technician, Mr. Mjulton, will forward records to the Principal Investigator for inspection if further assistance in recordkeeping is desired.

6. **Computer Based Tick Literature File**

A massive file containing more than 700 citations relevant to Crimean-Congo Hemorrhagic Fever and its vector ticks was created. I arranged for an ODU computer programmer to write a special program to report the records in citation format, i.e., in the bibliographic style. Using the "DO" command, this program (SPITANA) supercedes the DBASE reporting procedures, and cites the selected records in bibliographic format. Thus, the advantages of UBASE 3 PLUS, namely, record retrieval by specific field, e.g., author, date, keywords, etc., can be used to maximum advantage. Having the massive literature file available on a microcomputer enables us to call up information that is needed for colony maintenance, infestation techniques, viral transmission techniques, host sensitivity to ticks and/or viral pathogens, and so on. We have already demonstrated the usefulness of this capability in our ability to answer Mr. Kondig's request for information on the feasibility of feeding Hyalomma spp on guinea pigs. A copy of this file is being
furnished, both on a floppy disk and a hard copy. We will continue to add
to these records and furnish them to USAMRIID as a continuing service and
good will gesture.

7. Other

Although not included in the original project, special assistance was
requested and provided regarding tick anatomy, techniques for identifying
and excising tick body organs, and for culturing/maintaining tick cells and
organs. In addition, we provided supplies of "Yunker-Meibos" growth medium
made at ODU (see Appendix C, letter from Dr. Paul Homsher). We routinely
maintain tick cells in culture in facility at ODU, using the Yunker-Meibos
cell culture medium. This medium has proven to be excellent for D.
variabilis cell culture, and has been reported to be suitable for culture of
cells from other species also (Yunker, C. E., J. Cory, and H. Meibos 1984.
Tick tissue and cell culture: applications to research in medical and
veterinary acarology and vector borne disease, p. 1082-88. In: D. A.
Griffiths and C. E. Bowman, eds., Acarology VI Vol. 2, Ellis Horwood, Ltd.,
Chichester). We will continue to collaborate on a good will basis as is
common among scientists sharing common interests.

VI. DISCUSSION AND CONCLUSIONS

This project furnished expertise and training that made it possible to
colonize and safely contain four species of exotic African ticks needed for
studies on the transmission of Crimean-Congo Hemorrhagic Fever. The project
furnished designs for equipment, concepts for electronic recordkeeping pro-
cedures using computer software, a literature library of more than 700
pertinent records, and specialized training. The equipment, facilities,
procedures and experience gained may serve as a useful model for other
laboratories contemplating work with vector arthropods and transmission of highly contagious microbes.
LITERATURE CITED

Trip report by Captain Thomas Logan and Mr. John Kondig, September 10, 1986, describing the results of their visit to Old Dominion University for training in the safe handling of exotic ticks.
Activity visited: Old Dominion University, Norfolk, Virginia, was visited from 25 to 28 August 1986. Travel was performed under Travel Order MRI 8-9 and MRI 8-10 dated 6 August 1986.

Purpose: To study procedures for handling exotic species of vector ticks at Old Dominion University.

Persons contacted: Daniel E. Sonenshine, Ph.D., Associate Vice President for Research, Old Dominion University; Dr. Paul Homsher, Assistant Dean, Old Dominion University, Norfolk, VA; Mr. DeMar Taylor, graduate student; Mr. Gordon Hamilton, graduate student; Mr. Martin Schreifer, graduate student.

Findings: The procedures for handling exotic species of vector ticks, developed by Dr. Sonenshine, has been successfully applied to the establishment and maintenance of Hyalomma dromedarii. Dr. Sonenshine's procedures provide for an independent area that is used to handle all aspects of rearing and maintaining this species. The techniques used to maintain this colony are similar to those used to maintain established colonies of indigenous ticks.

Mr. Martin Schreifer, who maintains the colony of H. dromedarii, explained the procedures used to assure containment of the colony to a specific area; time was then spent within the containment area observing the techniques used in handling the ticks. Mr. Schreifer discussed the problems involved in developing techniques for handling exotic ticks from the point of view of being able to account for all ticks, in all life stages.

Mr. DeMar Taylor explained the various techniques used to blood feed ticks at their various life stages. The most useful technique, from the point of view of safety and containment, is the use of a capsule attached to the side of the host animal. Mr. Taylor demonstrated the technique of taping a capsule to the side of the rabbit and discussed the problems that might be encountered with the procedure. Experience was gained in the use of this and other techniques by personally infesting ticks on various host animals.

Important to the colonization of ticks are accurate records of the time periods between the various life stages, primarily the length of time for blood feeding and the time between blood meals. To facilitate the maintenance of records, Dr. Sonenshine developed a format for computerized data base system. Mr. Gordon Hamilton, who utilizes the system for maintaining records, explained the reasons for developing this specific format. Under the guidance of Mr. Hamilton, time was spent in learning how to enter data, how to manipulate the data in order to develop specific types of reports, and how to prepare a variety of reports. A copy of the system was brought back to USAMRIID in diskette form.

Dr. Paul Homsher discussed and demonstrated the techniques for maintaining tick cell cultures. Professor Sonenshine and Mr. Taylor demonstrated and assisted in dissection.
techniques for locating and removing various organs in engorged and unfed ticks. Specimens of Dermacentor variabilis ticks were brought back to USA MRID for gaining technical expertise in colony rearing and dissection techniques.

Dr. Sonenshine, in his discussions on rearing ticks, suggested modifications of his established procedures and techniques relative to the handling of virus-infected ticks. He feels that even with the restricted conditions imposed on handling infected ticks, his procedures can be modified to meet safety requirements. Dr. Sonenshine stressed the importance of accurate records in meeting safety requirements, in that they would account for all ticks during the various handling procedures.

5. Summary: Some of the above techniques, with modifications, can be applied to raising and maintaining several species of exotic ticks in the Insectary of the Department of Arboviral Entomology. The need for accurate record keeping is important from both the standpoint of confinement and rearing ticks. Computerizing records, based on Dr. Sonenshine's format, fulfills the need for a workable system of record keeping.

THOMAS M. LOGAN, Ph.D.
CPT, MS
Department of Arboviral Entomology
Disease Assessment Division

JOHN P. KONDIG
Research Chemist
Department of Arboviral Entomology
Disease Assessment Division
Activity visited: Old Dominion University, Norfolk, Virginia, was visited from 25 to 28 August 1986. Travel was performed under Travel Order MRI 8-9 and MRI 8-10 dated 6 August 1986.

Purpose: To study procedures for handling exotic species of vector ticks at Old Dominion University.

Persons contacted: Daniel E. Sonenshine, Ph.D., Associate Vice President for Research, Old Dominion University; Dr. Paul Homsher, Assistant Dean, Old Dominion University, Norfolk, VA; Mr. Demar Taylor, graduate student; Mr. Gordon Hamilton, graduate student; Mr. Martin Schreiber, graduate student.

Findings: The procedures for handling exotic species of vector ticks, developed by Dr. Sonenshine, has been successfully applied to the establishment and maintenance of Hyalomma dromedarii. Dr. Sonenshine's procedures provide for an independent area that is used to handle all aspects of rearing and maintaining this species. The techniques used to maintain his colony are similar to those used to maintain established colonies of indigenous ticks.

Mr. Martin Schreiber, who maintains the colony of H. dromedarii, explained the procedures used to assure containment of the colony to a specific area; time was then spent within the containment area observing the techniques used in handling the ticks. Mr. Schreiber discussed the problems involved in developing techniques for handling exotic ticks from the point of view of being able to account for all ticks, in all life stages.

Mr. DeMar Taylor explained the various techniques used to blood feed ticks at their various life stages. The most useful technique, from the point of view of safety and containment, is the use of a capsule attached to the side of the host animal. Mr. Taylor demonstrated the technique of taping a capsule to the side of a rabbit and discussed the problems that might be encountered with the procedure. Experience was gained in the use of this and other techniques by personally infesting ticks on various host animals.

Important to the colonization of ticks are accurate records of the time periods between various life stages, primarily the length of time for blood feeding and the time between blood meals. To facilitate the maintenance of records, Dr. Sonenshine developed a format for computerized data base system. Mr. Gordon Hamilton, who utilizes the system for maintaining records, explained the reasons for developing this specific format. Under the guidance of Mr. Hamilton, time was spent in learning how to enter data, how to manipulate the data in order to develop specific types of reports, and how to prepare a variety of reports. A copy of the system was brought back to USAMRIID in diskette form.

Dr. Paul Homsher discussed and demonstrated the techniques for maintaining tick cell cultures. Professor Sonenshine and Mr. Taylor demonstrated and assisted in dissection.
techniques for locating and removing various organs in engorged and unfed ticks. Specimens of *Dermacentor variabilis* ticks were brought back to USAMRIID for gaining technical expertise in colony rearing and dissection techniques.

Dr. Sonenshine, in his discussions on rearing ticks, suggested modifications of his established procedures and techniques relative to the handling of virus infected ticks. He feels that even with the restricted conditions imposed on handling infected ticks his procedures can be modified to meet safety requirements. Dr. Sonenshine stressed the importance of accurate records in meeting safety requirements, in that they would account for all ticks during the various handling procedures.

5. Summary: Some of the above techniques, with modifications, can be applied to raising and maintaining several species of exotic ticks in the Insectary of the Department of Arboviral Entomology. The need for accurate record keeping is important from both the standpoint of confinement and rearing ticks. Computerizing records, based on Dr. Sonenshine's format, fulfills the need for a workable system of record keeping.
APPENDIX B

Samples of computer-based recordkeeping forms.
"Designed by personnel of the Disease Assessment Division, USAMRIID, Fort Detrick, Frederick, MD."

TICK COLONY LOG

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

28
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Details</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Species</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>2.</td>
<td>Life stage</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>3.</td>
<td>Vial No.</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>4.</td>
<td>Feeding status (fed/unfed)</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>5.</td>
<td>No. in vial (see expl.)</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>6.</td>
<td>Location</td>
<td>a) Incubator No. ________________________</td>
<td>b) tray No. ________________________</td>
</tr>
<tr>
<td>7.</td>
<td>Date of first record</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>8.</td>
<td>Molted to</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>9.</td>
<td>Date molted</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>10.</td>
<td>No. molted</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>11.</td>
<td>No. died without molting</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>12.</td>
<td>Used for (see expl.)</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>13.</td>
<td>No. remaining</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>14.</td>
<td>Date of next record</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>15.</td>
<td>Status (see expl.)</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>16.</td>
<td>Used for</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>17.</td>
<td>No. remaining</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>18.</td>
<td>Date of next record</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>19.</td>
<td>Status</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>20.</td>
<td>Used for</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>21.</td>
<td>No. remaining</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>22.</td>
<td>Date of next record</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>23.</td>
<td>Status</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>24.</td>
<td>Used for</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>25.</td>
<td>No. remaining</td>
<td>________________________</td>
<td>________________________</td>
</tr>
<tr>
<td>26.</td>
<td>Final disposition (see expl.)</td>
<td>________________________</td>
<td>________________________</td>
</tr>
</tbody>
</table>

Explanations:
(1) Items 1 - 4: self explanatory.

(2) Item 5: estimate number of unfed larvae from data on egg mass weight and visual approximation of the percentage of eggs that hatched.

(3) Items 6 - 11: self explanatory.

(4) Item 12: Describe purpose of use, e.g., used to infest rabbit, inoculated with viruses, etc.

(5) Items 12-14: self explanatory.

(6) Item 15: Describe condition of specimens, e.g., vigorous, torpid, dessicated, etc.

(8) Item 26: Describe what was done with the vial and remaining specimens, e.g., ticks destroyed, vial discarded.
TICK COLONY STATUS AND USE LOG

Tick Feeding Activity

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Species:</td>
<td>2. Vial No.:</td>
<td></td>
</tr>
<tr>
<td>3. Life stage:</td>
<td></td>
</tr>
<tr>
<td>5. Date infested:</td>
<td></td>
</tr>
<tr>
<td>7. 1 st. date ticks recovered:</td>
<td></td>
</tr>
<tr>
<td>9. 2 nd " " "</td>
<td></td>
</tr>
<tr>
<td>11. 3 rd " " "</td>
<td></td>
</tr>
<tr>
<td>13. 4 th " " "</td>
<td></td>
</tr>
<tr>
<td>15. 5 th " " "</td>
<td></td>
</tr>
<tr>
<td>17. Final date all recovered:</td>
<td></td>
<td>18. Total No. recovered:</td>
<td></td>
</tr>
<tr>
<td>19. Date of next record:</td>
<td></td>
<td></td>
<td>20. Status:</td>
<td></td>
</tr>
<tr>
<td>21. Date of 1 st. molt:</td>
<td></td>
<td></td>
<td></td>
<td>22. No. molted:</td>
<td></td>
<td></td>
<td></td>
<td>23. No. died:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30. Date all molted:</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

"Form designed by Dr. Sonenshine, ODU"
"Form designed by Dr. Sonenshine, ODU"

Tick Colony Form No. 3

OVIPOSITION RECORD

1. Species: __________________________. 2. Vial No.: __________

3. No. engorged females: __________ 4. Date replete: __________

5. Weight all females in vial: ______________________________

6. Location:
 (a) Incubator No.: ________
 (b) Tray No.: ________

7. Date ovip. began: __________ 8. Wgt. eggs/end ovip.: ________

9. Date 1 st hatch: __________ 10. Date hatch complete: ________

11. Est. hatching success (see expl.): __________________________

12. Date last record: __________ 13. Status: ________________

14. Used for: _________________________________

15. No. remaining: _________________________________

16. Final disposition: ____________________________

Explanations:

(1) Items 1 - 10: self explanatory.

(2) Item 11: Estimate the percentage of eggs that hatched.

(3) Items 12 - 15: self explanatory; see explanation for final disposition given with form No. 1.
APPENDIX C

Letter from Dr. Paul Homsummer concerning provision of media to culture tick cells.
September 29, 1986

Mr. John Condig
Arboviral Entomology
Disease Assessment Division
USAHIID
Fort Detrick, Maryland 21701-5011

Dear John:

I understand that you can use the cells now, so Lynn Ellis is making up two flasks for you and should be sending them on early next week. She will also include a small bottle of our media to keep you going until you can make your own. When you receive the flasks, pour off the media covering the cells and add fresh (I have spun the pour off to rid it of any floating cells and used it successfully for conditioning flasks and, in an emergency, feeding the cells). If the cells have sloughed off for any reason, I would spin the cells from the media (900-1000 RPM) and reinoculate the flasks, adding fresh medium. Do not hesitate to call me if I can help.

It was nice meeting you and I wish you success in using the cells.

Sincerely,

Paul J. Homsher, Ph.D.
Associate Dean

PJH:lsd
pc: Lynn Ellis
Dan Sonenshine
APPENDIX D

Computer-Based Tick Literature File

Abbassian-Lintzen, R. 1960 A preliminary list of ticks (Acarina: Ixodoidea) occurring in Iran and their distributional data. Acarologia II(1) 43-61

Aboul-Nasr, AE, and Bassal, TTM. 1971 Biochemical and physiological studies of certain ticks (Ixodoidea). The sugar content and concentration in Argas and Hyalomma biological fluids. J. Med. Ent. 8(5) 521-524

Abramov, IV, Tsaprun, AA, and Lebedev, EM. 1950 Importance of a single tick in the transmission of the pathogen of equine piroplasmosis. (In Russian)(In English, NAMRU3-T1629). Veterinariya 27(3) 12-14

Abramov, IV. 1955 A new type of transmission of Nuttallia equi by tick vectors. (In Russian)(In English, NAMRU3-T1511). Veterinariya 32(8) 43-45

Ammah-Attoh, V. 1966 Reproduction in the tick Hyalomma marginatum rufipes koch, 1844 under laboratory conditions, with notes on mating and insemination. Ghana J. Sci. 6 9-14

Amosova, LI. 1975 The ultrastructure of the integument of Hyalomma asiaticum P. Sch. et E. Sch. during starvation and feeding. Parazitologiya. 11 412-418

Anastos, G. 1950 The Scutate Ticks, or Ixodidae, of Indonesia. Entomologica Americana. XXX(1-4) 1-144

Anastos, G. 1946 Accidental parasitism of a tick by a tick. Psych. 55(1) 36-37

Araman, SF. 1972 Biochemical and physiological studies of certain ticks (Ixodoidea). The ionic composition Hyalomma (Hyalomma dromedarii Koch and H. (H.) anatolicum excavatum Koch (Ixodidae). J. Parasit. 58(2) 354-357

Arthur, DR. 1973 The histopathology of skin following bites by Hyalomma rufipes (Koch 1844), and a theory on feeding by this tick. J. ent. Soc. Sth. Afr. 36(1) 117-124

Arthur, DR. 1975 The nymphs of some Ixodid ticks (Acarina) from the Eastern Cape Province of South Africa. Bull. ent. Res. 65 423-431

Barnett, SF. 1977 Theileria. In Kreier, JP. (Ed.): Parasitic Protozoa. 4 77-113

Bassal, TTM. 1977 Demonstration of guanine biosynthesis in Hyalomma dromedarii ticks using 14C-labeled Glycine and Glyoxylate. J. Parasit. 63(4) 758-759

Becklund, WW. 1968 Ticks of veterinary significance found on imports in the United States. J. Parasit. 54(3) 622-628

Begum, F. 1970 Tickborne viruses of West Pakistan. IV. Viruses similar to, or identical with, Crimean Hemorrhagic fever (Cong o-Semunya), Wad Medani and Pak Argas 461 isolated from ticks of the Changa Manga Forest, Lahore District and Hunza, Gilgit Agency, W. Pakistan. Am. J. Epidemiol. 92 197-202

Berdyev, A, and Khudainazarona, SN. 1976 A study of acquired resistance to adults of Hyalomma asiaticum asiaticum in experiments on lambs. Parazitologiya. 10 519

40

Borzenkov, PK, and Donskov, GD. 1933 Experimental infection of ticks Hyalomma Volgense P. Sch. and E.Sch. with plague. Rev. Microbiol., Saratov. 12(1)

Brohmer, P. 1964 Fauna von Deutschland. Ein Bestimmungsbuch unserer heimischen Tierwelt. Quelle & Meyer Verlag, Heidelberg 413-418

CDC 1983 Viral hemorrhagic fever: Initial management of suspected and confirmed cases. 32(25) 27s-38s

CDC 1984 Congo-Crimean hemorrhagic fever -- Republic of South Afr ica. 33 pp535-6

CDC 1984 Congo-Crimean hemorrhagic fever -- Republic of South Afr ica. 33 p541

CDC 1984 Crimean-Congo hemorrhagic fever -- Republic of South Afr ica. 33 p548

Cerny, V., Daniel, M, Amin, A, and Olejnicek, J. 1977 Short Communication: To the knowledge of ticks of domestic animals in Afghanistan. Folia Parasitologica (Praha) 24 81-84

Cerny, V. 1972 The Tick Fauna of Czechoslovakia. Folia Parasitologica (Praha) 19 87-92

Chumakov, MP, Belyaeva, AP, Butenko, AM, Mart’Yanova, LI, and Karmysheva, VYa. 1964 Isolation and study of a peculiar virus recovered from Hyalomma p. plumbeum and from the blood of a febrile patient in the Astrakhan Region. (In Russian) (In English, NAMRU3-T148). In: Tick-borne encephalitis, Kemerovo tick-borne fever, hemorrhagic fevers, and other arbovirus infections. 5-7

Clifford, CM, Flux, JEC, and Hoogstraal, H. 1976 Seasonal and Regional abundance of ticks (Ixodidae) on hares (Leporidae) in Kenya. J. Med. Entomol. 13(1) 40-47

Darwish, MA, and 1981 Arboviruses infecting humans and lower animals in Egypt: A review of thirty years of research. J. Egypt. Public Health Assoc. 56(1-2) 112pp

Daubney, R, and Said, MS. 1951 Egyptian fever of cattle. The transmission of Theileria annulata (Dschunkowsky and Luhs, 1904) by Hyalomma excavatum Koch, 1844. Parasitology 41 249-260

David-West, TS, Cooke, AR, and David-West, AS. 1974 Seroepidemiology of Congo virus (related to the virus of Crimean haemorrhagic fever) in Nigeria. Brief communications Bull World Health Organ. 51 543-546

Delpy, L. 1937 Notes sur les Ixodides du genre Hyalomma (Koch). I
Hyalomma schulzei Olenev. Ann. Parasit. hum. comp. 15
419-430

Delpy, L. 1947 Nouvelles recherches sur la theileriose bovine pat
hogene en Iran. IV Transmission de la theileriose par les Hy
alomma. Arch. Inst. Hess. 5 14-32

Delpy, L. 1936 Ann. Parasitology 14 206

Delpy, L. 1946 Arch. Inst. Hessarek. 2 61

Delpy, LP. 1946 Revision, par des voies experimentales, du genre
Hyalomma CL Koch 1844 (Acarina, Ixodidea). Note preliminaire.
Ann. parasit. hum. comp. 21 267-293

Delpy, LP. 1949 Revision, par des voies experimentales, du genre
Hyalomma CL Koch 1844 (Acarina, Ixodoidea). Note preliminair

Delpy, LP. 1949 Essai critique de synonymie du genre Hyalomma CL K
och 1844 depuis Linne, 1758. Ann. parasit. hum. comp. 24
464-494

Delpy, LP. 1952 Role des Hyalomma dans la transmission de la thei
leriose bovine. Biologie et taxonomie des especes en cause.

Delpy, LP. 1937 Notes sur les Ixodidae du genre Hyalomma Koch. II
,, 15(5) 419-430

Deply, LP. 1949 Essai critique de synonymie du genre Hyalomma C.
omp. 24(5- 464-494

Dhanda, V, and Ramachandra Rao, T. 1964 A report on a collection
of Ixodid ticks made in the North East Frontier Agency, Indi

Dhanda, V. 1967 Changes in neurosecretory activity at different s
stages in the adult Hyalomma dromedarii Koch, 1844. Nature
214 508-509

Dias, TS. 1955 Sobre a necessidade do estabelecimento de um novo
agrupamento subgenerico para o genero Hyalomma Koch 1844.
Ann Inst. Med. Trop. 12 499

Dinnick, J, and Zumpt, F. 1949 The integuementary sense organs of
the larvae of Rhipicephalinae (Acarina). Psyche 56(1) 1-17

Dobrista, PG, Abdulimov, MA, Bakirova, MN, and Mamontov, SI. 1971
Investigation of Crimean hemorrhagic fever (CHF) in Chinkent
Oblast, Kazakh SSR. Report 2. Prevention of CHF in Kazakhstan
231-233

Dobrista, PG. 1965 Epidemiology and prophylaxis of hemorrhagic fe
ver in Chinkent Region of the southern Kazakhstan. Tr. Inst
n) (In English, NAMRU3-T196) 7 262-270

Dolp, RM, and Hamdy, BH. 1971 Biochemical and physiological studies of certain ticks (Ixodoidae). Protein electrophoretic studies of certain biological fluids of Argas (Argasidae) and Hyalomma (Ixodidae). J. Med. Ent. 8(6) 636-642

Donets, MA, Chumakov, MP, Korolev, MB, and Rubin, SG. 1977 Physiological characteristics, morphology and morphogenesis of virions of the causative agent of Crimean Hemorrhagic fever. Intervirology. 8 294-308

Fabricius, JC. 1794 *NB* Possible Hyalomma description Entomologica systematica emendata et aucta, (Hafniae). 4 426

Feldman-Muehsam, B. 1948 On larvae and nymphs of some species of Palestinian Hyalomma. Parasitology 39 138-147

Feldman-Muehsam, B. 1957 Revision of the genus Hyalomma II. The subgenus Hyalomminia. Parasitology 12(land2) 46-59

Feldman-Muehsam, B. 1947 Resistance of larvae and nymphs of Hyalomma savignyi Gerv. to various conditions of temperature and humidity. Parasitol. 38 111-115

Galuzo, IG. 1947 Bloodsucking ticks of Kazakhstan. 2

Genis, DE, Smirnova, SE, Zgurskaya, GN, and Chumakov, MP. 1971
The results of investigation of Crimean hemorrhagic fever in
Kzyl-Orda Region of the Kazakh SSR. Tr, Inst. Polio. Virus
h, NAMRU3-T952). 19 92-99

Giller, AS. 1971 Pathological anatomy of Crimean hemorrhagic fever
146-148

mma, Boophilus, Rhipicephalus d'Afrique sont porteurs d'elem
ents rickettsieurs et neorickettsieurs et quelquefois des deux
types d'agents. Bull. Soc. Path. exot. 50 529-532

Giroud, P, and Jardin, J. 1952 Comportement des animaux domestiqu
es au Ruanda-Urundi (Congo-Beige) vis-a-vis de l'antigeneepe
demique. Bull. Soc. Path. exot. 46 870-871

Giroud, P. 1964 Epidemiologie rurale. - Les fievres transmises pa
r les tiques considerees comme dues au groupe Erlichia, sont
en fait dues au groupe boutonneux pourpre et au groupe psit
tacose (neorickettsien) evoluant sur des hotes particuliers.

Glaschinskaya-Babenko, LV 1949 Chaetotaxy of the body of larvae o
ticks belonging to the family Ixodidae and its taxonomic i

Hyg. 29 pp260-4

Gostinshchikova, GV, and Chervonsky, VI. 1971 Application of lumi
nescent microscopy in detection of arboviruses. (In Russian
9-21). 2 60-61

Gothe, R. 1983 Pheromones in Ixodid and Argasid Ticks. Part I. Ix
odid Ticks. Veterinary Medical Review. I 17-37

Grebenyuk, RV. 1961 Vertical and static distribution of Ixodid ti
Nauk Kazakh SSR. 3 477-483

Grebenyuk, RV. 1955 Ixodid ticks of Issykkul Oblast in Kirgiz SSR

Grebenyuk, RV. 1956 Ixodid ticks of Dzhalal-Abad Oblast. (In Russ
kad. Nauk Kirgiz. SSR. 5 169-170

Grobov, AG. 1946 Carriers of Crimean hemorrhagic fever. (In Russ
i 15 59-63

Grokhovskaya, IM, Ignatovich, VF, and Sidorov, VE. 1966 Susceptib
ility of ticks of the superfamily Ixodoidea to Rickettsia pr
.., Moscow. 35(3). 299-204

Guschchina, EA, Aristova, VA, Gromashevsky, VL, Voltsit, OV, Gusch
hin, BV, L'Vov, DK and Klimenko, SM. 1984 Electron-microscopy study of the midgut of ticks following experimental infect
ion with Karshi virus. (In Russian) (In English, NAMRU3-T1737)
Vop. Virus. 29(2) 235-240

Hadani, A, and Rechav, Y. 1970 Tick-host relationships. II. Facto
rs affecting the circadian rhythm of "drop-off" of engorged preimaginal stages of the tick Hyalomma excavatum (Koch, 184
) from the gerbil, Meriones tristrami. Acta Trop. 27
184-190

Hadani, A, and Ziv, M. 1974 Tick host relationships. III The effe
cct of photoperiodic pre-conditioning on the circadian rhythm
of "drop-off" of engorged pre-imaginal stages of the tick Hy
alomma excavatum (Koch, 1844) from the gerbil, Meriones tris
trami. Acta Trop. 31 89-94

Hafez, M, El-Ziady, S, and Hefnawy, T. 1970 Biochemical and physi
ological studies of certain ticks (Ixodidae). Cuticular permeability of Hyalomma (H.) dromedarii Koch (Ixodidae) and Or
nithodorus savignyi (Audouin)(Argasidae). J. Parasit. 56
154-163

Hafez, M, El-Ziady, S, and Hefnawy, T. 1970 Biochemical and physi
ological studies of certain ticks (Ixodidae). Uptake of wa
ter vapour by the different developmental stages of Hyalomma
(H.) dromedarii Koch (Ixodidae) and Ornithodorus (O.) savig

Hajjar, NP. 1972 Biochemical and Physiological studies of certain
ticks (Ixodidae). Phospholipid and sterol patterns in biol
ogical fluids of nymphal and adult Hyalomma (H.) dromedarii
281-285

Hajjar, NP. 1972 Biochemical and physiological studies of certain
ticks (Ixodidae). Fatty acid composition of lipids and fre
e fatty acid fractions of hemolymph and gut and moulting flu
ids of nymphal and female Hyalomma (H.) dromedarii and H (H.
) excavatum. J. Med. Ent. 9 551-557

Hajkova, Z, Bouchalova, J, and Leahy, MG. 1980 A pre-attachment a
ggregation pheromone in the adult metastriate tick. Hyalomma

Heneberg, D, Heneberg, N, Celina, D, Filipovic, D, Markovic, Z, Z
ubi, D, Zivicovic, B, Simic, M Zonjic, S, and Pantelic, M. 1968
Crimean haemorrhagic fever in Yugoslavia. (In Croatian).
Vojnosanit. Pregl. 25 181-184

Heneberg, N, Heneberg, D, Milosevic, J, and Dimitrijevic, V. 1967
Distribution of ticks in the autonomous provinces Kosovu and
Metohiji. Regarding especially Hyalomma plumbeum plumbeum P
anzer, reservoir and vector of Crimean haemorrhagic fever of
NAMRU3-T324). 30-36

J. 47

Hoogstaal, H, and Kaiser, NN. 1958 Observations on Egyptian Hyalo
mma ticks (Ixodidea Ixodidae). 3. Infestations of greater g
erbils, especially by immature H. impeltatum S&S. Ann. Entomo
1. Soc. Am. 51 17-19

Hoogstraal, H, Buttiker, W, and Wassef, HY. 1983 Ticks of Saudi Arabia Hyalomma (Hyalommina) arabica (Fam. Ixodidae), a Parasite of Goats and Sheep in Saudi Arabia. Fauna of Saudi Arabia 5 117-120

Hoogstraal, H. 1956 African Ixodoidea. 1. Ticks of the Sudan (wit h special reference to Equatoria province and with prelimin ary reviews of the genera Boophilus, Margaropus, and Hyalom m a). US Navy, Washington, DC. 110pp

Hoogstraal, H. 1985 Ticks. in(Gaafar, SM, Howard, WE, and Marsh, RE. Eds.) Parasites, Pests, and Predators Chpt. 15. 347-370

Hoogstraal, H. 1973 Birds as tick hosts and as reservoirs and dis-
seminators of tickborne infectious agents. Wiadomsci Parazyt-
ologiczne. 18 703-706

Hoogstraal, H. 1961 Migrating birds and their ectoparasites in re-
lation to disease East African Medical Journal 38 221-26

Hoogstraal, H. 1956 Faunal explorations as a basic approach for s-
tudying infections common to man and animals East African Me-
dical Journal 33 1-5

Hoogstraal, H. 1956 Notes on African Haemaphysalis ticks. III. T-
the Hyrax parasites, H. bequaerti sp. nov., H. orientalis N. and W. 1915 (new combination), and H. cooleyi Bedford, 1929
(Ixodoidea, Ixodidae). J. Parasitol. 42 156-72

Hoogstraal, A. Aeshlimann, A. 1982 Tick-host specificity. Mem. Mu-

Hoogstraal, H. 1961 Ectoparasites of migrating birds and their di-
sease relationships Abstracts Tenth Pacific Science Congress,
Honolulu 10 417

Hoogstraal, H. 1963 A brief review of tick, bird and pathogen int-
er-relationships. Rep. 2nd. Meet. FAO-OIE Panel Tick-borne D-
is., Cairo, 1962 i 59-71

Hoogstraal, H. 1967 Tickborne hemorrhagic fevers, encephalitis, a-
21 98-111

Hoogstraal, H. 1972 Birds as tick hosts and as reservoirs and dis-
seminators of tickborne infectious agents. Wiadomosci Paraszy-
tologiczne 18 4-5

Hoogstraal, H., 1978 Biology of ticks. In: Tick-borne diseases a-
76) 3-14

Hoogstraal, H., Kaiser, M.N., Traylor, M.A., Guindy, E., & Gaber,
S. 1963 Ticks (Ixodidae) on birds migrating from Europe and

Hoogstraal, H., Kaiser, M.N. 1961 Ticks from European-Asiatic bir-
ds migrating through Egypt and Africa Science 133 277-78

Hoogstraal, H., Kaiser, M.N., Traylor, M.A., Gaber, S., & Guindy,
E. 1961 Ticks (Ixodoidea) on birds migrating from Africa to

Horvath, LB. 1975 Incidence of antibodies to Crimean haemorrhagi-
ic fever in animals. (In Russian English Summary). Acta Micro-
biol. Hung. 22 61-63.

Horvath, LB. 1976 Precipitating antibodies to Crimean haemorrhagi-
ic fever virus in human sera collected in Hungary. Acta Micro-
biol. Hung. 23 331-335

Hussein, MF, Kamel, MY, and Kamal, KA. O Biochemical and physi-
ological studies of certain ticks (Ixodoidea). Changes in fa-
tty acid composition of phospholipids during oogenesis and e-
mbryogenesis of Dermacentor andersoni stiles (Ixodidae) and
Argas (Persicargas) arboreus Kaiser, Hoogstraal and K ohls (Ar-

Jagannath, MS, Nagaraja, KV, and Hedge, KS. 1928 Feature of taxonomic value in Hyalomma marginatum isaaci Sharie. Curr. Sci. 43 222-223

Johnsen, P. 1943 Hyalomma aegyptium L., en Blodmide indslaebt i Danmark. Fl. and Fa. 128

Johnsen, P. 1943 Hyalomma marginatum Koch, en Blodmide ny for Danmark. Ent. medd. 22 381-383

Jooste, KF. 1966 Rhod. Agric. J. 63 97-99

Kaiser, MN, and Hoogstraal, H. 1963 The Hyalomma ticks (Ixodoidea, Ixodidae) of Afghanistan. J. Parasit., 49(1) 130-139

Kaiser, MN, and Hoogstraal, H. 1964 The Hyalomma ticks (Ixodidae) of Pakistan, India, and Ceylon, with keys to sub-genera and species. Acarologia 6 257-286

62

Khailil, GM. 1970 Biochemical and physiological studies of certain ticks (Ixodoidea). Gonad development and gametogenesis in Hyalomma (H.) anatolicum excavatum Koch (Ixodidae). J. Parasit. 56 596-610

Knight, MM, Norval, RAI, and Rechav, Y. 1978 The life cycle of the tick Hyalomma marginatum rufipes Koch (Acarina: Ixodidae) under laboratory conditions. J. Parasit. 64(1) 143-145

Koch, CL. 1844 Arch. f. Naturgeschi. 10 222

Koch, CL. 1847 Uebersicht des Arachnidensystems, 4

64

Kondratenko, VF. 1976 Importance of Ixodid ticks in transmission and preservation of Crimean hemorrhagic fever agent in infection foci. (In Russian)(In English, NAMRU3-T1116). Parzitologiya. 10 297-302

Kordova, N, and Rehacek, J. 1964 Acta virol. 8 465

Korschunova, OS, and Piontkovskaya, SP. 1953 On natural infection by rickettsiae of Hyalomma plumbeum plumbeum tick. Symposium on regional, general, experimental parasitology and medical zoology. 8

Kurchatov, V.I. 1939 Biological peculiarity of the tick Hyalomma marginatum Koch, vector of equine piroplasmosis Sovietsk. Vet. 16 45-46

Lawrence, JA, and Norval, RAI. 1979 Rhod. vet. J. 10 28-40

Lysunkina, V.A. Khozinsky, V.I. 1952 The reaction of complement fixation by brain antigen in hemorrhagic fever. p. 96-100 Hemorrhagic Fever in Uzkeistan (Khodukin, N. I., ed.) 1 96-100
MacLeod, J. 1970 Bull. Ent. Res. 60 253-274
MacLeod, J. 1975 Oecologia. 19 359-370
Matson, BA, and Norval, RAI. 1977 The seasonal occurrence of adult Ixodid ticks on cattle on a Rhodesian Highveld farm. Rhod. Vet. J. 8 2-6
Mayer, C.F. 1952 Epidemic hemorrhagic fever of the Far East (EHF) or endemic hemorrhagic nephrosonephritis; morphology and pathogenesis. Lab. Invest. 1: 291-311 EHF
Mazlum, Z. 1968 Hyalomma asiaticum asiaticum Schulze and Schlottke 1929. Its distribution, hosts, seasonal activity, life cycle, and role in transmission of bovine Theileriosis in Iran. Acarologia 10(3) 437-442

Morel, PC, and Graber, M. 1961 Les tiques des animaux domestiques du Tchad. Institut d'élevage et de médecine vétérinaire des pays tertiaires. XIV(2) 199-203

Moussa, MI, Imam, IZ, Converse, JD, and El-Karamany, RM. 1974 Isolation of Matruh virus from Hyalomma marginatum ticks in Egypt. J. Egypt. Public Health Assoc. 49 341-348

Neitz, WO. 1959 Sweating sickness: The present state of our knowledge. Onderstepoort J. Vet. Res. 28(1) 3-38

Pak, TP, Mikhailova, Li, and Zykov, MF. 1975 Contact infections with Crimean hemorrhagic fever in Tadzhik SSR. (In Russian)(In English, NAMRU3-T1020). Sov. Med. 1 153-154

Pegram, RG, Hoogstraal, H, and Wassef, HY. 1982 Hyalomma (Hyalomm ina) arabica sp.n. parasitizing goats and sheep in the Yemen Arab Republic and Saudi Arabia. J. Parasit. 68. 150-156.

Pervomaiskii, GS. 1949 Zool. Zh. 28 523

Pervomaisky, GS. 1954 Variation in pasture ticks (Acarina, Ixodidae) and its significance for systematics. (In Russian)(In English, NAMRU3-T5) (Summary) Trud. vsesoyuz. ent. Obshch. 44 62-201

Petrova-Piontkovskaya, SP 1949 Hyalomma marginatum marginatum Koch as vector of rickettsia. (In Russian)(In English, NAMRU3-T40). Zool. Zh. 28 419-420

Petrova-Piontkovskaya, SP 1950 Influence of agriculture on the population of Hyalomma marginatum marginatum Koch in the areas of the field protection plantations. (In Russian). Zool. Zh. 29 297-300

Piontkovskaya, SP. 1949 The tick Hyalomma marginatum marginatum Koch as a transmitter of rickettsia. (In Russian)(In English, NAMRU3-T40). Zool. Zh. 28(5) 410-420

Pirtulin, PI. 1954 On the transmission of brucellosis by pasture ticks. (In Russian)(In English, NAMRU3-T44). Veterinariya. 31(7) 31-33

Podboronov, VM. 1982 Study of bioioigical activity of lysozymes of different origin. (In Russian)(In English, NAMRU3-T1745). Antibiotiki. 27(10) 770-774

Pomerantzev, BI. 1950 Ixodidae. Fauna of the USSR. (In Russian). 4(2) 224pp

Pomerantzev, BI. 1950 Arachnida: Ixodid Ticks (Ixodidae) in Fauna of the USSR. Eds. Pavlovski and Schtakelberg. Translation available from The Institute of Acarology, Dept. of Zoology, University of Maryland, USA.

Rechav, Y, and Oppenheim, J. 1969 Feeding and fertilizing capacity in male ticks of the species Hyalomma excavatum (Koch 1844). Ref. Vet. 26 71-74

Rechav, Y. 1968 The effect of delayed mating on feeding time and oviposition in Hyalomma excavatum (Koch) with a note on part propagation. Refu Vet. 25 172-178

Reiss-Gutfreund, RJ. 1961 Bull. Soc. Path. exot., 54 284

Robinson, LE. 1926 Ticks, a monograph of the Ixodidae, Part IV, The genus Amblyomma.

Robson, J, Robb, JM, and Hawa, NJ. 1969 Ticks (Ixodoidea) of domestic animals in Iraq. Part 5. Infestations in the Liwas of Diwaniya and Nasiriya (spring), Karbala (winter), and Hilla (autumn and winter). J. Med. Ent. 6(2) 120-124

Robson, J, Robb, JM, and Hawa, NJ. 1968 Ticks (Ixodoidea) of domestic animals in Iraq. Part 3. Autumn infestations in the Liwas of Kut, Amara and Basra; winter and summer infestations in the Liwa of Baghdad. J. Med. Ent. 5(2) 257-261

Ruser, M. 1933 Contribution to knowledge of the chitin and musculature of ticks (Ixodoidea). (In Russian) (In English NMARU3-T22). Z. Morph. Okol. Tier. 27(2) 199-261

Sanborn, CC, and Hoogstraal, H. 1953 Some mammals of Yemen and their ectoparasites. Fieldiana Zoology 34(23) 229-252

78

79

Senevet, G. 1928 Arch. Inst. Pasteur Algerie. 6 35

Serdyukova, GV. 1955 On the question of differential characteristics of larvae and nymphs of Ixodidae. (In Russian) (In English) NAMRU3-T18. Zool. Zhurnal. 34(5) 1037-1051

Shanmugam, D, Smirnova, SE, and Chumakov, MP. 1976 Presence of an antibody to arboviruses of the Crimean haemorrhagic fever-Congo (CHF-Congo) group in human beings and domestic animals in India. Indian J. Med. Res. 64 1403-1413

80

Shiyanov, AT. 1953 To the question on epizootology of haemoparasitosis of cattle in Kirgiz. SSR. Trud. Prizhival'sk. Univ. G. M. Dimitrov, Inst. 2

Snow, KR. 1970 The quantity of blood imbibed by Hyalomma anatolicum anatolicum Koch, 1844 (Ixodidea, Ixodidae). Parasitology 60 53-60

Sokolov, II. 1954 The chromosome complex of mites and its importance for systematics and phylogeny. Trudy Leningr. Obsch. Estest. 72 124-159

Swanepoel, A. 1959 Tick Paralysis: Regional neurological involvement caused by Hyalomma truncatum. South African Medical Journal 33 909-911

Sweatman, G K. 1968 Temperature and humidity effects on the oviposition of Hyalomma aegyptium ticks of different engorgement weights. J. med. Entomol 5 429-439

Tantawi, HH, 1980 Crimean-Congo Hemorrhagic fever. [In Arabic, in English NAMRU3 T1474]. Baghdad, Iraq: 103pp

Tarasevich, IV. 1956 Hyalomma plumbeum plumbeum and Rhipicephalus turanicus ticks the reservoirs and vectors of R. burneti in Q fever focus in Crimea. Diss. Kand. M.

Temirbekov, ZT, Dobritsa, PG, Kontaruk, VM, Vainshtein, EK, Narushchak, ON, Dobritsa, MA, and Shvets, NY. 1971 Investigation of Crimean hemorrhagic fever in Chimkent Region of the Kazak

Theiler, G. 1956 Zoologic l survey of the Union of South Africa. Tick Survey Part IX. The distribution of the three South African Hyalommas or bontpoots. The Onderstepoort J. of Vet. Res. 27(2) 239-269

Travassos Santos Dias 1958 Notas Ixodologicas V Acerca de alguns ixodideos do Museu de Hamburgo. Separata de Memorias e Estudos do Museu Zoologico da Universidade de Coimbra. 253 1-32

Travassos Santos Dias, JA 1961 Nova Contribuicao para o conhecimento da ixodofauna Angolana. Carracas colhidas por uma missao do estudo do museu de Hamburgo. Separatas de Anais dos Servicos de Veterinaria. 9 80-98

Varma, MGR, and Wallers, W. 1965 An improved method for obtaining in vitro, uniform cell monolayer sheets from tissues of the tick, Hyalomma dromedarii (Ixodidae). Nature 208 602-603

World Health Organization 1976 Viral hemorrhagic Fever. Weekly Epidemiol Rec. 51 261

Zimina, YuV, and Ivanova, NA. 1964 On the question of species composition and numbers of Ixodid ticks in foci of tick-borne hemorrhagic fever in Astrakhan Oblast. (In Russian)(In English, NAMRU3-T170). In Tick-borne encephalitis, Kemerovo tick-borne fever, Hemorrhagic fevers, and 274-277

MEMORANDUM FOR Administrator, Defense Technical Information Center, ATTN: DTIC-0CA, 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical reports written for the following Awards.

 DAMD17-86-C-6169 ADB116203
 DAMD17-94-J-4056 ADB218947
 DAMD17-94-J-4394 ADB220875
 DAMD17-94-J-4358 ADB236080
 DAMD17-94-J-4169 ADB236753
 DAMD17-94-J-4049 ADB234453
 DAMD17-94-J-4080 ADB218909
 DAMD17-94-J-4080 ADB233428
 DAMD17-94-J-4331 ADB220348
 DAMD17-94-J-4335 ADB234557
 DAMD17-94-J-4388 ADB218872
 DAMD17-94-C-4081 ADB246577
 DAMD17-94-J-4025 ADB238010
 DAMD17-94-J-4080 ADB241898
 MIPR 96MM6720 ADB240182
 MIPR 96MM6720 ADB242818

Request the limited distribution statement for Accession Document Numbers be changed to "Approved for public release; distribution unlimited." These reports should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Virginia Miller at DSN 343-7327 or by email at virginia.miller@det.amedd.army.mil.

FOR THE COMMANDER:

[Signature]

PHYLLIS M. RINEHART
Deputy Chief of Staff for Information Management