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PREFACE

This report was prepared by the Research and Engineering
Center of CVD Incorporated, Woburn, MA, under Contract No.
F33615-81~C-5076 entitled, “Erosion Resistant FLIR Windows:
Colorless ZnS." This work was administered by Air Force Wright
Aeronautical Laboratories (APSC), Wright-Patterson Air Force Base,
Ohio. Mr. Donald J. Evans was the Project Monitor.

At CVD Incorporated the bulk of the work was performed by
Mr. Mark J. Lefebvre supervised by Dr. Raymond L. Taylor. A
sianificant portion of the effort was performed under subcontract
to Industrial Materials Technoloqy, Inc. (INT'. Dr. Peter E. Price
and Mr. Marc Naderazzo of INT contributed substantially to the
progran. ' '

The authors benefited from technical discussions with
Mr. Robert N. Donadio, President and Mr. Jossph F. Connolly, Vice
President of Manufacturing of CVD Inc. The authors would also liléc '
to express their thanks to Richard J. Harris at the University of
Dayton Research Institute for his extensive work in establishing
several physicél constants and numerous discussions and suggestions
concerning the measurement of properties of CVD water-clear 2nS.

This Pinal Technical Report covers the period of performance

of 15 Septesber 1981 to 15 September 1983. The zeport has been given

‘CV Inc. internal number TR-028.
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1.0 INTRODUCTION

Chemical vapor deposition (CVD) is a manufacturing process in which
a chemical reaction of vapors forms a solid material. It is generally used
when the desired material is difficult to fabricate by conventional
techniques such as crystal pulling, hot pressing and casting. Materials
that have been made by the CVD process include refractories, e.g., tungsten,
boron nitride, silicon carbide, ceramics, e.g., aluminum oxide, magnesium
oxide, and, more recently, infrared materials such as zinc selenide and
zinc sulfide and a zinc sulfide/zinc selenide sandwich. The process has
several intrinsic advantages, notably its ability to produce large pieces
nf high purity materials in high volume and of low cost. Since the materials
are deposited upon a substrate (mandrel), arbitrary size and shapes may be
formed during the deposition process. The CVD proceés is also widely employed
in semiconductor technology tc produce a variety of thin films.

In the CVD process for 2ns, zinc vapor is reacted with H.S gas:

2
Zniv) + HQS(Q) *> Hz(q) + 2nS(s)

Typical depusitinn conditions are 670 C with a total pressure of about

40 tor-. &inc vapor is generated by maintaining a uniform inert-gas flow
sver the surface of liquid zinc which is kept at a temperature just below
its boilirg point. Hydrogen sulfide is a gas at standard conditions. Be-
cause CVD is a dynam!. process, the manufacturing equipment must be capable
of conti.uously and safely injecting, reacting and exhausting cases over
lona perinds of ¢ime.

Fiqure 1-1 schematically shows a typical CVR apparatus. The furnace
is a large electrically heated vacuum chamber with a continuous flow system.
“‘'he 2Zn vapor ond “ZS are injeced into the reaction chamber where the deposi-
tion takes place. Unreacted and proaduct qases are exhausted throuyh traps
to remove toxic su:stances. Figurc 1-2 shows a cross sectiun of a 3¢ inch
diametar CVD furnace presently in use at CVD lacorporated. The only limita-
tlons on the process arc imposed by the chamber size and deposition rate.
Current chambers Are_da inches in diamater, and can produce platcs up to
49 by 30 inches across and as much as l-inch thick. To attain mne-inch
thickness, the chemical reaction must be accurately monitored and contin-

- uously contrelled for almost three weeks.
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CVD 2nS has become a very useful infrared transmissive optical material.
visible and infrared transmission curves are shown inFig. 1-3. In the LWIR spec-
tral region (8~12 ym), ZnS has reasonably good transmission. It should be noted
that the transmission values of about 70% shown in Fig. 1-3 can be improved
to greater than 95% by the use of suitable anti-reflection coatings. The
excellent transmission combined with reasonable rain erosion resistance,
mechanical and physical properties has led to the use of CVD ZnS in domes
for heat-seeking missiles and as windows in many other infrared military
systems. The companion CVD product material, 2ZnSe, has better infrared
optical properties but its weaker mechanical strength have restricted is

use to'beniqn environmental applications.

As is seen from Fig. 1-3, the transmission of CVD 2ZnS degrades
toward the shorter wavelengths and the material possesses little or no use-
ful transmission in the near infrared and visible spectral regions. This
fact is intrinsic to CVD produced ZnS; the theoretical transmission limit
for ZnS is in the near ultraviolet. Several years ago CVD Inc. was able to
demonstrate the production of a ZnS with vastly superior visible optical
properties. This water-clear 2nS was made by subjectingCVD ZnS to a post
deposition hot isostatic processing (HIP) at high temperature and pressure
(HIP is described later in this report). A transmission curve of this material
is shown in Fig. 1-4, and comparison with Fig. 1-3 indicates the improved
short wavelength optical properties. A dome made with water-clear 2nS is
shown in Fig. 1-5 and compared to one fabricated from normal CVD 2nS. Un-
fortunately, the high temperatures used in producing water-clear 2nS$ also
lead to significant grain growth and a weakening of the mechanical properties
of the material. Thus, water-clear 2nS no longer possesses the good
environmental characteristics of CVD 2nS.

The purpose of this program was severalfold: (i) To optimize the
conditions under which water-clear 2nS is produced. 1In particular, an attempt
was made to find conditions of CVD and HIP to produce good optical material
while retaining as much of the intrinsic strength of the CVD 2nS as possible.
Also, more cost effective approaches to produce the material were investigated.
(i1) since it was not thought possible to produce water-clear 2ZnS without
gome loss in mechanical characteristics, research was conducted to find some
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technique to increase the rain erosion resistance of the material as
produced in (i) above. (iii) Finally, important opéical, mechanical and
physical constants of the water-clear ZnS were obtained and decumented.

The overall program plan is shown in the matrix of Fig. 1-6, The
optimization of the process parameters was investigated in branches (1)-
(3). Material toughening experiments are indicated in branches (4) and (5).
Additional approaches to improve rain erosion resistance that are not shown
inFig. 1-6 werealso tried. Finally, in branch (6) the overall process is
demonstrated in the generation of 10 x 10 x 1/2 inch blanks of water-cleaxr
ZnS. The details of this investigatiocn aré described in the sections that
follow.




g e gy g £ "0 ¥ D T | &y « -
MM ) ....&-.. n'< .

dn 3IvIs

i

s$310N.LS
ONINIHONOL
MVIHILVN

i

s3ianis
ANIWIAOYINI
II8ISIA

X9ppPYI XTIIPW UOTIezTWYIdD $330023d °9-1 IandbI3

I
~% %01 %..0l OL ONITVYIS

9
'
,— “amiesscwm ;0| 30
SIMIIAUIN) UOHIBULIOSLRT) $IN0Y T - % PIOY 3messoum
. SO SEENTISOWS] 2 3 15500 dey VONMLIOSSUIR:) WD) |00 354
385_._ IDVIST SS30084 go_az.hzs
ONIN3GUVYH HO4 .
JININLVYIYL NOISN341Q (S) ANIFENISISY ISYHJ 1Y)
S31LH34044d
IVIHNVHIIN OGNV
TYO1140 1S538 HO4
d3’L wm_-ls
1
(AVE-X) <
mN>..«2(
Jg0itL
SUHGZI{ JoL908
ot P01
2] .ﬂu g1
S3aniLs
3UNIVUINGL
@
(o081 18 .
'SHHZ-% (SUH S ZI{ 2901
03,066 ol¥01L S3IUNSOIONI ‘SHHSZ ST ‘SUH ST
M 02’61 ‘SUH SZ J,068 3LIHdVYHD 2068 D068
\ uneq 40 gz..-.(.ﬂ "5 “ﬁ m&.nm—
S3anis SH313INVYVd
ANIWLVYIUL Lv3IH (€E) INYSSINANJIHL 1)
SNOLLIGNOD QAD




2.0 TASK I - OPTIMIZATION OF GROWTH AND TREATMENT PROCESS

2.1 Introduction

The objective of this first task was to establish the optimum set
of process parameters to produce water-clear ZnS. It was known at the
start of the program that a water-clear ZnS could be produced from standard
CVD 2nS by a subsequent HIP treatment. However, there are a large number
of process variables from both the initial CVD process and the subsequent
HIP treatment which can affect the optical and mechanical properties of the
final water-clear 2ZnS. In addition, it was hoped that by starting with 2ns
material produced outside of the standard CVD condition, it might be pos-
sible to obtain water-clear material by the most cost effective combination
of treatments.

There are a large number of process parameters which can be varied
in both the CVD and HIP steps. Therefore, it was not possible to vary each
parameter independently. Rather, those parameters judged most critical were
varied and only a limited range of variation was attempted.

The method of making colorless 2ZnS is a two step process involving
(1) chemical vapor deposition of 2nS and (2) hot isostatic pressing (HIP)

of the CVD ZnS in a separate chamber. The HIP technique applies a combina- -

tion of inert gas pressure and temperature to a body to do useful work.
Figure 2-1 shows a schematic of a typical HIP unit.

In the HIP process, the material is placed in containors which are
enclosed in a heated pressure vessel. The material is generally wrapped with
some foil (Pt is t#pically used) to prevent any contamination or chamical
interaction with the container. In addiéicn. this wrapping can also act as

a gettering agent for species which outgas during the HIP treatment. The
' working £fluid is generally an inert gus = Ar. Pressures of up to 30,000 psi
and temperatures of 2000 C are attainable in HIP chambers curgently available.
the size of these chambors is also increasing with the demand to process
larger parts. Currently avajilable chambers have up to a 38 tnch working
diamoter. ' '

Hot isostatic pressiug is a proven, cost effective and energy
efficient technique used in miny metallurgical and ceramic applications.
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(Courtesy of Dr. Peter Price of INT Inc.) '

HiP Unit Schematic

Figure 2-1.




HIP processing is used in the manufacture of dies and composite parts,
significantly improving the performance and service life of high wear

parts. HIP allows materials with widely disparate coefficients of expan-

sion to be bonded in a one step procedure. HIP procegsing is extensively

used in the manufacture of high performance super alloys and gimilar materials
from powder compacts. In a single operation; super alloy powders can be con-
solidated into a 100% dense material, with tta2 capability of producing complex
internal and surface geometrie~. Other uses of HIP processing include rejuvin-
ation of tufbine,blades and components, and densification of castings. Strength
deteriorétion of turbine blades can be essentially reversed with HIP processing,
greatly extending the useful life of these components and reducing replacement.
Previously 'uncastable' materials are HIP processed to increase yields and
material properties by healing casting flaws that often result in poor high
temperature creep strength, lower strength and ductility.

2.2 pPhase 1 - CVD Deposits

During this phase of Tagk I, six varieties of CVD ZnS were produced
for use in the HIP treatment. Chemically vapor deposited 2ZnS can vary in
optical and mechanic:. properties, depending primarily upon deposition
temperature, pres..re, stoichiometry and deposition rate. A matrix of six
CVD ZnS deposits was planned (Table 2-1) to praduce various quality CVD 2n8
which was in turn to be used as baseline material for the subsequant HIP pro-
cessing. Table 2-2 show. the actual deposition conditions followed for this
matrix. The first deposit (2Zn§S AF-l) represents standard CVD. conditionse for
producing ZnS. Tn the second deposit (aF-2), the molar ratio of ags/zn wag
increased from 0.7 to 1.0, with remaining conditions unchanged. ’T;is was>
done by lowering the 2Zn ﬁapor pickup rate (rate of Zn evaporation) whiie
keeping the st gas injection rate the same. The third zns deposition (AF=3)
represents a low temperature deposit, i.e., a standard Zn5 deposit with a
lower overall deposition temperature. - Conversely, AF-4 represents a high
temperature run. In AF=-5 the deposition rate was doubled by increasing the

partial pressure of reactants (H § and 2n) while keeping the stancdard stoichio-

metry (H s/Zn) of 0.7. Pinally, AF-6 represents a 2n rich daposit, i.e;.::atié
of H S/Zn = 0.3. The 2n pickup rate was increased from 675 to 1232 g/ht. ‘
while the H 58 was injected at 2 1 &/min (down from 2.7).
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* ’ TABLE 2-1

CVD_ZnS Deposition Parameter Matrix

Deposition Deposition Molar Ratio Deposition Rate
No. Temperature (°C) (S/2n) {in/h)

1* €70 0.7 ‘ 0.003
2 €70 . 1.0 0.003
3 620 0.7 0.003
4 <7 720 Q.7 0.003

5 . 670 0.7 0.006

6 670 0.3 0.003

* Standard CVD 2nS manufactured according to CVD Incorporated
Procers Specification CVD-2RNS-680.
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As is evident from the infrared transmittance curves of these 6 ZnS
materials (Figs. 2-2 to 2-7), the optical quality of the ZnS is affected by
the deposition conditions, most noticeably the short wavelength scatter and
the intensity of the impurity absorption band at 6.3 um. AF-2 and 4 Zns
material display appreciable short wavelength scatter in comparison to the
other deposits. AF-3 and 5 ZnS exhibit a very broad, strong absorption
band at 6.3 um in contrast to AF-4, which displays a very shallow absorption.
AF-6 displays the best overall transmittance for ZnS. It shows a fairly well
defined doublet at 6.3 um, whereas the remaining runs show a flat (aF-1, 3
and 5) or rounded (AF-2 and 4) singlet peak.

The Knoop hardness of these six deposits also show variations, as
can be seen from Table 2-3, with values ranging from a minimum of 216 to
a maximum of 256. These extremes can be explained by the deposition
temperatures and corresponding crystal structure. The hardest material
(AF-3) was deposited at the lowest temperature, yielding relatively small
grained material (Fig. 2-8a) whereas, the softest material (AF-4) was de-
posited at the highest temperature resulting in a large grained structure
(Fig. 2-8b).

These six materials were then HIP processed as described in the
next section to determine the optimum overall CVD/HIP conditions to produce
the best water-clear 2znS.

2.3 Phase II ~ Hot Isostatic Pressing

In Phase II, a series of HIP runswas conducted to quantitatively
investigate the effects of time, temperature, pressure and wrapping (enclosure)
material on the optical and mechanical properties of the water-clear 2nS pro-
duced. All six CVD deposits produced from Phase I were used in each HIP
treatment. Various atmospheric heat treatment experiments were also performed
to determine their effectiveness to relax or eliminate the HIP treatment.

The matrix of parameters is shown in Fig, 1-6 in steps (1)-(3).

A matrix of twelve HIP treatment runs was investigated, as shown in
Table 2-4, to determine the optimum HIP conditions to render the CVD 2nS
clear. The first three HIP runs were conducted at 990 C, the HIP processing
temperature used at the inception of this program. Parameters of time, pres-
sure, and wrapping material were varied at constant temperature. Three higher

-15-
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TABLE 2-3

. Knoop Hardness (HK%J CVD 2n$
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TABLE 2-4

Hot Isostatic Pressing Parameters

Run Temperature Pressure Time
No. _cc psi x 103 h Enclosure
HIP~1 990 15 25 platinum
HIP-IX 990 30 25 platinum
graphite
HIP-IIX 990 30 2.5 Platinum
HIP-IV 1047 . 15 12,5 graphite
HIP-V 1047 30 12,8 graphite
HIP-VI 1067 15 12,5 graphite
HIP-VII 1067 30 12,5 graphite
RIP-VIII ~1110 15 12.5 graphite
HIP-IX 1110 ' 30 12.5 platinum
BIP-X 1047 15 12.5 platinum
RIP=-XI 1047 30 12.5 platinum




temperatures were used in the HIP treatment matrix to determine trends with
increasing temperature. 'Temperatures of 1047, 1067 and 1110 C were selected
to double the diffusion rate above the baseline temperature of 990 C. These
values are based on three assumed values for the activation eunergy of dif-

fusion of 20, 30 and 40 kecal/mol K.

The edges and faces of the six samples from HIP I were polished and
inspected for residual visible banding or stria normally observed in standard
CVD ZnS. Samples from AF-5 revealed a light hazy band which could be observed
from an edge view. Material from AF-3 was the only deposit showing a dark
scattering core at the center of the sample and displaying short wavelength
scatter not observed in the other material. Infrared transmission traces
of the six samples are shown in Figs. 2-9 to 2-14. As is evident from the
photomicrographs (250x) of the etched surface of CVD 2nS before and after HIP
{Figures 2~15a and b), phere is a substantial increase in grain size after

the high temperature processing.

HIP II was performed at 990 C, 30 ksi, 25 h with both platinum and
graphite enclosures. Edae views of the material wrapped in platinum revealed
a slight residual scattering core in all samples except for AF-3, which was
severe. Samples from AP-3 were significantly milky and translucent in appear-
anée, similar to the previous HIP run. Qualitatively, it appears that there
are more scattering layers present in the material processed at 30 ksi than
at 15 ksi. 1In PFigs. 2-16 through 2-27, visible transmittance curves confirm
quantitatively that material HIP processed at 15 ksi has superior visible

- optical properties. Samples from HIP II were also processed without platinum,
using a graphite enclosure. All samples show residual scatter sites in the
form of dark networking or texture. It is evident that material wrapped in
platinum from HIP II has superior visible transmittance than material processed
with graphite.

A 2.5 hour HIP (HIP III) was conducted at 990 C, 30 ksi with platinum
enclosures. This run was designed to indicate the time/thickness relation=-
ship for HIP processing of CVD ZnS. Visual evaluation shows removal of nearly
all color/scatter centers in AF-4 and Ar-6; while the remaining samples disg-
play a large amount of color/scatter to be present.
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pPhotomicrographs of Etched Surface of CVD ZnS AF-4 as Deposited (a) and HIP Processed (b),
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HIP runs IV, V, X and XI were processed at 1047 C using different
pressures and enclosures. This increase in processing temperature caused
a large crystal growth in the material, leaving a grainy surface difficult
to optically fabricate. This material displays an increased scatter at
shorter wavelengths when compared with material processed at 990 C. This
degradation is in part due to the large crystals and resultant poor surface
figure. Although the previous HIP runs performed at 990 C yielded material
which showed consistently higher transmission when wrapped in platinum, such
was not the case with material HIP processed at 1047 C. As can be seen from
a comparison of the infrared transmittance curves of AF-4 (Figs. 2-28 and
2=-29), HIP processed at 1047 C, 15 ksi, and 12.5 h, the graphite enclosed
ZnS displays a higher transmittance in the near infrared than material pro-
cessed with platinum. The Knoop hardness of material HIP processed at 1047 C
is similar to material processed at 99C C (Table 2-5). 2nS processed from
HIP XI has a relatively high Knoop hardness average of 184 but alsc exhibited
a large variation in values.

The remaining HIP processing runs were performed at 1067 C and 1110 €
with differing wrapping material and pressure. As was expected, there was |
large grain growth (Fig. :-30a) with some of the crystallites approaching
one cm in diameter. The material also exhibited cracking along grain g
boundaries (Fiq. 2-30b), especially prevalent in_tho material processed at
1110 ¢. Table 2-6 shows the Knoop hardness values for the materisl processed !
at high temporatures, and as can bo seoen, a few values are quite high, e.g.,

257 and 260. It appears that as the HIP temperature increases, so do the
corresponding Knoop hardness values. It is thought that this may be due

to boundary effects and dows not necessarily reprosent a typical hardnoss _ !
of the material. ‘There i8 alsc considerable suatter in the Knoop hardnoss

values for these samples processed ét high tampexaturés; In any event, the

larqe qrainy and cracks which form at these high Hip processing temperatures
preciude those eand;eione from any practical usage of this smaterial fn ’ o
optical applications. tThe added short wavelength scatter svident From these

samples alona with the difficulty in Fabricating an adequate optical sur-

face eliminate these high processing t@ﬂp&:&tﬁr@g from any further consider-

ation. : i

- 39h

R R R T T L .



RIS S B 4

-

R R A R
B
e Tm oy s oo

v

X

Infrared Transmittance of CVD ZnS AF-4, HIP Processed at 1047 C, 15 ksi for 12.5 h, Pt Wrapped.

-

ey

i ey

‘n;i

e
|
b
w0 4= 1 Fhicariau wpren
B | = =
srzygrmads -
b wetdan vins Jfas
5

kS

Infrared Transmittance of CVD 2nS AF-4, HIP Processed at 1047 C, 15 ksi for 12.5 h, Graphite Enclosed.

Fig. 2-29.




» wLE. s A=

LLT
Hmd‘
SLT
20¢
LLT
681
ys-el
AGY

9 LYO1
IX 414

@« 005 TV s A oo LT LTL 0. B . . e sacre; P By ¥ 0.2 T 7 .0, TR Tata a4, A LT s e ..o....n'; ..,,n‘.‘... FiaeT e R o e, R Y, T, L R ae, -....M
S
..«m
o
. | BX
181 so1 9Lt CE 891 ¥91  9-av o
vLT oLT . g9t 891 zet 651 S=av
08T SST 69T : T S €51 09T . p-a¥
’ ' 3
Lt z81 - ¢ o8t oLy Lt t-a¢ T
ZLt 891 69T 891 18t st z-a¢
€LT 65T 121 SR vt 69T 9Lt T-av
3d a3 uders- a3Tydexs _ 3d d T ad g
qs°zT 4s-21 ys-zt 4§°Z . ’sz . usz
AST MO€ AST %ot © et A51
5 LroT 5 Lvot 2 ot > 066 . D o066 > 066

X dIH A dIH . Al 4IH IIXI 428 IT 814 , I 4TH

Suz XeaTo-353en (O 3H) SeotpaeH dooux

S-¢ Tiada




(b)

(a)

Figare 2-30.

Photomicrograph of CVD ZnS After HIP Processing at 1067 C (a) and 1110 C (b),

30 ksi for 12.5 h, Pt wrapped, 100x.
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Although comparative ranking of the water-clear ZnS produced from
the various combinations of CVD and HIP was generally possible by visual
inspection, a more quantitative method was desired. For this purpose, the
attenuation coefficient of the material was calculated from the visible

transmission curves from the relationship:

-at
- I, = Ip e .
. where
- IM~ = measured transmittance
IT = total theoretical external transmittance assuming

only reflectance losses

= 2n = ,73; n = 2,30 at 0.7 um

n2 + 1

o = attenuation coefficient (cmﬂl)

t = thickness (cm)

0.7 um was selected as the wavelength for this calculation, because it

occurs in a sensitive region of the transmission curve. Attenuation

(N "_~'A =
A A ST )

e

coefficients calculated as described above are shown in Table 2-7 for the
first three HIP conditions for all 6 CVD 2n8 samples.

S

As is evident from the data of Table 2-7, material from AF-1l, 4 and
j 6 produced the best water-clear ZnS. In addition, the optimum HIP conditions
N appear to be a temperature of 990 C, pressure of 15 ksi, platinum wrap and
 £ processing from 12-24 hours depending upon the thickness of the material.
Water-clear 2nS was produced at these optimum conditions from AP-1l, 4 and 6
B and optically fabricated for guantitative optical testing. Vigible trans-
mission spectra were obtained and calorimstric absorption measurements made
at 1.3, 2.7, and 3.8 um on these three samples. The transmission spectra
are compared in Fig. 2-31 and the absorption data are listed in Table 2-8.
It is obvious from these data that material produced from AF-4 provides
superjior optical quality.
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TABLE 2-7

Attenuation Coefficients for HIP Processed Samples

ZnS Run No.

. Sample No. HIP Run Iy at 0.7um,% Thickness (cm)  Attenuation (em™1)
AF1-10 IT* 43 0.406 1.310
AF1-12 II 60 0.437 0.453
AF1-15 III 26 0.516 2.006
AF1-19 I 69 0.513 0.109
AF2-1 II* 36 0.401 1.766
AF2-17 I 64.5 0.517 0.244
AF2-19 II 58 0.437 0.531
AF2-20 IIT 42.5 0.376 1.444
AF3-2 II* 0 0.610 -—
AF3-4 I 3.5 0.401 7.574
AF3-6 II 5 0.406 5.229
AF3-8 III 0 0.513 ——
AF4-6 III 62.5 0.516 0.305
AF4-16 TI* 57.5% 0.422 0.570
AF4-18 I 59 0.386 0.556
AF4-20 1 66 0.516 0.199
AF5-A I 58.8 0.378 0.576
AF5-Al II* ' 16.5 0.373 3.988
AF5-A2 1 62.5 0.424 0.370
AF5-A3 III 5.5 0.574 4.508
AFG-B II 53.5 0.445 0.703
AF6-B1 IT* 25.2% 0.419 2.542
AF6-B2 1 67 0.422 0.208
AF6-53 III 61.8 0.518 0.325

* HIP processed in graphite crucible only.
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Flexural strength measurements were also performed on water-clear
ZnsS HIP processed at 990 C, 15 ksi, 12.5 h. and Pt wrapped from AF-1, 4
and 6. As can be seen from Table 2-9, AF-4 has a slightly higher flexural
strength than AF-1 and 6, although this difference is within the scatter
of the data.

Various atmospheric pressure heat treatment experiments were per-
formed, followed by HIP processing. Table 2-10 shows the process conditions.
To avoid surface oxidation, the heat treatments were carried out in one atmos-
phere of argon. The optical quality of the heat treated material displayed
substantial increases in scatter and absorption at all processing temperatures.
The heat treated material has a milky white appearance and is noﬁ-transmissive
in the visible spectrum. Figs. 2-32 and 2-33 show the infrared transmittance
of the best optical heat treated ZnS. In following the trend of all post
deposition, high temperéture processes, there is a substantial increase in
grain size and corresponding softening typical of material HIP processed at

similar temperatures.

The heat treated ZnS was next subject to HIP processing at 990 C
15 and 30 ksi, 25 h and wrapped in platimum. As is evident from infrared
transmittance curves (Figs. 2-34 and 2-35) which represent the best results,
the optical quality has been improved over the non-Hip processed, heat-treated
Zn8, but still remains well below the optimum water-clear 2nS. Apparently
the heat treatment locks in the scatter sites making subsequent HIP treat-
ments less effective. Predictably, the Knoop hardness of the heat treated
and HIP processed material did not degrade further as can be seen from Tables
2-11 and 2-12.
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TABLE 2-9 ,

Flexural Strength Water-Clear 2nS |
HIP 990 C, 15 ksi, 12.5 h, Bt f
i

Run HIP Conditions Flexural Strength (psi) l

AF-1 990°C 8300 £ 1600 ' '
15 ksi
12.5 h '
Pt

]

AF-4 8700 & 700 !
.

,

i

AF-6 8300 & 1000 :
1

.
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.
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TABLE 2-10
Heat Treatment Conditions, 1 Atmcsphere Argon
Temperature Time
Run °C h Enclosure
HT-1 990 25 Platinum
HT-2 990 25 Graphite
HT-3 1047 12.5 Platinum
HT-4 1047 12.5 Graphite
HT=-5 1067 12,5 Platinum
HT-6 1067 12.5 Graphite
HT=7 1110 12.5 Platinum
HT=8 1110 12.5 Graphite
FILNTEL R R TN, WA YW \'M'\LMLLLL}LLLLA‘L&;A:_L.:MMML; P S N S S T P P T N R P W
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Infrared Transmittance of CVD ZnS AFP-4, Heat Treated at 990 ¢, 1 atm, for 25 h, Pt Wrapped.

Pig. 2-32.

agsand

o)

Infrared Transmittance o>f CVD 2ZnS AF-4, Heat Treated at 1047 C, 1 atm, for 12.5 h, Pt Wrapped.
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Fig. 2-33.
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AF-6
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TABLE 2-11

Heat Treatment ~ HIP Experiment, Xnoop Hardness (

SLLETM

© a4

Heat Treatment
Conditions

990 ¢
1l atm
25 h
Pt

1047 ¢
; atm
12.5 h »

1067 €
1 atmn
12.5 h

1110 ¢
1 atm
12.8 &

P
PR

HK

50
After HIP
. 990°C, 15 ksi
Bafore HIP 25 h‘ Pt
166 167
155 166
152 155
156 161
172 151
182 180 -
189 166
190 179
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AF-1
Ar-6

AF-4
AF-6

ar-1
AF-4

TABLE 2-12

Heat Treatment - HIP Experiment, Knoop Hardness (HKSOL

Heat Treatment
Conditions

990 C
1 atm
25 h
Pt

1047 C
1 atm
12.5h
Pt

1067 C
‘1 atm
12.5 h
Pt

1110 ¢
1 atm
12.5 h
Pt

~54-

HRs

166
152

182

156
172

193

172
183

Before HIP

After HIP
990°C, 30 ksi

25 h, Pt

156
143

157

154
147

191

171
les
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2.4 Summary and Conclusions - Task I

It has been demonstrated that a "water-clear" 2ZnS infrared optical
material can be produced by a combination of "standard" CVD ZnS which is
subsequently hot isostatically pressed. This water-clear material exhibits
good optical transmission from the first optically allowed electronic
transition at about 3400; to the multiphonon edge at 11 u and, therefore,

is useful in a variety of multispectral applications.

The optimum conditions for producing this water-clear 2ZnS have been
shown to consist of a high temperature CVD combined with HIP treatment at
990 C and 15 ksi using Pt foil wrapping. The time for HIP treatment is thick-
ness dependent with a 24 h processing necessary for 0.5-inch thick material.
HIP processing at temperatures higher than 1000 C leads to large crystallites
and pronounced grain boundaries. Such material is not useful in optical
applications because of cracking and difficulty of fabrication. The effect
of CVD temperatures in excess of 720 C was not investigated. However, it is
known that as the deposition temperature increases, CVD ZnS becomes clearer.
Therefore, it might be possible to produce water-clear 2nS directly in the
CVD process and avoid the HIP treatment. Lewis({l) has claimed to have demon-
strated this, but the appropriate conditions have not been published.

An attempt to replace or ameliorate the HIP treatment by a low pres-
sure, heat treatment was unguccessful. It appears that the heat treatment
"locked in" the scattering sites, making any subsequent HIP ineffective.

No definitive mechanism for clearing CVD 2nS was established in this
program. However, the totality of data strongly suggests that the initial
scattering sites are microscopic (< 1 um) diameter lattice dislocations which
are healed by the KIP treatment. There is also some evidence that removal of
impurities or excess zinc miy also occur. For example, the 6.3 um “impurity
band", seen in CVD 2n3, is removed. Such diffusional processes would have
to ovcur along qrain boundaries to be effective for the times and distances
involved.,

Finally, every combination of CVD and HIP processes that produces an
optically optimun water-clear 2nS, also produces larger grains and a softer
material than CVD ZnS. fThis is a serious disadvantage to the water-clear
material and cttempts to provide a harder material by subsequent treatuont
are discussed in the following sections.
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3.0 TASK II - MATERIAL TOUGHENING TECHNIQUES

3.1 Introduction

Water-clear 2nS, as produced in Task I, displays excellent optical
transmittance from the visible to LWIR wavelengths. However, the grain

growth which occurs during the HIP (clearing)process leads to mechanically

weak and soft material as compared with standard CVD ZnS. ‘'The reductions
N in hardness and strength are shown in Tables 3-1 and 3-2 respectively. As
= a result, the rain erosion resistance of the water-clear ZnS has been con-

siderably lowered. Figqure 3~1, which shows the infrared transmittance

-

curves of water-clear and as deposited ZnS before and after exposure to a
simulated high speed rainfall, graphically illustrates this point. The

‘ s
S ket SR

objective of Task II, is to increase the rain erosion resistance of water-
clear 2nS to at least the level of standard CVD 7nS, while retaining the

A B

excellent multi-spectral gualities inherent in the clear material.

The material toughening experiments tried in this program included
, both bulk material and surface treatments. Table 3-3 displays the various
}E material toughening techniques which were tried on water-clear 2nS. The
- technival details and results of these experiments axe discussed in the
., sections which follow. ' :

. 3.2 Grain Size Refinement

= Analogous to wetallurgical systems, grain size refinement was’
investigated as a technique to provide innreased bulk hardening. - Litera-
ture indicates a phase transition in 2nS from cubic to hexagonal at

i approximately 1020 ¢ (2-4), Hexagonal matekial is optically undetirable due

! to spattering effects from anisotropiq refractive indices. The goal of

;‘ this approach was to heat the water-vlear ZnS to above this transition point
to provide a cubic to hexagonral transformation. fThen the material would be

> cooled to a temperature slightly below the transition temperature to 1) anneal
any stresses obtained during the «ubic -+ hexaqonal transformation and 2) to

-? recrystallize the hexagonal material to a fine grained, cubic structure. This
fine grained material should display better strength characteristics than

the larger grained starting material. '

w e

-

.

Two experimental procedures were proposed to obtain a small grained,
cubic structure. The first experiment involved CVD ZnS which was NP processed

“
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3
.
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*ar-1

AF-6

TABLE 3-1

Knoop Hardness (HK,..) CVD ZnS Before and After HIP
C*4Y A

CVD ZnS

220

216

247

HKSO

*Standard CVD Deposition Conditions

-t

Water-Clear 2Zn$S

176
160

164




TABLE 3-2

Flexural Strength, CVD ZnS, Before and After HIP (PSI)

Run CVD 2Zns Water-Clear 2nS
*AF-1 14,600 8,700

AF=-4 - 8,600

AF-6 - 8,300

*Standard CVD deposition conditions
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TABLE 3-3
Material Toughening Matrix

Process Variables Treatment Depth

Grain Size Refinement Temperature, Time Bulk

and Cooling Rate

Phase Transformation

Thermal Tempering Tenmperature, Bulk
Quench Rate

Thermal Diffusion Dopant Species, Surface
Temperature, Time
Presgsure

Thin Film Coating Material, Surface
Thickness

PEBA Dose, Surface
Pulge Width

Ion Implantation Dopant Species, Surface
Ion Flux,
Acceleration Energy,
Annealing
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at high temperatures (> 1047 C). This material was expected to display a
significant (> 30%) amount of hexagonal material, as the rapid cooling

{to room temperature) from the high processing temperature should have pre-
cluded an appreciable hexagonal + cubic recrystallization. The ZnS would
then be heated to a nucleation temperature below the transition temperature
for a few hours. It was expected that complete nucleation of the cubic phase
would occur, without accompanied grain growth. In the second approach, the
HIP and grain refinement were to be carried out in one sequence in which the
ZnS would be rapidly cooled from the HIP temperature to the refinement

temperature and held for the nucleation period.

X-ray diffraction measurements were performed on standard untreated
CVD ZnS and both HIP processed and heat treated materials. Only trace amounts
of hexagonal phase waterial were revealed even after heat treatment exposures
as high as 1110 C. It was determined that there was insufficient hexagonal
phase present to effect the grain structure, even assuming a complete, fine
grained cubic recrystallization. In addition, material that was subjected to
these high temperature (> 1000 C) processes exhibited large grains, cracking
along grain boundaries and occasional grain boundary separation. The con-
clusion is that either there is no cubic-hexagonal transition in the tempera-
ture range studied or that such a transition is kinetically limited and,
therefore, is toe slow for grain refinement. Due to these negative results,

further bulk grain refinement experiments werc discontinued.

3.3 fthermal Tempuring

In another attempt to increase the overall bulk strength of water-
clear an$, various thermal tompering experiments wore performed(5). In the
production of satety ylass, residual compressive stresses are intentionally
induced in the surface regions through nontniform tempurature profiles,
followed by a controlled cooling procedure (6,7).1n the experiments with wators
clear 2n8, two quenchants were used to study the offacts of diffevent quonch
rates. Water was used as a fast quenchant, and oil for slower quench vates.
Water provides a more rapid quench because the conversion of water to stoam
at the surface of the heated 2nS absorbs a large gquantity of heat due to
the high latent heat of vhpo:ization of water. Quonches in oil lead to loss
distortion because of lower thermal gradients.

=

. .
. . Pt . .t
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Table 3-4 shows the thermal tempering test parameters. Room tempera-
ture air cooling (natural convection) was used for comparitive purposes. Aas
is evident from these data, no significant increase in hardness was observed.

Water-clear ZnS quenched in water severely cracked at both temperatures.

Material quenched in oil slightly cracked at 600 C, but did not crack at
300 C. There was no evidence of cracking in 2nS cooled in ambient air. Be-
cause of the lack of positive indicators, further thermal tempering experi-

ments were abandoned.

3.4 Surface Diffusion

A number of surface diffusion experiments were performed on water-
clear 2ZnS to increase its rain erosion resistance. A proven technique to
impart a hard surface layer in metals is to diffuse into the metal an
appropriate impurity atom. If this impurity atom is of the proper size,
it will cause a lattice strain in the metal and result in a compressive
stress in the surface layer. In the present case, the impurity species must
diffuse into the 2nS lattice, be of sufficiently different size from the
host ions to produce lattice strain, but not cause significant optical
degradation of the material. Based on theoretical calculations a species
whose atomic radius is about 15% larger (or smaller) than the host ions
appears to be the most optimum (8).Cd fits this requirement. Several dif-
ferent techniques were tried to diffuse Cd into the 2ZnS.

In the first spproach, 2n3 (both water-clear and as deposited) was
heated to 1100 C in a C? vapor atmosphere. Table 3-5 displays tha Knood
hardness of CVD 2nS subjected to Cd ~;apors at 1100 ¢, 1 atm pressure for
3 h in a graphite crucible. As is evident from these data, the hardnuss
was substantially increasad in three out of the four samples treated.
Pigure 3-2 is an infrared transmittance curve of the treated materials
showing tha substantial short wavelength scatter. This scatter is largely
due to surface degradation, as the samples showed substantial etching and
pitting from the Cd vapor and high heat., The Cd-doped pieces wers then
repolished and new IR transmittance curves were gancratad (Pig. 3-3). s
is evident, the material continues to exhibit some short wavelength scatter-
ing. The doped ZnS also has a cloudy appearance, and one sample (AF4-CD)
shows some internal cracking along grain boundaries. Knoop hardness

-62-




TABLE 3-4

knoop Hardness (HK_.) of Thermal Tempered, Water-Clear Zn$S

50—

Sample Initial HKj5q 300 C Quench, HKsgp 600 C Quench, HKgq
A 159 *Water, 157 ——

B 161 *0il 160 —————

¢ 158 Air 158 —————

D 164 ————- *Water 169

E 166 ———— 0il 152

b3 153 S Air 171

*Samples cracked

%




TABLE 3-5

Knoop Hardness (qun) Cd pDiffusion

Experiment
o

After Diffusion

1110 ¢, 3 h
Sample Initial Conditions Before Diffusion 1 Atm, Graphite
AF4-00 As Deposited 216 213
AF4-~44 As Deposited 206 258
AF4-21 Wwater-Clear 160 188
AF4-20 Water~Clear 162 245
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i v i 12 I ST gy

4 4 '.--u,;..]‘TJ-.uu‘ 4.“]’. ...T R I
: N R R R

h {i i,;'i ¥ -*: ,‘
i m*"!'.?"‘ [
m ’l ’| [F

l : i"mia-'x i il i '.:E ~ :' ‘ 't""
,J TR i Lt LL

? H l n“‘ li ;

T T

! il
g .']l;'5. e SR R
L R R 171 O R JLaiL it
wnth Vaauh HuMiER (LA ') 1 Wo y [y WAVI. NWN (\ “ .,

Fig. 3-2. Infrared Transmittance of AF-{ Water~Clear ZnS Exposed to 1110 C,
¢4 vapor, 3 h, 1 atm.

1 meenms ‘ [ ? [] [} h 19 [T EY ] o
. : . R " Gy e
T upds thy oot ot N‘Aulvs.r. - : e T belak ' b .‘ ., Pgic) RTINS I-..A.{[L..‘_\‘Wm_u u H\\%h%‘%-\ﬁ

T GTmEmcvety M 2 M rF noom

1 LN IO i W ‘ “ v v
w; P -wmut» W yVee TowH o Lk LR w-v‘t mmwﬂr » vV el oK L
. s . -

T L v e [ i

fig. 3-3. Wifraved Transmittannoe of AP«{ Water-Claay 205 Suposed to 1110 ©,
Cd Vapor, 1 h, 1| att, Revolisned.




measurements were made on these repolished pieces, with the results shown
in Table 3-6. Approximately 0.005 inches of material was ramoved in the
repolishing, and as is evident from the'data, the hardness was not
appreciably effected by this fabrication step.

In an attempt to repeat theée results, another similar C4 thermal
diffusion experiment waé performed. However, as is evident from the data
shown in Table 3-7, no apparent increase in hardness was observed. As a
result of this inconsistency, the added short waveiength scatter and grain
growth/grain boundary cracking, no further Cd diffusion experimenté were
performed using this technique.‘ However, this technique merits further
detailed investigation, because it did yvield a significant improvement in

surface hardness.

Another experiment was perfcxmed to thermﬁlly diffuse Cd into 2nS
by a different technxque. Samples of bcth as deposited and water-cleax
ZnS were coated with an ‘approximate 1000 A thick cd film, stacked between
alternating layers of graphite foil, placed in graphite load cans, then HIP
processed at 750 C, 15 ksi for 12 hours. The lower HIP temperature was
chosen bacause of the low bolling point of cd., Unfortunately, the use of
graphite foil during HiP precesaipg produced a rough surface finish making
Knoop hardness measurements difficult and uncertain. As a result, this
experiment was ropedted with minor packing changes.

These new Cd coated samples (both CVD and watérecleas Zns) were HIP
processed in graphite load cans (two samples peor can) with both sasples in
close proximity but not touching cach other, As ia gvi&ent.tré& the results
(see Table 3-8), ‘Ampla AP4-18 shows a substantial iaercass in hoxdness. In'
this experiment, the two samples fell toqethur éu:zng HIR gzocessing with
the coated surface of APd-1S pressed to-the back iugunate&i side of the other
sample. In this contact region, a sinqle hnucy axinass reading of 558 was
observed. Hardnoss measurements of AP4-~i§ away from this “hard band” showed
values mwore typlcal of untreated oD Ins.  This Xaxgé difference was respon~
sible for both the larqa xnaop hasdness average (37)) and standard deviation
(158) of this sample.

Also evident ftﬁm tha;yeaﬁit& of Table 3-8 is the large deviation of
the not change in hardness after G4 diffusion by MIP processing. Along with

56~
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TABLE 3-6

ncop Hardness (HK..) C4 Diffusion Experiment
5 -

B0
Sample , A{f:er Treatment After Polish
Ari-co 213 _—
 AFd-d44 | 238 i 236
apd-21 | 188 187
AP4-20 | o 245 235
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Sample

4-H1

4-H3

Knoop Hardness (HK5

TABLE 3-7

cd piffusion Experiment

Initjial Conditions

HKSO

.

Before Diffusion

After Diffusion

1110 ¢, 3 h
1 Atm, Graphite

Water-Clear

Water=Clear

15846

1636

170t6

le6:l7




d

15 + 125012 SF6ST : . sanoy Z1 oTI-paAY
2T + 9FL91 ¥FSST sy 91 STI-paAY
6T + £1F08T 8¥191 ’ D 066 Ya-pav
oT - SEFEVT 976ST drd ETd-p IV
. 3
[0)]
(Vo]
1
8 - TIF01Z v¥812 po3Tsodeq sy Sy-bav
ZE + TEFSYT SF¥91C pa3Tsods(q sv Sg~-pav
9y + 81F29¢ L3912 paaTsodaq sv¥ SZ-pav
65T+ 8STFELE SFPIC pesTsodaq sv¥ ST-pav
SSoupXeH UuT @bueyd q 2T ‘TS G1 uoTSN3IITJ 230334 UOTITPUOD TRIFTUI a1ames
O 066 dIH _
ulTd PO ¥ 0001 0S
uorsnggTa IoaFY . O

jusutTaadxy uUOTSNIITA burlrod pd

8- TIdVL




large increases in hardness, there are two samples that actually decreased
in hardness. Again, there was a problem of inconsistent hardness measure-
ment due to surface damage from HIP processing. This damage also degraded
the short wavelength infrared transmittance (Figs. 3-4 to 3-7). Samples were

repolished, and the Knoop hardness was more typical of untreated material.

In another experiment, a series of as deposited ZnS samples were
given a sputtered Cds coating. Both 200 R and 1000 ; thick coatings were
applied, and these samples were then HIP processed at 830 C, 15 ksi, 12.5 h
in a graphite crucible. Due to the frequent difficulty in reading the Knoop
hardness indentations, independent Vickers hardness measurements were made to
confirm our measurements. The hardness measurements are reported in Table 3-9.
It can be seen that the hardness of the CdS sputtered and HIP processed
material remains largely unchanged. However, the CdS material has only dif-
fused into the ZnS lattice a short distance. Subsequent repolishing of the
material, which removed approximately 0.002 inches, removes the CdS and re-
duces the hardness to the range of uncoated material. The data from these
polished samples are also shown in Table 3-9. In addition, the material
treated by this process has degraded optical quality and visually exhibits
a gray appearance.

A final Zns/cds diffusion experiment was performed in a HIP unit to
study the effects of diffusion of Cd into the ZnS lattice. Alternating 0.875-
inch diameters of 2ZnS (both as deposited and water-clear) were stacked between
diameters of CVD Cds, double wrapped in platinum foil, then placed in a single
outer wrap of tantalum foil before enclosing in a titanium can. The Ta wrapper
was used to prevent any interaction between the CVD material and the titanium
can. Titanium caps were then e-beam welded on either end, and the billet
(Fig. 3-8) was then HIP processed at 845 C, 30 ksi for 25 h. The end plugs
were cut off and approximately one quarter of the billet was ground and polished,
exposing the alternating layers of ZnS and CdS (Fig. 3-9). Vickers hardness
measurements were made on the water-clear 2nS in a traverse from the Zns/cds
interface out to approximately 500 um, with readings every 25-50 um (Fig. 3-10
and Table 3-10). As can be seen, the first Vickers indentation (closest to
the interface) gave the highest hardness, which then decreased to approximately
200 HVSO‘ The polished surface was then etched in a fuming, dilute HCl solution.
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Figure 3-8. Photograph of Titanjum Can Which Encloses
ZnS and CdS Diameters

Figure 3-9. Photograph of Polished Surface of 2ns/Cds
Diffusion Billet.
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—.' |<- Diffusion Zone

Figure 3-10. Photomicrograph of 2ZnS5/Cds Surface Showing
Vickers Indentation. 400x

‘Dif=-

Figure 3-11l. Photomicrograph of Etched ZnS/CdS Interface
showing Diffusion Zone. 1000x
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TABLE 3~-10

Vickers Hardness (vac) of Water-Clear Zn§ from 2nS/Cds Diffusion Couple
™

HIP 845 C
Digtance from 30 ksi, 25 h
cds/ZnS Interface
(um) 2Znsl 2ns2 Zns3 Zns4 Znss
10 237 - 220 210 208
25 -—- 232 -— -— -—
37 | 231 — .- -— -
50 -— -— 199 195 193
75 193 210 ——— -— -—-
100 195 -— 175 177 204
125 210 201 — — —
150 145 —-— 192 165 210
175 -—- 187 . m-- - -—
200 175 R— 185 192 201
228 — 178 eee e -
250 145 -~ 187 192 204
275 —— 182 e aem —
300 -—- - 211 198 196
325 ——— 199 —— —— ——
350 — — 201 197 191
378 - 201 - — ———
400 -— —— 183 201 183
428 - 228 ——— ——— ——
450 v | eea 192 197 187
475 _ o 243 -—— -~ ——
525 - 268 —— —— —
578 —— 232 —— —— ———
625 - 202 ——— —— —
675 -— 210 —— —— —
Average 191 £ 35 212 %25 194 ¢ 14 192+ 13 198+ 9
Overall Average 199 ¢ 22
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Figure 3-11 shows the surface morphology of the Zns/Ccds interface and the
diffusion zone into the CdS at 1000X. It appears that the 2Zn has diffused
into the CdS. This result is not surprising as 2n atoms are smaller than

cd atoms which would lead one to expect a higher atomic mobility of Zn.
Although a reasonable increase in hardness was realized with this diffusion
experiment, there was also substantial cracking due to the intimate contact
of the material in the titanium can while being HIP processed. In addition,
the ZnS and cds fused together, requiring mechanical grinding to isclate the
ZnS. As a result, this technique would need major technical revisions before
being seriously considered as a practical method to increase the hardness

of water-clear 2nS.

Although these Cd diffusion experiments did not provide a practical
method for increasing the hardness of water-clear 2ZnS, they do demonatrate
that the diffusion of Cd atoms into the ZnS lattice does provide strain and
increase hardness, albeit in a thin diffusion layer. It strongly suggests
that other experimental approaches might be tried, e.g., the incorporation
of ¢d into the 2ZnS during the deposition process. Due to limited resources,
this was not tired during this program.

3.9 Coatings

An attempt was made to apply tvo thin film, hard coatings to water-
clear 2nS and assess their effect on iwproved rain erosion (9-12). The first
coating applied was a 1000 ; thick sioz film. This was deposited by standard
vacuum evaporation techniques. sio2 is hard compared to 2nS and has excellent
short wavelength properties. As canh be seen from Table 3-11, there was no
apparent increase in hardness. The visible optical properties of the sample
ware not degraded, but a 3102 absorption band was obgerved in the 9.5 um
roqion Pig. 3-12 and 3-13).

Cubic BN was another coating material evaluated on clear 2n5. Cubic
BN is a very hard material that is visibly transparent in thin films. ~fiqure
3-14 shows an infrared transmittance curve of BN. This material was deposited
via a room temperaturd, plasma deposition process. A £ilm approximately
1000 R thick was applied to a sample of water-clear 2nS, although the ultimate
goal was a thickness of 2-4 um. As is evident from the results in Table 3-12,
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TABLE 3-11

Knoop Hardness (HK_ .) SiO, Coated Water-Clear ZnS

)
Sample Initial 10002 si0,
AF4-20A 159 & 4 15¢ ¢ 8
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TABLE 3-12

Knoop Hardness (HKSO) Cubic BN Coated Water-Clear 2ZnS

H?.S 0

Sample - . . Isnitial 1000 A C.BN

[ U8E10 . 1s2%12

-Bl=-




there was no increase in Knoop hardness. The infrared optical transmittance
was only slightly degraded (Fig. 3-15) with an added absorption feature at
approximately 7.4 um which matches the expected absorption of BN.

Further depositions of cubic BN were attempted by this technigque
to increase the film thickness. Another deposition yielded samples with a
50C0 Z coating »of BN, but again, there was no increase in Knoop hardness
although the absorption feature at ~ 7.4 um was observed. Visual inspection

showed no apparent visible optical degradation.

A final attempt was made to deposit a 1-2 um uniform coating of cubic
BN onto water-clear zZnS. 8ix samples were coated, two of which already had
a 5000 ; thick coating of cubic BN from the previous deposit. The remaining
-four samples were untreated, water-clear ZnS. As caen be seen from the photo-~
~graph of the six samples on the mounting fixture (Fig. 3-16), there was a
_ ndn-unifo:m, white.'ﬁowdery deposit on all the samples. The infrared trans-
"mittancg_of the coé:ed_piecés~show'aignif;cant absorption at 7.4 um
(Fig§ 3-17)'§hi~h is chééaéreristic of BN. Howerer, thiz powdery film was

) easily wiped aWay with a cotten swab, and-after removal, the samplas dispiayed_

infrated trarsmxttance Lypica; of ‘pure, uncoated water-clear Zn§. The
_samples - that were previoualy voated with 5000 A of cubic BN aiso exhibitad
'v'similar behav;orf It appears that the cubic BN film was completely removed

- by the cotton swab. A slight increase in hardness was chserved before the
removal (Table 3-13); however, the low adhesion of this film preccludes it
from any practical usage. Prom these and previous resuits, no further cubic
BN coatings by room temperaturs, plaama deposition were attampted, since it
‘was clear that a gorious adhesion pronlem oxisted.

3.6 Pulsed ?lactrcn Beam Annealing

Pulged Elcctron Beam Annealing (PEBB) is another technique that was
tried to refine the grain size of water-clear Zn§ in order to increase ther
hardnoss of the material. In PEBA, the electron beam thermally (adiabatically)
processes the materisal surface in a single submicrosecond pulse of electron
beats enorgy. A schematic of the process is shown in Pig. 3-18. ‘the pulse
of high eneryy electrons first melts the substrate surface, then, depending
on tho sample configuration and thermal properties, the surface resolidifies

Work performed st Spire Corp., Patriots Park, Bedford, MA 01730.
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TMELT
SUBSTRATE
200 ns AT END
ELECTRON ——»
SEAM OF PULSE
PULSE ~————p-
Room Temperature DEPTH
u FRONT
[+ 4
>
~ TMmELT |
- §
@ AT START OF
:‘1 FAST QUENCH
< REGROWTH
w
 Room _
Tempecature DEPTH
Tmewr

FULLY REFORMED
SURFACE

Room Tefnperaiuii B .'ogpr'r"'

Fig. 3-18 Schematic of Pulsed Flectron Beam Annealing Process

Showing Recrystallisation Pront (Courtesy of Spire Corp.)
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with a quench rate as high as 109 K/s. The resulting alteration of material
properties due to this melt and ultra-fast quench varies considerably from
meterial to material.

In contrast to conventional thermal furnace annealing or other gquench
annealing processes, PEBA is a “room temperature" process which eliminates
sample distortion and subsurface stress. This is so because the deposition
of the electron energy is so rapid that only the near surface layer of the
sample is heated. However, the deposition of tens of kiloamperes of electrons
at an energy up to hundreds of kilovolts per electron in less than a micro-
second can easily melt the near surface region (a few micrometers) of the
highest melting point materials.

The PEBA technique was used in an attempt to obtain rapid recrystal-
lization from the melted layer, leaving the top layer of 2ZnS with a small
grained (therefore hardened) surface. At the two beam energies employed,
0.09 and 0,20 cal/cmz. theoretically there was sufficient energy to melt
a 1-2 um layer of material., However, experimentally there was no change
in grain size or surface morphology of samples processed at both energies.
The infrared transmittance and hardness were also unaffected. Due to the
high cost and scheduling problems, this technique was discontinued as a
means of increasing the hardness of 2nS through fine grain recrystalliza-
. tion. Further work was done with PEBA as a means to pulss diffuse various
E &opants as will be discussed under ion implantation in the next section.

*
3.7 Ion Implantation

Ion implantation was another technique employed to increase the
hardness of water-clear 2nS. JIon implantation has been found to have
‘beneficial results on such surface sensitivo properties as wear, erosion,
fatigue and catalytic activity. This is in part due to the fact that ion
implantation is a non-equilibrium process and can create surface morphologies
and alloys unobtainable with other techniques. '

In ion implanation, a high eneryy beam of ions is accelerated into
the substrate under high vacuum. An anaiyz;nq maghet separates the fons
of interest, and the resultant, pure ion beam can psnetrate the substrate
to a anpch up to a few micrometers (Pig. 3-19). Standard slloys can be formed

Work performed at Spire Corp., Bedford, MA 01730
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in the substrate surface without affecting the bulk material. Novel alloys,
metastable phases and non-equilibrium phases are alsoc possible because the
ions can be implanted well past the solid solubility limits. Amorphous
surfaces and compressive or tensile stresses can also be formed by ion
implantation.

Since there was no previous history of ZnS ion implanted to in-
.crease hardness, [Sz-] anions were initially chosen for a baseline data
point.' The sulphur anions were implanted with a flux of 2 x 1017 ions/cm2
at 85 keV. It was expected that an ion penetration of approximately 800 ;
would occur. As Table 3-14 shows, these samples show no increase in hardness.
However, no deterioration of infrared optical transmittance was observed
{(Figs. 3-20 and 3-21).

3+ and

The next batch of implants which were completed included Al
I” ions. It was calculated that the intreduction of I™ anicns into the
ZnS lattice would yield a compressive stress in the implanted surface,
The I ions wera implanted at fluxes of 5 x 1014 and 2 x 1017 ionslcm2
_ at 85 keV. The iodine ions implanted at th§ lower flux displayed a slight
decrease in the short wavelength infrared transmittance (Pig. 3-22) and no
increase in hardness (Table 3-15). The higher flux iodine implants dis-
played slightly greater infrared transmittance degradation (Fig. 3-23).
The surface of the implanted side appeared to be etched, i.e., the grain
structure of the material became visible. This made Knoop hardness
. m#asurexents difficult, and iay-acdount for the observed variation in
hardness. As can be ssen, thers was no substantial change in Xnoop
- hardness. ‘

Aluhinuwn cations IAIS*I were implanted at a flux of 2 x 1017.ions/'
_auz at 85 keV. A penetration of approximately 800 ;_was expected. Table
3-16 shows t“are was no apparent increase in Knoop hardness. In addition,
there is an interference band pattern on the implanted side, yet no 634 '

crease in infrared optical transmission was observed (Pigs. 3-24 and 3-25).

The next inpurity species selected for implantation was cadmium
. cations [c&z*l. It was hoped that the {4 cation would add a compressive
strain to the crystal lattice, therefore, increoasing the rain erosion




TABLE 3-14

Knoop Hardness (HK..) of Sulfur Ion Implantation into Water-Clear ZnS

(s271 85 kev, 2 x 107 ions/cm®

HK

50
Sample Initial Hardness After [s27) Implant
AP1-18 160 ¢ 8 162 ¢ 13
AF6~B 162 ¢ 6 ' 154 £ 7
~§9-
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TABLE 2-16

Knoop Hardness (HK.. of Aluminum Jon Implantation inte Watex-Clear Zng

I313+],85 Xev 2 x 10%7 ions/cn2

Sampie Initial Hardness After Implant
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resistance of water-clear 7ZnS. It was shown earlier that significeat in-
creases in hardness were cbtained by thermal diffusion of Cd into the water-
clear ZnS. However, as seen in Table 3-17, the implantation of Cd does not
provide a measurable increase in hariness. This resuit is difficult %o
understand but may indicate that Cd cations are either not being implanted
in sufficient concentration or that their depth of penetration is too
shallow. There was also some surface damaga to the implanted side, which

decreased the short wavelength infrared transmittance of cd implanted
water-clear ZnS (Figs. 3-26 and 3-27).

Lithium cations (Li+l were another ion implanted in water-clear 2nS.
The Li ion, being considerably smaller than the previously implanted iomns,
should penetrate deeper into the bulk material. For example, Cd ion implanta-
tion was expected to penetrate about 800-1000 ; at the ion energies employed.
At approximately equal implant conditions (75 kev, 2 x 1017 ions/cmz). Li
ions would be expected to penetrate approximately five times deeper. The
Li implanted samples show a slight amber color, and a slight decrease in
short wavelength transmittance (Figs. 3-28 and 3-29). Infrared transmittance
remains unaffected (Figs. 3-30 and 3-31). As is evident from Table 3-18,
some modest but consistent improvements in Kncop hardness were observed,

Of "t five dopant spsoies (I, C@, Al, S and Li) chosen to study
the effects of ion implantation, only one was expected to penetrate to an
appreciable depth (Li - 5000 i).i Not surprisingly, this was also the only
implantation that displayed, albeit gmall, consistent increases in hardnass.
As a result, two post-implantation treatments, HIP and PEBA, were tried to
increase tho depth of penetration of these implants. It was thought that

these high teﬁperaturo processes would provide for additional penotration
through thermal diffusion.

‘fable 3-19 shows the values of Knoop hardness as measured before
and after {mplantation and after subseguent HIP and PEBA treatment for three
of the five ions implanted (Al and § ions were not selected for this tosting).
Samples of both as deposited and water-clear %n$ were implanted and thermally
treated. Within the scatter of the data, there does not appear to be any
noticeable increase in hardness. The deposited CVD 2nS sample implanted with
I and Li both show an aspparent amall increase in hardness which disappears
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after HIP processing. For the water-clear samples, again only the I and Li
implants showed any increase in hardness which was reduced after PEBA treat-

ment.

As stated previously, the Li ion implanted water~-clear 2nS samples
displayed a slight amber coloration, but the infrared transmittance was not
affected. After PEBA treatment a small absorption band is evident at about
7 um (Fig. 3-31), the source of which is unknown at present. The remainder
of the samples displayed comparable infrared transmittance results before and
after PEBA.

As a result of the modest improvement of hardness of the Li implanted
clear 2nS, further experiments were performed in which the Li ion flux and
energy were increased over initial implantation conditions. The Li was
implanted with an energy of 150 keV and beam doses of 2 x 1017 and 4 x 1017
ions/cmz. As can be seen from Table 3-20, there is a modeat increase in
hardness, with the higher dose samples showipg the larger increase. In .
addition to having an increased hardness, these implanted samples showed the
characteristic amber coloration., However, unlike the lowar energy Li impiants,
these samples exhibited an increase in surface damage, with some regions
showing heavy surface etching. This damage was more fregquent in the high
dose samples. This surface damage also caused scatter in the Knoop hardness
measurements. The lower dose samples displayed a slight absorption band at
~ 9.0 ym (Fig. 3-32), but, surprisingly the higher dose samples do not. These
latter samples exhibited a broad, shallow doublet at about 6.8 and 7.0 um |
(Fig. 3-33) which is similar to that of the PEBA processed low energy (Li*l
implant (Pig. 3-31). As yet, we do not have an explanation for thase phenonena.

In order to understand the ion implanted material more guantitatively, -
Scanning Auger Microscopy (SAN) with depth profiling was done on a sample of -
untreated AP-4 water-clear ZnS. SAN uses a finely focused beam of electrons
for sample excitation. The signal studied consists of Auger electrons which
have energies that identify the elements they come from. Elements heavior
than helium are detectable with this technique. SAM is a surface measurement;
so in order to aet dopth profiling, ion beam sputtering was employed. Ar*
ions bombard the surface, sputtering away surface atoms and exposing material
below the contaminated surface layer. For many materials, sputter rates are
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known which allow one to establish accurate composition-depth relationships.
Unfortunately, sputtering rates are not known for CVD' ZnS. In Table 3-21

we list sputtering times and the amount (in atomic percent) of various

elements which were detected. As expected, the results show

a high surface carbon content that rapidly decreases with increasing sputter
times. After four minutes of sputtering, Zn and S represented 89.7% of material
analyzed, with the remaining 10.3% composed of decreasing amounts of C and O.
Because of the lack of quantitative depth measurement and the high compositional
uncertainty (: 15 atomic &), Scanning Auger Microscopy was discontinued.

3.8 CVD Overccat

A final, “thick-film", hard coating technique was tried on water- '
clear ZnS. Previous work has shown favorable improvements in rain erosion
resistance of CVD ZnSe by depositing a layer of CVD 2nS onto the 2nSe (5, 12, 13).
In a similar manner, CVD water-clear ZnS was used as the base material. A
standard CVD ZnS deposition was wade onto eight samples of water-clear 2nS,

The samples were prepared with varying dsgrees of surface finish to deter~

mine which approach would yield the best optical and mechanical properties

with adequate adhesion of the 2nS film, Table 3-22 lists the preparation
 parameters. The two polished samples gave poor adhesion of tha subsequent
deposit; the 2nS £ilm had delaminated upon removal from the CVD furnace. Four
of the remaining six umplu have narginal thickness doposiu on them; they

- are presently waiting final prepanuon. The two remaining .anplu had adequate
'thieknus profiles and displayed nxcenent adhuian.

As is evident from Table 3-23, these ZnS coat:éd pieces show a sub~
stantial increase in hardness. It is interesting that the thinner Zns
coated sample (.035* vs .085%) displays the higher hardness (245 to 226).
Visible-near infrared transmittance (Figs. 3-34 and 3-35) shows a substantial
dacrease which is also seen throughout the infrared region (Pigs. 3-36 and
13-37). There are several reasons for this. (1) This was the first time a ZnS
deposit was performed in this particular furnace; saterial quality was low.
(2) The water-clear samples had rough grind finishes to help in the adherence
of the film. As a result, there is substantial scattering alonq the as de-
posited/water-clear interface. This experiment was performed quickly to show
feasibility and, clearly, thore is room for improvement in both material
quality (2nS) and sample surface preparation.
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TABLE 3-22 Ny

Predavosition Surface Preparation

CVD ZnS/Water-Clear Zn Composite o
Sample Surface Preparation .
CL-1P 60/40 Scratch/Dig f
CL-2P Z
CL~1R 30 um Al, O, Grind '
273 g
CL~2R
CL-1A | Acid Etch :
CL~-2a ;
CL-1lE - Edge Roughened

CL-2E !

e

- e s 8

C
.
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3.9 Summary and Conclusions - Task II

Various surface and/or bulk treatments were investigated to provide
a harder water-clear material. Although a direct correlation between hard-
ness, particularly surface hardness, and rain erosion resistance is not
established, it was felt that if any treatment could produce a water-clear
ZnS with hardness comparable to that of the initial CVD ZnS, then improved
rain erosion would be likely. 1In any event, hardness measurements were used

as an indicator of the effectiveness of all the treatments investigated.

Two approaches aﬁpeared to offer some promise of improved hardaess.
The first involves the diffusion of Cd atoms into the ZnS lattice to produce
strainand a hardened surface layer. Data shown in Section 3.4 demonstrated
that substantial increase in hardness could be obtained in a thin surface
layer. However, it is also obvious that the thermal diffusion of Cd into
the bulk water-clear 2nS is not a controlled nor practical technique for the
production of optical material. Substantial optical degradation of the sur-
face layer occurred during the diffusional process, and subsequent optical
polishing tc remove this degrad&tion also removed all or most of the hard
surface layer produced by the Cd diffusion. However, these data suggest an
alternate approach in which the Cd would be codeposited during the production
of the CVD ZnS. 1In this mannax .the concentration and uniformity of the Cd
could be closely controlled. ‘The idea would be to produce a harder CVD Zns
(with a small amount of Cd) than the standard CVD ZnS. Subsequent HIP treoat-
ment to produce water-clear material would presumably yiéld a softer material
but not as soft as current water-clear 2nS. Since the Cd would be introduced
throughout the lattice, removal of material during fabrication would not be

rolovant.

The second promising approach involves the deposition of a thin layer
of CVD 2nS over the water-clear material. ‘This concept follows directly from
the 2nS/2nSe sandwich construct, in which the 2nS layer is applied via ¢vd
over a 2nSe substrate to produce improved rain srosion and environmental pro-
tection. In the presont application both the layer and substrate ate In$S,
and no difference in thermal expansinn coetficieﬁts axists. Thuraforu.'this
approach should be applicable to curved surfaces, such as Jomes. Conversely,
the surface strain prodqced by the mismateh in thatﬁal expansion betweon 2n3
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and 2nSe which produces an added hardness in the ZnS layer, will not occur
for the water-clear sandwich. Although the limited experimentation on this
approach performed in this program is insufficient to demonstrate its
effectiveness, it is concluded that this approach warrants additional

investigation.

Other treatments attempted under this task were unsuccessful or showed
limited usefulness. Grain size refinement was unsuccessful, prasumably becausw
insufficient hexagonal phase was formed in the HIP treatment to act as nuclea-
tion sites for fine-grained, cubic recrystallization. Ion implantation of
various anions and cations did not produce any significant increase in hardness.
In view of the results with Cd atom diffusion, it would appear that similar
improvements in hardness might be achieved by implantation of Cd ions and
other similar species. However, ion implantation does not appear to be a
practical technique to produce substantial concentration of impurity species
at depths sufficient for subsequent optical fabrication. A similar comment
can be made for pulsed electron beam annealing (PEBA). This technique does
not appear to be capable of producing recrystallization of a sufficient layer
of material without also producing optical degradation. Finally, attempts
to apply hard coatings to water-clear ZnS were not successful. It is generally
known that CVD 2ZnS and 2ns. are difficult to successfully coat with most
materials. Research is currently underway in several organizations and
countries to apply hard coatings to these CVD infrared ocptical materials.

This work should be followed, as it may eventually produce an alternate means
of improved environmental protection for water-clear 2nS. '
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4.0 TASK III - VALIDATING MEASUREMENTS AND TESTS

4.1 Irtroduction

As with any new materiai, there is a iack of data on mechanical
aud optical properties of water-clear ZnS. It was the purpose of this
task to provide a well documented base line set of physical constants.
The measurements were all performed on samplas produced by the optimized
coaditions as described in Section 2.0, unless otherwise noted. A list
of the measurements and tests performed is given in Table 4-1.

4.2 Test Xesults

Figqures 4-1 to 4-3 represent spectral transmittance measurements
of water-clear ZnS from 0.3 to 25 um at room temperature (23 C) and at
200 C. At the higher temperature there is evidence of a more rapid de-
crease in transmission at the multiphonon edge in the infrared as expected
theoretically. However, the transmission in the visible/ultraviolet region
is unchanged. The infrared scan (2.5 - 25 um) was performed on a Perkin
Elmer 580 spectropho* meter, while the shorter wavelength measurement was
made on a Cary 17D svectrophotomeatar.

The optical absorption coefficients of water-clear 2nS were measured
using laser rate calorimetry. The lasers employed consisted of a Nd: YAG
laser operating at 1,06 and 1.32 um, HF and DF lasers oporating,at 2.7 and
3.8 um regpectively, and co2 laser operating at 9.27 and 10‘6_um; Results
are shown in Table 4-2 for water-clear 2nS produced from thrae CVD depositions,
and with the exception of values at 10.6 um, thonabnorption is considerably
lowsr throughout for AF-4 material. I’ should be noted that these abgorption
data are not ‘hulk' coefficients because surface lcsses are included. The

overall system sensitivity is approximately 10> em >,

Figure 4-4 shows the amount of light scattered out of a 4 degree
half anale cone in the 0.2 - 2,5 um spectral region for water-clear 2nS pro-
duced from three CVD depositions. Once again, we see that AF-4 water-clear
Zn5 displays superior optical performance.

Pigqure 4-5 shows thres interferoqgrams of a sample of AF-4 water-
clear ZnS. Figure 4-5 (top and middle) are Twyman-Green interferoqrams and
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TABLE 4-1

Material Validating Measurements and Tests

Test

Spectral Transmission 23°C and 200°C; 0.3-14 um

Optical Absorption 1.06, 1.32, 2.7, 3.8, 9.27,
and 10.6 um

% Forward Scatter 0.3-2.5 un

Refractive Index Inhomogeneity 0.6329 um

Modulation Transfer Function 8-12 um

Effects of UV Exposure on Optical Properties

Thermo-Optic Ccefficient (dn/d4T) 0.6328, 1.15,
and 3.39 um

" Microstructure

Knoop Hardness
Flexural Strength
Thermal Conduutivity
Thermal Diffusivity
Thermal Expansion
Specific Heat
Electrical Resistivity

Rain Erosion Testing

«]116-

Organization

CVD Inc.
Perkin-Elmer Corp.

Univ. of Dayton Research
Institute (UDRI)

UDRI

UDRI

Diversified Optics
CVD Inc.

UDRI

CVD Inc.
CVD Inc.
CVD Inc.
UDRI
UDRI
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CARY 170 SPECTRAL WEASUREMENT.

Customers C.Y.0. Corporation.
* Substrates CVD Cleartran 2nS.

<7, SPO# 67080 Date 04/08/93
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Figure 4-1.

Visible Transmittance of Water.Clear 2nS at 23°C (top)

and 200°C (bottom).
-117=~




-

”

*(3ybTI) Do00Z PUE (IIIT) DoEZ IV SUZ IVITO-ASFIEM JO 3IAINT IJUWMITWSURIY, (un gZ-£°0) PIIVIIUI-IVIN “Z-p BT
m‘ - — 1 A (1 ' ) 1 3 1 i ~ 1 ol Bests Somnd
. L. Yy 1 1. | 1 2 1 % M
S e P SR S P = goy v gows Gt pou
ToF—} —- 00 ; . T
= ko) S o it i
e e e - g - - —— S S Sw—"— pilé oums o sy
T
70 10 io 10
Z s jooz | Lk S X R R iZ0
£0 e —1£°0 €0 £ 0;
Ry
=
A L4 D
<0 & ..W. O—
9°0 90 9°0 70
;lnmlul pw3DOoUY
=~ 1 1 i ' 4
L0} +——% A Lo £0
y s | X L
- epdene pegnooLy)
N..O 50 90 ~ S0
05T - 002 st a0t I ST
60 60 60 = s}
] ) B |
“suna] X 0Ot = O
Uy
e L ¥ gh a - W!|W|+ F—-—4—
(42 A o — A ' —
— o ——— = 3

....

L]
T ON]
L, & b 0

- s 8 9

~118-

kRS AR N

.
.0 -




- (do3) Do00Z PUE (WO3IIO) DoEC IV SUZ IEI[I-IIJEM JO 24IND IDUVIATUSURIYL POIVIFTI

[ RS R S AP I

*t~-p *B13

0T 00y 00y
N T H My -
o
i I
‘ tod o Lu
vk
ig. i - m . -
- . _ mr ;
! v ' *
. |_...3'”|l.. W.ﬂ
—1 SO a w

suoie QG2 03 § 2 stuos (oroeds

€B/E1/70 ®3IP0  ON0LO MOIS
GUZ VOIS D813 JAD IOSINNG

“uot3psodsor A ) Jewonen)

CANDHIUNSVIN TVHII3dS  0S3d

-

. j .
}
_
1

N

gt -

!

|

—t

eucssie 052 03 g2 shuo.s (oacede
EB/EL/Y) *I00 O00LD #OJS
BUZ UOLNJIOe|) (A0 eI0.IegNS

g ftan ey




- -

*SISSOT IOVIIANS SIPNIOTY

16°C 3 »6°L 4£°E ¥ Z6°L ‘DAY

—

wl 9p°1

v'9 ¥ 0°€€T P10 ¥ b€l ET°T FEP'8 Z2°0 F L°8T
S LET S €1 £2°6 9°12 0 01 £°07. £01¥-33¥
$*82¢ € €1 €9°L L°s1 88°s £€5°S Z01y-33%

8°ST ¥ 9°9vZ €8°C ¥ 62°9 €0 F €9°Z 90°1 ¥ I6°C ZU°0 ¥ L0°E 1570 ¥ $8°F =
0°L€2 148 4 89°2 zs'e - - STIP~pav m“
0°092 £5°% 6Z°¢ ov'e - - - YII¥-pIY |
0-9ve Ly Y zs°2 LO°€ o -~ | - ETTIP-Pa¥
0°892 ov v 11°2 s6°z - | - ZIIP-pav
0°vze 0°01 62°2 £€°S 86°Z L4 A% I0T¥-yav
S Yve 06°6 16°2 91°S S1°¢ sZ°y 001P-paV

S°6 ¥ £°2S¢ T°2 #S°0Z 0°€ F 9°¢€1 0“€ ¥ T°61 8°1 ¥ 6°91 $'s ¥ 9°61 “ONY
S°sve o-ze L°02 £°12 z°91 A x4 660Y~-13Y
0°652 0°61 v-91 1°ex 9°£1 1°51 £60p~1dY

wl 9701 ul [z°6 wi 8¢ wl -7 wh Zg-1 oTdmRS

SUz xeol0-I03eM 3001 X SIvaToT133000 UGTId305q 9A3359333

Z-v vl

. ey e - - .y
o ® » "o

WS i A
LI Pa s

SN

.. . P
z PR A

P e




la o AR A, S LA e e T e e R D T el o T e BT T A e e BT B e e e e B RS
- PR R T S A O E SR i e r s ws@u - . % . : " -

) *g pU® P ‘Y-J¢ suny
‘sSuz ILITO-IPFeM Aq JUCD ITHUVY FI¥H FIxbaAp-p W FO IN0D PRIVIILOS IYPTT O UsOTed  p-p Sanbiy

{wmrt) s3&uIRANM
sz 0°2 $°1 A 0°1 . 5°0
v L , . L o . ¥ ,,I . - 0

I

o

-
A933¥55 pIEAIOd &




Fig. 4~5 Twyman~Green (top and .midc-lle)' and Fizeau (bottom) ' - .
Interferograms of AF-4 Water-Clear 2nS - S
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the bottom figqure is a Fizeau interferogram. 7The fringe displacement in
these interferograms is 1likely due to figure errors, not refractive index
inhomogeneities. The small spot at the bottom of the interferograms is a
surface defect. The overall light ring structure is from the interferometer,

not the sample. ¢lose inspection shows the granularity typical of vapor

deposited materials. This high spatial frequency optical path inhomogeneity

is considerably less than one fringe, or half wave at 6328 um. This trans-

_lates to an index inhomoqeneity of An << 5 x 10

Modulation Transfer Function {MTF) measurements in_the 8-12 um

 wavelength range are shown in Figs. 4-6 to 4-8 and Table 4-3. The MTF

‘reference scans were made on a 50 mm £/0.7 lens assemoly over the frequency

- range of 2-20 cycles/um. Thehéollimator has an elfective foéal length of

60 in., and a 300 um pinhole was used at the source. The saméle'of water-
clear ZnS tested was 1.5 in. diameter by 0.251 in. thick. ‘Once- the reference

_lens MTF measurements were completed, the water-clear 2nS blank weé insected

anﬁ the process repeated.

As can be seen in Figa. 4-6 to 4-8, the 2Zns followq the ruference

-lens within 10%. However, a: higher frequencies the sample slightly surw‘
" pasges the MTF of the reference lens. This is due to a sliqhttpower in the

sample (2 fringes). From these data we conclude’that the water-clear Zns

':‘samule dces not degrade the wavefront txansmission more than A/4 up to

ao LP/mn.

Table 4-4 shows the thexmo-optic coefficients (dn/dr) for water-clear

.Ashs at three wavelenaths. Measurements ware made usinq laser intorferometris

tféCﬁkiQﬂ&ﬂ at 0.6328, 1,15 and 3 3% um with a Hedeo laser. This technique has

' 3 syatem sensitivity of 1 x 10 f‘c

SQechal transmittance curves were generated for water-clear 2n$

before enﬂ'efter exposure to UV radiation. samples were placed in a solar

-;s;quazof for 1, 2, and 3 weeks of continuous cyeling. One week in this

}éolﬁrtzatien chamber is apgroxima&ely equai»to one year of natural sunlight -

L A S

expogure.’ hﬂ can be eeen Lrom quure& 49 to 4-12. thare is no apparent
less ot cransmittanue in either the visibla or infrared sp@aeral regions,
The aamples shww&d . viaibla a;sco‘oratxonse 1

* Suﬁliqkter Hadcl 50. Teuhwhub Appatatus Co.
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The microstructure of water-clear ZnS is shown in the photomicror
graphs of Figure 4-13. These samples were highly polished, then etched in
a fuming, dilute KCl solution. The grains show random orientation with a
fairly consistent grain size of approximately 20-35 um in diameter.

Numerous Knoop hardness measurements have been performed on this
water-clear Zn3. Table 4-5 shows an average value of AF-4 material. All

measurements were made with a 50 g load.

Four-point flexural strength tests were made on 0.3 x 0.3 x 3.0 in.
beams of polished water-clear ZnS. Samples produced from AF-l, 4 and 6 were
tested, As is evident from the data in Table 4-5, there was no significant
difference between material produced from the various CVD deposits.

Various thermal and electrical measurements were also made on the
water-clear 2nS. Results are summarized in Table 4-5. The thermal expan-
sion coefficient was measured from -65 to 300 C using a quartz dilatometer.
‘The thermal diffusivity was measured using a Xenon flash technique. Specific
heat was determined at 0, 50 and 100 C using differuntial scanning calorimetry.
_Tho elactrical reaistivity was meacured using a 6-point ‘lall probe. Due to
the limitations of the Hall probe apparatus, an exact value could not be
determined; therefore, a lower limit value is reported in Table 4-5,

Various samples of CVD as daposited and watrer-clear (coated and un-
cok.nd) ZnS were subjected to rain egosion testing at 475 miles/hour in a
1 inch/hour simulated rainfall.

The variable speed (up to Mach 1.2) rotating arm facility consists
of an eight foot double arm propeller blade mounted horizontally and powered
by a 400 hp motor. A pipe ring with hypodermic necdles is positioned to spray
controlled water droplets on the speciments which are inserted in the blade
tios. A stroboscopic unit and close circuit TV camera enable observation of
the specimen while running. Sample dimensions are 1 1/2 x 1/2 % 1/8 inch
thick with a 60/40 scratch/dig surface finish.

Test results are given in Table 4-6. The two grades of CVD 2nS$
displayed similar erosion characteristics, with the damage (fractures and
surface pitting) ocourring sooner and more severely in the clear materials.
Figures 4-14 to 4-16 are infrared transmittance curves of as deposited,
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TABLE 4-5

Mechanical, Thermal and Electrical Properties of wWater-Clear Zns

Test
Knoop Hardness
Flexural Strength (lb /inz) AF=-1
£
AF-4
AF-6
Thermal Conductivity (W/cm C)
Thermal Diffusivi(:y (cmz_/s) '

Thermal Expansion Coefficient ( C-l)v'

Specific Heat (cal/y C) - - oc

- S0¢C
100 C

Electrical Resistivity (ohm-om) 0¢.

-}l 4~

‘‘‘‘‘‘

value

le0 + 11

8310 * 1560
8670 £ 720
8320 % 1040

0.27

0.13°

0.123
0.126

0.126

>5x%10

76
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Infrared Transmittance of AP-4 Water-Clear ZnS Coated with 1000

After Rain Erosion Testing at 475

Rairfall for 30.0 min.

Pig. 4-16.
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water-clear and cubic BN coated water-clear 2ZnS, before and after rain

erosion testing. As was expected, the as deposited 2ZnS transmittance

does not decrease after the rain erosion testing as much as the water-

clear 2nS. The cubic BN coated water-clear Zns displayed slightly

improved transmittance after rain erosion testing as compared to the un- !
coated clear material. It should be noted that the second BN coated
sample fragmented into three pieces. It is evident that more than two
‘BN coated samples must be tested before a confident conclusion can be
>madé reéarding itsveffedt'oh the rain erosion resistance of water-clear

ZnS. Also, it should be remembered that the adhesion of the BN coating

was:poor {see Section 3.8).
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