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I. INTRODUCTION

Necessity or expediency sometimes forces stockpiles of explosive
munitions to be stored in the vicinity of highly vulnerable targuts
such as aircraft. Often one takes measures to protect the aircraft by
hou: ing them in various hangar-like buildings. This protection permits
more etficient use of space by allowing a higher aircraft storage
density. A particular kind of aircraft storage shelter used in Europe
is one that is hemicylindrical in shape with doors that slide sideways
at the ends (Quonset hut shape). In an effot to quantify the measure
of protection afforded aircraft, BRL has undertaken the task of meaIsurinl,
the blast environment that rirked aircraft would experience when a
munitions detonation occurs nearby. The experimental portion of the
task was performed by Kingery1 and measurements at various locations
inside and outside the shelter model are reported for a nu;mber of
different door openings and shock obliquity impingements.

This report describes a complementary computational effort on the
same problem. It serves as a difficult test for the tHiLL 2 '3 hydrocode
in a further attempt to validate its predictive capability for three
dimen.ional problems. Previous computations with HULL proved extremely
fruitful. Shock impingements of various strengths and obliquities on
an S-280 Electronic Equipment Shelter model are discussed in References
4, 5, and 6. Comparisons with shock tube experiments on the model show
very good agreement. Similar computations were performed for shock

K.reryi, C.N., "Blast Leakage Into a Harder,'d Aircr 'aft Shelter Model",
(to be puiished as a BRL Report), U.S. Arm': Ballistic Research
Laboratory, Aberdeen Proving Ground, MD.

Fry, M.A., Durrett, R.E., Ganong, G.P., Matuska, D.A., Stuck_.r, M.D.,
Cheznbere, B.S., Needham, C.E., and Westmoreland, C.D., "The HULL
Hydro-dinamics Computer Code", AFWL-TR-76-183, U.S. Air Force Wocpon
Laboratory, Kirtland Air Force Baze, IN (Septenber 1976).
lasdaZ, J.A., Chambers, B.S., Clemens, R.W., "Support to BRL: HULL
Code Implementation on a CDC 7600", SAI-80-701-AQ, Science Applica-
tions Inc., McLean, VA (August 1979..
Lottero, R.E., "Comparison of 3-D H'ydrocode Computations for ShocX"
Diffraclion Loading on an S-280 Electrical Equipment Shelter",
ARc) Report 80-3, Proceedings of the 1980 Army Numerical Analysis an.!
Computers Conference (August 1930).

Lotaro, R.E., "Detailed Compare'.son of 3-D Hydr-ocode Computation fPr
Shock Diffraction Loading on an S-280 Electrical Equi i e:t S17b.,7tr",
(to be published as a BRL Report), U.S. Ary RaZlistic Research
Laboratoryf, Aberdeen Proving Ground, MD.

Lottero, R.E., Wortman, J.D., Bertrand, B.P., and K.tchens, C.W.,
"Oblique Interattion of a Shock Wave with a Three-Dimensional Si r n-."
Structure, Part I", (to be published as a BRL Report), U.S. ArmL-
Ballistic Research Laboratomj, Aberdeer Proving Ground, MD.
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impingements on open structures7 . From the pressure differences between
the outside and inside walls, one can draw conclusions as to vulnerability
of the structure. In all these problems the shock input was of the
constant pressure (step shock). type. The present computation uses
LAIB 8, a code based on a standard I KT nuclear blast9 , to generate
a decaying blast wave to simul.te the wave generated in the experiment.
Pressure-time results are compared at the various measuring stations
in the floor of the model and regions of focused (high) pressure are
correlated and pointed out.

II. COMPUTATIONAL PROCFDURE

A. Test Model

In order to convey the ideas for the computational model, a brief
description of the test performed on the scale model is given here.
The experiments are described more completely in Reference I.

The test structure is a 1/42 scale model of a U.S. third generation
semi-hardened aircraft shelter. There were several different experimental
.onfigurations. The computation in this report compares with the
particular conditions depicted in Figure 1. For this test, there are
two models: Model A with its longitudinal axis aligned with the charge
burst point and its partially open end facing the burst, and Model B
at an angle of 900 to the burst. The computational simulation is
concerned only with Model A. The test models were 87.1 cm long
sections of pipe with an insiJe diameter of 57.4 cm that had floors
welded somewhat above the center. The resulting inside dimensions were
54.8 cm across the floor and 20.09 cm high. These models were buried
so the floors were level with the ground. The front of Model A had a
centered slot opening from the roof to the floor that was 30% of the
front (presented) cross-sectional area of 809.3 cm2. Ten pressure
gauges were located on the floor as indicated in Figure 2. There were
also two free field pressure gauges, labeled Fl and F2, located 183 cm
and 289 cm from ground zero, respectively (see Figure 1). A charge
of .758 kg of TNT was used to produce a nominal 103 kPa (15 psi) blast
wave at 289 cm (the distance from ground zero to gauge F2 and the inside
center of the front wall cf Model A). This scaled charge-distance
relationship represents 56,181 kg of TNT at a distance of 121.5 m.

Wortman, J.D., Kitohens, C.W., and Lottero, R.R., '7Prediction of
3-D BZast Loading on a PartiaZly Open IndustriaZ Building: Feanibi-
Zity Study", (to be published as a BRL Memorandum Report), II.S. Amwy
Ballistic Research Laboratory, Aberdeen Proving Ground, MD.
8 .E. 'feedham and L.A. Wittwer, "The Air Force Weapons Laboratony Low

Atltitude !A!, tipZe Burst (LAMB) Model", AFWL-DYT-75-P (unpub ihed).

Needham, C.F., Havens, M.L., and Knauth, (.S., "Nuctear Reiat Stan lard
(1 KT)", AFWL-TR-?3-55 (Rev.) U.S. Air Force Weapons 4h., Kirtl~and
.ir Force Base, NM (April 1975).
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B. Computational Grid and Boundary Conditions

tULL grid cells are parallelepiped shaped only. Altheugh this is a
drawback when attempting to model complicated geometry, many structures
of interest to the Army can be represented with reasonable computational
accuracy. The original intent for this project was to carry out the
computation with a coarse grid and then repeat'the computation with a
finer mesh. The assignment of the grid was complicatcd by the need
to follow the curvature of the roof, have the proper cross-sectional
area, and have a slot door opening that was 30% of this area. The cells
in the region of interest, the aircraft shelter model and immediate
vicinity, were all about 3 cm by 2 cm by 3 cm. This was smaller than
we originally intended, but the smallest cell face was still about five
times larger than the gauge faces. However, in view of the relatively
good comparison between the computations and the experiment, it was felt
that a recomputation with smaller cells was not warranted at this time.
We took advantage of symmetry to cut the modeled region in half. The
computational region is sketched in Figure 1. Figure 3 sh3%.s a sketch
of the front of the computational shelter model showing the end of the
stair step representation for the curved roof and the closed and open
portions of the front.

The faces of cells within the shelter and nearby had a 3 to 2 aspect
ratio. This increased gradually with distance from the shelter. The 65
mesh spaces in the x direction diminished from 8.998 cm at x = 0 to 3.03
cm at the shelter model and gradually increased beyond the shelter model
to 10.394 cm at x = 289 cm. The 31 mesh spaces in the y direction varied
from 2.03 cm at y = 0 (the model center) to 32.842 cm at y z 243 cm.
The 32 mesh spaces in the z direction varied from 2.85 cm at z = 0 (the
model floor) to 35.394 cm at z = 243 cm. The resulting grid contained
64,480 cells.

The boundaries were placed to allow at least 3.5 milliseconds
between shock arrival at the shelter and the arrival of any spurious
signal from the boundaries. (This time was based on the crude assumption
that all signals traveled at the shock velocity.) For example, when
the reflected shock from the aircraft shelter reaches the LAMB input
boundary at x = 0 the computation at this boundary becomes meaningless.
Spurious waves are then propagated back toward the shelter. To a lesser
extent the interaction between the shock wave and the transmissive
boundaries (the x boundary at 289 cm and the y and z boundaries at 243
cm) produce a similar false reflection. All the outer boundaries were
treated as transmissive which in HULL is an extrapolative scheme where
boundary cells are given the same values as their inside neighbors.
The bottom boundary at z = 0 and the boundary at y = 0 were treated as
perfectly reflective. The one cell thick walls of the shelter model
were designated ISLAND cells, which are also totally reflective. The
LAMB input boundary at x = 0 was simulated with a virtual external row
of cells that were assigned hydrodynamic values specified by LAMB as
functions of time and location.

9



6
.A 1.2767 x 10 KT burst was assumed at the external point (x.,,Z)
(-144.5,0,0). This vyuld was chosen so that L1B calculations would

match the experimental free field gauge peak overpressure of 97.5 kPa
at 2.89 meters frcm the burst point.

The HULL calculations were initiated at time = 2.455 ms with the
shock front about 2 cells in front of the shelter. Initial hydrodynamic
values at, and behind, the shock wave were supplied by LAMB. Ambient
values were inserted in front of the shock to simulate undisturbed air.
Then the HULL calculations proceeded with LAMB values using input through
the x = 0 boundary.

III. RLSULTS

The m3in purpose of this work was to make quantitative comparisons
between experiments and HULL computations. As a necessary byproduct
a decaying wave capability was introduced into HULL to simulate a three
dimensional free field blast (see the APPENDIX). Overpressures were
recorded as functions of time in the experimental series at the ten
labeled locations in Figure 2. These were all on the floor of the model.
These experimental pressure records are compared with HULL predictions
in Figures 4a through 4j. The zero time for each experimental plot
is the time of arrival of the shock wave at the transducer location.
Since the experiment and the HULL calculation did not have the same
reference time, a time shift for the HULL results was selected by
matching the points of inflection on the leading edge of the pressure-
time histories at Position.1 (see Figure 2) just inside the open door.
This time shift of -0.63 ms in the HULL results was applied to each
computed waveform inside the shelter.

A. Overpressures Inside the Shelter

In general, the computed HULL overpressures match the experimental
records fairly well, although the computed values do not exhibit the
high frequency response evident in the experiments. There arc at least
two reasons for this: First, the transducers in the experiment exhibit
some noise (ringing) and it is sometimes difficult to difierentiate
thL true pressure peaks from noise peaks. Second, the computational
cell size is larger than the sensitive area of a typical transducer;
this causes an "average" value to be computed and thus rounds the peaks.

The comparison at gauge A-1 (Figure 4a) near the narrow door is
the poorest. The peak pressure of 104 kPa recorded here at 291 cm from
ground zero is higher than the 97.5 kPa recorded with the free field
gauge at 289 cm from ground zero. However, it is difficult to tell
whether the peak of 104 kPa is a true peak or noise. If it were noise,
the average value approximates 97.5 kPa more closely. On the other
hand, we could be seeing the effects of reflections within the door
opening itself in which case the multiple peaks would be real. Finally,
it is not known to what extent viscous effects, which HULL ignores,
influence the flow in the narrow opening.

10



The experiment recorded a significantly higher peak pressure at
gauge A-8 than at A-9 which is in the center of the building near the
back wall (see Figures 4i and 4j, respectively), where HULL recorded
nearly equal pressures. This is because the expeiincital model had a
small opening in the back near the center gauge and this opening was
omitted from the computer model.

The highest computed overpressure inside the model waF 97.6 k~la
in the back corner near the floor. This points to a problem of shock
focusing and should be brought to the attention of the shelter user.

We include exampies of HULL generated plots for computed overpressure
at two additional stations. Figure 5a shows the overpressure in a cell
on the ground, in front of the building, at the center of the opening.
This shows the strong reflected shock from the fiont of the building
and later the reflected shock through the opening from the back of the
model. Figure 5b shows the overpressure in the back corner of the
model where HULL predicted a high pressure.

B Frec Field Overpressures

Two HULL sampling stations were lo,'ated 289 cm from ground zero,
the same distance as free field gauge F-2. Both of these were in large
cells. One station was in a ceil about 3.5 by 13 by 3 centimeters on
a side (cells inside the shelter model were about 3 by 2 by 3 cm).
Its center was 289.7 cm from ground zero and the radial distance across
it was about 7.8 cm. The second station was in a larger cell, 6.5 by
27 by 3 cm. Its center was 283.4 cm from ground zero and thz radi,!
distance across it was nearly 24 cm. This latter cell was more than
half engulfed in the shock wave at the start of the computation, In
Figure 6 the overpressure records from chese two cells are superpesed
over the experimental record from free field gauge F-2. Beyond the
initial peak, both HULL results are good approximations.

C. Isobars and Vector Plots

Although isobars generally indicate only qualitative results, they
are instructive because they show the progression of shock waves,
formation of vortices, and point to complex shock patterns such as Mach
stems, triple points, etc. Figure 7 shows isobars at 5 ms in the
bottow computation Flane. Figure 8 shows isobars in the vertical plane
adjacent to the y = 0 symmetry boundary at the same time. The walls
cf the model are outlined as a low contour value. The interpolation
for this contour tends to thicken the apparent walls. The straight
sections of the isobars near the transmissive boundaries is due to the
large size of the cells and the extrapolation-type boundary condition
used there. The scallops in the isobars are caused by interpolation
between the centers of large cells.

11
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Figures 9a through 9c show three isobar plots along the floor of th(
model. The high pressure region that forms and sweeps along the wall
and floor is pointed out by the half-rounded contours in Figure 9a.
This causes the sharp pressure spike in Figure 4f.

Velocity vector plots indicate the magnitude and direction of the
moving gas. Figures lOa through lOc, with times corresponding to
F igures 9a through 9c, clearly show a vortex generated just inside the
door of the model.

The maximum pressures inside the model occur at the door when the
shock front first enters and at the back wall when the shock front
reflects from it at about 6 ms. The maximum velocities occur at the
open door when the shock wave first enters, but high velocities ate
evident in the middle of the model in Figures lOa and lOb. A complete
flow reversal, due to an inward traveling rarefaction wave, will cause
debris and cargo stored inside the shelter to pile near the open door.

IV. COMNENT.3 AND CONCLUSIONS

It is evident that the HULL computations can be used to help plan
further experiments, to aid in interpreting experimental results, and
to fill ga"* ia experimental studies.

I

Except for the sharp peaks and valleys in the pressure records,
the computed pressures in this study were a good approximation to the
experimental pressures at most of the test locations. Such results would
probably be quite adequate for structural response analyses. The
rounding of the peaks in HULL is caused by the diffusion of the difference
method and by the fact that HULL computes average values in each cell.
Depending on time and expense, we could force HULL to define the peaks
more sharply by using a finer mesh. In our present case we had cells
of about 3 by 2 by 3 centimeters in the shelter region. The HULL run
required about III hours of the CDC 7600 CPU time to simulate 5.5 'aS
of real time. If we simply filled the same space with proportionally
reduced cells so the smaller cells were cubes 1 cm on a side (this
would approach the pressure gauge size) and repeated the run, it would
take roughly 36 times as long for 18 times as many cells and half the
time step. The resulting 54 hours of CDC 7600 computer time is
prohibitive for most purposes. There are many factors which affect
the rate at which HULL solves a problem. The present case averaged
.32 ms per cell per cycle. (The time step for a cycle is one-half the
smallest cell dimension divided by the shock velocity.)

HULL runs require a lot of personnel time. The present project
took several man months with most of that time spent on code checking
and modifications. Barring unforseen difficulties it is estimated
that it would take two or three weeks to do a preliminary study (e.g.

12



LAMB runs to establish yield, initiation time, initial conditions, 
etc.)

and set up the grid with proper boundaries, sampling 
stations, etc. for

a similar computation for a different building. 
Actual running of the

KEEL (program which sets up a HULL computation) and 
111ILL codes does not

take much personnel time, but the results, particularly 
from the KEEL

run, should be checked at each stage. The most useful form of HULL

output is obtained through plots. Analysis of these plots and correlation

with experimental data is time consuming. Some time must also be

devoted to the management of files. For this project the final restart

file contained 19 restart dumps and over 6,000,000 
words. This large

amount of data must be manipulated carefully in 
order to properly

interpret the computed results and to make comparisons 
with experimental

pressure records.
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The HULL2 '3 (Air Force Weapons Laboratory version 8) code used
for this computation is an air blast version received at the BRL in
September, 1978. It was modified by Science Applications Inc. under
contract to the BRL8 to run on the CDC 7600 at the BRL. Other changes
by SAI and BRL personnel introduced the optional input of an oblique
"step" shock and the replacement of the preprocessor SAIL 10 by a
combination of the CDC ,utility UPDATE and the SAI program POST. These
maintain and update files and select the particular coding for a
given run. This collection of coding, which we loosely refer to as
HULL, is a number of related programs and subroutines. The program
of principal interest, called HULL, does the hydrodynamic calculations.

The program HULL is also really a collection of programs and
subprograms. In particular, the three-dimensional (3-D) and two-
dimensional (2-D) programs are different. The 2-D version is older.
There are a number of options for the 2-D HULL version which are not
in the 3-D version. The desired options for any run are selected
through input control parameters. The results reported in this
report are from the, 3-D version and the changes and comments discussed
apply only to the 3-D version.

The HULL hydrocode uses an explicit time-step scheme (in the spirit
of Lax-Wendroff) to solve the in~iscsd Euler equations. This computa-
tion is carried out in two phases: first a Lagrangian calculation
"steps" velocity rnd energy forward in time, and then an Eulerian
transport phase computes the mass movement between cells and adjusts
the energy and velocity accordingly. The hydrodynamic variables
stored for each computational cell for 3-D runs are the three components
of velocity, the specific internal energy, and the mass of material
in the cell. The other hydrodynamic variables needed for the solution
are density, total specific energy, pressure, and the "effective"
gamma (ratio of 5pecific heats of the gas). The average density in the
cell is found -rom the mass and dimensions of the ce!l. The total
specific energy is computed from the velocity and internal energy.
The pressure and effective gamma are supplied by the equation of state.

The HULL program runs are preceded by a KEEL run which sets up the
computational grid and the initial conditions. The computational grid
consists of rectangular parallelepiped cells set off by orthogonal
parallel planes. For 3-D runs, the contents of a cell is either AIR
or ISLAND. Any region with non-ambient conditions is entered in a
"geometry" (any of several geometric shapes can be specified). For
each geometry containing AIR, the KEEL robtine subdivides each cell
into 27 equal subcells. If the center of a subcell is inside the

0 Graha, D.C., Gaby, L.P., and Rhoades, C.E., "SAIL, An Automated

Approach to Softzsare Development and Management", AFWL Interim
Report 1971-6, U.S. Air Force Weapons Laboratory, Kirtland Air
Force Base, NM, October 1976.

17
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specified geometric region specified hydrodynamic variables are assigned
to one twenty-seventh of the cell. For geometrie designated as ISLAND,
the entire cell is designated ISLAND (a totally reflective cell) if
the center of the cell is in the geometry. At the end, any unfilled
portions of cells are filled with ambient air. During the M'LL run, a
hydrodynamic variable in a cell may be considered either the average
value in the cell, the value in the cell, or the value at the center
o-6te cell.

Positions called STATIONS, at which hydrodynamic data as a function
of time are collected, are assigned in the KEEL run. Most of the
variables and control parameters for HULL are also defined through
KEEL.

The package of coding called LAMB (acronym for Low Altitude
MultiBurst) is a collection of programs and subroutines which, among
other things, can produce the hydrodynamic variables needed by MILL,
for any position and time, from one or more bursts of nearly arbirrary
yields and positions. Thern was optional coding in the HULL program
to use part of the LAMB subroutines to supply hydrodynamic variables
at sore boundaries. We could not find coding in KEEL to initiate
the grid directly from LAMB. We later modified KEeL to use LAMB
subroutines, as in HULL, to supply initial values.
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