UNCLASSIFIED

AD NUMBER

ADB041066

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov't. agencies and their contractors; Specific Authority; 10 OCT 1979. Other requests shall be referred to Commanding Officer, Naval Ocean Research and Development Activity, Attn: LRAPP, NSTL Station, MS 39529.

AUTHORITY

CNO/N772 ltr N772A/6U875630 20 Jan 2006 & ONR ltr 31 Jan 2006

THIS PAGE IS UNCLASSIFIED
AD NUMBER
ADB041066

NEW LIMITATION CHANGE

TO
Distribution authorized to U.S. Gov’t. agencies and their contractors; Specific Authority; 10 OCT 1979. Other requests shall be referred to Commanding Officer, Naval Ocean Research and Development Activity, Attn: LRAPP, NSTL Station, MS 39529.

FROM
Distribution authorized to U.S. Gov’t. agencies only; Test and Evaluation; 10 OCT 1979. Other requests shall be referred to Commanding Officer, Naval Ocean Research and Development Activity, Attn: LRAPP, NSTL Station, MS 39529.

AUTHORITY
NORDA, per DTIC Form 55

THIS PAGE IS UNCLASSIFIED
INTRODUCTION TO THE LRAPP ENVIRONMENTAL - ACOUSTIC DATA BANK

LONG RANGE ACOUSTIC PROPAGATION PROJECT
NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY
NSTL STATION, MISSISSIPPI 39529

JUNE 1979
From: Manager, LRAPP Data Management Program
To: Distribution

Subj: Introduction to the LRAPP Environmental Acoustic Data Bank; forward of
Encl: (1) Introduction to the LRAPP Environmental Acoustic Data Bank, LRAPP Report 79-029 of June 1979

1. The Long Range Acoustic Propagation Project (LRAPP) of the Naval Ocean Research and Development Activity (NORDA) has sponsored development of an Environmental Acoustic Data Bank. The LRAPP Data Bank is designed to provide the data necessary for input to LRAPP modeling and analysis studies on a timely and automated basis. Development of the Data Bank has proceeded such that it now has potential application to a number of Navy activities and contractors involved in LRAPP modeling and special studies.

2. Enclosure (1) is intended to provide the investigator who may have need for use of the LRAPP Data Bank sufficient background to determine its applicability for his/her needs. The Introduction describes the scope of the data bank, access procedures, available data bank products, and an overview of the data bases. Detailed user instructions are provided in LRAPP Report C79-030, "LRAPP Environmental Acoustic Data Bank User's Guide".

K. E. EVANS
Manager, LRAPP Data Management Programs
FOREWORD

This document is intended to provide an overview of the analytic capabilities and data stored in the LRAPP Acoustic Data Bank. It also provides the necessary information to gain access to the system. Additional information as to the procedures to use the system's analytical and graphic capabilities as well as a more detailed listing of the Data Bank Contents are presented.

The Users Manual is a controlled circulation document which is updated as required to maintain currency. This document represents Section I, "Data Bank Description," contained in the LRAPP report C79-030, "LRAPP Environmental-Acoustic Data Bank Users Manual (U)," CONFIDENTIAL.

Introduction to the LRAPP Environmental-Acoustic Data Bank.
## SECTION I
DATA BANK DESCRIPTION

### TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOREWORD</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
</tr>
</tbody>
</table>

### 1.0 INTRODUCTION

1.1 LRAPP Mission and Objectives | 1-1 |
1.2 Scope of LRAPP Data Bank |
   1.2.1 Data Bases | 1-2 |
   1.2.2 Data Management Software | 1-2 |

### 2.0 DATA BANK ACCESS

2.1 Administrative Procedures | 2-1 |
2.2 Facilities and Organization | 2-1 |
2.3 Access Modes |
   2.3.1 Written Request | 2-1 |
   2.3.2 Interactive Terminal | 2-3 |
   2.3.3 Batch Processing | 2-3 |

### 3.0 DATA MANAGEMENT SYSTEM CAPABILITIES

3.1 Data Isolation and Retrieval | 3-1 |
3.2 Analysis | 3-1 |
3.3 Data Output and Display |
   3.3.1 EGO | 3-3 |
   3.3.2 PRINTER- PLOTTER | 3-3 |

### 4.0 OVERVIEW OF DATA BASES

<table>
<thead>
<tr>
<th>Accession For</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
</tr>
</tbody>
</table>

-ii-
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Geographic Limits of LRAPP Data Bank Regions</td>
<td>1-3</td>
</tr>
<tr>
<td>3-1</td>
<td>Functional Organization of Data Bank Modules</td>
<td>3-2</td>
</tr>
<tr>
<td>3-2</td>
<td>Example of X-Y Functional Plot</td>
<td>3-4</td>
</tr>
<tr>
<td>3-3</td>
<td>Example of Scatter Diagram</td>
<td>3-5</td>
</tr>
<tr>
<td>3-4</td>
<td>Example of Page of Text</td>
<td>3-6</td>
</tr>
<tr>
<td>3-5</td>
<td>Example of Standard Mercator Map</td>
<td>3-7</td>
</tr>
<tr>
<td>3-6</td>
<td>Example of Lambert Conformal Map</td>
<td>3-8</td>
</tr>
<tr>
<td>3-7</td>
<td>Example of Polar Stereographic Plot</td>
<td>3-9</td>
</tr>
<tr>
<td>3-8</td>
<td>Example of PRINTER-PLOTTER Plot</td>
<td>3-10</td>
</tr>
</tbody>
</table>

## LIST OF TABLES

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>LRAPP Data Bank Organizational Chart</td>
<td>2-2</td>
</tr>
<tr>
<td>4-1</td>
<td>Indian Ocean Data Base</td>
<td>4-2</td>
</tr>
<tr>
<td>4-2</td>
<td>Northeast Pacific Data Base</td>
<td>4-3</td>
</tr>
<tr>
<td>4-3</td>
<td>Northwest Pacific Data Base</td>
<td>4-5</td>
</tr>
<tr>
<td>4-4</td>
<td>North Atlantic Data Base</td>
<td>4-6</td>
</tr>
<tr>
<td>4-5</td>
<td>Gulf of Mexico/Caribbean Data Base</td>
<td>4-7</td>
</tr>
<tr>
<td>4-6</td>
<td>World Shipping Data Base</td>
<td>4-8</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

1.1 LRAPP MISSION AND OBJECTIVES

The Long Range Acoustic Propagation Project (LRAPP) was established within the Office of Naval Research in 1966 to provide environmental acoustic support for Navy programs. The Project supports a balanced program of acoustic parameter investigations, at-sea data collection, and model development and evaluation.

Since 1967, LRAPP has sponsored more than 30 individual environmental acoustic exercises in various ocean areas of the world. During these exercises, extensive measurements have been made of oceanographic and acoustic parameters over wide geographic areas. LRAPP sponsored exercises have involved participation of the Navy Research Laboratories, universities, private institutions, and commercial contractors. Measurements have been made using ships, aircraft, and moored stable platforms. Post-exercise processing and analysis of collected data have resulted in an extensive inventory of digitized data which are used by LRAPP in supporting parametric acoustic analyses, in the evaluation of acoustic models, and as a basis for planning future measurement programs.

1.2 SCOPE OF LRAPP DATA BANK

The LRAPP Data Bank is designed to preserve the massive amounts of both environmental and acoustic data collected during LRAPP sponsored exercises, as well as to maintain, in a readily accessible manner, high quality historic and climatologic data in those ocean areas of interest to LRAPP.

LRAPP's data banking efforts began in 1973 with the CHURCH GABBRO Exercise in the Caribbean. Since that time, all LRAPP data which have been collected, processed, and edited have routinely been forwarded to the Data Bank. During this period, LRAPP has also sponsored the compilation of high quality environmental data sets (edited data from NODC and NAVOCEANO data sets) for selected ocean areas.

The LRAPP Data Bank, which is made up of 1) the Data Bases, and 2) the Data Management Software, is currently operational on UNIVAC 1108 hardware at the NSTL, Bay St. Louis, Mississippi.

1.2.1 Data Bases

The environmental and acoustic data within the Bank are structured in Regional Data Bases where all banked data within the particular geographic area will be found, regardless of source. At present, only a limited
number of regional Data Bases exist in the Bank. Schedules for addition of Data Bases are based on geographic priorities of LRAPP measurement and analysis programs. Figure 1-1 delineates Data Base Region boundaries and indicates presently available Data Bases. Exceptions to the regional organization of data are made for special data sets (e.g., World Shipping Data Base) only where regional segmentation is not appropriate. More detailed information as to the scope and content of available Data Bases is provided in LRAPP report C79-030, "LRAPP Environmental-Acoustic Data Bank Users Manual (U)," CONFIDENTIAL.

1.2.2 Data Management Software

A distinctive feature of the LRAPP Data Bank is its ability to retrieve and format data with minimal user specified format control. Retrieved data can then be analyzed with the system's supplied analytical modules, again eliminating the user's need to specify data format. The storage and retrieval module, CREATABASE, enables isolation and retrieval of any data subset without programming assistance and also provides the flexibility to expand, modify, and restructure existing data files.

Additional software (CREATE module) is provided to interface user supplied subroutines with subset data files and to enable the user to choose from a variety of output forms (PRINTER-PLOTTER for character matrix display at a terminal or EGO for display outputs via graphical plotter).

An overview of presently available software capabilities is provided in LRAPP report C79-030; "LRAPP Environmental-Acoustic Data Bank Users Manual (U)," CONFIDENTIAL.
Regions of currently available LRAPP Data Bases.

FIGURE 1:
Geographic Limits of LRAPP Data Bank Regions

1-3
2.0 DATA BANK ACCESS

2.1 ADMINISTRATIVE PROCEDURES

The LRAPP Data Bank has been established primarily for the use of LRAPP sponsored Regional Assessment, model evaluation, and environmental acoustic investigations. Funding for development and operation of the Data Bank has been provided exclusively by LRAPP in support of its charter missions. As additional data from LRAPP measurement programs and other non-LRAPP sources are added to the Bank, expansion of users beyond LRAPP investigators and contractors is expected.

LRAPP sponsored investigators are supplied, upon request, with required user identification and password. At the time of issuance, an estimated level of usage is established which should not be exceeded without notification to the LRAPP Data Management Coordinator.

Authorization for access to the Data Bank by others may be granted by the Director, LRAPP, upon request, setting forth appropriate organizational sponsorship and need. Occasional usage by related Navy sponsored programs will be on a non-reimbursable basis. Extensive use requiring special data file maintenance or high hardware time charges will be negotiated on an individual basis.

2.2 FACILITIES AND ORGANIZATION

The Data Bank is presently maintained on UNIVAC 1108 hardware at the NSTL Computer Center, Bay St. Louis, Mississippi. Current component Data Files of available Data Bases are listed on the Data Base File inventory which may be displayed at the beginning of system use. This inventory listing will update (if necessary) data listings in the Users Manual. The required procedure to call the inventory and to stage specific tape reels for access is fully explained in the Data Bank Users Manual.

Overall responsibility for user service rests with the LRAPP Data Management Coordinator. A listing of functional responsibilities and responsible personnel is provided in Table 2-1.

2.3 ACCESS MODES

Access to the Data Bank may be made by any of the following modes:

- Written request
- Interactive terminal
- Batch processing.

2.3.1 Written Request

Access to the Data Bank can be achieved through written request to the LRAPP designated User Service representative (see Table 2-1). Users wishing to receive data on tape or media other than computer printouts must presently
## TABLE 2-1

**LRAPP Data Bank Organizational Chart**

<table>
<thead>
<tr>
<th>Functional Responsibility</th>
<th>Individual/Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Bank Program Management</td>
<td>LCOR K. E. Evans&lt;br&gt;LRAPP Liaison Office&lt;br&gt;800 N. Quincy Street&lt;br&gt;Arlington, VA 22217&lt;br&gt;(703) 696-4951</td>
</tr>
<tr>
<td>Data Bank Coordinator</td>
<td>J. H. Locklin&lt;br&gt;Ocean Data Systems, Inc.&lt;br&gt;6000 Executive Blvd., Suite 615&lt;br&gt;Rockville, MD 20852&lt;br&gt;(301) 861-3631</td>
</tr>
<tr>
<td>User Service</td>
<td>J. P. Feuillet&lt;br&gt;B-K Dynamics, Inc.&lt;br&gt;15825 Shady Grove Road&lt;br&gt;Rockville, MD 20850&lt;br&gt;(301) 948-0650</td>
</tr>
<tr>
<td>Data Base Development and Maintenance</td>
<td>L. P. Solomon&lt;br&gt;Planning Systems, Inc.&lt;br&gt;7900 West Park Drive, Suite 600&lt;br&gt;Mclean, VA 22102&lt;br&gt;(703) 790-5950</td>
</tr>
<tr>
<td>System Software Development and Maintenance</td>
<td>E. W. VerHoef&lt;br&gt;Ocean Data Systems, Inc.&lt;br&gt;6000 Executive Blvd., Suite 615&lt;br&gt;Rockville, MD 20852&lt;br&gt;(301) 881-3031</td>
</tr>
<tr>
<td>Hardware Interface at NSTL</td>
<td>NSTL Computer Center&lt;br&gt;Bay St. Louis, MS 39529&lt;br&gt;(601) 688-4336</td>
</tr>
</tbody>
</table>
submit all requests by this mode. LRAPP will provide required interfaces to obtain the desired output from the NSTL Computer Center.

2.3.2 Interactive Terminal

Interactive access to the Data Bank is available via telephone to the NSTL Computer Center using standard keyboard printer or CRT terminal. Job Control Language (JCL) for the interactive terminal mode is described fully in the Users Manual.

2.3.3 Batch Processing

Batch processing requires communication of all requests to the computer via card images. Batch mode access is only available at the NSTL Computer Center. Access to the Data Bank by means of batch processing is limited and requires prior arrangement between the user and the Computer Center.
3.0 DATA MANAGEMENT SYSTEM CAPABILITIES

The data management software modules of the Data Bank are designed both to efficiently "compress" data for storage and to facilitate isolation, retrieval, and display of data subsets by users with a minimum of specialized system knowledge. Additionally, the capability is provided for users to interface their own special purpose, analytic, or data transform routines to operate on the isolated data subsets.

The system presently consists of four individual software modules. The functional relationships of the four modules (CREATABASE, CREATE, EGO, and PRINTER-PLOTTER) are presented in Figure 3-1.

3.1 DATA ISOLATION AND RETRIEVAL

All communication between the user and the compressed source Data Files is through the CREATABASE module. English language Boolean expressions (queries) using "and," "or," "with," and "from" serve to isolate data. Interactive communications with the user, providing information as to total number of data records isolated by serial Boolean expressions, guides the user to desired data records and provides qualitative information on data concentrations/distributions.

Records may be isolated by specification of limits on any parameter of the record (e.g., latitude, longitude, time, depth, temperature, etc.). Serial expressions specifying limits on two or more parameters may be ordered in any sequence. During the isolation process, individual data records may be retrieved for examinations at any point.

At the completion of the query process, the user can produce a binary subset file from the compressed source data files. The subset file is structured and sorted according to user specification and may be tabularly printed or it may be used as input to display modules or analysis routines.

More detailed information on the capabilities of the CREATABASE module together with functional commands and user instructions are presented in the Users Manual.

3.2 ANALYSIS

Statistical and numerical analyses may be performed on isolated binary subset data files with individual user supplied routines by interfacing these routines through the CREATE module (see Figure 3-1). Routines designed to compute derived data (e.g., sound velocity via Wilson's Equation from temperature, salinity, and depth) or to transform data (e.g., feet to meters) may operate on the data subset. The resultant data parameters may replace or be combined with existing parameters in the binary subset file for display. Specialized user output formats beyond the scope of those provided by the Data Bank are also possible via the CREATE module.
FIGURE 3-1

Functional Organization of Data Bank Modules
3.3 DATA OUTPUT AND DISPLAY

Tabular output of retrieved data subsets are available by direct instruction within the CREATABASE module. More sophisticated graphic output requires the generation of the binary subset file and use of one of the two graphic modules: EGO or PRINTER-PLOTTER.

3.3.1 EGO

The EGO module is a general purpose graphics package designed to generate plot tapes for CalComp compatible plotters. At present, arrangements have not been made to generate plots at the NSTL Computer Center and detailed instructions for generation of plot tapes are beyond the present scope of the Users Manual. Interested users may obtain required information upon request to the LRAPP Data Bank Coordinator (see Table 1-1).

In addition to X-Y functional plots (Figure 3-2), EGO can produce scatter diagrams (Figure 3-3), pages of text (Figure 3-4), and map projections. Map projections currently available include Mercator (Figure 3-5), Lambert Conformal (Figure 3-6), and Polar Stereographic (Figure 3-7). Routines are also available for generation of coastline on standard projections.

3.3.2 PRINTER-PLOTTER

The PRINTER-PLOTTER module is designed primarily for on-line operation. It produces rapid graphical representation of two or more variables directly from the interactive terminal or line printer.

Plots generated by PRINTER-PLOTTER are produced using printer characters as the plotting medium. Plot size, and vertical and horizontal scaling are selected by the user. A detailed explanation of the control language necessary to execute the PRINTER-PLOTTER module is provided in the Users Manual. Figure 3-8 provides an example of the PRINTER-PLOTTER module output.
FIGURE 3-2
Example of X-Y Functional Plot
FIGURE 3-3

Example of Scatter Diagram
THIS IS AN EXAMPLE OF A PAGE OF TEXT AS PROVIDED THRU THE EGO GRAPHICS MODULE. FOR FURTHER INSTRUCTIONS REFER TO SECTION II OF THE LRAPP ENVIRONMENTAL-AcouSTIC DATA BANK USERS MANUAL.

FIGURE 3-4

Example of Page of Text
SCALE: 100 KM. AT LATITUDE 24N. STANDARD MERCATOR PROJECTION.

FIGURE 3-5
Example of Standard Mercator Map
FIGURE 3-6
Example of Lambert Conformal Map
FIGURE 3-7

Example of Polar Stereographic Plot
FIGURE 3-8
Example of PRINTER- PLOTTER PLOT

Best Available Copy
4.0 OVERVIEW OF DATA BASES

Data Bases listed below are currently available for user access.

- Indian Ocean
- Northeast Pacific
- Northwest Pacific
- North Atlantic
- Gulf of Mexico/Caribbean
- World Shipping

Each Data Base may contain a number of component Data Files, each of which is generally restricted to a particular type of data or to data from a particular source.

The following listings (Tables 4-1 through 4-6) describe the Data Bases and their component Data Files. A detailed listing of each Data File is provided in the Users Manual. These formatted listings are intended to provide a quick reference to the data presently stored in the LRAPP Data Bank.
TABLE 4-1
Indian Ocean Data Base

I. DATA BASE: Indian Ocean

II. DATA SOURCE: AESD, NOSC

III. GEOGRAPHIC COVERAGE: Indian Ocean

IV. TEMPORAL COVERAGE: 1900 to 1975

V. DATA TYPE: Environmental

VI. COMPONENT DATA BASE FILES:
   A. Indian Ocean-Historical Hydrocast Data
   B. Indian Ocean-Seasonal Wave Heights
   C. Indian Ocean-Province Seasonal Sound Speed Data

VII. DOCUMENTATION:

Spofford, C. W., Cavanaugh, R. C., and Hanna, J. S., "Indian Ocean Assessment" (U), "Maury Center for Ocean Science (No Report Number), May 1975, SECRET.
TABLE 4-2
Northeast Pacific Data Base

I. DATA BASE: Northeast Pacific

II. DATA SOURCE: NOSC, NOO, NORDA, TI, UT-ARL, UM, NUC, PSI, DREP

III. GEOGRAPHIC COVERAGE: 15°N-61°N, 105°W-179°W

IV. TEMPORAL COVERAGE: 1927-1975

V. DATA TYPE: Acoustic Environmental

VI. COMPONENT DATA FILES:
A. Northeast Pacific-Church Anchor-Ambient Noise Data-1 of 4
B. Northeast Pacific-Church Anchor-Ambient Noise Data-2 of 4
C. Northeast Pacific-Church Anchor-Ambient Noise Data-3 of 4
D. Northeast Pacific-Church Anchor-Ambient Noise Data-4 of 4
E. Northeast Pacific-Church Anchor-Baseline Sound Speed Profiles
F. Northeast Pacific-Church Anchor-Shipping Density Data
G. Northeast Pacific-Church Anchor-10 Sec. Ambient Noise Data
H. Northeast Pacific-Church Anchor-10 Min. Ambient Noise Data
I. Northeast Pacific-Church Anchor-Current Profiles
J. Northeast Pacific-Church Anchor-CW Data
K. Northeast Pacific-Church Anchor-SUS Data
L. Northeast Pacific-Church Anchor-OMNI Noise Level Data
M. Northeast Pacific-Church Anchor-Beam Noise Level Data
N. Northeast Pacific-Church Anchor-CW Propagation Loss
C. Northeast Pacific-Church Anchor-SUS Propagation Loss
P. Northeast Pacific-Church Anchor-Physical Obs. and Analyses for 9/15 and 10/1
Q. Northeast Pacific-Church Anchor/Opal-Hydrocast Data
R. Northeast Pacific-Historical Hydrocast Data

VII. DOCUMENTATION:

Anderson, V. C., "Vertical Directionality of Noise and Signal Transmission During Operation CHURCH ANCHOR," Marine Physical Laboratory, Scripps Institute of Oceanography, University of California, San Diego, SIO Reference 75-1, 15 November 1974, UNCLASSIFIED.

Hecht, R. J., "Estimated Accuracy for Acoustic Data from R/V FLIP-CHURCH ANCHOR," Underwater Systems, Inc. (Draft Copy). (No Report Number), 8 March 1974, UNCLASSIFIED.


Maury Center for Ocean Science, "CHURCH ANCHOR Synopsis Report" (U), MC Report 0012, December 1973, SECRET.
TABLE 4-2 (continued)

Maury Center for Ocean Science, "CHURCH ANCHOR Environmental Acoustics Summary" (U), MC Report 108, September 1974, SECRET.


VIII. REMARKS:
TABLE 4-3
Northwest Pacific Data Base

I. DATA BASE: Northwest Pacific

II. DATA SOURCE: NOSC

III. GEOGRAPHIC COVERAGE: 0°N-30°N, 120°E-150°E

IV. TEMPORAL COVERAGE: 1907-1972

V. DATA TYPE: Environmental

VI. COMPONENT DATA FILES: A. Northwestern Pacific-Philippine Sea Historical Hydrocast Data

VII. DOCUMENTATION:

VIII. REMARKS:
TABLE 4-4

North Atlantic Data Base

I. DATA BASE: North Atlantic

II. DATA SOURCE: NOO, UT-ARL, NRL

III. GEOGRAPHIC COVERAGE: 46°N-65°N, 0°W-36°W

IV. TEMPORAL COVERAGE: 1973

V. DATA TYPE: Environmental Acoustic

VI. COMPONENT DATA FILES:
   A. North Atlantic-Square Deal-Hydrocast Data
   B. North Atlantic-Square Deal-SUS Data/3 Hydrophones
   C. North Atlantic-Square Deal-SUS Data/1 Hydrophone
   D. North Atlantic-Square Deal-CW Data

VII. DOCUMENTATION:

Maury Center for Ocean Science, "SQUARE DEAL Environmental Acoustic Summary" (U), MC Report 111, October 1975, SECRET.

VIII. REMARKS:
<table>
<thead>
<tr>
<th>Block</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. DATA BASE</td>
<td>Gulf of Mexico/Caribbean</td>
</tr>
<tr>
<td>II. DATA SOURCE</td>
<td>NOSC, NOO</td>
</tr>
<tr>
<td>III. GEOGRAPHIC COVERAGE</td>
<td>10°N-30°N, 60°W-98°W</td>
</tr>
<tr>
<td>IV. TEMPORAL COVERAGE</td>
<td>1913-1974</td>
</tr>
<tr>
<td>V. DATA TYPE</td>
<td>Environmental Acoustic</td>
</tr>
</tbody>
</table>
| VI. COMPONENT DATA FILES | A. Gulf of Mexico/Caribbean-Observed Hydrocast Data  
B. Gulf of Mexico/Caribbean-Standard Depth Hydrocast Data  
C. Gulf of Mexico/Caribbean-Church Gabbro-Hydrocast Data in W. Caribbean  
D. Gulf of Mexico/Caribbean-Church Gabbro-Current Profiles in W. Caribbean |
| VIII. REMARKS | |
TABLE 4-6

World Shipping Data Base

I. DATA BASE: World Shipping Distribution

II. DATA SOURCE: Planning Systems, Inc. (Louis Solomon)

III. GEOGRAPHIC COVERAGE: World

IV. TEMPORAL COVERAGE: N/A

V. DATA TYPE: Environmental

VI. DOCUMENTATION:


VII. COMPONENT DATA FILES:

A. World Shipping Distribution-TAU1/Merchant Vessels -- Monthly Averages
B. World Shipping Distribution-TAU2/Tankers -- Monthly Averages
C. World Shipping Distribution-TAU3/Large Tankers -- Monthly Averages
D. World Shipping Distribution-Seasonal Averages
E. World Shipping Distribution-Annual Averages

VIII. REMARKS:
DISTRIBUTION LIST

Chief of Naval Operations
Department of the Navy
Washington, D.C. 20350
ATTN: OP-095
OP-095E
OP-096
OP-951
OP-952
OP-951F

Headquarters
Naval Material Command
Washington, D.C. 20360
ATTN: Code MAT-08T245

Project Manager
Antisubmarine Warfare System Project
Department of the Navy
Washington, D.C. 20360
ATTN: PM-4

Director
Strategic System Projects Office
Department of the Navy
Washington, D.C. 20376
ATTN: PM-I

Chief of Naval Research
800 North Quincy Street
Arlington, VA 22217
ATTN: Code 102B
220
230
460
480

Commander
Naval Electronic Systems Command
Naval Electronic Sys Command Hdqrs
Washington, D.C. 20360
ATTN: PME-124
PME-124TA
PME-124/30
PME-124/40
PME-124/60
ELEX-320
Commander  
Naval Sea Systems Command  
Naval Sea Systems Command Hqrs  
Washington, D.C. 20362  
ATTN: NSEA-06HI  

1

Commander  
Naval Air Systems Command  
Naval Air Systems Command Hqrs  
Washington, D.C. 20361  
ATTN: NAIR-370  

1

Defense Advance Research Proj Agency  
1400 Wilson Boulevard  
Arlington, VA 22209  
ATTN: R. G. Cook  
Commander V. E. Simmons  

1

Commander  
Naval Oceanography Command  
NSTL Station, MS 39529  

1

Commander in Chief, PAC Fleet  
P.O. Box 3  
Pearl Harbor, HI 96860  
ATTN: Code 3521  

1

Commander in Chief  
U.S. Atlantic Fleet  
Norfolk, VA 23511  

1

Commander  
Third Fleet  
Pearl Harbor, HI 96860  
ATTN: Code N-7  

1

Commander  
Submarine Development Group 12  
Box 70 Nav Sub Base, N London  
Groton, CT 06340  

1

Commander  
Operational Test and Eval. Force  
Naval Base  
Norfolk, VA 23511  

1

Commander  
Oceanographic System, Atlantic  
Box 100  
Norfolk, VA 23511  

1
DISTRIBUTION LIST
(Continued)

Commander
Oceanographic System, Pacific
Box 1390
Pearl Harbor, HI 96860

Commanding Officer
Fleet Numerical Weather Central
Monterey, CA 93940

Commanding Officer
Fleet Weather Central
McAdie Building (U-117)
NSA Norfolk, VA 23511

Commanding Officer
Fleet Weather Control
Box 113
Pearl Harbor, HI 96860

ARPA Research Center
Unit 1, Bldg. 301A
NAS Moffett Field, CA 94035
ATTN: E. L. Smith

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Commanding Officer
Naval Research Laboratory
Washington, D.C. 20375
ATTN: Code 8100
Code 8160

Commander
Naval Oceanographic Office
NSTL Station, MS 39529
ATTN: Code 3000
Code 3440
Library

Commanding Officer
Naval Ocean Research & Devel. Activity
NSTL Station, MS 39529
ATTN: Code 110
Code 125
Code 200
Code 300
Code 320
Code 340
Code 500
Code 600

<table>
<thead>
<tr>
<th>Address</th>
<th>Code(s)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Ocean Research &amp; Devol. Activity</td>
<td>Code 130</td>
<td>2</td>
</tr>
<tr>
<td>Liaison Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Officer in Charge</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>New London Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Underwater Systems Center</td>
<td>Code 31</td>
<td>1</td>
</tr>
<tr>
<td>New London, CT</td>
<td>Code 312</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Code 31</td>
<td>Code 542</td>
<td>1</td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>Code 724</td>
<td>1</td>
</tr>
<tr>
<td>San Diego, CA 92152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 724</td>
<td>Code 7243</td>
<td>1</td>
</tr>
<tr>
<td>Commander</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Naval Air Development Center</td>
<td>Code 303</td>
<td>1</td>
</tr>
<tr>
<td>Warmister, PA 18974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 303</td>
<td>code 3032</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Naval Coastal Systems Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panama City, FL 32407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Officer in Charge</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White Oak Laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Surface Weapons Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Spring, MD 20910</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Officer in Charge Carderock Lab.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>David W. Taylor Naval Ship Res &amp; Development Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bethesda, MD 20034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Naval Ocean Surveillance Info Cent</td>
<td>Code 262</td>
<td>1</td>
</tr>
<tr>
<td>4301 Suitland Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Naval Intelligence Support Center</td>
<td>Code 689</td>
<td>1</td>
</tr>
<tr>
<td>4301 Suitland Road</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20390</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Institution</td>
<td>Address</td>
<td>City, State, Zip Code</td>
</tr>
<tr>
<td>----------------------------------------------------------------------------</td>
<td>----------------------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Naval Postgraduate School</td>
<td>Monterey, CA 93940</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Naval Environmental Prediction Research Facility</td>
<td>Monterey, CA 93940</td>
</tr>
<tr>
<td>Director of Naval Matters</td>
<td>Center of Naval Analysis</td>
<td>Arlington, VA 22209</td>
</tr>
<tr>
<td>University of Hawaii</td>
<td>Hawaii Institute of Geophysics</td>
<td>Honolulu, HI 96822</td>
</tr>
<tr>
<td>Johns Hopkins University</td>
<td>Applied Physics Laboratory</td>
<td>Laurel, MD 20810</td>
</tr>
<tr>
<td>Palisades Geophysical Inst. Inc.</td>
<td>131 Erie Street</td>
<td>Blauvelt, NY 10913</td>
</tr>
<tr>
<td>Scripps Inst. of Oceanography</td>
<td>Marine Physical Laboratory</td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>University of Texas</td>
<td>Applied Research Laboratories</td>
<td>Austin, TX 78712</td>
</tr>
<tr>
<td>University of Washington</td>
<td>Applied Physics Laboratory</td>
<td>Seattle, WA 98195</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST
(Continued)

Woods Hole Oceanographic Inst.
Woods Hole, MA 02543
ATTN: Dr. E. E. Hays 1

Analysis and Technology, Inc.
Route 2
North Stonington, CT 06359
ATTN: S. Elam 1

Arthur D. Little, Inc.
15 Acorn Park
Cambridge, MA 02140
ATTN: Dr. G. Raisbeck
W. G. Sykes 1

B-K Dynamics
15825 Shady Grove Road
Rockville, MD 20850
ATTN: P. G. Bernard 1

Bell Telephone Laboratories
1 Whippany Road
Whippany, NJ 07981
ATTN: Dr. J. Goldman 1

Bolt, Beranek and Newman
1701 N. Fort Myer Drive
Suite 1001
Arlington, VA 22209 1

Bolt, Beranek and Newman
50 Moulton St.
Cambridge, MA 02138 1

Daniel Analytical Services Corp.
16821 Buccaneer Lane
Clear Lake City
Houston, TX 77058
ATTN: E. D. Graham 1

Daniel H. Wagner Associates
Station Square One
Paoli, PA 19301 1

Daubin Systems Corp.
104 Crandon Boulevard
Suite 315
Key Biscayne, FL 33149
ATTN: Dr. S. C. Daubin 1
Gould, Inc.
Chesapeake Instrument Div.
6711 Baymeadow Drive
Glen Burnie, MD 21061
ATTN: R. Smith

Ocean Data Systems, Inc.
6000 Executive Boulevard
Rockville, MD 20852
ATTN: G. V. Jacobs
Dr. E. Morenoff
E. W. Ver Hoef

Ocean Data Systems, Inc.
2400 Garden Road
Monterey, CA 93940

Ocean Data Systems, Inc.
3255 Wing Street
Suite 550
San Diego, CA 92110

Operations Research, Inc.
1400 Spring Street
Silver Spring, MD 20910
ATTN: Dr. J. I. Bowen

Planning Systems Inc.
7900 Westpark Drive
Suite 600
McLean, VA 22101
ATTN: R. Klinkner
Dr. L. P. Solomon

Purvis Systems, Inc.
3420 Kenyon St., Suite 130
San Diego, CA 92110
ATTN: T. J. Fitzgerald

Raytheon Company
Submarine Signal Division
P.O. Box 360
Portsmouth, RI 02871
ATTN: Dr. B. A. Becken

Sanders Associates, Inc.
95 Canal Street
Nashua, NH 03060
ATTN: L. E. Gagne
DISTRIBUTION LIST
(Continued)

Science Applications, Inc.
8400 Westpark Drive
McLean, VA 22101
ATTN: Dr. J. S. Hanna
C. W. Spofford
1

Summit Research Corp.
1 West Deer Park Drive
Gaithersburg, MD 20760
1

Sutron Corp.
1925 N. Lynn Street
Suite 700
Arlington, VA 22209
ATTN: C. H. Dabney
1

Tetra Tech, Inc.
1911 Fort Meyer Drive
Arlington, VA 22209
1

TRACOR, Inc.
1601 Research Boulevard
Rockville, MD 20850
ATTN: J. T. Gottwald
Dr. A. F. Wittenborn
1

TRW Systems Group
7600 Colshire Drive
McLean, VA 22101
ATTN: R T. Brown
I. S. Gereben
1

Undersea Research Corp.
7777 Leesburg Pike
Suite 306
Falls Church, VA 22043
ATTN: V. F. Anderson
1

Underwater Systems, Inc.
8121 Georgia Avenue
Silver Spring, MD 20910
ATTN: Dr. M. S. Weinstein
1

Western Electric Company
P.O. Box 25000
Greensborough, NC 27420
ATTN: G. H. Harris
1

Xonics, Inc.
6837 Hayvenhurst Avenue
Van Nuys, CA 91406
1
MEMORANDUM FOR DISTRIBUTION LIST

Subj:  DECLASSIFICATION OF LONG RANGE ACOUSTIC PROPAGATION PROJECT (LRAPP) DOCUMENTS

Ref:  (a) SECNAVINST 5510.36

Encl:  (1) List of DECLASSIFIED LRAPP Documents

1. In accordance with reference (a), a declassification review has been conducted on a number of classified LRAPP documents.

2. The LRAPP documents listed in enclosure (1) have been downgraded to UNCLASSIFIED and have been approved for public release. These documents should be remarked as follows:

   Classification changed to UNCLASSIFIED by authority of the Chief of Naval Operations (N772) letter N772A/6U875630, 20 January 2006.

   DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution is unlimited.

3. Questions may be directed to the undersigned on (703) 696-4619, DSN 426-4619.

BRIAN LINK
By direction
Subj:  DECLASSIFICATION OF LONG RANGE ACOUSTIC PROPAGATION PROJECT (LRAPP) DOCUMENTS

DISTRIBUTION LIST:
NAVOCEANO (Code N121LC – Jaime Ratliff)
NRL Washington (Code 5596.3 – Mary Templeman)
PEO LMW Det San Diego (PMS 181)
DTIC-OCQ (Larry Downing)
ARL, U of Texas
Blue Sea Corporation (Dr. Roy Gaul)
ONR 32B (CAPT Paul Stewart)
ONR 321OA (Dr. Ellen Livingston)
APL, U of Washington
APL, Johns Hopkins University
ARL, Penn State University
MPL of Scripps Institution of Oceanography
WHOI
NAVSEA
NAVAIR
NUWC
SAIC
<table>
<thead>
<tr>
<th>Report Number</th>
<th>Personal Author</th>
<th>Title</th>
<th>Publication Source (Originator)</th>
<th>Pub. Date</th>
<th>Current Availability</th>
<th>Class.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unavailable</td>
<td>Unavailable</td>
<td>SELF-TENSIONING ACOUSTICAL HORIZONTAL LINE ARRAY (SPRAY) DATA ANALYSIS. FINAL REPORT OF BEARING STAKE TESTS JANUARY THRU MARCH 1977. VOLUME IVB, DATA POINTS 10, 11 AND 12 RAW DATA</td>
<td>Sanders Associates, Inc.</td>
<td>790109</td>
<td>ADC017579</td>
<td>U</td>
</tr>
<tr>
<td>ARLTR7924</td>
<td>Mitchell, S. K., et al.</td>
<td>ANALYSIS OF ACOUSTIC BOTTOM INTERACTION IN BEARING STAKE (U)</td>
<td>University of Texas, Applied Research Laboratories</td>
<td>790223</td>
<td>ADE001369; NS; ND</td>
<td>U</td>
</tr>
<tr>
<td>TIU1886502F</td>
<td>Eichenberger, D.</td>
<td>REPORT FOR CHURCH STROKE II OCEANOGRAPHIC SERVICES</td>
<td>Texas Instruments, Inc.</td>
<td>790326</td>
<td>ADB036751; ND</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Unavailable</td>
<td>FINAL REPORT, 1 NOVEMBER 1976-31 DECEMBER 1978</td>
<td>Xonics, Inc.</td>
<td>790430</td>
<td>ADB037987</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Mitchell, T. M.</td>
<td>PREMOBILIZATION OF R/V INDIAN SEAL</td>
<td>Texas Instruments, Inc.</td>
<td>790531</td>
<td>ADB039703</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Hays, E. E.</td>
<td>ACODAC AMBIENT NOISE PROGRAM</td>
<td>Woods Hole Oceanographic Institution</td>
<td>790601</td>
<td>ADB040404</td>
<td>U</td>
</tr>
<tr>
<td>LRAPP79029</td>
<td>Unavailable</td>
<td>INTRODUCTION TO THE LRAPP ENVIRONMENTAL-ACOUSTIC DATA BANK (U)</td>
<td>Naval Ocean R&amp;D Activity</td>
<td>790601</td>
<td>ADB041066; NS</td>
<td>U</td>
</tr>
<tr>
<td>USRD NO. 4807</td>
<td>Unavailable</td>
<td>MEASUREMENTS ON AQUADYNE MODEL AQ-1 ELEMENTS FOR THE UPGRADED LAMBDA ARRAY</td>
<td>Naval Research Laboratory</td>
<td>790802</td>
<td>ND</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Ellis, G. E.</td>
<td>SUMMARY OF ENVIRONMENTAL ACOUSTIC DATA ANALYSIS</td>
<td>University of Texas, Applied Research Laboratories</td>
<td>790814</td>
<td>ADA073876</td>
<td>U</td>
</tr>
<tr>
<td>BR U0048-9C2</td>
<td>Unavailable</td>
<td>TAP III FINAL REPORT (U)</td>
<td>Bunker-Ramo Corp. Electronic Systems Division</td>
<td>790901</td>
<td>ND</td>
<td>U</td>
</tr>
<tr>
<td>ORITR1245</td>
<td>Moses, E. J.</td>
<td>OPTIONS, REQUIREMENTS, AND RECOMMENDATIONS FOR AN LRAPP ACOUSTIC ARRAY PERFORMANCE MODEL (U)</td>
<td>ORI, Inc.</td>
<td>790917</td>
<td>NS; ND</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Colborn, J. G., et al.</td>
<td>EVALUATION OF STANDARD OCEAN CANDIDATES</td>
<td>Pacific-Sierra Research Corp.</td>
<td>800301</td>
<td>ADA087304</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Kirby, W. D.</td>
<td>ENVIRONMENTAL ACOUSTIC SUPPORT FOR FLEET OPERATIONS AND NATO</td>
<td>Science Applications, Inc.</td>
<td>801112</td>
<td>ADB052623</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Unavailable</td>
<td>SUMMARY OF ENVIRONMENTAL ACOUSTIC MEASUREMENTS, MODELING AND ANALYSIS</td>
<td>University of Texas, Applied Research Laboratories</td>
<td>801215</td>
<td>ADB053770</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Wilson, J. H.</td>
<td>WIND-GENERATED NOISE MODELING</td>
<td>Science Applications, Inc.</td>
<td>810401</td>
<td>ADA190143</td>
<td>U</td>
</tr>
<tr>
<td>Unavailable</td>
<td>Goit, E. H.</td>
<td>TOWED ARRAY PERFORMANCE PREDICTION SYSTEM - VERSION 1.2</td>
<td>Science Applications, Inc.</td>
<td>810701</td>
<td>ADB059397</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>Unavailable</td>
<td>FINAL REPORT</td>
<td>University of Texas, Applied Research Laboratories</td>
<td>810721</td>
<td>ND</td>
<td>U</td>
</tr>
</tbody>
</table>