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PART 1

Introduction



INTROOUCTION

This is the final report of work done on BMD Contract DASG60-77-C-3049,

The report is divided into eleven parts. The first five parts, after this
introduction, deal respectively with preliminary concepts of systen specifi-
cation; foundations of axiomatic analysis; the relation between data types,
functions, and control structures; software engineering and artificial in-
telligence; and the semantic structure of language. These five parts have
appeared earlier as the first interim report. The next four parts deal re-
spectively with the HOS methodology (Parts 7 and 8) and with fuzzy sets and
fuzzy logic (Parts 9 and 10) and appeared earlier as the second interim re-
port. The last two parts are new, appearing here for the first time. Part 11
compares four system specification methodologies and Part 12 applies some of
these ideas to a real BND problem.

Part 2 develops the basic concepts of HOS as a systems design methodology.
The notions of structure, data type, variable, value, function, tree, node,

data structure, primitive operations, and universal primitive operations

are reviewed and formally characterized. The distinction between an object,
its name, its mode of existence, its environment, when it happens, where

it comes from, its representation, its implementation, and its execution is

discussed and explicated. The notions of a system layer and a level of re-
finement are contrasted. Specific attention is paid ¢o the characterization
of a compiete system specification and the problem of resource allocation

in a system.

Part 3 develops the basic concepts of HOS as a systems theory. Two notions
of axiom are discussed, one derived from empirical science and one from
mathematics, and shown to play different roles within the HOS theory.

The notions of a theory as a discovery procedure and as a set of constraints

are compared and contirasted and the distinction is used to clarity the
character of HOS.

Part 4 develops the basic concepts of HOS from the point of view of data-
type specification, which in HOS is done algebraically. The notions of
function, algebra, and control map are developed in connection with their

use in specifying systems and found to provide a natural mathematical




characterization of the system concept. Some advantages of the HOS theory
over other proposals for algebraic data-type specification that have appeared
in the literature are discussed.

Part 5 explores the potential usefulness of HOS in the study and modelling
of cognitive systems. Some conceptual and methodological problems in
current work in artifical intelligence are pointed out and a way of re-
medying them by using HOS is suggested.

Part 6 represents a first step in implementing the program of research
suggested and outlined in Part 5. A recent proposal in the linguistic
literature that word meanings might be best represented as functions is
examined in the light of HOS concepts of functionzl decomposition and found
to lead to a natural algebraic model for the semantic lexicon of a language.
The work reported in this part is of particular significance for BMD systems
for three important reasons. First, many properties of BMD systems are
properties they share, as systems, with other systems of seemingly very
different kinds. The distinction between a theory of systems viewed as

a discovery procedure and a theory of systems viewed as a set of constraints,
for example, as discussed in Part 3, is derived from work in linguistics

on syntactic systems. A lot can be learned that is relevant to BMD systems
by analyzing the properties of other systems that are easier to deal with

and that thus reveal their essential properties more readily. Second,

a fully successful BMD system will require maximal automation in both its
recognition and its response capabilities, including the ability to communi-
cate with niechanical components of the system to the greatest extent
possible in natural language. Syntax-based proposals for natural-language
man-machine communication have fallen far short of expectation and need,

and semantics-based methods would seem to provide much greater 1ik1lihood

of success. If the semantic system of a language can in fact be described

in exactly the same language and concepts--namely, HOS--as other camponents
of BMD systems, then the entire BMD program can be greatly simplified and

its efficiency significantly enhanced. Third, the specific example dis- -8
cussed, taken from the linguistic literature, involves exactly the kind '
of problem that it would be necessary to solve in a rigorous formalization
of a BMD system. The example deals with the question of how best to
characterize a number of data types that are particularly in need of for-




mal explication in a 8MD system:  EVENTS, ENTITIES, ACTIVITIES, LOCATIONS,
and PATHS. An automated BMD response device, for example, would have to
know precisetly and unambiguousty what constitutes an event requiring a

{ 2 response and what paths that response might invoive. The discussion in

b this part can be viewed as a first attempt to develop answers to precisely
these and related questions.

Parts 7 and 8 deal specifically with the HOS systems methodotogy, with Part 7
focusing on control structures and Part 8 focusing on data types; these two

theoretical entities, along with functions, constitute the three basic units
in terms of which any system can be specified in HOS. Part 7 examines the
three HOS primitive control structures, usually defined in traditional set-

theoretic terms, and asks what happens if the definitions are reformulated

in terms of the newer mathematical theory of categories. This effort is in
line with state-of-the-art thinking in mathematics itself, much of which is
concerned precisely with such category-theoretic reformulations of set-theoretic
notions. A number of revealing insights emerge form the analysis undertaken
here, both in regard to the primitive control structures themselves and in
regard to the very notion of "system." Part 8 focuses on data types from the
user's point of view, outlining how one goes about constructing an algebraic
specification for a data type in an HOS system. Three versions of data-type
TIME that might be needed in BMD systems are presented and some theoretical
point concerning consistency and completeness are discussed.

Parts 9 and 10 deal with fuzzy sets and fuzzy logic, branches of mathematics
and logic that deal specifically with problems of vagueness and uncertainty,
two pervasive characteristics of BMD-related situations and systems; in parti-
cular, the theory of possibitity, based on fuzzy sets and logic, has been
proposed as an alternative to probability theory as a way of dealing coherently
with these two characteristics. Part 9 discussed fuzzy reasoning and its
relevance to communication in systems; such as those that arise in the BMD
environment. Part 10 surveys the various systems of fuzzy logic that have
appeared in the literature and discusses their relative advantages and draw-

} .
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Part 11 analyzes four notational frameworks for system specification and
evaluates them along the dimensions of expressive power and perspicuity. The
four frameworks include HOS coatrol maps, R-Nets, commutative diagrams,

and a modified version of the R-Net framework. Recommendations are made for
the conditions under which the various frameworks might most fruitfully be

used.
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Some Preliminaries on System Specification
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Some Preliminaries on System Specification

Design and Verification take place throughout a system development process.
Design means to think. Verify means to think back. For each step of
design there should be a counter-step of verification. At times, the pro-
cess of design is one and the same as the process of verification.

This occurs when certain design characteristics are included for the
purpose of preventing unnecessary verification. In such a case, some
types of verification requirements are designed out of the system.

What is left is the second order verification which determines if unneces-
sary verification requirements with respect to a design have truly been
eliminated, and then a need to verify only that which is truly part of

the original intent of the design.

Many engineers talk about a desire to improve their own design techniques.
These design techniques include those techniques for producing the design
for a solution to a particular problem as well as the design of the
process which will verify that solution. More often than not, these
engineers appear to be talking about a different design process since
they are involved in different types of systems or different phases of
development within a given system. Actually, they are applying the same
process (i.e., design) to a different "application."

| From the point of view of a typical development process, design could be

the process of going from a concept to a set of requirements, a set of
requirements to a set of specifications, a set of specifications to a
set of code or a set of code to a computer. In every one of these
processes each designer considers himself to have the task of preparing
his design to eventually reside in a computer or machine environment.
One of the problems with this approach is that a designer either worries

unnecessarily about design considerations not relevant to his own process

or he might leave out design considerations thinking someone has already
taken care of them or that someone will take care of them later. The
important consideration for each designer is to worry about designs
which he should worry about and only those designs he should worry about.
Each designer goes through the same process, but each designer should be
applying that process to a different phase of the overall application.
Thus the inputs and outputs of his design process should be both unique
and self-contained.




Other than & good deal cf insight, a successful designer has necessary

and sufficient knowledge about his problein, an understanding of the nature
of a design process, an understanding of the nature of the reverse of a
design process (the verification process), and a means to effectively
perform a reliable and workable implementation of his design.

It is desirable for a designer to have a methodology to support him in

a design process. However, although a methodology can support a designer,
it can never replace him. A tool can be developed to replace some of

his functions with respect to himself, the designer, and even to replace
all of his functions on a particular project. However, the designer

still has the prerogative to create new designs and to design new uses

for the same tool or new tools for different uses.

There are many methodologies today whose intent is to provide standards
and techniques to assist the engineer in the design and verification
process {1]. The developers of these methodologies are all proponents
of reliable designs. And, most methodologies advocate similar techniques
towards this aim. For example, it is a commonly accepted idea that it
is beneficial to produce a hierarchical breakdown of a given design

in order to prov de more manageable pieces to work with. And, there

are varjations bitween methodologies. Some emphasiée a concentration

on data flow as opposed to functional flow [2],{3],[4],15); others
emphasize just the opposite {6],[7],18]; others indicate that both func-
tional and data flow are of equal importance [9]; others emphasize
documentation standards {10],{11]; others emphasize graphical notations
{12]1; and still others emphasize semantic representation [13].

There are certainly positive aspects in many of these methodologies

and, in particular, in what they are trying to obtain. To be effective,
however, a methodology should have techniques and rules for the purpose
of defining systems which are consistent and complete. But these tech-
niques and rules are useful only if they are within themselves consistent
and complete, both with respect to each other and to the systems to

which they are being applied. With a complete and consistent methodology,
a system can be defined formally so that all systems which communicate
with a given system can understand that system in the same way.

8 |
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In order to define a complete system, a methodology must have the mech-
anisms to define all of the relationships which exist in a system environ-
ment. This includes communication within and between systems and the
iesource allocation which provides for that communication. Thus not only
must all data, data flow, function and functional flow be able to be
explicitly defined, but the relationships (and control of the relationships)
between data and data, between function and function, and between data

and function must be able to be defined within any given system environ-
ment.

A methodology should have a mechanism to provide modularity in the formal
sense. That 1is, any change should be able to be made locally and if a
change is made, the result of that change should be able to be traced
throughout both the system within which that change resides and through-
out other systems communicating with that system.

A methodology should have the mechanisms to communicate and resource
allocate a formally defined system in a manner which is transparent

to the engineer, the user of these mechanisms. That is, even though the
semantics of a system definition are formal, the syntax describing

that system should be as flexible and as close to the "language" of the
engineer as long as it contains the necessary information to be used in
the system description.

We will discuss here some properties of the methodology of Higher Order
Software (HOS) as they relate design and verification to the require-
ments we have set forth for methodologies in general.

An object is an existence of something. A system is an assemblage of
objects united by some form of regular interaction or interdependence.
The mechanism by which these objects are united can make the difference
between a system which is reliable and one which is not. In HOS the
objects of a system are united by a form of control where that form of
control is determined by adherence to six axioms.

A system, itself, can be viewed as an object within another system.
Objects of an HOS system can be described in terms of abstract control

9 |




structures [14] that relate members of algebraically defined data types
[15], (5] or functionally defined data whose components are algebraically
defined. When an object is viewed in terms of an abstract control struc-
ture, that object is in the state of doing. When an object is viewed

as a member of a data type, that object is in a state of being.

HOS systems communicate in terms of data and functions. Functions
can be in a being state or a doing state. Data can be in a being state
or a doing state. OQr, as Cushing puts it [16]:

...anything that can be...a datum, can also do, by serving as
input to a function, and anything that can do, i.e., a function,
can also be, since functions themselves make up a data type.

System designers often have *.he problem of knowing when they are finished.
For example, it is not clear when a system definition has been decomposed
as far as it should be or if it has been decomposed to a state of unneces-
sary detail. In HOS, a design that is finished is one which has been
hierarchically decomposed into a complete system specification. In

this case, all terminal nodes of a specification tree represent primitive
operations on data types (Appendix 1 in [18]).

Sometimes we need to talk about the relationships between one system and
another system. In order to talk about such relationships, it is necessary
to understand the structure or organization of a system. In HOS the
structure of a system can be made up of several systems where each system
can be defined in terms of levels, layers, and instances of layers.

A layer represents all performance passes of a system. An instance

of a layer represents one performance pass of a system. A level represents
a step of refinement within an instance of a layer of a system. A
communication takes place between two systems if an instance of one system
communicates with an instance of another system. Two systems are on the
same layer if and only iT an instance of one system always communicates
with the same instance of the other system.

There are other relationships between systems other than that of communi-
cation between them as objects. A system, as an object, can communicate

10|
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with other layers of a system such as the definition, description, name,
or environment. That same system, as an object, can also communicate
with those systems on which another system is implemented. All of these
relationships between one system and another system are defined by

still another system. This process (or system) which prepares one system
to relate to another system is called resource allocation.

In the process of resource allocation, it is possible to assign a name

to an object, an object to a name, or replace an object by an object or

a name by a name. An engineer provides resource allocations to objects
in his system when he is designing the system. This process can take
place manually or automatically. He also designs resource allocation
functions for the system itself to perform when it is being executed.
Sometimes it is necessary to perform a resource allocation to a system
before it can communicate with another system. Sometimes it is necessary
to perform a communication between two systems before a new step of
resource allocation is determined.

Thus, for example, one system may need to compute an output value in

order that such a value can be assigned to an input variable in another
system. Another system may need to compute an output value in order

that such a value can be assigned as a function to a name of a node within
a structure in another system (this type of assignment is necessary for

a reconfiguration of functions in real time). Another system may need

to assign a function from one system as a value to an input variable

inits own system. And still another system may need to assign an instance
of a function as a value to an input variable in its own system.

When we think about an object it is often too easy to think about it in
too limited a sense. The problem is that everyone involved with that

same object has a different viewpoint of that object. And, it is for this
very reason that one designer will define the same object differently

than another designer. FEach designer designs a system with his own im-
plicit assumptions or preconceived notions that are collectively different
from anyone else. Unfortunately, many of these inplicit assumptions

are not usually made known until that object is finally executed on a
computer. And sometimes, they arenever made known. At least a system

1}




that is implemented on a computer has the advantage of the computer
finding problems that designers of other non-computer problems would never
find.

The only way to get around the problems of producing incomplete, ambiguous
or redundant designs is to have the ability to define a system explicitly.
In order to explicitly talk about an object, we need to understand what
it is, its type (or characteristics), and its definition. (The definition
of an object contains information about those objects contralled by that
object as a controller. It does not include information about how that
object itself is controlled.) To transfer an ojbect from one system
specification to another, we would include all of the above in addition

to the object, itself, and a description of that object.

The controller of an object allocates its name, how it exists (i.e., being
or doing), its environment (i.e., its residence}, when it happens,

where it comes from, its representation, its implementation (i.e., what
makes it happen}, and its execution, which includes the relationships

of one system, as an object, with another system as an object (i.e.,

its layer and level communication relationships) and the relationships

of one system as an object with another system in order to prepare that
system for communication (i.e., its layer and level resource allocation

relationships}.

An object as a controller resource allocates. An object as a function
communicates.

fach object in a system specification has a special meaning to an
engineer as to what it is. For example, objects such as functions, input
and output values, and input.and output variables are commonly referred
by system designers. In HOS, we include these kinds of objects with very
specific meanings, and we have other kinds of objects including those
which are available as a convenient means of abstracting (or modularizing)
system specifications. When we talk about an object, it is very helpful
to say what it is, for in doing so we immediately know 2 1ot more about
its properties. For a given specification, an object in HOS could be,
for example, a structure, an operation, a function, a data type, a

12




variable, a value a tree, a data structure, or a primitive operation.

An example of objects that can be used in a system specification is shown
in Figure 1. (A definition for these objects is given in Appendix I and

' Appendix Il of [18].)

We can tell the type of an object by referring it to a set of values

whose characteristics we have defined. A type is a set of values defined

by a set of axioms. Each axiom is a true statement about control structures.
Thus if

y = A(x);
we can say

where {y,x) are INTEGERS,
A is a constant FUNCTION;

in addition, if

z = C(b):
we might say

b is an A,

€ is a FUNCTION,

Z is a MATRIX;

To understand the meaning of a system, we define each of its objects.
§ For example, one definition of an instance of E function, E, is
y = E(x);
where X is an INTEGER,
Yy is a NATURAL;

One definition of E as data is
where £ is a FUNCTION;

13
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y = A (g)

STRUCTURE :

DATA TYPE:

YARIABLE:

VALUE:

FUNCTION:

TREE:

NODE :

DATA STRUCTURE:

PRIMITIVE
OPERATIONS:

UNIVERSAL PrIMIMIVE
OPERATIONS:

y = A(x)

g9 = A,(x)

9 = Bylx) 9, = B,{x))

the control relationships of the functions
in System A

2 set of values characterized by a set of
primitive operations

a name of an object
“x" is an input variable of A
“y" is an output variable of A

object being names
x is a value of data type integer (e.q., 1,2,3,...)
y is a value of data type integer

mapping between input values and output values
vhere those values are represented by particular
varjables

A.AI.AZ.B1 and B2 are functions of System A
geographical representation of a system (environ-
ment of A)

location on tree. Function A resides at the root
node of the control map for System of A

a set of variables whose values collectively re-
present the same value as a variable. In System A
(xl.xz) is a data structure of x.

ore of a set of operations which charicterize
a particular data type.
Al.Bl and B2 are primitive operations for

System A

-3
operations in which the operands are represented ~§
by variables whose values are of some type .

Figure 1

14




We use a description to talk aboul the definition of a system. One
description of an instance of function E is "y = E(x)". This description
can be replaced by other descriptions. It could be replaced by ones
described in an assembly language, specification language, or a higher
order language. 1In HOS we describe definitions with AXES or AXES based
statements (Appendix II in [18]).

We need to have a name for an object in order to mention that object [17].
A name jtself can be an object with respect to its name. To talk about
E, for example, we use the name of E, "E". E can be controlled by m~n-
tioning the name of E. Thus “E" coatrols E in that the mentioning of E

makes E happen, and “E” can be controlled by naming "E". Thus "‘E'" controls

“YE*. To give a name of E is to resource allocate “t" to E. In order to
invoke E we need to have an object, Ec’ which mentions the name of E.

E, "E", "'E'" and Ec' which invokes E, all reside in some environment.

In order to control E by Ec we must also resource allocate to Ec a name
in order to talk about the controller Ec' Ec and its name must also
reside in some environment. 1n Figure 2, A, Al. and A2 are nodes which
Tocate positions on the control map; F, Fl and Fo are functions in

System E. In order to obtain F on the control map, we locate F hy

F = Object("F"). F, Fl and Fz are resource allocated by the very fact
that they have names. F, as a controller, reliates to the invocation of
F1 and F2 by mentioning their names which is, in essence, also a process
of resource allocating the names “FI" and "Fz“ to nodes Al and Az.

In the mentioning of “Fl" and "Fz“, F as a function is replaced by
functions F1 and F2' Similarly, in the case, for example, where we

have an instance of the function ¥, defined as y = F(x), we are concerned
with "y" and "x", in addition to "F", as well as where these names reside.

/F\ //&\
Fy Fy A )
SYSTEM E ENVIRONHENT CONTROL MAP ENVIRONMENT
F HEN
/\ g ug "
F‘n FIA FI F2
1 2

Figure 2: System £ on the Control Map
15




When we relate to an object, it si important to know how it exists. In
the definitions above, when E is viewed in terms of a control structure,
E and x and y are viewed as doing. When £ is viewed in terms of a type,
E and x and y are viewed as being.

When one system relates to another system, it must know, among other things,
the environment within which that system resides. This includes where
that system is I1ncated and when that system exists.

In the case of Function E, we could say that the location of "y = E(x)"
in on the 1ine on this page in this collection of papers. For another
Function A, we might say that its description, "y = A(x)" is located at
node 12 on the control map. Or we might say that "y = A(x)" is located
at Register 10 on Computerx or at RecordA on fileB. Similarly with the
definition of A, we could say y = A(x) is located at BLOCK100 to 200 O
Computer. With respect to function , B, and time, t, we could say

y = A(x) at t or y = A(x) after Bor y = A(x) in t or y = Z(x) before
t.

An example environment might be defined as follows:

y= A(z)at t at x

Where t ic a TIME,
2 is a LOCATION

or if the type information about A, t and 2 were contained on, for
example, a file, we could simply say
- at t at x°
The representation of an object might vary depending on its environment.
One representation of A, A's controller, their names, names of names,
etc. could exist in a computer. In one computer, a rational number could
be represented as a single-precision number, and on another computer,
it could be represented as a double-precision number., In an HOS system f'!
specification, we often talk about these objects within the environment -
of a control map. In an HOS implementation, the nodes of a control
map can be replaced by locations of a computer, the names of the nodes
by names of instructions or names of locations in the computer. Thus
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if a specification is described within a control map environment, it
can be transferred to the computer environment as part of the implementatfon
process.

In order to implement a system (or make that system happen), we define
that system, the environment of that system and the system that will
execute that system. That system which executes another system is called
a machine (Appendix 1II ia [18]).

One of the most difficult problems facing system designers is that of
resource allocating a design to execute on a particular machine. More
subtle problems appear when we attempt to redesign our system to fit

a machine. Once having done so, we can no longer understand our original
design, since the resulting complexity hides the original intent with
camouflages of implementation. We not only cannot trace input and output
throughout our system design, but we are no longer even sure which input
and output is relevant to our original problem. To try to change such a
system with a new system requirement is a presumptuous notion.

Input and output can be traced throughout a given AXES system definition.
Also data flow can be separated with respect to different layers of
implementation. These features allow us to look at system interfaces
which are relevant at the time they are relevant. We often hear the
complaint from system designers about the problem of attempting to design
a system "top-down" and then being forced to add details of implementation
on a lower level of the top-down design when resource alluycation is
addressed. This forces an jteration of the design process in order to
incorporate the extra details of implementation back at the top and down
through the top-down design to maintain consistency of the overall design.
{Some designers merely add that extra detail without worrying about it
because they don't know what to do with it, except to say it came from
some other system; but then they lose track of its influence on their

own system and the influence of their own system on other systems.)

In order to resource allocate a given system to a particular machine, it
is necessary to define both the system and the machine in such a way that
a change to one won't affect the other. It is also necessary to define




the machine in such a way that the users of the same machine only affect
each other when they are explicitly deifned to affect each other.

Whenever we want to separate a system from the specification of its
execution, we specify one layer for the system and another layer for the
machine that runs that system. Likewise, that same machine can be looked
upon as a system with respect to the machine which executes it. To
implement System R, for example, a user might want to “run” R on the 05
system, He could express such an implementatinn as

R on 0S;
or he could express a more detailed implementation as

on 05

R at AonB at m on p’

where A is a RECORD,
B is a FILE,
m is a LOCATION,
P is a ROM;

In AXES these or similar statements can be used as long as the syntax
and the semantics of the syntax are defined using AXES. The process

of implementation continues until we arrive at the layer of a primitive
machine. Consider potential resource allocation steps for a system:

Determine system: (1)
Sis System;

Determine 1/0: (2)
Where S on (xl’xz)i

Determine algorithms: (3)
(xl.xz)
Where (xl,xz) on L3

Determine 0S: (4)
Xy = E(xl)
where £ on Executive;

Determine E computer: (5)
Estate = Executive(Estatel)
Where Executivecmcomputerx

Computer: (6)
Cstate = Computerx(Cstatel);

LI




Because cach layer is defined as a control hierarchy, cach machine that
runs a system is able to use that system description as data and there-
fore has access to information about that system's ordering relationships
as well as that system’s data relationships. With respect to the six
different layers for System S shown above, any one of thesc layers can
be replaced by another implementation layer. If we want to move £ to
another operating system, we change Step 4 to name a new QS for E and
replace Steps 5 and 6. If we wish to design a new algorithm for the
same computer, we change Step 3 and replace £ with a new algorithm and
then replace Steps 4, 5, and 6. If we want to move to a new computer
and our operating system is independent of its computer (as it ideally
would be}, we can change Step 5 to refer to another computer and we then
can replace Step 6.

The execution of a system is a continuous process of resource allocating
system objects for the purpose of communication and processing the
communication between these objects, where that communication determines
the next step of resource allocation. The start of an execution of an
object is like the process of one object mentioning another object by
first calling its name and then operating on the object itself.

By exccuting a system we rcalize the implementation of a system. An
engineer can manually execute a system with the aid of a pencil and
paper. One, however, more commonly thinks of computers as executing

a system. In both cases, this execution process is a dynamic one.

In the dynamic process we execute a system instance by instance. Each
instance is a performance pass of the system.

Sometimes a system is viewed statically. In this casc an engineer or

a computer observes the description of a system by eyeballing state-

ments or instructions. Examples of such static views are those per-
formed by a compiler or an interpreter. An 0S could view a system in both
its static and dynamic states.

When vie wish to define a set of systems to communicate with cach other,
we define a system whose purpose is to control their communication.
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In order to define such a system, we have available a set of rules which
will help us determine how to properly connect systems. As an example,
consider two systems which are to be resource allocated to directly
communicate with each other. A primitive control structure exists which
provides the rules for properly defining two such systems, i.e., one of
which is dependent on the other. Since we are in the specification
stage, we will choose to have the system reside on the control map, which
in our case resides on a piece of paper. It could just as well reside on
a graphics device. Here the primitive control structure, composition
(Figure 3a), is used as a model for organizing our functions. That
system which controls their communication is their controller.

0 - fU{x)
,/’/’ﬁ WHERE fo,fl.f2 ARE. FLUCT LIS
J'zf {,t,0 ARE QF <4 TYPE
0 - f]{r} t fzill

(A)  Primitive Control Structure, Composition

Y = A{z:l
.

y = B{q) a = C{z)

WHEPE A IS A CONSTAIT FLICTICN
¥y G ARE INTEGEDS:

(B} Use of Comnsition

)
= Tigmea 3 -
A Exaieple of the Pesource Avlocation
of Systens Coaunicatiig on the saue Layer
i
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We can tell from this control structure that any function can be “"plugged
into" fO’ fl’ and f2 as long as it follows the rules of composition since
fg» f; and f, are defined as functions (Appendix II in [18]). A user of the
composition control structure could plug System A intc the structure
as follows:

where A on fo, Al on fl’ AZ on fz;

Or, in Figure 3b, we have another example of the use of the strustur:
in Figure 3a, Here, A, B, and C are values for for 3 and f, respectively.

In this use of the composition control structure, A controls B and C
to communicate with each other on the same layer. A, as a controller,
can be thought of as giving control commands where

C when X

B when g from C.
(Notice that B is viewed as a being and C is viewed as both being and
doing by A.)

Since A is a constant function, it follows also that B and C are constant
functions. Thus B and C are on the same layer of communication since
both always relate to the same instance with respect to A.

The control relationship of A, B, and C are defined by composition, which

is defined as an AXFS based STRUCTURE, Join (Appendix II in [18]). Other control
structures exist for the purpose of providing a controlled communication

between systems. These include the other primitives, set partition

(decision making) and class partitiun (parallel processing or independent
functions). From a combination of primitives, we can form more abstract

control structures (e.g., recursive functions). The rules for the control
relationships of the primitive control structures are described in Appendix !

of [18]. Similar rules exist for every defined AXES control structure.

The syntax that is associated with such sTrRucTUrRES is used manually by

a designer to define system specifications. The computer can automatically
do the same thing with a sTrRUucTURE by writing the equivalent commands
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into a register instand of on piece of paper. One way of specifying
such a command is through the AXES on statement. These structures
provide the mechanism for systems on different layers to communicate
with each other in that the structure provides a means for an instance
of one system to communicate with an instance of another system by
simply adhering to the relationships of ‘the structure in real time.

We use such a concept for the communication between functions in an
asynchronous environment. For example, a control structure which can be
used to define an interrupt is

STRUCT'IRE : (yl,yz) = Xch(xl,xz);

where yl,yz,xl,xz are of some type;

¥ " idg(xl,xz) Coinclude ¥, = idf(x1'xz)‘

SYNTAX: (yl,yz) = Xch(xl,xz);

END Xch;

Here the universal operations, idg and idz, themselves defined in AXES
to select a value from a set of values, as well as the coinclude, which
is one of the structures defined so that we can access the same value
more than once, 1s used to define Xch.*

*We named this structure after the XCH instruction in the Apollo Guidance
Computer (AGC), which was used to perform an interrupt.
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Foundations of Axiomatic Analysis

1.0 AXIOMS AND ALGEBRAS IN GENERAL

One of the most powerful and useful tools nvailable to science 1s the
general process of abstraction. From a large collection of diverse facts,
i.e., true descriptions of data and phenomena that have been derived
from experience and reasoning, the scientist tries to extract a set of
unifying generalizations from which all of those facts can be logically
deduced. The ancient Babylonians were quite familiar with what we call
the Pythagorean theorem, for cxample, and similar principles thnt they
derived from surveying and other forms of cmpirical measurement [Beh?4],
and it was only much later, under the influence of philosophers like
Plato, that Greek mathematicians, such as Euclid, managed to show that

all of those principles could be logically derived from a tiny sub-

set, which they called "postulates* or "axioms."” Similarly, Newton
distilled all of the empirical physical facts and observations that

had been collected by his predecessors and contemporaries and showed

that all of those facts could be derived as '"theorems,” and thus'made
intelligible from thrce basic principles, which he called "1aws of motion."
For almost threc hundred years, Newton's "laws' scerved as the axioms of
physics, just as Euclid's principles had bccnlserving for a much longer

time as the axloms of geometry.

During the past century, a more formalized notion of axiom has been
developed by mathematicians, lcading to the cmergence of abstract branches
of mathematics like group theory, linear algebra, and topology, which
although they may ultimately have their origins in empirical science,

have no direct or obvious connection to the real world. A group, vector
space, or topology is any set of objects that satisfy the reclevant

set of axioms. Some groups may consist of numbers, others of functlons,
and still others of rotations in the plane, but they are all groups
hecause they all satisfy the relevant axioms. The axioms specify the
hasic structure of the scts as groups, while any other fact about them

that is relevant to their being groups can be derived from the axioms

as theorems.

Formally, this lcads us to the notion of an (abstractyalgehru [Beh74},
[Bir70}, [Gut75), [Uam76a). .w algebra is an ovdered pair [%,w], where
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I is a non-empty class of non-empty sets, and w is a non-empty class of
operations on the grandmembers (i.e., members of members) of E. The
members of ¥ are called categories of the algebra, and the members of

w are called the primitive opcrations of the algebra. A particular

algebrz can be specified by giving n category specification, an operation

specification, and an axiom specification. A category specification lists

0. defines the members of ¥  An operation specification gives the domains

and ranges of the members of w as Cartesian products of the members of I.

An axiom specification is a non-empty set of formal statcments that

characterize the interactive bechavior of the members of w and the grand-
members of L. Algebras can be classified according to the constraints

that we choose to put on one or more of their category, operation, or

axiom specifications. An algebra [¥,w] is said to be homogeneous, if E
contains exactly onc non-empty member, while an algebra which is not
ﬁomogeneous is said to be het¢rogeneous. Probably the most familiar

kind of homogeneous algebra is the group and the most familiar heterogeneous

algebras are the vector spaces.

Given the formal category, operation, and axiom specification of an al-
gebra, we are frce to implement the algebra any way we want, as long as
we guarantee that the implementations of the categories and primitive
operations behave in reality as the axioms say they should. We can then
go ahead and prove all sorts of things about the algehra as theorems
that wemight never have suspected ahead of time. Since we prove these
theorems formally from the axioms, without worrfing about how our algebra
might be implemented, the theorems that rcsult apply equally well to
every implementation, regardless of how difrerent these implementations
may be in other respects. By staying strictly within the formalism

we automatically guarantec that we arc talking only about those aspects
of a situation that we rcally want to be talking about, i.e., those
aspects that we have formalized in our axioms. This prevents bringing
in undesired information ahout phrticulur implemcntations that wouldl
inadvertently rule out other implementations that might later turn out

to be desirable,
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2.0 AXIOMS AND ALGEBRAS IN HOS

Higher Order Softwarc (lIOS) makes use of the idcas in Section 1 in two
distinct, though related, ways, reflecting the two geucral kinds of
entity that can exist in any computer system (Lin76), {Wal75], [Cus77].
HOS recognizes that there arc essentially two modes of existence in the
world, that of being and that of doing, and that evcrything generally
manifests both modes at once. A given thing can either be or do and,

in general, will both be and do at the same time. This dichotomy re-
flects the related bifurcation between being and becoming. 1f there

is something that is doing, then there is something (perhaps the same
thing) that is being done to, and this latter thing is therefore becoming.
Again, in general, anything that is doing is also being done to and so

is itsclf becoming, as well as being.

This cnables us to undcrstand the important relationship between constancy
and change. 1f we remove the front clement from a queue, for example,

we still have the same queue, with one clement removed, but we also have

a different queue, i.e., theone that differs from the original one in
exactly that element. The qucue can still be the same qucue, even though

it has become a different queuc, and we are free to choose whichever

of these aspccts of the situation fits our needs for any particular problem.
We can also say the queue has changed its state, stipulating that the
qucue itself has not changed, but then it is the states that are being or
becoming, so the same dichotomy cmerges again on a higher level of ab-

straction.

HOS expresses the distinction between being and doing in terms of the
familiar notions of data and function (or operation), and it does this

in a completcly formal way. Anything that can be can be represented as

a member of a data type, and anything that can do can be represented as

a function. As we would cxpect from a correct formulation, anything

that can be, i.c , a datum, can also do, by serving as input to a function,
and wnything that can do, i.e., a function, can ulso be, since functions

themscives make up a data type.
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For cxample, if a datum x is mapped by functions fl' fz. f3, f4’ fs
onto data Y12Y9e Y54 respectively, then x itself can be viewed
as n function that maps the data f,, f,, £y, f,, [ onto y), y,, vy,

Yqr Vs Functions themselves can be data, in other words, and data can

L be functions, dcpending on the requircments of thc particular problem
we are working on. If FXY is the subset of data type FUNCTION whose
members map data type X into data type Y, then X is the subset of
FUNCTION that maps FXY into Y. BRoth intcrpretations are correct, in
general, and which one we choose depends on what we need for a speeific

problem.

Again in accordance with the fundamental dichotomy, although data and
funcetions arc distinet componcuts of systems, they are at the same time
! inseparable from cach other, because cach is characterized formally in

terms of the other. A function cousists of an input data type, ralled

'its domain, an output data type, called its range, and a correspondence,
called its mapping, between the members of its domain and those of its
range; a function can be characterized, therefore, as an ordered triple
(bomain, Range, Mapping}, wherc the components arc as we have just
stated. A dutu type consists of a sct of objccts, called its members,

and a set of functions, called its primitive operations, which are specified

by giving their domains and ranges, at least onc of which for each primi-

g

tive operation must iuclude the data type's own sct of members, and a
description of the way their mappings interact with onc another and,
perhaps, with those of other functions; a data typc can thus also be
characterized as an ordered triple, this time (Set, DR, Axioms), where
Set is the set of its members, DR is a statement of the domains and
ranges of its primitive operations, and Axioms is a description of the
interactive bchavior of the mappings of the primitive operations. A

data type is thus characrerized us an algebra, as we defincd this notion

in Sevetion 1.0.
a An exaaple of an [0S data-type specitication, nancly, type STACK, is

given in Figare 1, written in the il03 specification languige, AXES.

The category <pecification is given hy the WHERE statements, which tell
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DATA TYPE: STACK;
PRIMITIVE OPERATIONS:

stackl = Push(stackz, 1ntcger1);
stackl = Pop(stackzl:

integerl = Top(stackl);
AXIOMS:
§ WHERE Newstack IS A CONSTANT STACK:
WHERE s IS A STACK;
WHERE i IS AN INTEGER:

Top (Newstack) = REJECT;
Top{Push({s,i)) = i;

Pop (Newstack) = REJECT;
Pop(Push(s,i)) = s;

END STACK;

1 A g

Figure 1
HOS/AXES Data Type Stack
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us that I contains two members, the set of stacks and the set of integers.
The operation specification of the algchra is given undet the heading
YPRIMITIVE OPERATIONS" and says that o cousists of three meabers:
Push, which maps stacks and integers onto stacks; Pop, which maps stacks
onto stacks; and Top, which maps stacks onto integers. The axiom specifi-
cation of the algebra uppears after the WHERE statements and contains
four axioms stating the hebavior requirced of a sct of ohjects in order

for them to qualify as a se¢t of stacks: the Newstack has no top; the

top of thc stack that results from pushing an integer onto a stack is that

Integer; the Newstack cannot he popped; popping the stack that results

from pushing an intcger onto a stack i that original stack. The existence
of a stack with the specific propertics attributed to Newstack in the

first and third axioms is specificd in the first WHERE statement.

REJECT is assumed to be a member of every data type. 1t is invisible to
universal quantification and it is produced as output by a function when
no genuine output is produced. This specification is completely self-
contained, saying exactly what we intend to mean by the word "stack,"

and it is entircly implementution-free. Any sct of objects can qualify

as stacks, as long as the primitive epcrations we want to perform on

them satisfy the axioms of the algebra.

An HOS data-type specification characterizes instances of the two funda-
mental modes of cxistence in terms of cach other. A kind of data (being)
and a kind of function (doing) are specified as bchaving towards each
other as indicated by the axioms of an algehra. Given such an algebra,
however, we might want to specify new functions that also operate on that
kind of data. Furthermore, we might wunt to give the data of that type

a datu structurc in terms of data of a Jifferent data typc. Both of these

aims are achicved in HOS hy the specification of gggomposition trees,

also cilled control mups, which must themsclves satisfy a certain set of
axioms in order to be well-formed. Thesc treces can also be viewed from
the opposite direction, as decuaposing wore complicated functions into
less complicated functions, and finajly into the primitive operations

of data types., Given a system that involves certain data types, the
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function the system performs can be decomposed intu a tree structurce whose
nodes are functions nnd whose terminal wodes, in particular, nre primitive
operntions of the dnta types, where the coliective cffort of the functions
at the terminal nodes is the same as that of the system as a whole. Such
tree structures are not intended to provide definitions of kinds of
objects, which are provided hy the data-type specification (algebras),

but represent system decompusitions into subsystems. An example of such
a decomposition tree, for the function v = 2;3, is shown in Figure 2.

The domirin and range of the decompused functlon can he determined by the
typed variables that represeat Inputs und outputs and by the primitive
operations that appear uat the terminal nodes. 7The tree itself is pre-
cisely what glves the mapping of the decomposed function, hy showing

how that mapping gets accomplished in terms of the collective behavior

of the independently characterized prinitive operations.

The key to the uscfulness of these deconposition trees lies in the six
HOS axioms, listed in Figurce 3, It is these axioms, in favt, and their
consequences, of course, that make HOS 1G5, While HOS can specify any
1 system that can be specified, the specification must be in accordance
with these axioms or the system may be incomplete or unreliable. Any
softwarc system, in particular, that is spcci?ied in accordance with
/ these axioms is automatically giuranteced to be recliable, in the sense
j that no data or timing conflicts can ever occur [lam?6b), and secure,
in the scnse that information flows only upward [Cus?7]. Formally,
the axioms tell us that a well-formed HOS tree Is always equivalent to
a tree in which every node is occupicd by one of the three primitive

controi structurcs, shown in Figure 4. Abstract control structures,

defined in terms of the primitives may also appcar in well-formed trees,
and, converscly, any control structure, i.e., conflguration of parent
and offspring nodes, can appear in a well-formed tree as loug as it caa

itself be decomposced inte the primitives.
Such an HOS trec can he iwterpreted cither as decomposing a2 function

ir into primitive operitions or as building up a function out of primitive

operations,  Khich interpretation we choose for a particuiur tree depends,
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y = fla,b,c,d)

e

y = nl'v(:l.:z) (t,,t5) = fl(a,h.c,d)

ty = Sum(a,b) t, = DIfferencelc,d)

Figur> 2
: +
Hes rrec for Function y = %:%
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DEFINITION: |[pvocation providiey for the ahility to perform a function.

Axrom 1: A given module controls the invovation of the set of
functions on its immediate, and only its immediate
lower level.

DEFINITION: PResponsibility provides fur the ability of a module to
produce correct output values,

AXIOM 2: A given mdule vontrols the responsibility for elements
of its own uand only its own output space.

DEFINITIDN: An output access rlight provides for the ability to iccate a
variable, .nd once it is located, the ability to give a value to
the located variablue.

AXIOM 3: A given mudule controls the output access rights to each

*  sct of variables whose values define the elements of the

output space for each immediate, and only each immadiate
lower-level function.

DEFINITION: An input access right provides for the ability to locate
@ variable, and once it is located, the ability to reference the
value of that variable.

AXION 4: A given modulc controls the ipput access rights to each
sct of variables whose values define the elements of the
input space for cach immediate, and only each immediate
lower-level function.

DEFINITION: Rejection provides for the ability to recognize an improper
input element in that, if a given input element is not acceptable,
null output {s produced.

AXIOM 5: A given mudule controls the rejection of invalid elements
of its own, and only its own, input set.

DEFINITION: Ordering provides for the .»ility to ostablish a relution
in a set of functions :n thut any two functicn elements ara com-
parable in ..aat onc of the maid cloments precedes the other said
clement.

ANIOM 6: A given modiic controle the ordering of cach tree for
its immediate, amd only its immedinte, lower level.

Figure 3
The Axioms of [0S
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y = Fy (e t = f,(x)
comMposIiTION
i y = f(x)
P{ii//,/’; =P (x)
y = f,(x) y = £,(x)

SET PARTITION

(\fl r'r'2) = f(xl oxz)
Y F fl(xl) Yy = f?(x2]

CLASS PARTITION

Figure 4

The Throee Primitive Contrel Structures of HOS
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as usual, on thi use we want to make of it. Under cither interpretation of
such a tree, however, what we end up with is a specification of the function
at its 1oat node that is geneinels now-procednral, i.e., non-algorithmic,
and entircly free of implementution consideratious. The tree provides

a complete and explicit account of what funetional mapping the function
performs and how that mupping is collectively carrvicd out on the types
involved by their primitive operations. FEverything is clearly spelied

out in tevms of the hierarchival orgunizution of functional mappings, and
this--no more, no less--is cxactly what we require of an adequate specifi-

cation methodology; this, in turn, is what HOS is intended to provide,

To clurify this latier point somewhit, suppose we have a rcgister whose
positicas are filled with integers. Obviously, theve is a big difference
betwecn an implemented register and the integers it contains, and thus
between changing the state of the register and taking one of those integers
as a value. From the point of view of specification, lowever, a register
is every bit as nuch of an abstraction us an interer. The two abstractions
differ, moreover, ouly in the intcractive behavior of the primitive opera-
tions that arc useld to charactervize their duta types, as this behavior

is specificd in the axioms of the respective type. From the point of view

of specification, therefore, changing the state of an implemented register

amounts siwply to producing a new abstract register as a value. If we
tnke a register and remove its last elcement, for cxample, we get a new
register that is identical to the original register except that it lacks
the originul register's last element. This may not be what huppens in

implemeatation, but it is the logic of the situation, and that is what

specification is rezily all about. Note, by the way, that this is just
uanother way of looking at what we said about queues in the second para-

graph of this scction.

There is a subtle but important difference bhetween the two uses of axioms
in 128, which we vcan illustrate most clearly, perhaps, by means of analogy.
Data-type axioms ;e used within the 105 theory and are similar to
methematical axioms, su-h as those of group theory, for example. Given

the pencral theory of 1195, we can choose arbitravily, for whatever rcason
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we want, to specify any bind of ohjuect at all as an algehra and then
determine the relevant axioms to include in our specification. The algebra
that we construct vepresints (perhaps infinitely) many possible imple-
mentations, just us the proup axioms represent (infinitely) many imple-
mentntions of the group notion. 1f we let "G he a variahle that takes
groups as values and """ a variahle that takes members of G as values,

then to say "s is a STACK" corresponds to the statement "g is a memher

of G," whereas "S5 is an implementation of STACK" corresponds to "G is

a group.” Mathematicians do not usually talk in terms of individual

groups heing implementations of the gencral notion (algebrn) GROUP,

but tiis is what they really mean and we make it explicit in HOS., For-
mally, we say that a STACK cxists on rainy possible layers, cach of which
is an implementation of data-type STACK, as discusscd in [Ham76c, 77].

In contrast to the situation of data-type axioms, the six HOS axioms
fFigurn 3), arc not freely chosen for particular uscs within the HOS
theory, hut vonstitnte part of the definition of thut theory. The 1108
axion: are analogous not to strictly mathematical axioms like those of
group theory, hut more to the laws of motion of Newtonian physics, whose
axiomitic character we dizcussed in Scection 1.0, Newton’s laws are not
sufficient by themselves to characterize the basic properties of the
physical universe (as knnwn in his time), but presuppose and complement
a formalization of what we would mean by “a universe" in the first place.
The notion "a universc” can be characterized [Rya75) in terms of

mathematicnl notions like differentiable manifold, vector field, and others,

each of which involves axioms of its own. Once we get this notion
straight, then we can add various other constraints as further axioms
to characterize different kinds of universe--the Newtonian universe,

the Tinsteinian universe, the Brans-Dicke universe, ecte.--and it be-
come: an empirical question which of these diffoerent theories of the
univirse really vorrespoid: to the actual wniverse, The Newtonian
universe was sgificient to account for atl known facts up until the end
of th: last century, when the need for a new model, and thus a different
set of supplementary axioms (voustraints) bevomd the strictly mathe-

matict]l ones became appuront.
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A completely formalized account of 105, similarly, would have to include
strictly mathematical axioms, such as those that arc standardly used

to churacterize notions like tree, fnnction, and so on, just as a com-
pleteiy formalized account of Newtonian physics regnires axioms for things
like differentiabie manifolds, These axioms would provide what we might
want to call "a systems theory,” analogous to the formal notion "u uni-
versc.” W®hat we have called the six H0S axioms then serve as additional
constraints that narrow down this notion to the l0S systems theory, just as
Newton's thrce "laws' narrow down the notion "a universe" specifically

to the Newtoniun one. Sinve systems theory is a form of engincering,
however, rather thun an empirical scicnce, the criterion for accept-
ability is not cmpirical accuracy, as it is for physics, but goals like
reliability and sccurity, which are automatically gnaranteed by the six

axioms.

Another diffcrence also follows from this latter fact. In physics, the

facts generally tend to underdetermine the theory, in the sensc that

there is morc than one modcl of the nuniverse that fits the known cm-

pirical facts of the actnal universe at any given time. It is there-

fore uscful to examine alteruntive universes pnd to study the differences

in their formilation and empirical predictions, in order, for example,

to devise new experiments for deciding among thew. In systems theory, however,
the situation is different. Since the criterion for acueptability is
reliability, security, and related notions, there is little sense in

studying systems theories that do not guarantee reliability and security,

when there is already a c¢lear and explicit theory that does.

In practice, furthermore, the softwarc cngincer or systems designer

does not have to worry about the strictly mathematical axioms, for tree,
for cxanple, any more than the acronautival engincev has to worry ex-
plicitly shout differentiable manifolds when designing a new airplane.
The general potions of tree und of what it neans te Jecompose a function
arg intuitively clear, so we can voncentrate our attention on the six
specific 105 axicns in order to mahe ~ure that w. decomposce the functions
correctly.  Onr trees will then he well-foraed and relinbility and

secnrity witl be guaranteod.
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In geacral, we can summarize the signiCicance of the six HOS axiowms in
the following terms. Despite the high tevel of sophistication of con-
temporary systems analysis, the field hos suffercd from a serious defect.
The system-specification provess is itsclf a system, but, ironically,

it has generally been carvried out in an unsystematic fashion.

Much of what systems designers could learn From each other has often been
Iost in the shuffle; new systems have commonly had to be started from
scratch.  There has been no way tu guarantec the cfficiency of a system
ahead of time. There have been problems of interface correctness,
especially in complex systems designed by a large group of individuals,
and subsystems can be included which are superfluous. No general means
of guaranteeing system sccurity has been uvailable. Overspecification

of a software system can detract from {ts transferability from ore

machine to another. The failure to separate specvification clearly from

'implcmentation thus can unintentionally rule out the most efficient

implementation of a giveu system.

Let us say that a system specification is functionally adequate, if it

docs what its designer wanted it to Jo, that is, if it does carry out the
function it was supposcd to. As far us we can tell, it seems that most
systems in use toduy are functionally udequate, in this sense, at least
to the extent tbat they have been tested and used. Otherwise, they

would not be in use at all. Let us also say that a system specification
is fully adequate, if it does what it is supposed to do in the most
effective and efficient possible way. A fully adequate system would thus

be hoth reljable and secure, for example. As noted in the last para-

graph, though apparently functionally adequate, most softwarc systems
in use today most likely arenot fully adequate. For all the reasons
noted and others, although the jobs soffware svstems are intended to

do get done, they get doae with a lost of waste, of time, money, and man-

power,
The purpose uf developing o <tandavdized systen-specification methodology

is to etiminate this waste,  Given some peneraliy applicahle principles

governing the specification of systems, we can redure the problem of
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guarantecing full adequacy to that of guirantceing functional adequacy.

With the correct set of principles on possible {allowed) system specifi-
cations, we can guarantee ahcad of time that any system defined in accordance
with thosc principles that does what it is supposcd to do automatically

does so in the most effective and efficicnt possible way. These principles

then constitute the axioms of our systems theory or specification methodology.

We can get a clearer idea of what a systems methodology is by con-

sidering explicitly what it is not. A priori one might interpret the
term "methodology" (or "theory") in cither of two possible ways. The
most ambitious form of methodology onc might hope tu develop would be

a discovery procedure [Cho57] for system specifications. A discovery

procedure would be a mechanical (algorithmic) procedure or set of pro-
cedures that would antomatically produce, from a given set of require-
ments and specifications, a system that would produce those specifications
from those requirements. 1ldeally, if we could manage to develop such a
discovery procedure, we could eliminate systems analysts and designers
altogether. The discovery procedure woulu automatically produce the
appropriate systcm for any Jdesired purpose. At our present level of
knowledge, however, and prohably in principle, such a notion of method-
ology is unrcalizable. The most we can hope for at this time is a theory
of constraints on system specifications. Such a theory severcly limits
the kinds of system specifications an analyst can design by insisting
that the design satisfy the constraints specified in the theory as its
axioms. If the system specification is functionally adequate, and if

the designer has adhered strictly to the constraints provided by the
theory, then the theory guarantecs that it is Ffully adequate as

well.

Developing such a theory ol constraiuts places systems unalysis on a par
with the already developed natural scicnces. When a physicist or chemist
performs an experiment and ohserves a new phenaincion, for cxample, he
tries to construct a theory that explains it.  There is no discovery
procedure that automatival’y produces o theory from the obscervations,

The humun scientist must wse his ingennity to construct the theory, just

as the huwnan systems analyst mest use ingenuity in designing a system,
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What the scientist does have available, however, is a theory of constraints
on possible theories that limits the options available. Any theory

the scientist proposes must guarantee conservation of mass-energy and of
momentum, for example, and must be consistent with the laws of thermo-
dynamics. These principles serve as axioms which any acceptable scientific
theory must satisfy. What 1IOS provides for systeims analysis, analogously,
is a set of axioms (principles) which any fully adequate system specifi-

cation must satisfy.
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Algebraic Specification of Data Types In

Higher Order Software (HOS)

1. [IHTRODUCTION: HOS AS A FORMAL SPECIFICA-
TION HETHODOLOGY

Higher Order Software(MOS) §s a formal methodology
developed by Margaret Hamilton and Saydeun Zeldin
[1] for the specification of large computer-based
systems ina manner entirely independent of their
implementation in particular configurations of
hardware and resident software. Any such system
can be formally specified in HOS in terms of three
theoretical constructs: data types, functions (or
operations), and control structures'. Data types
are the kinds of ohjects a system operates on or
produces; functions are the system components which
operate on or produce members of data types; con-
tro} structures are the relationships fn accordance
with which functions can be combined or decomposed,
The purpose of this paper is to develop these no-
tions from the point of view of data-type specifi-
cation, which in MOS is done algebrafcally. In
Section 2 we uil11 examine the notion of function
and develop the notfons of algebra and control map,
whichplay key roles in both data-type specifica-
tion and system decompositionz. In 5ection 3 we
will compare the theory developed fn Section 2 with

some other proposals for algebraic data-type spect-
fication that have appeared in the recent litera-
ture,

2. FUNCTIONS, ALGEBRAS, AND CONTROL MAPS

A function is a many-one correspondence between two
sets, Members of the first set, called the domain,
are said to be mapped by the function onto members
of the second set, called the range. While 4 given
range element may be mapped onto by any number of
domain elements, it is crucial to the notion of a
function that every domain element map onto exactly
one range element, 1If x is & member of the domain
of a function f, then the member y of the range of
f that x maps onto fs said to be f{x), the value
of f at x, and we write "y = f(x)". The elements

x of the domain are also safid to be inputs of f,
and the elements of the range are said to be pos-
sible outouts of x, since some range elements may
not get mapped onto by f for any elements of tha
domain. The actual elements f{x) of the range that
do get mapped onto by f for some x in the domain
are said to be outputs of f.




In general there is no problen in specifying the
domxin and range of a function. MWe can simply
state that the domain is some set and that the
range s some set and, as long as these sets are
clearly known to us, we are done. Specifying the
actual mapping of a function is more problematic,
however, especially in the case of infinite sets

or sets which, though finite, are so large that
they might just as well be infinite. For 2 small
set, we can simply 1ist 2 set of ordered pairs that
contain only those values that the function actual-
1y makes correspond to each other, For a function
defined on an infinite set, however, the corres-
ponding set of ordered pairs would be infinite, so
we could never explicitly specify the complete map-
ping in this way.

In some cases, we can get around this problem by
giving an explicit rule or algorithm that expresses
the mapping in general terms, without having to
state the correspondence specifically for each do-
main element. In general, however, we may not al-
ways be able to specify such an algorithm directly;
even if we can, furthermore, we may not want to
specify a specific algorithm, because this might
tie us {n too tightly to a specific hardware or
resident-software configuration. For such cases
we introduce the notion of an algebra as a way of
specifylng indirectly what mapping our function is
supposed to perform.

An algebra is a collection of sets and a coliec-
tion of functions which map from and into those
sets. Formally, we say that an algebra is an or-
dered pair [L,w}, where I {s a collection of sets
and w is a coliection of functions whose domafins
are Cartesian products of members of I and whose
ranges are members of 23. The members of I are
called the ngggf of the algebra, and the members
of w are called its primitive ooerations>. If £
contains exactly one member, the algebra is said
to be homogeneous, while {f I contains more than
one member, the algebra is said to be heterogen- .
eous [2].

1f the primitive operations of an algebra are sim-
ple enough functions, then we can ckaracterize them
just by listing their ordered pairs or by giving an
explicit rule. If they are more complicated, how-
ever, then we can characterize them {mplicitly by
glving axioms that describe their interactive be-
havior, without stating how to calculate their vai-
ves for specific domain elements. An axfom, in
this context, is a statement that asserts the
equality of the outputs of two distinct combina-
tions of functions and inputs. Given a sufficient-
1y large and well-chosen collection of axfioms, we
can narrow down the c¢lass of functions that satisfy
tham to exactly those that we are trying to char-
acterize.

Probably the simplest and most familiar class of
algebras are the groups [3]. A non-empty set G is
said to be a group with respect to & binary opera-
tion (function} Mult, called the group multiplica-
tion defined on 6, if (1) G is closed under Mlt,
i.e., HuTt(gl.gz) is in G whenever 9y+9, are in G;
{2) MuIt is associative, i.e., the grouping of in-
puts {s frrelevant so that Hult(g].Mult(g2.93)) has
the same value as Mult(Hult(ql.gz).gsl; {3} there
is an element in G that is neutral with respect to
Mult, i.e., that always gets mapped with some other
input by Mult onto that other input; and {4) every
element of G has an inverse element, f.e., an ele-
rent which gets mapped with it by Mult onto the
neutral element,

for example, the positive rational numbers form a
group if we take Mult to be Multiplication, but the
positive integers do not, since there are thenno in-
verse ¢lements, The non-zero rational numbers form
a group, if we take Mult tu be multiplicatiun and
211 the rationsds form a group if we take Mult to
be addition. The integers form a group {f we take
Hult to be addition, but the integers do not form

a group if we take Mult to be multiplication, be-
cause, 2gain, there are then no inverse elements.

We can specify the groups formally as homogeneous
algebras by giving an algebrafc spacification,
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consisting of three parts. First we give a type
specification which tells us that I contains a
single set G which contains & distinguished ele-
ment Neut:

I: G, Neut ¢ G

Second, we glive an operation specification which
tells us that w contains two elements: Mult, whose
domain fs G x G and whose range is G, and Inv,
whose domain and range are each G.

w: Mult: GxG~+G
Inv: G-+G
Third, we give an axiom specification which states
formally that Mult and the member; of G behave in
the way we said earlier they should:

Axfoms: For all 9+81195:94 € G,

Mol t(Mu1t(g,.9,).9;)

2. Mult(Neut,g) » g
3. Multlg.Neut) = g
4, Pultlg,Invig)) = heut

Axiom 1| says that Mult is associative, Axfoms 2 and
) say that the distinguished element Meut {s fin-
deed a neutral elcment, and Axiom 4 says that Iny
does, fn fact, produce inverse elesents with re-
spect to that neutral element. The remaining pro-
perty that we gave for groups, f.e., that G is
closed under Mult, is guaranteed by the operation
specification, because of the definition of “func-
tion™, s0 we do not have to include it in the ax-
foms.

The algebraic specification we have just given is
the specification not of & group, but of the groups
2% & class. A group consists of a particular set
un which functions with the appropriate behavior
have been defined. Our specification leaves the
set G uncharacterized, however, telling us that any
set G whatspever can gualify as a group, as long as
there are operations definable on that set which
satisfy our operation specification and our four
axfoms.

Algebraic specifications are used in HOS to char-
acterfze all sorts of objects other than purely
mathematfcal structures 1ike groups. We can char-
acterize the notion of & stack, for example, & data
type which has been extensively discussed in the
Viterature (e.g.., [4].[51.[6].(7]), i~ terms of
thres primitive operations and four axioms, as f1-
lustrated in Figure 1.

OATA YYPE: STACK;
PRIMIT{VE DPERATIONS:

stack, = Push(stackz.lntegerli;
ltackl - Pup(slackz);
Integer, « Top(stackl);

AXIOnS:

WHERE Mewstack 15 A CONSTANT STACK;
WHERE s 1S A STACK;
WHERE | 15 AN INTEGER;

Top{Hewstack) = REJECT;
Top{Push(s,1)} = I;
Pop(Newstack)] = REJECT;
Pop{Push{s, 1)) = s;

END STACK;

Flgure 1
Data Type STACK

The algebraic specification in Figure 1 {s written
in the ¥0S specificatfon Vanguage AXES {8] and
characterizes the notion stack of integers. The
operation specification, which gives the domains
and ranges of the members of u, appears under the
heading "PRIMITIVE OPERATIONS", and the type speci-
fication which gives the members of I, along with
any distinguished elements, {s provided by the
WHERE statements. The type specification tells us
that there are two sets in this algebra, the set of
stacks and the set of integers, so the algebra {s
heterogeneous, and that there fs a distinguished
stack called Newstack, The sct of integers s as-
sumad to have been characterized {ndependently fn
terms of its own algebraic specification [g].

The operatfon specificatfon tells us that there are
three primitive operations in this algebra, Push,
Pop, and Top. Intuitively, Push is the operation
that places an element on a stack, Pop is the op-
eration that removes an element from the top of a
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stack and discards it, and Top is the operation
that tells us what the top element of a stack {s,
without removing It from the stack. These intui-
tive characterizations are specified formally in
the axioms.

The axiom specification appears fmmediately after
the WHERE statements. The second and fourth axfioms
characterize a stack as a iast-in/first-out storage
device. The second axiom says that pushing an {n-
teger onto & stack produces a stack whose top ele-
ment is that integer. The fourth axfom says that
popping a stack onto which an integer has been
pushed produces the stack it was pushed onto. The
first and third axioms characterize the distin-

guished element Newstack as the stack that contains

no elements, since it has no top element and can-
rot be popped. REJECT is an ideal element, like
/-1 and the empty set [3]; it f§s assumed to be a
merber of every type, but to be invisible to unj-
versal quantification™. An operation is said to
nave an output of REJECT when it has no genuine
output of the expected sort.

Another example, that of time, is shown in Figure
2. This specification defines data-type TIHE 1n
terms of three primitive operations. Advance s
the operation of beginning at the time indicated

by the first argument and advancing by the arount
of time indicated by the second argument. totafter
is the relation, 1.e., boolean-valued function,
that holds between two times If the first is ear-
lier or simultaneovs with the second. Reverse is
the operation that maps each time onto its mirror
inage with respect to the null element Notime.
Axioms 1-3 characterize Notafter as a partial or-
dering and Axfom 4§ makes that ordering total. Ax-
fom 5 characterizes Notime as the neutral element
with respect to Advance. Axjom B says that Advance
is commutative and Axfom 7 says that it Is assn:i-
ative, Axiom B says that Advance moves up in the
partizl ordering if the amount it advances by is
above flotime in the partial ordering. Axiom 9 says
that Reverse produces the reverse of a time with
respect to Hotime.

Using lintiie, rather than sauething like Precedes,
simplifies the axioms somewhat, while omitting Re-
verse would result in a slightly aifierent data
type and thus a different notion of time. On the
one hand, more inplementations would then be pos-
sible, since the specification wouid not require
all of them to support the poassibility of reversal;
on the other hand, fewer features of each allowed
jmplementation could be made use of, since the
specification would not permit tha use of reversal
even in those impleaentatiors that could support
it. As usual, which notion of time we choose de-
pends entirely on the system we are dealing with
and what we want it to be capable of.

OATA TYPE: TIME;
PRIMITIVE OPERATIONS:

tlmu3 - Advance(tlmnl.tlmez);
boolean = Notafter(timcl.timez):

tlmc2 = leverse(tlmcl);

AXTOMS:
WHERE t,t|.l2.t, ARE TIMES;
WHERE Notlime iS5 A CONSTANT TINME;
1. HNotafter{t,t) = Trus;
2. Cntal!s(nataftcr(tl.tzl : Notcfter(tz.t,).
Notafter(t‘.t’ll = True;
3. Entails(ﬂotafter(t‘.tz) 1 Notcflar(tz.t').
Equal(t|.tzl) w True;
Hotafter(t‘.tzl i Notafter(t,,t,) = Trus;
Advance{r lotime) = t;
Advance(tl.tzl = Adva ua(tz,til:

- o AN

Advance(t,,ﬁdvance(tz.t3)) -

Advance(Advancn[tl.tZ].t)):

3. Hotlfter(ﬁdvance(t|.tzl.tl) -
Notafter(tz.ﬁo:lme);

9. Advance{Reverse{t),t) = Hotlre;

END TIME;

Figure 2
Data Type TINE
Tre operations Entails, &, and Equal, which appear
in Axioms 2 and 3,are assumed to have been charac-
terized independently, the first two on type BOO-
LeAn [9] and the third as 2 unfversal operation on
eny type.
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In our description of the aluabraic specification
! in Figure 1, we noted that the set of integers {s
assumed to have heen characterfized independently
in terms of an alyebralc specification of its own.
In general, in the characterization of a particu-
Jar type, the relevant algebra will contain a num-
ber of sets {in L), a1 but on~ of whick has heen
characterized already and so can serve asz a basis
{ for defining the new type of fnterest. Mathemati-
cally, we could just as well view the varfous sets
2% rwtuaily characterizing each other viu the re-
lationships expressed in the axfoms, just as we
J view the type of interest and the primitive opera-
tions as mutually characterfzing each ather, but
this paint of view can get rather confusing.

-

Once we have our object types algebraically char-
[ acterized, we can then go zhead and define rnore
complicated operations, efther cn a single type or

on more than one type, in terms of the primitive
Given our algebraic
specification of groups, for example, we can define
a power function on groups, as filustrated in Fig-
The trec structyre in Fiqure 3, called 2

operations on the types,

ure 3.
to find the nth power of any group element. [t
could be simplified consicerably through the use
of varfous abbroviatory notations and conventions,
but it has been intontionall, written out here in
full in order to illustrate as many of the avail-
ahle formal devices as passible.

The functions &, Clone,, ind ldentifyj are univer-
52l operations defined on every type. K s the
constant fynction, which produces 1 as output for
every fnput. Clone, 13 the cleae function, which
produces as output 1 copies of whatever it takes as
input, ¥n effect producing new rames for {ts input.
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:dunufy_'i is the identify function that takes i-
tuples as input and produces as output the jth
compeaents of those tuples. Ki and ldentify} are
standard functions in mathematics and Clonei is
very useful as a way of guaranteaing that every
variable in a software system gets used as {nput
and output exactly once. This alds in keeping
track of variables su the efficiency of storage use
cen Se maximizad.

The syabels “fi" in Figure 3 are sinply names as-
sic:ed to the functions performed by trea subcon-
figurations and have no further significance. £v-
ery non-terminal node extept the topmost i5 occu-
pied by such 3 function, whose inputs and outputs
are as {ndicated by the typed variables shown and
whose mapping ¥s indicated by $ts decomposition
into subfunctions. Every terminal node, excapt
those occupied by the function ueing defined, is
occupied by either a primitive operation on one of
our types, & universal operation, or an operation
that is assumed to have been already characterized
by fts own control map on one (or more) of our
types. Diff, meaning <iffercnce, and lopp, mean-
ing integer opposite {output = -n for input = n),
for example, might ba primitive operations on the
integer type or control map functions, depending on
what our algehraic spacification of the integers
looks Tike [9]. The topmost node, of cnurse, is
occupind by the function being defined, whose map-
ping 1s characterized by the entire tree. This
function caa also appear at terminal nodes, indica-
ting recursive evaluation, but its variables must
rmust be different at each appearance in order to a-
vold circularity.

The real meat of a control map is in its control

structures, which determine how a function relates
to those into which ft s decomposed. The tree in
Figure 3 exemplifies three primitive contrel struc-

tures: set partition, class partition, and composi-
tion. The set partition primitive control struc-
ture 15 {1lustrated by the immediate decomposition
of the topmost function. It partitions the domain
of the function into nun-overlapping, exhaustive

sats and spacifies the restriction of the decom-
posed function to each of those sets. In Figure 3,
the integers are partitionsd into those which are
less than, equal to, and greater than zero, and the
restrictions of the Power function to those sets
are specified accordingly. Functions f3, f5. f’
and flU iliustrate the class partition primitive
contro) structure, which matches specific inputs
and outputs in an exhaustive and non-overlapping
way. The composition primitive <ontrol structure,
which makes the output of one :ubfunction the input
of another, is 1}lustrated by functions fl’ fz, f4.
fgs fgs ond fg. Hote that, while decomposition in
a control map need not be binary, as illustrated by
f, and the toprost node, it can always be made bi-
nary by the {ntroduttion of new fi functions with
the appropriate contro) structures.

Mathematically, tha affect of control maps seems to
be to write arbitrary functions as polynominal
functions on heterogeneous algebras except that re-
cursion is allowed, &s in Figure 3. Given an arbi-
trary function to be performed by some

software systeni, for example, we may inow what sets
the function maps from arZ (nty, “ut we may not
know what types it maps from and into. That is, we
ray not know what primitive operations will be re-
quirad at the terminal nodes of our control map.
The prin¢iples for constructing control maps fa-
cilitate the determination of these primitive op-
erations and thus of the types involved in the
software system our function 15 a part of.

Control maps can be simplifiad ¢onsiderably by de-
fining abstract control structurcs, which abbrevi-
ate recurrent combinations of the primitive control
structuras. For example, Figure 42 contains the
contre) map for a Regress function on our data type
TIME, defined entiraly in terms of primitive con-
trol structures (in this case, one instance each of
composition and class partition). The part of the
figure that is surrounded by a dotted Tine, how-
ever, is an instance of a very common control
structura, called COJOIN [10], which enables us to
have the same variable accessed by rore than one
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Two Control Maps for
Operation Regress on Data Type TIME

function in a system. In this case, the effect of
the encircled tree subconfiguration s simply to
guarantee that t. has the same value as ) as
shown by the arrow. We can thus simplify the con-
trol map by replacing t5 by t‘ and the relevant
subconfiguration by the abstract control structure
COJDIN, as shown in Figure 4b. The primitive con-
trol structures are needed for theoretical pur-
poses, to guarantee system reliability, for ex-
ample, as discussed in (1], but for convenfence

in practical system design abstract control struc-
tures may be used instead, as long as they are ex-
plicitly decomposable into the primitives. New
abstract control structures of any complexity can
be defined in a similar way, as discussed in [8]
and [10].

One of the useful things about control maps is

that they enable us to refine the notion of primi-
tive operation in a very precise way. Given an al-
gebra, with its assocfated primitive operations,

We can say that some other function on the types
of tha: algebra is not primitive, if it can be de-
composed into the primitives by means of a control
mep.  Any desired function on the types of the al-
gebra that cannot be defined in te. - f the primi-
tives with a control map must then ¢. .Jded to the
operation specification of the algebra as a new
primitive, thereby creating a new algebra. Given
an algebra, in other words, the control maps parti-

tion the set of functions definable on the types of
the algebra into two classes: those which are rep-
resentable as control-map functions on that algebra
and those which are not so expressabie. Hew alge-
bras can be created by adding members of the latter
class successively as primitive operations to the
operation specification of the original algebra,
with a new algebra heing created with every addi-
tion,

functions which are representable as control maps
need not always be represented as control maps,
however. AXES allows us to write such functions as
what are called derived operations; these are char-
acterized by providing assertions that specify the
interactive behavior of the function with other
functions that have been characterized independent-
1y. Given an algebraic specification of the natur-
al numbers as a data type with tha successor func-
ticn as one of {ts primitive operations and a bool-
ean-valued control map-defined functfon Factor that
maps a pair of naturals onto True if the first 15 a
factor of the second and onto False otherwise [9],
we can define a greatest-common-denominator func=
tion GCD in AXES as follows:

DERIVED OPERATION: ny ™ GCD(n|,n2);

WHERE nyen ARE HATURALS;

23"y
FaCtor(GCD(n| ,nz) ,nl) = True;
Factor(GCD{nl,nZJ.nz) = True;
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Eutalls(hnd(ﬂnd(Tu:tor(n“,nl),Factor(n“.nzii,
Not(?[qunl?(nh.lero))). Factor(nh.
GCD(n|.n2))) » True;

END GCD;

Khat this definition says 1s that the GCD of two
ratural nurbers §5 a natural number which is a
factor of both and which has every factor of both
as a factor of fts own., The function is thus de-
fined in terms of 1ts behavlor with respect to oth-
er functions, rather than in terms of its decompo-
sability into other functions. Simllarly, we could
Just as well have deflned our Regress function on
data type TIME as a derlved operatlon as follows:
DERIVED OPERATION: tim-_-3 - Rugress(llm',
tlmez);
VHERE t,,t, ARE TINES;
Advancu(ﬁegress(t'.tz).tzi -ty
END Regress;

There 1s no difference between the functicns, 1.e.,
mathematical mappings, that we get from control-
map definitions and those that we get from derlved-
operation definltions, The only difference 1s in
how we choose to specify the functions, and this is
largely a matter of convenience.

The assertlons used in defining derived operations
look very much 1ike the axioms that are used in de-
fining primitive operatfons, but thefr status is
really quite different, Given the set of primi-
tive operations for sone data type, w2 can prove
mathematically the eafstence of nther functions;

it 1s these functjons, such as GCO (see, e.g., [11]
for a simple existence proof), that may be speclfi-
ed as contral-map operations or derived operations.
Explicitly specifying these latter functlons does
not charge the algebra underlying the data type 1n
any wiy, since thefr existence as mathematical ob-
Jerts 1s already entailed by the algebra, Some-
iimes, as 1n the case of GCO in fact, the proof may
even provide guidelines to the construction of an
appropriate control map, but it is up to us whether
we actually gn ahead and construct the control map
or whether we treat the function as a derived opera-
tion. Functions whose existence 1s not so entalled,

hnwever, rust be added to the primitive operation
specification and characterized In terms of axioms,
thus creating a new algebra, as noted earlier,

3. OISTINCTIVE FEATURES OF 1OS

The theory we have developed here differs from
other proposals for algebraic data-type specifica-
tion that have appeared in the literature ([4],[6],
[73,[12],[13]) in at 1rast three very important
ways'. First, HOS distinguishes very sharply, in
concept, between the specification of a software
system and its implemuntatlon. Liskov and Berzins
[12] require that "A11 objects of an abstract data
type must have been produced by some sequence of
the constructor nperatlons of that type™ [p. 13-
12}, and Guttag [4] states that “the need for op-
eratlons to generate values of the type is clear”
(p. 45}). 1In our opinion, thls requirement reflects
& confuslon between specification and implementa-
tlor. Clearly, an implemented system must have
some way of generating the objects 1t deals with,
1t does not foliow, however, that the manner of
generation must necessarlly be Included in the
specification of the system. For a particular sys-
tem we are interested in, ¥t simply may not be im-
portant for us to know hos the objects got to be
the way they are, As Uiskov and Z11les [7] polnt
out, )
It should be possible using the spacificatlon
method to construct specifications which de-
scribe the interesting properties of the con-
cept and nothing more. The properties which
are of interest must be descrided precisely
and unambiguously but in a way which adds as
11ttle extranecus information as possfble.
In particular, a specification must say what
functlon(s) a program should perform, but
1ittle, 1f anything, about how the function
is performed. One reason this criterion is
desirable §s because it minImizes correctness
proofs by reducing the number of properties to
be proved {p. 9).
it seems clear, in these terms, that the manner of
generation of objects may very well be a part of
the "what" of 8 system, but that it could equally
vell be 2 part of the "how". Some systems will
Include object-generating functions 1in thelr specl-
fications and sorie will not. We cannot stipulate
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ahead of time which of these might be the case for
any system we might come acrosse.

A sccornd differerce between HOS and other theories
fs its capacity te define non-primitive operations
in a natural way, eiiher as control-map operations
or as derived operations. Control maps are unique
to KOS and should require no further comment, A
little rore should be said, however, about derived
operations, so that their usefulnass can be fully
appreciated,

We have noted that the assertions used in char-
acterizing a derived operation Yook very much 1ike
axioms, but differ in that the existence of the
operations they characterize can be proven mathe-
matically from axioms we already have. The very
fact that we must construct such a proof, however,
each time we introduce a derived operation signifi-
cantly simplifies the proof of consistency of the
axiomns themselves. Guttag, Horowitz, and Musser
[6]. for example, apparently allow us to define
operations only by including axfoms that character-
ize them in the axiom specification of an algebra.
in a large system, therefore, the number of “ax-
foms®, and thus the task of proving their consis-
tency, could turn out to be considerable. In HOS,
in contrast, we must test each new non-control map
operation to see if the existence of its functions
follows from the axioms we already have; if so, we
need add no rew axfoms to our algebra, because the
operation is not primitive, but derived. In ef-
fect, the use of derived operations enables us to
modularize the consistency proof for our axioms.
Whereas Guttag, Horowitz, and Musser might end up
with the formidable task of having to prove the
consistency of a hundred "axioms®, we might be able
to decompose that task into several smaller proofs,
cach involving a proper subset of the proposed "ax-
{oms", with one such subset for each derived opera-
tion. The savings {n time and effort could be con-
siderable, and the proofs could also provide in-
sights into constructing appropriate control maps,
should we decide later that this 1s desirable.

A third distinguishing feature of NOS §s 1ts nat-
ural suitability for the specification of large
and very large software systeus, After reviewing
several specification techniques for data abstrac-
tion, including a versfon of algebraic data-type
specification, Liskov and Zilles [7] point out that
The specification techniques discussed in this
paper can adequately describe modules-~the
blocks of which systems are built--but it is
not clear that they can describe the entire
system, For example, Parnas has shown how a
K41C system can be modularized... and each
module was described using his specifications,
but the specification of the system as a whole
was given in English, [t seems unlikely that
an entire system can be viewed as a single,
top-leve) module, so perhaps a different kind
of specification technique is desirable here
(p. 18).
In our opinfon, the inadequacy that Liskov and
Zilles point out results from a confusion between
the need to decompose & system into modules and the
need to charactarize the kinds of objects the sys-
tem deals with. In HDS the latter nced {s satis-
fied by algebraic data-type specifications and the
former by the use of control maps. Once the data
types of a system are formally characterized, the
overall function the system performs can be decom-
posed into subfunctions arranged hierarchically in
a control map. 1t s these subfunctions, aleng
with the data types that serve as their domains and
ranges, and not the data types themselves, that
constitute the modules into which the system is de-
composed. [t is the control map that serves as the
formal specification of the "entire system",

As HamiTton and Zeldin suggest [14], there is good

reason to believe
that the basic properties of "large" systems
are not reslly different than those of "small®
systems. It is only that small systems are
kinder, yet more deceptive, in not displaying
their real properties. But the time has come
when one is forced by large systems to look at
properties of systems., They are more basic
than one cares to admit (p. 1).

From a mathematical point of view, for example, the

notion of control map seems to follow quite natur-

ally from that of algebrafc data-type specifica-

tion, by combining the notion of polynominal
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function on a heterogeneous algehra with that of
recursive call; ft was only by careful empiricai
cxamination of the properties of farge reai-world
systems, however, that the notion of contrel map
was attualiy developed and its relationship to al-
gebraic data-type specification discovered. Lis-
koo d Zilies’ observation about the inadequacy
of other approaches to algebraic data-type specifi-
cation under. “res tha nead for careful analysis
of the actual pr  erties of farge systems in de-
veloping a general specification methodology.

FOOTHOTES

1. Hamilton and Zeldin also talk about the layers
of a system, but we will not deal with thase here.
See [15), [16] for some discussion of this impor-
tant notion.

2. In an otherwise very good raview nf HOS [17],
Peters and Tripp make the erroneous statement that
fn HOS "the fssue of data baza design was, at best,
addressed implicitly” {p. 94). Actualiy, as we
will sea in this paper, some of the better-known
aspects of HOS, such as conteol maps, follow quite
naturaily from its mannar of spacifying data types
and vice varsa. Algebraic data-type specification
and control-map function specification are compie-
mentary aspects of a complate systems theory and
nafther makes much sense, in our opinion, without
tha other. HWa thus fulfy agree with Peters and
Tripp that “the design of coda and data base must
be synchronous”. See [R) and [18) fer furthar
discussion.

J. in HDS we also allow tha ranges to ba Carte-
sian products of I members to manimize the genera-
11ty of the theory. Wo mathematical problems a-
risc from this extensfon, as far as 1 can tell.

4. 1In (9] 1 called thase categories becausa of
thair similarity to the syntactic, semantic,
phonological, and lexical categorfas of linguis-
tics {19}, but I think this tarm might be mis)aad-
ing, since "category® has a somewhat dffferent
meaning in mathematics [20]. The original term,
“phyla®, usad by Birkhoff and Lipson when they
first introduced hwtaroganeous algebras [2] 1 find
somawhat unnatural, but this s, of course, Just a
matter of taste. The word "type®, in this context,
is dua to Guttag {4].

5. The AXES specification language uses the terms
*function” and "operation” in slightiy different
ways (B}, but this difference {s not relavant for
u;ihere. so we wili use the two terms intarchange-
ably. ‘

6. Guttag, Horowitz, and Musser [6) object to the
use of elements fike REJECT which “are implicitly
included in af) types” {p.65) because, they argue,
"then one can no fonger always assume that the

axfoms are universaliy quantified over the types”,
This objection presupposes, however, that the mean-
ing of "universal quantification” is somahow known
a priori, rather than haviny to be specified expli-
citly in the formal semantics of our specification
lanquaqge. Given an axplicit formal semantic the-
ory, it is a simple matter to inciuda in the - em-
antic ruie for ®"universal quantification” a state-
rent to the affect that REJECT 1s fgnored in the
assignrent of truth values. See [21]), [72], and
[19) for extensive discussion of the form such a
theory might take.

7. Sce, also, footnote 6.

8. Guttag's decisfon (8] to traat an individual

- object "as a nullary "operation’, rather than as &

‘valua'® (p. 43) reflacts a particular instance of
this conceptual confusion, we think. Hullary op-
erations are degensrate objects, 1ike point circles
and circular eliipses, which, though counterintui-
tive, ara often {ntroducad in mathematics to maxi-
wmize efegance and simplify proofs, in part through
the efimination of exceptional casas. (Sae [9] for
some discussion of the counterintuitive character
of nuliary operations.] In Guttag's system, how-
evar, thay sasm to play no role other than that of
identifying distinguished objects, such as Zero and
Hewstack, so it seems just as wall to dispense with
such operations altogethar. In HOS we specify the
existenca of distinguishad objects by simply stat-
tng that the objects exist; this is done in the
WHERE statements of a data-type spacification, as
we saw in Figures 1 and 2. We thus state what
distinguished objects a system deals with witFout
saying hos they gat to ba tha way they are in par-
ticufar implementations.
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Software Engineering, Artificial Intelligence, and Cognitive Processes

Work in lanauane il mind in artificial intelligence (Al) pre-
supposes a parallelism between minds and information-processing systems,

a parallelism that is also assumed or argued for by some non-Al research-
ers (Miller, 1976;1i11ler and Johnson-Laird,1976;Foder,1975). We agree
that such a methphor can be useful in gaining insight into the nature

of cognitive processes, but we think that this is possible only if a
number of conditions are satisfied. First, we think that any adequate
computer model of the mind will have to be formulated not in terms of
programs, as in current AI work, but in terms of software systems, as
discussed in the newly emerging field of software engineering. We find
it highly implausible that complex mental processes cpﬁ be modeled
adequately in terms of sequential 1ists of instructions, which

programs, by definition, are. The mind is a highly complex system of
related and interacting, but essentially autonomous components, and it
seems likely that some of the more interesting generalizations concerning
its structure and operation will involve the interfaces between these
components, at least as much as the individual programs that may make them
up. Not surprisingly, it is precisely in regard to their interfaces that
some of the more interestiny properties of software systems have emerged
(Hamilton and Zeldin, 1976a,b).

Second, we think that such an approach to the study of mind would re-
quire a genuine theory of software systems, rather than the sort of ad hoc
programming that is endemic to current Al work. Dresher and Hornstein
(1976, 1977, 1978) argue that natural language-related work in Al has been gen-
erally devoid of explanatory value because of the ad hoc character of the
programs involved. Most of this work seems to be not scientifically, but
tethnologically oriented, i.e., geared toward developing machines that
can process sentences of natural language, rather than seeking general
principles that can serve as genuine scientific explanations of linguis-
tic phenomena. The ad hoc character of computer programming has become
a serious problem much more generally, however, particularly in connection
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with the specificaticn of large and very large software systems, and it
is precisely this problem that motivated the development of software en-
gineering in the first p]aCEn3 While this motivation has also been pri-
marily technological, e.g., minimizing cost in the development of large
systems, i%s aim is to develop a general theory of software systems that
accounts for their essential properties in a principled way. Such a
theory might very well be of genuinescientific interest, precisely be-
cause of its concern for general explanatory principles.

Such a theory would characterize the notion "possible software
system" and, in accordance with the parallelism mentioned above, could
thus be taken equally as characterizing the notion "possible mind,” just
as the notion "possible grammar” as a device that generates structured
strings of nbjects is viewed in linguistics as providing an abstract char-
acterization of the notion "possible language.” Given such a formal
characterization of "possible mind," we might then be able to constrain
it in accordance with known empirical facts to get a notion of “possible
X mind,* where X = "human" or any other species, just as linguists try to
constrain grammars to get a characterization of "possible human language."
The notion "possible human mind" might then be further constrainable in
accordance with the idiosyncratic facts of an individual's culture and life
experience, giving us an explanatory account of an individual human mind
and its associated behavior. The difference between this approach and
the one current in Al would be essentially the same as that between genera-
tive and taxonomic linguistics. Rather than starting from scratch, as
it were, and building up programming systems ad hoc, we would be beginning
with a principled account of the sort of entity we assume the human mind
to be and then narrowing that account down in accordance with empirical
facts to determine precisely which entities of that sort the mind really is.

Hamilton and Zeldin (1976a,b,c,d) argue that the notion "possible
software system” can be formalized in terms of three theoretical con-
structs--data types, the kinds of entities that systems operate on or pro-
members of data types; and control structures, the relationships in
accordance with which functions can be decomposed or combined--and that
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each of these constructs can exist on various layers, which are strikingly
reminiscent, in concept, to the "levels of description" of generative
grammar. They also provide a formal methodology for representing these
constructs abstractly, in terms that are entirely independent of a system’s
implementation in particular configurations of hardware or resident software
(operating systems, etc.). Their theory scems to imply that a software
system can be characterized as a set of homomorphically qg]ated polynomial
functions on heterogencous algebras (Cushing, to appear). To the extent
that it does, in fact, capture the notion "possible software system," we
can presumably take the theory as equally a characterization of “possible
mind," and proceed to constrain it accordingly.

Cushing (1977a,c) argues that the notion of algebraic data-type
specification that is incorporated in Hamilton and Zeldin's theoryp pro-
vides a revealing model for the semantic lexicon of a natural language,
as one component of the human mind. The model incorporates an empirical
claim as to where in the lexicon we would most naturally expect to find
constraints, a: part of a general characterization of the kind of sub-
components that make it up. Cushing argues that the semantic lexicon
is a heterogeneous algebra 7and that some seemingly unrelated issues that
have received attention in the recent linguistic and psycholinguistic
literature (e.g., lexical decomposition vs. meaning postulates, functional
notation vs. semantic markers) receive a natural and revealing reform-
ulation, when viewed in this light.

We will not speculate here on how fruitful this line of research will
ultimately turn out to be, because that can be determined only by time
and further work. We do think, however, that something along these lines
is a necessary prerequisite to a computer-based model of cognition. It
may, in fact, turn out that the mind is not a computational device at all
and that enti.ely new concepts will have to be developed to account
adequately for its operation, Our point is simply that any adequate theory
of mind will have to base itself firmly on the search for general explan-
atory principles ard that this applies to computationally-based theories

as much as to any other.
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1.

‘

footnotes

It is not surprising that the emergence of software engineering

has yet to have an impact on Al. The field is so new that

the first journal devoted specifically to it (IEEE Transactions
on Software Engineering) did not appear until 1975, and, even as
late as 1972, D.L. Parnas could still refer legitimately to "the
so-called 'software-engineering’ problem" (p. 330). For a general

survey of some current trends in the field, see Wegner, Dennis,
Hammer, and Teichrow (1978). LThefact that some authors still use
the terms "program” and "system" interchangeably should not be allouwed

to obscure the important conceptual distinction involved. - This differ-
ence should become clearer in what follows. )

Some recent physiological evidence which, it seems to us, can be
naturally interpreted as directly supporting this contention is
reported in Hochstein ard Shapley (1976a,b), Levick (1975), and
Werblin (1974), We thank Dr. Michael Zeldin of the Harvard Biology
Laboratory for bringing this work to our attention.

See, for example, Asch, Kelliher, Locher, and Connors (1375),
Corelli and Williams (1976), Hamiltor {1971, 1972), Hamiiton .and
Zeldin (1976¢c, Chapter 1; 1977), Ramamorthy and Ho {1975), and
Richter and Mason (1976) for some discussion of this motivation.

. See, for example, Bratman and Court (1975), Davis and Vick (1976),

Hamilton and 7eldin (1973a,b;1976a,b,c,d; 1977), HOS (1977}, Mills and
Wilson (1976), Richter and Mason (1976), Robinson, Levitt, Neumann,
and Saxena (1975), Robinson and Lovitt (1977), Stevens, Meyers, and
Constantine (1974}, and Wilson (13’6) for some specific proposals in
this regard. For comparative discuision of a number of such propos-
als, see Cushing (1977b), Hamilton and Zeldin (1976c, Chapter 2),

and Peters and Tripp (1977).

5. See Birkhoff and Lipson (1970) for a gencral discussion of heterogen-

eous algebras.




6. See Cushing (1976a) for elaboration of this notion and Guttag (1975)
and Zilles (1975) for a very different approach to algebraic data-
type specification. Some of the differences are discussed briefly
in Hamilton and Zeldin (1978).

7. Sea Cushing (1976b,part IV;1976¢;1977d) for some related ideas concern-
ing the algebraic representation of lexical meaning.
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PART 6

Lexical Functions and Lexical Decomposition:
An Algebraic Approach to Lexical Meaning

by
S. Cushing
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1. Functional Representation of Lexical Meaning

Research on lexical semantics in generative grammar, beginning with

Katz and Fodor {1963), has traditionally incorporated two basic assumpiions:
first, that word meanings can be decomposed into primitive meanings and,
second, that these primitive meanings are best represented in terms of
semantic markers. The second of these assumptions is challenged by Miller
(1976) and the first by Fodor, Fodor, and Garrett (1975). Miller suggests
replacing semantic markers with a "functional representation" and Fodor,
Fodor, and Garrett suggest replacing lexical decomposition with "meaning
postulates". In this paper we examine Miller's proposal and derive some

of its implications for the structure of the semantic lexicon. In parti-
cular, we derive a model for the lexicon in which word meanings are decomposed
into functional primitives which are themselves characterized by something very
much 1ike meaning postulates, and we argue that such a model follows naturally

from the use of "functional representation” for lexical meaning.

Miller qﬁestions "whether semantic markers, as they were defined by

Katz and Fodor, are the best way to represent the concepts shared‘

by different lexical entries” (p. 5) and proposes, instead, the use of “a
functional representation of word meanings, especially when we go beyond
nominal expressions to the more complex relations among verbs and preposi-
tions.” To illustrate his proposal, Miller gives the "semantic decomposition”
of bring shown in Figure 1. He represents the "propositional information
contained” (p. 7) in a sentence in which bring occurs by "BRING (x,Y,),

where x is a pointer assigned to" a bringer "and y is a pointer assigned to”
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something brought. The five lines of Figure 1 then illustrate how "BRING
(x,y)" might be broken down into specific combinations of other "functional

representations,” such as "COME (x)," "DO (x)", "CAUSE (x)", and "ACCOMPANY

2 3

(x)".

That is to say, bring would be decomposed into come, cause, and
accompany. Come, in turn, would be decomposed into travel and
speaker's location; cause would be decomposed into possible
sequences of events. and accompany would be analyzeo into travel
and with. Each of these, in turn, might be further decomposed.
Since decomposition must stop somewhere, this program commits us
to the assumption that there are certain semantic primitives into
which all words can be analyzed.

"One assumes,” Miller arques further, "that these primitives, whatever they

are, are cognitive universals, independent of particular languages."

Since Miller suggests the use of a "functional representation", it seems

reasonable to suppose that he indeed intends to be talking about functions?®
The use of "functional representation” for lexical meaning thus involves a
qualitatively different kind of claim from that involved in the use of
"semantic markers”. Semantic markers are a kind of object that was

invented specifically for the representation of lexical meaning; they have

no significance outside of the theory in which they appear. Functions,

in contrast, are an independently well-defined kind of mathematical object;
to say that lexical meanings are, or can be represented as, functions automa-
tically predicts a number of things about the behavior of lexical meanings.
Fquivalently, it forces us to ask a number of questions about Texical meaning

that would not arise if semantic markers were to be used instead.

In this paper we examine some of the implications of the use of functional
representation for lexical meaning, using Miller's decomposition of bring

as an example. We will not be concerned here with the question of whether
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or not the example provides the correct analysis of bring, and we will thus
ignore many of the issues that would have to be dealt with in any attempt
to answer that question; in particular, we will not ask whether “meaning
postulates" might do a better job, by themselves, in characterizing the
meaning of bring. The result of our investigation will be a proposed
model for lexical meaning in which both "lexical decomposition" and
“meaning postulates" play a role. We will argue that the semantic lexicon
is a heterogeneous algebra, in the sense of Birkhoff and Lipson (1970),
and that the study of lexical meaning properly involves determining the

empirically correct characterization of such algebras for natural languages.

The logic here is a bit complex and a word of further clarification is
perhaps in order. Katz and Fodor (1963), as well as Katz (1972, 1977),
want semantic marker representation, semantic decomposition into primitives,
and no meaning postulates. Miller (1976) concurs in wanting semantic
decomposition into primitives and no meaning postulates, but wants to
replace semantic marker representation with functional representation.
Fodor, Fodor, and Garrett (1975) want meaning postulates instead of
semantic decomposition into primitives, but take na position on
representation, saying "all that we require is that formatives of the
natural language should correspond to formatives in the representational
system, whatever these latter may turn out to be" {p. 526)}. Since

semantic markers were introduced specifically to represent semantic

primitives, it secms reasonable to conclude that Fodor, Fodor, and Garrett

reject that notation, but we cannot draw the further conclusion that they

~would necessarily accept functional representation, as Miller uses it,

since other options, e.g., traditional logical predicate notation, are also

available to them.
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Hopefully, all of this will become somewhat clearer in what follows. |We will
be arguing, specifically, that the adoption of a functional representation
for semantic decomposition leads one to an algebraic model for the lexicon
which also involves "meaning postulates"; we will not examine the case in
which semantic decomposition is represented in terms of semantic markers.

It can be plausibly argued that semantic markers are themselves naturally
interpretable as a form of functional representation, in which case they

would also be covered by our argument, but this is not their intended inter-

pretation (Katz, 1977, p. 582), and we will not deal with it here?
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2. Miller's Functions: Damains and Rarges

, A function is a many-one correspondence hetween two sets. The first set,
called the domain, provides the function with its arguments or inputs; the
second set, called the range, provides the function with possible values
or outputs. Every member of the domain must be associated by the function
with exactly one member of the range, but not every member of the rarge
need be associated with a member of the domain; a range member may be
associated with more than one domain member but need not be. If D and R

are the domain and range, respectively, of a function f, then we write

(1) f.D R

to mean that f provides an association or mapping from D into R. For a
' function to be well-defined,its domain, its range, and its mapping must be

clearly specified in some way.

The intended mappings of Miller's functions are presumably supposed to be
given by the decomposition, and we will return to this question later. About
their domains and ranges, however, Miller says nothing, except to remark, as
we have noted, that by "SPEAKER" he means "speaker's location" and that cause
is meant to "be decomposed into possible sequences of events". 1t follows
presumably, that "SPEAKLR" is a constant symbol denoting some member of the
set of locations and that "x" and "y" in the fourth line of the decomposition
are variables denoting members of the set of events. Beyond this we will have
to try to figure out what the domains and ranges of Miller's functions must

be, based on whatever information we can draw out of his decomposition. Some
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of our specific judgements will admit of alternate interpretations, given
the catremely limited character of the proposed lexicon fragment we are
examining, hut we can still get a good idea, by proceeding in this way,
of the kinds of questions that must be asked and answered, if a functional

representation is to make sense.

Henceforth, we will consistently denote functions by symbols whose initial
letter is capitalized and scts by symbols that are capitalized throughout.
This will make it easier tn keep track of which things are sets and which
things are functions. We have noted that "x" and "y" in line 4 are intended
by Miller to denote events, so we can take the domain of the function Happen
to be the set of events, denoted here by the symhol "EVENTS", and we can take
the domain of Before to be EVENTS » EVENTS, that is, the set of ordered pairs
of events. Since an cvent is intrinsically something that happens, it would
seem to make little sense to distinguish between an event x and the event
that consists of the happening of x. If this is correct, then we have

to take the range of Happen to be some set other than EVENTS, and the sct of

truth values or "booleans" seems to be the most reasonable candidate. This

gives us
Happen: EVENTS » BOOLEANS

as a description of the function Happen in the standard mathematical form
(1). Similarly, it secins unnatural to consider x happening before y to
be an event distinct from x and y and, again, BOOLEANS seems to be the most

reasonable alternative for the range of Before. This gives us
Before: EVENTS x EVENTS -» BOOLEANS
as a standard representation of the function Before.
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The situation with Notpossible is a 1ittir more complicatel. On the one

hand, the output of Notpossible is taken a. an input to ore of the "&" functions,
along with the outputs of Happen and Befor:., Since these :atter outputs are

all booleans, it seems reasonable that the utput of Notrossible must alse

be a boolean, because we would not expect a zonjunction function to take

inpuls from more than one set. We can conclide that th: range of Notpossible

is BOOLCANS and that

&1: BOOLEANS x BOOLEANS x BOOLEANS x 8 OLEANS - BOOLEANS

is the standard description of the "&" function who.e symbol connects the four

main conjuncts of line 4.

The input of Notpossible has to be an eve:t, however; Miller explicitly tells
us that he means to be talking about “po.sible .rquences of events", as we
have seen, and, in any case, events see¢n intuitively to be the most natural
sort of thing to be predicating nonpossibility of. It follows that y &
Not {x) mu~t be an event and, since w2 expect "&" to denote a function that
takes only inputs from the same set, it follows further that the value of
Hot (x) must be an event, in order f.r it to be conjoinable with y. This
then gives us
Not: EVENTS » EVENTS
&2:
Notpossible: EVENTS -+ BOOLEANS

EVENTS x EVENTS - EVENTS

as our standard description of Lhe functions Not, Notpossible, and the &

that appears in the scope of Fatpossible, and

(2) Cause: EVENTS < EVENTS » BOOLEANS
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a5 a description of Cause itself. We see that the weaning of Miller's line 4

requires us to distinguish two very distinct conjunction functions, a fact

that is in no way discernable from its form alone.

Now that we have Cause figured out, we can attempt to perform a similar

analysis of line 1, in which the symbol "Cause" appears. Since the range
of Cause is BOOLEANS and since we want "&" functions to take inputs from
only one set, we have to conclude that the ranges of Come and Do are also

BOOLEANS. This immediately gives us

&3: BNOLEANS x BOOLEANS x BOGLEANS » BOOLEANS

3 and &l can

be reduced to a single binary "&" function, but only if we introduce extra

as a description of the "&" function that appears in line 1. &

parentheses in lines 1 and 4 or, equivalently, add the further ctipulation
that that & is associative. As Miller's decompasition stands, however, we
must distinguish &l and &3 as separate functions and, in any case, we must

distinguish both of them from &2.

The symbols “"x" and "y" in line 1 cannot denote events, as they do in

linc 4, because events are not the snrt of thing that can either bring or

be brought, at least in the most natural interpretation of these words. In
line 1 these symbols presumably denote people or things, since people and
things are what bring other people and things, in the usual sense of "bring".

This gives us

Bring: (PEOPLE U THINGS) x (PEOPLE U THINGS) - BOOLEANS
Come: PEOPLE U THINGS » BOOLEANS

as standard descriptions of Bring and Come or, taking “entity" to mean either

a person or a thing,
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(3) Bring: ENTITIES x ENTITIES + BOOLEANS
(4) Come: ENTITIES » BOOLEANS

as equivalent descriptions of these functions.

This leaves us with only Do and Accompany still to figure out in 1ine 1. We
have already seen that Cause takes two events as input, so the s that

appears as an input to Cause in line 1 must be an event. This gives us
Do: ENTITIES X EVENTS + BOOLEANS

as a description of the function Do. Since the output of Accompany in line
1 is an input to Cause, it follows from (2) that it must be an event. The
range of Accompany is thus EVENTS. The inputs of Accompany in line 1,
however, are the same y and x that serve as the inputs of Bring, albeit

in the opposite order, so they must both be entities, as indicated by (3).

This gives us
(5) Accompany: ENTITIES X ENTITIES - EVENTS

as a description of the function Accompany, completing our analysis of line 1.

We now have descriptions in the standard form (1) of Bring, Come, Do,

Cau<e. Accompany, Happen, Notpossible, Not, Before, and our three versions
of &; only To, Travel, and With remain to be analyzed. Since the output of
To in 1ine 2 i~ the same as that of Come, we know that the range of To must
be BOOLEANS because of (4). Since the output of With in line 5 ic the same
as that of Accompany, we know that the range of With must be Events, because
of (5). We also know that "y" in line 5 denotes an entity, again because
of (5), and that "SPEAKER" in line 2 denotes a location. This leaves us

with only the domain and range of Travel still to be determined.

82




The domain of Travel has to be ENTITIES, because "x" in line 2 denotes both
the input of Travel and the input of Cowe, which (4) tells us must be an entity.
Thi= conclusion is confirmed by line 5, because "x" in line 5 denotes both the
input of Travel and the first input of Accompany, which (5) tells us must
be an entity. There is little we can say about the range of Travel, however.
Whatever the output of Travel is, it has to serve both as an input, along
with a location, to To to produce a boolean and as an input, along with an
entity, to Accompany to produce an event. Lots of possibilities suggest
themselves and, in the absence of further evidence, no convincing conclusions
can be drawn, Under the circumstances, we might just as well settle,with
some intuitive plausibility, on activities as the sort of object that can serve
as the output of Travel, though perhaps events might make just as much sense.
This gives us
(6) To: ACTIVITIES x LOCATIONS » BOOLEANS
With: ACTIVITIES x ENTITIES - EVENTS
Travel: ENTITIES » ACTIVITIES

as the standard descriptions of To, With, and Travel, subject to the proviso
that ACTIVITIES could just as well be rcplaced by EVENTS or some ather

set, as far as the evidence provided by this fragment is concerned

This gives us deccriptions of the domains and ranges of all the functions
that Miller includes in his proposed semantic decomposition of bring,
derived from the detailed functional structure of the decomposition itseif.
Qur results lcave many guestions unanswered, not the least of which s that
of whether Miller's proposed decomposition actually provides the correct
account of the meaning of bring. It seems strange intuitively, for example,

to say that someone can do an event, but this is what Milier's decomposition
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requires, as we have seen. Similarly, we have seen that, while both come
and accompany are verbs, the range of Come must be BOOLEANS but that of
Accompany must be EVENTS; otherwise the particular combination of functions
in line 1 will make no sence. Similarly, both to and with are prepositions,
but the range of To is BOOLEANS and that of With is EVENTS, for essentially
the same reason. These apparent discrepancies may reflect the genhuine
meaning differences between the members of these pairs of words: Come

is something one simply does, while accompany is somethin~ one does to some-
one else; to relates one to a locat® . while with relates one to another
"entity". More likely, however, the discrepancies may be simply an artifact
resulting from the extremely limited nature of the fragment we have been
restricting ourselves to. A more extensive fragment might reveal that

verbs like come and accompany each have both boolean and event-valued

functions asseciated with them. Perhaps there is & universal functional
operator provided by general semantic theory that automatically provides

us, for each such event-valued function, with the corresponding boolean-
valued function, so we do not have to state the duality of such verbs in the
lexicons of particular languages. Lots of other possibilities suggest

L
themselves and we nead not enumerate them here.

Clearly such questions can be resolved only by examining further data.
Jackendoff (1978), for example, uses syntactic evidence from English to
argue, in effect, that prepositions 1like on should be analyzed not as

mapping pairs of entities to booleans. as suggested by the analysis of Miller

and Johnson-Laird {1976), but as mapping entities to locaticns. WUr would




thus get
On: ENTITIES » LOCATIONS
rather than
On: ENTITIES x ENTITIES - BOOLEANS

as the standard description of the function On. Similarly, ir place of the

description
To: ACTIVITIES x LOCATIONS - BOOLEANS,
which we gave in (6) for To, Jackendoff's arguments suggest
To:+ ENTITIES - PATHS

as the standard description.

The point is that there really is something to arque about here: these

are significant questions, and empirical evidence can be brought to bear

in trying to answer them. As we noted in Section 1, functions, unlike
semantic markers on their usual interpretation, are an independently well-
defined kind of mathematical object and thus provide us with a natural
handle with which to grasp onto the meanings we are using them to model.
The use of functionaf representation commits us to asking some very specific
kinds of .juestions about lexical meanings, as we have tried to illustrate
here. To the extent that the answers to these questions provide insight
into the interesting facts of lexical meaning, they support the use of
functional representation as the correct way to deai with it. If attempts
to answer these questions yield no interesting insights or lead us astray
and create confusion, then functional representation itself will have to be

rejected. In either case, the questions we have begun asking here illustrate
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the kinds of gquestions that have to be asked and answered in order for
functional representation to make sense at all. WNithout domains and ranges

there are no functions; with them there is at least something to discuss.

3. Sets, Functions, and Algebras

In the last section we derived a general picture of the semantic Texicon
that Tooks something 1ike the following: The semantic iexicon consists of
a collection I of sets, including at least the sets listed in (7), and
a collection w of functions, including at least the functions listed in (B},
where the ranges of the members of w are members of I and the domains of
the members of w are Cartesian products of the members of £. The
(7) I: EVENTS

BOOLEANS

ENTITIES (= PEOPLE U THINGS)

ACTIVITIES

LOCATIONS

PATHS  (if Jackendoff is right)

(8) w: Happen: EVENTS - BOOLEANS
Before: EVENTS x EVENTS - BOOLEANS
&1: BOOLEANS x BOOLEANS x BOOLEANS x BOOLEANS - BOOLEANS
Not: EVENTS » EVENTS
&,: EVENTS x EVENTS - EVENTS
Notpossible: EVENTS - BOOLEANS
Cause: EVENTS x EVENTS - BOOLEANS
&,

3
Bring: ENTITIES x ENTITIES - BOOLEANS

BOOLEANS: x BOOLEANS x BOOLEANS .» BOOLEANS
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Come: ENTITIES - BOOLEANS
Qo: ENTITIES x EVENTS -~ BOOLEAHS
Accompany: ENTITIES x ENTITIES + EVENTS

To: ACTIVITIES x LOCATIONS - BOOLEANS
{or To: ENTITIES - PATHS, if Jackendoff is right)

With: ACTIVITIES x ENTITIES » EVENTS
Travel: ENTITIES » ACTIVITIES

either ENTITIES x ENTITIES -+ BOOLEANS (Miller and Johnsan-
On: Laird)

or ENTITIES - LOCATIONS (Jackendoff)

members of I are presumably the semantic types of the language, that is,
(mental representations of) the sorts of objects the speaker/hearer
takes to exist. The members of w then constitute what the speaker/hearer

says or understands about those objects, in some general sense of those notions.

Such a dual collection of sets and functions is exactly what is meant in
mathema:ics by an algebra ( Birkhoffand Lipson, 1970). An algebra is an
ordered pair [I, w], where I is a collection of sets and w is a collection
ot tunctions whose ranges are menbers of I and whose domains are Cartesian
products of the members of £. If I contains exactly one member, the algebra
is said to be homoge--cus, while if it contains two or more members, the
algebra is said to be heteroaeneous. To the extent that the full semantic
Texicon can be obtained by simply adding more sets to the list in (7) and
more functions to the list in (8), it follows that the semantic Texicon is
itself an algebra and, in particular, a heterogeneous one, as we noted at

the end of Section 1.
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4. Axioms, Polynomials, and Meaning Postulates

Classes of algebras are typically characterized by providing constraints

on the members of I and w. Most commonly, constraints on the members of I
take the form of requiring some of them to contain distinguished members,
while constraints on the members of w take the form of statements, called
axioms, which require the equality of specified combinations of some of them .
The term "variety" is also used {n the sense of our "class" and "law"

in the sense of our "axiom" (Barnes and Mack, 1975, p.7).

The most familiar class of algebras, for example, is probably that of the groups.
In these algebras, £ consists of a single set G that contains a distinguished
neutral member, denoted here by "Neut", and w consists of two functions, a group

multiplication, denoted here by "Mult", and a group inverse, denoted here by

"Inv", where Mult and Inv satisfy

(9) Mult: Gx G- G
Inv: 6~ G
An algebra [{G}, {Mult, Inv}] that satisfies (9) qualifies as a group, if
there is a member Neut of G such that the following four axioms are satis-

fied for every member g, 9qy» 95> 93 of G:

(10} 1. Mult (g], Mu]t(gz, 93)) = Mu]t(Mu]t(g], 92)’ 93)
2. Mult (g, Neut) = g
3. Mult (Neut, g) =g
4. Mult (g, Inv(g)) = Neut.
Aixiom 1 says that the function Mult is associative, that is, that the order
in which Mult is performed is irrelevant to its results (though the order of

its inputs might still be relevant). Axioms 2 and 3 say that Neut is indeed
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the neutral member of G in the sense that applying Mult to Neut and any group
member g in either possibie order leaves g unchanged. Axiom 4 says that Inv

is in fact an inverse operation, in the sense that applying Inv to any group
member Q and then applying Mult to g and that output always produces the neutral
element. The class of groups is fairly large, in an intuitive sense; it
includes the integers with Neut = 0, Mult = +, and Inv = 0-; the positive
rational numbers with Neut = 1 Mu1t = x, and Inv = 1:; and many other

algebras.

Algebra descriptions like that expressed in (2) and (10) are generally
viewed in mathematics as characterizing abstract structures, in this case the
group structure; we can view them just as well, however, as characterizing
kinds of objects, in this case group members, and sets of kinds of functions,
in this case group multiplication and inverse (Hamilton and Zeldin, 1976b;
Cushing, 1978). An object is a group member if it is a member of a set on which
there are functions defined that satisfy the conditions we discussed in
connection with (9) and (10); a pair of functions constitute a group multi-
plication and inverse if their domains and ranges are as specified in (9)

and they satisfy the conditions involved in (10). The kinds of ubjects and
functions are defined, in other words, in terms of their mutual interaction,

as specified in axioms and in statements of the form (1.

It seems, then, that we can take Miller's semantic decomposition of brinc
as providing us with a proposed algebraic characterization of the kinds of
objects listed in (7) and the class of kinds of functions listed in (8).
What Miller is really giving us, in otherwords, is a description of a class
of algebras [&, w), where £ is given by (7) and w is given by (8). The
axioms of these algebras are presumably the individual lines of his decom-

position, as listed in Figure 1, with the colons interpreted as equality signs.
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There is actually more going on here, however. One of the most basic
notions defined in connection with the notion of algebras is the class

of polynomial functions on an algebra. The polynomial functions on an algebra

[¥, w] are, essentially® those functions whose outputs can always be o%tained
by repeated application of the members of w. 1f we take the group that
consists of the integers with Mult = + and Inv = 0-, for example, as we
discussed in connection with (9) and (10), then the class of multiples of
group members provides exampies of polynomial functions on that algebra; if

g is a group member, then the functions defined by

29 = g+tg
3g = (g +g) +g
4g = ((g +g) + g} + g

29 + 5(-g) = (g + q) +{{(((-g) + (-g)}) + (-9)) + (-9)) + (-9))
are all examples of polynomial functions on this group. Similarly, if we take
the group that consists of the positive rational numbers with FHult = x and
Inv = 1:, as we also discussed in connection with (9) and (10), then the
powers of group members provide examples of polynomial functions on that

algehra; if g s a group member, then the functions defined by

g° =gxg
g° =(gxa)xg
g" = ((gxg)xg)xg

g x(1:g)"=(gxg)x((((OV:a) x(1:g))x(:g))x(:g))x (1=

are all examples of polynomial functions on that group.
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The point about polynomial functions is that their existence as functions

that can be legitimately applied to relevant members of % members is entailed by
the existence of the functions they are iterations of. The existence of the
function we have denoted by "3g" on our first group, for example, is assured

by the existence of the function + on that a]gebra; the existence of the
function g*® on our second group is assured, similarly, by the existence of

the function x on that algebra. Polynomial functions are essentially
abbreviations for repeated applications of more basic functions; they can thus
be eliminated altogether by replacing them explicitly with the repetitions

they abbreviate. It follows that if, for some algebra [£, w], Some members

of w can be seen to be expressable as polynomial combinations of other members
of w, then they can be removed from w without essentially altering the algebra.
Only those functions that are independent of each other, in the sense that

none can be expressed as polynomial combinations of the others, need be in-
cluded in the w of a particular algebra. The existence of the polynomial
functions, as functions legitimately defined on I members, is then automatically

assured.

We can see now that Miller's semantic decomposition of bring provides us not
with the axioms of a class of algebras, but with definitions of a class of
polynomial functions on those algebras, namely, the functions that give the

meanings of bring, come, cause, and accompany. Accompany, for example, per-

forms a genuine mapping from pairs of entities to events, as indicated in (8)

by the formulation

Accompany: ENTITIES x ENTITIES > EVEMTS,
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but the particular mapping it performs happens to be the same, according to
Miller, as that performed by the indicated combination of With and Travel.
Come, similarly, performs a genuine mapping from entities to booleans, as

indicated in (B) by the formulation
Come: ENTITIES -~ BOOLEANS,

but the particular mapping it performs could be accomplished just as well by
applying To to the output of Trave! and to the constant location Speaker.
Bring could then be defined, itself as a polynomial function, entirely without

the use of Accompany and Come, by the formula

(11) Bring (x, y} = To(Travel(x), Speaker) & Do(x, s) &

Cause (s, With(Travel (y), x)),

and this could be expanded further, using the polynomial expansion of Cause

in Miller's line 4, to the formula

(12) Bring (x, y} = To(Travel(x), Speaker) & Do (x, s) &
(Happen(s) & Happen (With (Travel (y)}, x)) &
Notpossible (With (Travel(y},x) & Not(s)) &

Before(s, With(Travel(y),x)).

In terms of the mappings they say are performed by Bring from pairs of entities

to booleans, as indicated in (B) by
Bring: ENTITIES x ENTITIES - BOOLEANS,

each of (11) and (12) is identical to Miller's 1ine 1, even though neither (11)
nor (12) mentions Come or Accompany and (12) does not mention Cause. We

can thus get exactly the same function Bring, as a legitimate mapping from
entity pairs to booleans, whether or not we include Come, Accompany, or Cause

among the functions of our algebras.
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It follows that we can get exactly the samu set of functions by removing Bring,
Come, Cause, and Accompany from (8) and treating these functions as polynomial
functions defined by Miller's decomposition. This gives us a class of algebras
[L, «! n which (ignoring Jackendoff's arguments for the moment and sticking

strictly with Miller's fragment)

(13) = = {ZVENTS, BOOLEANS, ENTITIES, ACTIVITIES, LOCATIONS}

and

(14) w

{Happen, Before, &f Not, &2, Notpossible, &3, Do, To, With, Travell,

where the domains and ranges of the members of « in (14) are given in (8)

and where Bring, Come, Cause, and Accompany are defined as polynomial

functions on the algebra by Figure 1. Since no member of w in (14} can

be expressed in terms of any others as a polynomial function {according to the
information Miller provides), it makes sense to call the members of w the primitive
functions of the algebra.® Note that Miller himself characterizes Do as
“primitive" as stated in Figure 1, but says nothing about the other members of

w in (14). Some of these other functions might be further decomposable as
polynomial functions in a full specification of the semantic lexicnn, but it

is clear, as we have seen, that they are primitive with respect to this fragment.

Now that we have sorted out the primitive functions of Miller's class of

algebras, which must be explicitly specified as members of w, from the

polynomial functions, whose existence as mathematical mappings from domains

to ranges in the algebras is automatically guaranteed once the prim.tive functions
are given, a serious deficiency immediately becomes apparent. The formulation

in (13} gives us the kinds of objects our algebras are characterizing, (14}

gives us the primitive functions we are taking as characterizing them, and

Figure 1 gives us a set of polynomial functiors that add nothing to that
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characterization but can still be treated as if they were functions of the
class of algebras. What is totally missing now, however, is a set of axioms
for our class of algebras! Without axioms the members of w are entirely
arbitrary, except for the domain and range descriptions given in {8). We
know, for example, that Do maps an entity and an event, according to (8), to
a boolean and that Happen maps an event to a boolear, but we know nothing at
all about which entities and events are mapped to which booleans, that is,
about which mappings from entity-event pairs to booleans and from events to
booleans "Do" and "Happen", respectively, are supposed to denote. Without

a set of axioms to characterize our primitive functions, nothing about our
purported class of algebras is well-defined. 1In order, in other words, for
our proposed account of this fragment of the semantic lexicon as a class of
algebras even to be such an account, we must supplement (13), (14) and Figure

1 with an appropriate set of axioms,

A natural candidate for one such axiom, for example, might be something Tike
(15) (Do (x,s) D Happen (s)) = True

where "D" derotes entailment, which would itself have to be characterized as
either a primitive or polynomial function from pairs of booleans to booleans,

that is,
D:  BOOLEANS x BOQLEANS — BOOLEANS.

The formulation in {15) says that if some entity does some event,” then that

event happens, a reasonableenough assertion to the limited degree of empirical

adequacy that our tiny fragment allows. Similarly. we might include in our 1ist




an axiom like

(16) (Hotpossible (x) O Not, (Happen (x))) = True,

where Not] difrers from Not in (8) in that it inaps booleans to booleans,

rather than events to events:
Not]: BOOLEANS - BOOLEANS.

The assertion in (16} says that if an event is not possible, then it does

not happen, again a reasonable caididate for an axiom of our fragment.

Forrulations like those in {15) and (16), we now observe, are exactly what have
been called “meaning postulates” in the literature® Logicians have traditionally
distinguished between functions, which map inputs to outputs, and predicates,
which simply "hold" of arguments,” so (15}, (16) would norrally be written

as
Do (x, s} D Happen (s)
and
Notpossible (x) D Not, (Happen (x)),

perhaps preceded by universai quantifiers and/ui- an assertion marker. We
can always treat predicates as boolean-valued functions, however, just as we
can replace sets with their characteristic functions, and to do so is useful,
as we have seen, because it makes possible a uniform algebraic treatment of
word meanings. It follows that, even if Miller is correct in his view that
word meanings can be decompesed into more primitive ones, he still needs
something like meaning postulates to characterize the primitive meanings

themselves.
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This conclusion cannot be avoided, it should be stressed, by claiming that

the primitives are to be characterized by explicit algorithms or that they

are innate. To give an explicit algorithm for a function is simply to decom-

pose it further, so the functions it is decomposed into become new primitives,
themselves in need of axiomatic characterization (Hamilton and Zeldin, 1976b;
Cushing, 1978)® Claiming that the primitives are innate (cr "cognitive universals,
independant of particular languages", as, we have seen, Miller suggests) also

gets us nowhere, because our theory still owes us, in that case, an explicit
account of what it is that is innate. What is it that is innate when Do is

innate that is different from what is innate when Happen is innate? Again,

axioms of some sort would seem to be in order. )

We have concluded that Miller "still needs something like meaning postulates”,

but, in fact, our result is much deeper than that. The "meaning postulates"

(15), (16) are really axioms of a very highly restricted form, and there is

no a priori reason to assume that axioms must necessarily be so limited. .
Kinship terms, for example, seem particularly in need of a more complex

treatment: we might arque, quite plausibly, that words 1ike husband, wife, etc.

express not relations, i.e., boolean-valued functions in our terms as is qen-
erally assumed, but people-valued functions and, in particular,

Husband: VOMEN -~ MEN

Wife:  MEN - WOMEN.

If this is the case, then axioms 1ike

(17) Husband (Wife(m)) = m




would seem to provide a more appropriate analysis than meaning postulates

like (15), (16), which typically express true entailments between boolean-

valued functions. OQur real conclusion, then, is not that Miller needs meaning
postulates, but that he need axioms, some of which may or may not be meaning
nostulates. Note that this need for axioms falls right out of the mathematics

nf functional representation, as Miller uses it: without axioms there is no

class of algebras and thus no polynomial functions, so the decompositions are
meaningless (Hamilton and Zeldin, 1976b; Cushing 1973). The specific forms

of the axiovims and, in particular, whether any or all of them are meaning postulates
in the traditional sense is an empirical question, however, and the plausibility

of (17) suggests strongly that meaning postulates alone will not suffice.

These results give the study of lexical semantics a scientific status similar

to that of sentential syntax. A lexicon, like a grammar, is not simply a list,

in this case of words and meanings, but a highly structured Eéthematica]
object, in this case an algebra. The really interesting problem of lexical
semantics thus becomes that of determining the universal and language-
specific constraints on lexical algebras, just as the basic problem of sen-
tential syntax is generally taken to be that of determining the empirically
motivated constraints on generative grammars. What sets do we have to recog-
nize in a lexical algebra for a human language? What combinations of sets
can exist as domains and ranges of lexical functions? What forms can axioms
take and what forms are ruled out? These and similar questions enable us to
raise lexical semantics from the level of mere taxonomy to that of a search

for scientific explanation.!?
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In view of these results, it is not surprising that some of the most recent
work on lexical semantics can be interpreted as implicitly attacking pre-

3 cisely this problem. Fodor, Fodor, and Garrett (1975) argue, for example,
that "meaning postulates mediate whatever entailment relations between

sentences turn upon their lexical content. That is, meaning postulates do

what definitions have been supposed to do . . ." (p. 526). In our terms,

as we have seen, this amounts to the claim, first, that all word meanings
represent boolean-vaiued functions and, second, that all axioms are of the
general form of which (15), (16) are instances. Jackendoff (1978), as

we have also seen, disputes the first of these claims, arguing that some
words, including prepositions 1ike on, represent location-valued functions,
rather than boolean-valued ones. Cushing (1976) agrees, in principle, with
Jackendoff's claim but argues further that the lexicon must recognize not
only sets of people, things, and locations (which he calls "places"), but
also sets of times and possible worlds, not as special components of model-
theoretic interpretation, as in Kripke semantics or Montague grammar, but
as sets of the algebra just Yike any other!® This last result dovetails
nicely with Chomsky's independent observation that "possible-worlds
semantics" seems to amount to nothing more than the lexical entry for the
word "1ngically possible" and words definable directly in terms of it

(personal communication).

These results are intriguing and suggest that the algebraic model should be
further investigated. Note that we have clearly not proven the correctness
of the model;, we have looked at very little data and are thus in no position

to draw what is an essentially empirical conclusion. Our argument has been an
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entirely theoretical one: if Miller uses functional representation for lexical
decomposition, then he also needs "meaning postulates”, and the algebraic model
is a natural result. The model is attractive because it enables us to
approach the lexicons of natural languages in the same way that linguists
customarily approach their grammars, as we have pointed out, namely,

by looking for universal constraints on the relevant formal systems.!™

It naturally subsumes, furthermore, some of the more interesting questions
that 1ave arisen about the semantic lexicon in the recent literature,

as we have.also pointed out. The real test, however, will, of course,

be to examine lots of actual data in light of the model and see what

interesting insights are revealed.
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Footnotes

*Farlier formulations of the ideas in this paper were presented at

various times and places under a number of different titles (Cushing 1977
a, b, c). A more general account, in which an attempt is made to incor-
porate the ideas discussed here into a proposed formal model for the study
of cognition, is currently in preparation, based on the ideas in Cushing
(1977b} and Cushing and Hornstein (1978)}. I would like to thank Mark
Aronoff, Joan Bresnan, Dick Carter, Noam Chomsky, Morris Halle, Margaret
Hamilton, George Miller, Michael Zeldin, Saydean Zeldin, and the members
of the respective workshops for helpful discussion and encouragement.

Miller has confirmed this supposition (personal communication).

We will, however, interpret some of Jackendoff's (1973} results,
functionally, though he formulates them in terms of semantic markers.
Whatever Jackendoff's own intent might be, the evidence he adduces and
the conclusions he draws lend themselves naturally to the framework we
will be developing here.

In a recent proposal for "a recursive scheme for describing the
aspectual character of sentences" (p. 216}, Steedman (1977} takes
activities to be a kind of event, without using a functional represen-
tation for lexical meaning, however. Again, it is well beyond our
present scope to inguire whether this assimilation of activities to
events is correct.

A theoretically much more significant deficiency in Miller's analysis

is created by the appearance of an "s" on the right-hand side of

line 1 but not on the left. If bring itself is a function of two variables,
it cannot be the same as a function of three variables. A set of general
principles for avoiding errors like these is provided by Hamilton and

Zeldin (1974, 1976a).
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The actual definition is somewhat more complicated, of course. A
concise formal definition of what he calls "polynomial operations"

is given by Montague (1974, p. 224) for the case of homogeneous
algebras, and extension to the heterogeneous case is straightforward.
The difference between "function" and “operation" varies from author to
author and, for our purposes, the two terms can be considered inter-
changeable. Polynomial functions constitute a special case of the
“control-man" functions discussed by Hamilton and Zeldin (1976a, b).
See also Cushing {1978).

Note that heterogeneous algebras were not introduced until 1970 and
thus were presumably not available to Montague. More significantly,
Montague's use of algebras is very different from our own. As Thomason
(1974, p. 48) points out, Montague was singularly uninterested in the
lexicon, using algebras to give a formal explication of the notion
"language" {1974, p. 225). Our concern here, however, is specifically
with the lexicon and with its internal structure, in particular; it is
the lexicon itself that we are suggesting is a heterogeneous algebra,
whatever may be the case with language as a whole.

Hamilton and Zeldin (1976b) and Cushing {1977b, 1978) call these
"~~imitive operations”", but, as mentioned in note 5, the difference is
entirely terminological, for our present purposes.

As we noted earlier, "does some event” is an unnatural usage, but it is
motivated by Miller's fragment. Such discrepancies are precisely the
sort of thing that we would expect further evidence to enable us to
resolve,

See Fodor, Fodor, and Garrett (1975), Carnap (1956), Montague (1974),

and Katz (1977), to mention just a few works in which meaning postulates
are discussed.

Montague (1974, p. 305-306), for example, distinguishes between predicates
and operations in precisely this way. See notes 5 and 6 on "function”
vs. “operation”..
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10.

1.

12.

One might argue that these algorithms decompose the semantic primitives
into “perceptual” primitives of some kind, obviating the need for specif-
ically semantic axioms. While it may be necessary, however, to relate

the semantic primitives at some point to more fundamental brain structures
(more on this in note 12), this need has nothing at all to do with

the present problem. To require that all word meanings be decomposed
directly into physiological structures, even assuming that this is
possible (see Fodor (1975, Chapter 1) for a good refutation of simple
reductionism of this kind), would be tc give up the existence of a
specifically semantic level altogether, including, in particuiar, the
existence of semantic primitives, something Miller and other decom-
positionists certainly do not want to do. If something more abstract is
meant by “perceptual", however, than the physiological mechanisms involved
in perception, then it becomes very unclear what the difference is, in
our present context, between "perceptual" and "semantic", other than
terminology. Whether our abstract primitives are "semantic" or "per-
ceptual”, we still need axioms in order for decompositions like Miller's
to make sense, and this is the point of our argument,

We assume, of course, for simplicity a strictly monogamous society in
which everyone is married. Further axioms would naturally be needed

to characterize these notions with full empirical adequacy. Note

that the semantic types MEN and WOMEN are not motivated by the
imformation in Miller's fragment, and we use them only for this example.
The right to assume a meaning function for any word i: the language
seems to be implicit in Miller's analysis and follows explicitly from
Fodor, Fodor, and Garrett's requirement "that formatives of the natural
language should correspond to formatives in the representational
system", once we adopt a functional representation; establishing the
existence of & semantic type, however, presumably requires some argument,
as Jackendoff's discussion suggests.

We have argued that the semantic lexicon is a heterogcneous algebra,

but have phrased our discussion of axioms and polynomial functions in
terms of classes of algebras. Any algebra description of the sort we
have discussed will always have infinitely many possible implementations
in terms of actual sets in £ and functions in w; in some cases these will
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13.

all be isomorphic with respect to the functions ¢/ the alaelia but in
some cases they will not. This may at first seem 1ike a disturbing
indeterminacy, but, in fact, it is exactly what we should expect of
formal systems that are taken to model biological phenomena. If we

assume that a model for the semantic lexicon is a model for a part of
the mind and thus of the brain, then specifically semantic criteria can
carry us only so far in characterizing it. (Chomsky (1975) develops

a similar argument with respect to linguistic criteria and grammars.)

Suppose, for example, obviously contrary to fact, that semantic evidence
leads us to conclude that the entire semantic lexicon can be described

by the algebra description we gave for the groups. Suppose further, again
contrary to fact, that the class of algebras characterized by that
description contains exactly two members, which differ in how the set

and functions are actually implemented in the brain. While semantic
evidence would be unable to choose between these two algebras as the
actual brain representation, we could still try to decide between them on
non-semantic, e.g. physiological, grounds. It might be the case, for
example, that only one of the two algebras is efficiently representable
in the DNA code or in terms of neurocellular structures, in which case
the other could be reasonably vuled out, despite the fact that it sat-
isfies the relevant semantic criteria. (The DNA example was suggested by
Michael Zeldin (personal communication).) The point here is that seman-
tics, like the rest of iinguislics, presumably deals with people and that
all sorts of evidence must be brought to bear in developing a complete
model of the human system of which the semantic lexicon is only a part.
(This is another difference between us and Montaque, by the way. See
note 5 and Thorason (1974).)

An account of how quantifiers can be dealt with in this framework is

also suggested by the discussion in Cushing (1976},




14.

The notion that different formal systems underlie sentential syntax
and lexical semantics, i.e., grammars vs. algebras, is plausible on
psychological grounds "in that there is evidence . . . that the
process of lexicalization is distinct from grammar acquisition”
(Anderson, 1977, p. 133). HNaturally, we would expect the two systems
to interact, however, as Jackendoff's arqguments suggest.
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A NOTE ON ARROWS AND CONTROL STRUCTURES:
CATEGORY THEORY AND HOS

“Nature is a structure of evolving
processes. The reality is the pro-
cess.”

- A. N. Whitehead

In this note we briefly review the "arrow-language" (Arbib ard Manes, 1975) of
category theory and its use in defining some basic notions of set theory. We
then use these results to shed new 1ight on some basic notions of Higher Order
Software (HOS) (Hamilton and Zeldin, 1976b).

1. Arrows and Commutative Diagrams

The mathematical theory of categories is an attempt to develop a universal frame-
work through which to unite the many seemingly different branches of mathematics.
In the words of Arbib and Manes (1975),

Category theory is the mathematician's attempt to lay bare somc of the
underlying principles common to diverse fields in the mathematical
sciences. It has become, as well, an area of pure mathematics in

its own right. Briefly, a category is a domain of mathematical dis-
course characterized in a very general way, and category theory is
thius an array of tools for stating results which can be used across

a wide mathematical spectrum (p. xi).

Underlying category theory is the idea that many of the definitiuns of fundamental
mathematical notions can be reformulated in terms of mappings from one set to
another, rather than in terms of the elements that sets contain. As Arbib and

Manes put it,

the usual approach to set theory starts with elements and builds all

its notions in terms of these...we introduce a different approach to

set theory, which builds all its notions in terms of arrows, the sym-
bols f: A+B which represent a function as a unitary whole rather than

in element-by-element terms...this 'arrow-language' of category theory
allows us to specify, once and for all, concepts which play an important
role in many different areas of mathematics even though their element-
by-element definitions are drastically different in different domains

of discourse (p. 1).
r‘;‘mlr -
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In this section, we review this arrow language, basing our discussion fairly
closely on that of Arbib and Manes, and in the next section we apply it to HOS.

A mapping (function), in this arrow language, is represented by an arrow which
points from (the symbol denoting)} the domain of the mapping to its range {or co-
dowain). If a mapping f maps set A to set B, it is thus denoted by the symbol

A+ B.

Composition of mappings, i.e., application of one mapping after another has been
applied, is denoted by a succession of such arrows. If f maps A to B and g
maps B to C, we denote this fact by the symbol

A-B~>C.

If the composition of two mappings has the same effect as a single third mapping,
we can denote this fact by a single diagram in which the arrows for all *hree
mappings appear, as follows:

/

A———5

) (1)
C

Such a diagram is called a commutative diagram; it is said to commute, because
both paths from A to C have the same effect, i.e., any element of A maps to

the same element of C whether we apply h alone or first f and then g. In general,
commutativity is taken to hold over two or more paths only if at least one
contains at least two arrows, such as the f, g path in (1). The diagram

NN i

for exampie, tells us that the f, g path; the f, h path; and the k path all pro-
duce the same result, since the first two contain two arrows, but it tells us
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nothing about the relation between the g path and the h path, since each of these
contains only one arrow.

This arrow language can be used to provide revealing reformulations of the de-
finitions of many basic mathematical notions, as Arbib and Manes show. Of parti-
cular interest to us here is the definition they develop for the Cartesian
product of two sets, which they call the product. Traditionally, the (Cartesian)
product of two sets is defined as the set of all ordered pairs whose first
element is in the first set and whose second is in the second. If A and B are
two sets, their product A x B is thus given by

Ax8={(a,b)lachAandbe B}

Since this definition is formulated in terms of the elements of A and B, the
question immediately arises, in our present context, whether it can be reformu-
lated entirely in terms of mappings instead.

The first thing we notice in this connection is that there are two very special
mappings associated with A x B, as follows:

m: AxB-A, (a,b) » a

Ty AxB-+B, (a,b)»b

The straight arrows indicate the domain-range relationships of the two mappings,
while the barred arrows indicate the effect of the mappings on individual domain
elements. The effect of Ty in other words, is to map each ordered pair to its
first component, while the efiect of T, is to map each ordered pair to its second
component. Arbib and Manes call these mappings projections, by analogy with
analytic geometry, in which LA would amount to projection onto the abscissa and
LN would amount to projection onto the ordinate.

Given any set C and any two mappings
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we can clearly reverse, S0 to speak, the effects of L8 and T, by defining a new
mapping p as follows:

p: C+AxB
cChH (p](c) s pz(c)) .

In other words, just as L and , take (a,b) to a and b, respectively, so p takes
a and b to (a,b), where a = p](c) and b = pz(c) for some ¢. What this means,
however, is that the diagram

y L AXB

2 \\:;\ : (3)

4 P B
‘:;HN“h ,f’;:r

commutes, i.e., that any indicated pi.th from one particular set to another has

the same mapping effect as a1y other. As Arbib and Manes point out, there is,

for any given A, B, C, Tys Tos Pys Pos only one p that will work in (3). Given
this fact we can turn (3) into a definition of product, as follows:

[ DT -

A product of two sets A; and A4, is a set A equipped with
twomaps 7, : A —*A4; and ry : A —+ A, (called projections) with the pro-
perty that, giv 2n any other set Cwith paiv of maps p, : C— A4, and
P2 : C— A,, there exists a unique map p such that

A (4)

Ay

Arbib and Manes show that, if there are two distinct products for two sets, then
they must be isomorphic in the sense that one is just a relabelling of the ele-
rments of the othar. For example,

{(b,a)|]b € B and a € A}
satisfies the definition of product just as well as

{(a,b)]a € A and b € B}

does. These two sets differ only in the way we are writing their elements, however,
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in that each element of one can be obtained by reversing, i.e., relabelling,

the components of the corresponding member of the other. It follows that we can
talk about the product of two sets, ignoring differences between sets that are
jsomorphic in this sense.

This brings us to the notion of duality. Given a notion that has been defined in
terms of commutative diagrams, we get the dual of that notion by reversing the
directions of all the arrows in the diagram. It turns out, as Arbib and Manes
discuss, that all theorems remain true in category theory when we replace every
notion in the theorem with its dual. If P is a property, such as being the product
of two sets, that has been defined in terms of comutative diagrams, then the
property dual to P is called co-P. Proving a theorem of the form "All W's have
property P," thus automatically provides a proof of a dual theorem of the form
"A11 co-W's have property co-P." This leads us to ask the obvious question:
Given our definition of the product of two sets, what is the co-product of two
sets? In other words, what is the dual of the notion product?

Given the definition of "dual," we know that the co-product of two sets, whatever
it is, is defined in exactly the same way as the product, except that the arrows
in the relevant commutative diagram, i.e., {4), are reversed. This gives us the

following definitiun:
A coproduct of two sets A} and 4, is 2 set A equipped
with two maps iny 1 A; — A4 and iny : Ay — A (called injections) with the
property that, given any other set C with a pair of maps g, : 4; —* C and
qa : Az —> C, there exists a unique map g such that (5)
A

S,

The definition tells us what a co-product is, but it doesn't tell us whether,

for any two sets at all, any such thing exists. Whereas, for the product, we
knew from the traditional definition what we were talking about and that it
exists, and we derived the arrow definition from that, all we know from the arrow
definition of co-product is that it satisfies (5), if it exists at all. By
duality we know that all co-products of two sets are isomorphic, so we can talk

Ay
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about the co-product of twoc sets, but we still do not know what the co-product of
two sets looks like, aside from the role that it plays in (5).

As Arbib and Manes show, the co-product of two sets amounts to none other than
their disjoint union. If two sets are disjoint, then their disjoint union is
simply {isomorphic to) their union, but if they are not disjoint, then we first
have to label their elements and then form the union in order to get their
disjoint union. One way of labelling elements is to associate a different
integer with each set, so, given two sets A] and AZ’ we form the labelled sets

Ay x (13 {(al,l)la1 £ Al} (6)

i

Ay x {2} = |(a,,2)]a, € A). (7)
If an element a of A] is also an element of AZ’ ie., if Al and A2 are not dis-
joint in the first place, then a appears as {(a,!) in (6) and as (a,2) in (7),
so (6) and (7) clearly are disjoint. If we then let A] + A2 be the union of
(6) and (7), i.e.,

Ay *+ Ay = (A x (1)U (&, x (2D),

then the resulting disjoint union of A] and A2 clearly satisfies (5), with

A= A] + A, and

2
ink: Ak -+ A] + AZ’ ar {a,k), k=1,2,
because then there is a unique q, namely,
q: A] t A, + C, (ak,k) B qk(ak), k=1,2,
that works in {5). We see that the Cartesian product and the disjoint union
of two sets are category-theoretic duals, in that their arrow-language definitions
differ only in the directions of corresponding arrows. Clearly this is an in-

timate relationship that we would never have been able to guess at from the
traditional definitions of these notiuns in terms of the elements of sets.
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2. Systems and Control Maps

Higher Order Software (HOS) is a formal methodology for specifying computer-
based systems in terms that are entirely independent of their implementation

in hardware or resident software (Hamilton and Zeldin, 1976b}. A system is said
to be reliable if it produces the correct outputs from relevant inputs in the
way it is supposed to. Formally, HOS is based on six axioms which guarantee
the absence of interface errors among the components, or modules, making up a
system and so help to ensure reliability in this sense (Hamilton and Zeldin,
1974).

Any system can be specified in HOS in terms of data types, functions, and
control structures (Hamilton and Zeldin, 1976a). Data types are the kiads of
objects that play a role as inputs or outputs in a system and its component
subsystems; functions are the mappings among data types that get performed

on these objects; and control structures are the relations that determine how
the various functions in a system interact and combine to achieve the system's
overall effect. In this note we will focus primarily on control structures,
with only passing attention, as needed, to functions and data types.

Given a system that performs a particular function f, it may be the case that
the effect of f is really achieved by two (or more) other functions acting
together. From the engineer's point of view, we might want to design our sys-
tem to perform f by performing two other functions instead. If f is a function
mapping input values x to output values y, and if g and h are functions which
together produce exactly the same mapping from x to y as f, then we can express
this relation in a tree diagram like the following:
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Diagram (8) is an incomplete example of what in HOS is called a control map.
Control maps specify the control relationships by means of which higher-level
functions get performed through the action of functions at lower levels in the
tree. To get a full control map, we would have to complete (8) by specifying
in detail the relationships that hold among the inputs and outputs of f, g, and h,
and, if we want, by further developing the tree by also expanding g or h into
lower-level functions. Each such way of completing (8) is called a control
structure and represents a unique relationship of data and control flow among
the functions that make up the system. Note the intimate relationship involved
here between data flow and control flow: the flow of control is specified

in (8) by specifying the flow of data among various functions in the tree.

Data flow and control flow can thus be viewed as "duals," since we cannot have
one without the other and, in fact, we get one precisely by specifying the
other. This is a very different sense of "dual" from the category-theoretic
sense described in Section 1, however (see Cushing, 1977 for more discussion).

HOS recognizes three control structures as primitive, since any other control
structure can be expressed in terms of those three. The composition primitive
control structure is illustrated as follows:

y = f(x)

y = giw) w = h(x)

In this control structure, one lower function takes the input of the higher
function and produces an intermediate output which the other lower function
takes as input to produce the output of the higher function. In (9), in other
vords, X gets mapped to y by f through first being mapped to w by h and then
having w be mapped to y by g.

The set-partition primitive control structure is illustrated as follows:

y = f(x)
"IN/E)/\P(X] (10)
N
ly = g('x) 2y = (%)

17
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In this control structure, the input values are divided into two distinct sets,
according to whether or not they satisfy some predicate. Each lower function
then maps one of these classes to output values independently of the other lower
function. In (10), in other words, x is mapped to y by f through first deter-
mining whether x has the property P: if x has P, then it gets mapped to y by

h, but if it does not have P, then it gets mapped to y by g. The left super-
scripts serve to underscore the fact that two distinct varieties of inputs and
the outputs resulting from them are being distinguished in the tree.

The class-partition primitive control structure is illustrated as follows:

y = f(x)
(M)

¥y = 9(xy) ¥, = hix,)

In this control structure, the input values themsclves are seen as being made

up of smaller units, e.g., vectors and their components, and the units are mapped
one by one and independently by the lower functions to the units that make up
the output values. In (11), for example, x values are seen as each consisting
of both an X1 value and an Xy value, in that order, and these are mapped to N
and 78 respectively, which make up y, by g and h, respectively. As in (10),
but in contrast to {9), g and h work entirely independently of each other in
(11); the difference between (10) and {11) is in the relationship borne by g

and h to f in the two cases.

3. Control Maps and Commutative Qiagrams

In the last section we outlined the basic HOS notions of control map and primitive
control structure in more or less traditional mathematical terms, such as “in-
puts,” “"outputs," and the like. In this section, we ask: What happens if we
try to reformulate these definitions in terms of the arrow language we dis-
cussed in Section 1?7 Answering this question amounts, first, to figuring out
what basic mappings are involved in each primitive control structure and, then,
expressing the relations among these mappings in terms of commutative diagrams.
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The composition primitive control structure is easy, because it really amounts
to the same thing as category-theoretic composition. This primitive control
structure looks essentially like the following:

y = f(x)
(12)
y = g(w) w = h(x)

Each of the variables "x," “y," "w," takes on values belonging to some set
(structured algebraically as a data type, c.f. Cushing, 1978). Let the "x"
set be A, the "w" set be B, and the "y" set be C. What {12} tells us, first
is that there are three distinct mappings involved in this primitive control
structure, namely, f mapping A to C, g mapping B to C, and h mapping A to B.
In arrow terms, we can write these mappings in the form

The control map also tells us, however, and this is key, that the joint effect
of h followed by g has exactly the same effect as f alone; that is, if we want
to perform f, we can do it just as well by forgetting about f and doing h and
then g, instead. In arrow terms, this tells us that the diagram

h
A————B
f 1 g (13)
C

is commutative. Diagram (13}, however, is exactly the same as (1), except for
the labelling of the mappings. Diagram (13) describes the situation in which
f can be eprformed by performing h and then g, instead, whereas (1)} describes
the situation in which h can be performed by performing f and then g, instead.




e

It follows that we can rewrite {1) as the HOS control map

= h{x)
(14}

y = glw) w= f{x)

switching, in effect, the names of ¢ and h. Clearly, for our present purposes,
names are unimportant; what matters is the equivalence, in terms of the relations
among the relevant mappings described in the respective diagrame, of (1) ard (14).
Diagram (12) is the same as (13), and (14) is the same as {1); in other words,
the diagrams

h
A—

= 4 [i T s

y = f{x)

¥ = g(w) W

h{x)

ara equivalent, as indicated, the first expressed in HOS terms, while the second
is expressed in category-theoretic terms.

The class-partition primitive control structure is not so easy; its arrow-language
interpretation is not obvious at all. Class-partition looks essentially like
the following:

y = f{(x)

(16)

¥y = 9(x) Yo = hix,)

Now what does (16) tell us about the mappings f,g, and h? We know that f can be
performed by performing g and h instead--this is what every control map tells
us: higher-level functions can be performed by performing the immediately lower
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ones instead--but this tells us nothing about how to write this fact in terms
of arrows, since g and h are clearly not related by composition. Let us put this
fact aside, temporarily, and see what else we can learn from (16).

We knew from our discussion in jection 2 that "x" in {16) takes on values that
are complex relative to the values of “x]“ and “xz“: Xy and X, are the units,

in order, that make up X. The diagram thus presupposes two mappings-- call them
d] and d2' respectively--which map x values to their respective X, and X, component
values. The values of "y," furthermore, are also complex, relative to the values
of “y]" and “yz": N and y, are the units that make up y. Two other unshown
mappings are thus also presupposed by (16), a mapping--call it ﬁ]-—that maps y
values to their 2 values and a mapping--call it wz--that maps y values to their
2 values. If we again let A be the set of x values and C the set of y values--
we do not need B, because there are no w values this time--and we now let A] and
Az be the sets of Xy and Xo values, respectively, and C] and C2 the sets of N
and y, values, respectively, then we see that (16) describes a situation in-
volving the following seven mappings:

f d]

A+C A oA
shown explicitly y

A 3 C in the control 2 implicit in the
1 1 map A -+ A2 notion “"class-
partition"

h "

Ay > Cp ¢ > G
"2

C -+ C2

rather than just the three shown explicitly in the control map.

Now what does {16) tell us about the relationships among all these mappings?

We have observed, and have temporarily put aside the fact, that f in (16) is per-
formed by performing both g and h. This fact, however, is precisely what we

need to answer our question about the seven mappings. If we put the four extra
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mappings explicitly into the control map (16), we end up with a diagram 1ike the

following:

(17)

b}
¥, = hix,)
rarnrvren

The two straight lines are from the original control wap (16); the two dashed
lines denote d] and d2 from x to X) and Xp' the dotted Yines denote LR and L)

from y to 12 and Yy the three wavy lines denote the original mappings f, g, and
h, from x to y, from X) to Yy and from Xo 0 ¥p. These extra lines just make
explicit what is implicit in the notion "class-partition” in (16). Note the

directions of the arrows,

however,

There are only four ways, in (16), that we

can complete full paths consisting of more than one arrow, the minimum number
of arrows that we need to compare paths in a commutative diagram, as we saw in
connection with (2). In (17), the four relevant paths are as follows:

f

R

(a) x2owver yooosser 12

(18)

f
(c) X ananter 3 y-ccco-+ y2

(d) x--=-- + Xy
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What this tells us is that we can get from x to Yy either by first perferming
f and then Ty OF by first performing d, and then g, and that we can get from

x to y,, either by fiist performing f and then ity OF by first performing d2

and then h. In other words, paths (a) and (b) in (18) perform exactly the same
mappings from x values to N values, and paths (c) and (d) perform exactly the
same mappings from x values to Yy values.

These equivalences give us the following commutative diagram, as an account of

the relationships among the mappings that are explicitly and implicitly involved
in (16):

QT f ]h (19)

To say that g and h are related to f by the class-partition primitive control
structure is thus to say, at least in part, that there are mappings M Tpo dl'
d2 such that the diagram in (19) commutes.

Now what about the sct-partition primitive control structure? Set-partition
looks essentially like the following:

y = f(x)




Again, we have to ask what (20) tells us about the mappings f, g, h, and, again,
we have to observe that these are not the only mappings involved. The vailuves of

"]x." "zx." "]y." "zy" in (20) are not components of the values of “x" and "y",

as are “x].“ "xz.“ "y].“ "yz" in (16). T1he values of "]x." “zx." “]y." "zy”

in (20) are themselves whole values of x; the point about these values in set
partition is that "]x." "zx." while themselves values of "x" in the domain, are
also values of “x" in one of the sets that partitions the domain. In other
words, if we let A] be the set of "x" values that satisfy “+P(x)," Ay the set of
“x" values that satisfy "P(x)," and A, again, the set of “x" values, altogether,

then we have to distinguish between an "x" value a as a member of A and a as a
member gj_Al or A,, even though the same a is involved in both cases. If we Jet

C, again, be the set of “y" values; C] the set of "y" values that come from “x"
values in A]; and C2 the set of "y" values that come from “x" values in AZ‘ then,
similarly, we have to distinguish between a "y* value ¢ as a member of C and the
same "y" value ¢ as a member of C] or CZ' (Note that, while A] and Az must be
mutually exclusive and exhaustive, C] and C2 do not, since this will depend on
the effects of f, g, and h.)

It follows that, as with class partition, there arc more mappings involved im-
plicitly in set partition than are shown explicitly in (20). Given the sets
A, A], Az. c, C]. CZ' we have to distinguish, again, four mappings other than
f, g, and h: a mapping i] from A] to A that takes each member of A] to itself
as a member of A; a mapping i2 from Az to A that takes each member of Az to
itself as a member of A; a mapping j] that takes each member of Cy to itself
as a member of C; and a mapping jz that takes each member of C2 to itself as

a member of C. This gives us the following seven mappings:

f
A-—C

g
Al—/ G

h
hy— G,

]

1
A]-—~>A

iy
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# as the mappings really involved in (20).

Again, we can determine the relationships among these mappings by putting them
all explicitly into the control map, in this case (20). This gives a diagram
that looks like the following:

(21)

Again, the straight 1ines are from the original control map, and the wavy lines
denote the original mappings f, g, and h; the dotted lines, this time, denote
the § mappings, and the dashed 1lines denote the i functiuns. If we note the
directions of the arrows, we again see that there are only four ways of com-
pleting full paths of more than one arrow, as follows:

1 " f
R - > X Aty
g o

LAAAAAAAAIA A yccnno-.). y
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These relationships then give us the following commutative diagram, as an account
of the relationships among the mappings involved in set partition:

h (22)

To say ihat g and h are related to f by the set-partition primitive control
structure is to say, at least in part, that there are mappings i], iz, j], j2
such that the diagram in {19) commutes.

4. Primitive Control Structures and the Primacy of Process

Diagrams (19) and (22) are interesting in their own right, because we said we
wanted to determine how the definitions of the primitive control structures

could he reformulated in arrow-language terms, and {19) and (22), along with the
straiglitforward {15), provide the answer to this question. If we examine these
two diagrams more closely, however, some further interesting facts emerge con-
cerning the basic properties of and relations between the orimitive control
structures they represent.

If we ignore the labels for the various parts of (19) and (22), (clearly what
we call things i< not of fundamental importance}, and compare the structures
of the diagrams themselves (see (23}), a very surprising fact emerges.

Clearly, (19) and (22) are identical, except for the fact that the arrows are

reversed! Since f points in opposite directions in the two cases, we might
be led to suspect that either diagram could be transformed into the other by
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domain of f

4

range of f
{19} [22)

turning it upside down, but this is easily seen not to work. The difference
between (19) and (22) is deeper tnan just the orientation of the diagrams on
the page. In (19) all arrows other than f itself that touch either the domain
or range of f point away from them, while all such arrows in (22) point toward
them. The difference between the two diagrams is really solely a matter of the
directions in which corresponding arrows point.

It follows that set-partition and class-partition are category-theoretic duals,
as we defined this notion in Section 1, & fact that we would never have been

able to guess at from (10) and (11) alonz. Given any theorem about either
set-partitions or class-partitions that is formulated entirely in terms of arrow-
defined notions, we can automatically obtain a theorem about the other primitive

]
control structure by simply replacing each arrow-defined notion by its category-
theoretic dual. No further proof of a theorem obtained in this way would be
necessary.

|

So much for comparing (19) and (22) themselves. What happens if we compare these

two conmitative diagrams to those we examined in Section 1. If we again ignore

labels, which are entirely arbitrary, as long as our usage of them is self- -
consisteni, then another interesting fact emerges: "
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range of f range of p .
[22) {(5)

Diagram (19) is identical to (4) and diagram (22) is identical to (5), except
that, in each case, each basic mapping in (4) or (5) is further broken up into
two submappings related by composition. The only difference between (19) and
(4), in other words, is that the arrow that represents Py in (4) is broken up
into two composed arrows in (19), namely, g and d], and the arrow that represents
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p, in (4) is broken up into the two composed arrows h and d, in (19); (22),
similarly, differs from (5) only in that 9 in (4) is written as g followed by
dy in (22), and g, in (4) is written as h followed by j, in (22).

This difference is easy to explain in that Arbib and Manes are interested solely
in defining the product and co-product A in (4) and (5) and are not interested
in any properties C might have, other than its being a set, whereas, in HOS we
want to partition both the domains and ranges of our functions, so that we

can guarantee the traceability of data flow. The range in set-partition cannot
always be partitioned exhaustively and in a mutually exclusive way, as can the
domain and both the domain and range in class partition, but we still want to
keep track of which outputs come fromwhichpartition member of the domain, as
indicated in left superscripts on the variables in (10) and (20). Clearly, the
effect of j] and jz in (22) (see (25)) is precisely to achieve this effect.

We see that the commutative diagrams that are implied by the class-partition

and set-partition of functions in HOS are essentially the same as the diagrams

that define the product and co-product of sets, respectively, in category theory.
The single minor difference between the two sets of commutative diagrams reflects

a slight difference in goals that is easy to understand and explain. There is

more to this difference in goals than might be apparent from how it shows up in

the diagrams, however. A deeper point emerges when we step back fromthesimilarity
of the commutative diagrams and examine the use to which the diagrams are being

put in each case.

Arbib and Manes use {4) and {5) to define a set that is related to two given |
sets through the relation of being their product or co-product: a set A is the

product or co-product of sets A] and A2 if there is a unique mapping p or q,
respectively, that makes (4) or (5), respectively, commute. The primitive

control structures associated with (19) and {(22), however, are used in'HOS to {
definea function (mapping) that is related to two given functions through the
relations of set-partition or class-partition: f is related to g and h by class-
partition or set-partition if f is the unique mapping that makes (19) or (22), "

b,

respectively, commute; clearly names do not matter, in this context, and we could
Jjust as well call f the product or co-product of g and h.




This difference between the category-theoretic use of (4) and (5) and the HOS
use of (19) and (22) looks very much, it seems, like the difference between
set-theory and category theory that Arbib and Manes outline in the passdges
cited in Section 1. Whereas “"the usual approach to set theory" focuses on sets

and the elements which make them up, category theory treats sets themselves

as unitary wholes--elements, so to speak--and focuses on the mappings between
them. Similarly, whereas Arbib and Manes use (4) and (5) to define sets, HOS
uses the relations expressed in (19) and (22} to define mappings. In this sense,
then, what HOS seems to do is to take the basic idea of category theory--i.e.,

shifting emphasis from sets of elements to mappings--and carry it one step further.

Its emphasis on the functions that systems perform seems to be one of the key
features that distinguishes HOS from other systems theories, such as that of
Mesarovic and Takahara (1975). Mesarovic and Takaharadefinea system as a rela~
tion, i.e., a particular kind of set; ",..to enable a system or its restrictions,
which are both in general relations, to be represented as functions...new auxiliary
objects, termed state objects, had to be introduced" {p. 10). This situation

seems to bother Mesarovic and Takahara somewhat, and they make some attempt

to justify it, arguing that it is necessary because of the nature of mathe-

matics.

A system is defined as a set (of a particular kind, i.e., a rela-
tion). It stands for the collection of all zppearances of the ob-
ject of study rather than for the object of study itself. This is
necessitated by the use of mathematics as the language for the

theory in which a ‘mechanism' (a function or a relation) is defined

as a set, i.e., as a collection of all proper comhinations of com-
ponents. Such a characterization of a system ought not to create

any difficulty since the set relation, with additional specifications,
contains all the information about the actual 'mechanism' we can
legitimately use in the development of a formal theory (p. 7).

As we have seen here, however, it really is not necessary at all in mathematics
to define a function as a set, since functions can just as well be treated as
unitary basic objects, as in category theory.

Mesarovic and Takahara's apparent discomfort with the treatment of systems

as sets seems to reflect a genuine intuition about systems that is captured
directly in the HOS approach. Real-world systems are things that do things,
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not just collections of objects or their n-tuples. While we can develop coherent,
even useful, theories that treat systems as sets, introducing their functional
character--the processes they undergo--only indirectly after the fact, it would
seem intuitively more natural and more in accord with the actual! character of
real-world systems to recognize a system's function as its primary aspect and

to base our theory on that recognition. This is essentially the approach that

is taken in HOS.
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Part B

HOW TO DO A DATA TYPE

S. Cushing
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(1)

LIST ALL GPERATIONS YOU THINK MIGHT BE
USEFUL IN CONNECTION WITH THE TYPE:

OPERATIONS ON THE TYPE MEMBERS
AND
OPERATIONS THAT PRODUCE TYPE MEMBERS




(2)

LIST ALL PROPERTIES YOU THINK MEMBERS OF THE
TYPE MUST HAVE; LOOK OUT ESPECIALLY FOR INVERSE
OPERATIONS AND DISTINGUISHED ELEMENTS; _

ALL THESE PROPERTIES MUST BE EXPRESSED IN AXIOM
FORM IN TERMS OF OPERATIONS IN (1) OR OPERATIONS
ALREADY AVAILABLE ON OTHER TYPES;

IF NECESSARY, ADD NEW OPERATIONS TO (1) TO GET
(1'), AND RECORD AMY DISTINGUISHED ELEMENTS.



(3)

DETERMINE FROM (2) WHICH OPERATIOGNS IN (1') CAM
BE EXPRESSED EXPLICITLY IN TERMS OF OTHERS:
REMOVE THOSE OPERATIONS FROM (1') TO GET (1");
REMOVE THE RELEVANT PROPERTIES FROM (2) TO GET
(2")

(THERE MAY BE ALTERNATE CHOICES POSSIBLE;
USE YOUR JUDGEMENT AND REMEMBER WHAT CHOICES

WERE MADE, IN CASE YOU LATER CHANGE YOUR MIND)




() DETERMINE WHICH PROPERTIES IN (2°) CAN BE PROVEN
FROM OTHERS AND REMOVE THEM FROM (2') TO GET (2"),

(AGAIN, THERE MAY BE CHOICES AND THE SAME PROVISO
HOLDS)

THIS GIVES YOUR TENTATIVE AXIOM SET (TAS)
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(5)

TRY VERY HARD TO LERIVE A CONTRADICTION FROM
THE AXIOMS IN TAS: IF YOU CAN, THE AXIOMS ARE
INCONSISTENT;

DETERMINE WHERE THE INCONSISTENCY RESIDES AND
MODIFY TAS ACCORDINGLY;

THEN REDO THIS STEP AS NECESSARY:

WHEN YOU CAN NO LONGER DERIVE A CONTRADICTION,
YOU ARE AT LEAST ON THE RIGHT TRACK;

THE AXIO0MS IMAY BE CONSISTENT.
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(6) CONSTRUCT A MODEL FOR THE AXIOMS OR SHOW THAT
THEY INSTANTIATE A NMORE GENERAL AXIOM SYSTEM
KNOWN TO BE CONSISTENT;
IF EITHER 1S POSSIBLE, THE AXIOMS ARE CONSISTENT,
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% NOTE 1: CONSISTENCY

A PHYSICAL MODEL FOR THE AXIOMS PROVES
CONSISTENCY ALSOLUTELY: IF SOMETHING
EXISTS, ITS PROPERTIES ARE CONSISTENT,

A MATHEMATICAL MODEL OR INSTANTIATION PROOF PROVES
CONSISTENCY RELATIYE TO THE CONSISTENCY OF THE MODEL
OR MORE GENERAL SYSTEM: FOR PRACTICAL PURPOSES, THIS
IS ENOUGH, BECAUSE IF MATHEMATICS ITSELF TURNS OUT
TO BE INCONSISTENT, ALL BETS ARE OFF.




NOTE 2:  COMPLETENESS

THERE IS A FUNDAMENTAL UPPFR BOUND ON COMPLETENESS
OF TYPES:

GODEL’S THEOREM: ANY CONSISTENT AXIOMATIC SYSTEM
THAT IS POWERFUL ENOUGH TO IN-
CLUDE ARITHMETIC IS INCOMPLETE,

I.E., NO MATTER HOW MANY AXIOMS WE HAVE FOR A TYPE

THAT RELATES TO THE NATURAL NUMBERS, S0ME PROPERTIES

OF ITS MEMBERS WILL NOT BE PROVABLE FROM THE AXIOMS:
THESE PROPERTIES ARE USUALLY VERY OBSCURE, HOWEVER;

WE CAN ALWAYS AXIOMATIZE COMPLETELY FOR A GIVEN SET

OF PROPERTIES, WHICH IT'S UP TO US TO SPECIFY;

THUS COMPLETENESS IS ALWAYS RELATIVE TO WHAT YOU HAVE

IN MIND; WHAT PROPERTIES DO YOU WANT THE SYSTEM TO HAVE?




EXAMPLE: TIME

YOU MAY MEAN BY "TIME” JUST A LINEARLY ORDERED
SEQUENCE: IN THAT CASE, ALL YOU NEED IS A LIHEAR
ORDERING.

EARLIER NOW LATER

1A%




g -

YOU MAY WANT TO TALK ABOUT TIME GOING FORWARD, BUT NEVER
HAVE 1T GO BACKWARD: IN THAT CASE, YOU ALSO NEED AN
OPERATION ADVANCE

ADVANCE

N

EARLIER NOW LATER




YOU MAY WANT TO BE ABLE TO RUN YOUR SYSTEM BACKMARD;
IN THAT CASE, YOU ALSO NEED AN OPERATION REGRESS

Z REGRESS
N
EARLIER NOW LATER

BUT WATCH OUT: WE WON’T NEED REGRESS AS A PRIMITIVE
OPERATIUN, IF WE HAVE ADVANCE AND REVERSE, BECAUSE
IT CAN BE EXPRESSED IN TERMS OF THEM AS A CONTROL MAP
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EXAMPLE:

HOW TO DO TINE




(1) LIST ALL OPERATIONS YOU THINK MIGHT BE
USEFUL ON THE TYPE:

i
Before: operates on timus, produces booleans
) i After: operates on times, produces booleans
Notafter: operates on times, produces booleans
Nottefore: operates on times, produces booleans
Y Advance: operates on times, produces tlmes
[}
' Reverse: operates on tImes, produces tlmes
Regress: operates on times, produces times
[
b
b
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(2) LIST ALL PROPERTIES YOU THINK MEMBERS OF THE
TYPE MUST HAVE:

properties of Bafore: Before(t,t) = False etc.

properties of After: After(},t} = False

((Affer(fl,fz) & AfTer(?2,+3)):) Affer(fi,f3)) = True etc.

propertles of Notafter: Notafter(+,t) = True

{(Notafter(t ) & Notafter(t,,t,)) D Equal(fl,f 1) = True

112 2+ Ty 2

Notafter(t ,t,) ! Notafter(t,,t) = True etc.

properties of Notbefore: slmilar to Notafter

propertles of Advance: Advance(t,NotIme) = t
{Note that Notime must be recorded as a distinguished element)

Advance(fl,?zl = Advance(12,+|)

Advance(t Advanca(12,13)) = Advance(Advance(f',12).T5) etc.

mixed prone.ties: Advance(Reverse(t),t) = Notlme

2 I) = NoTafTer(?z,NoTime)

Advance(Regress(fl,Tzl,fz) = Tl etc.

Nofaf?er(Advance(f|,1 ),




' (3) DETERMINE FROM (2) WHICH OPERATIONS IN (1")
: CAN BE EXPRESSED IN TERMS OF OTHERS:

AS AN EQUATION:

Before(fl,f ) = Nofaffer(Tl,fz) & Nof(Equa!(Tl,Tz))

2

OR AS A CONTROL MAP:

b, = Before(t,,1.,)

| 1*72
by = &(b,,b;) (by,bg) = £ 04,1,)
#f##,ff“”#’##ﬁhhh“wﬁhhhh
(b),by) = fz(zl’$2’7"72) (;I’EZ’TI’TZ) = Clone,{t ,1,)
b, = Noluflat(él,gzl. by = fs(T‘,:z)
b3 = Nof(b4) b, = EquaI(TI,TZ)
SO WE CAN REMOVE BEFORE FROM (1'), KEEPING NOTAFTER




SIMILARLY,

\ AS AN EQUATION:
Regress(fl,tz) = Advance(tl,Reverse(fz))

OR AS A CONTROL MAP:

f5 & Regress(t|,12)

t, = Advance(15,14) 15,f4) = f(t!,le

3

]
e = Idenf!fleTI} f‘ = Ravarsa(fzi

5

S0 WE CAN DELETE REGRESS FROM (1’), KEEPING ADVANCE AND REVERSE

ETC.




NOTE: THESE PARTICULAR CONTROL MAPS ARE MORE COMPLICATED
THAN THEY NEED BE, BECAUSE ONLY PRIMITIVE CONTROL
STRUCTURES ARE USED.

THIS IS FOR EXPOSITORY PURPOSES ONLY,
CONTROL MAPS CAN BE GREATLY SIMPLIFIED BY USING
ABSTRACT CONTROL STRUCTURES -- AND REMEMBER:

IT GETS EASIER WITH PRACTICE
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) DETERMINE WHICH PROPERTIES IN (2°) CAN BE
PROVEN FROM OTHERS:

SUPPOSE WE HAVE THE THREE AXIOMS

{1} Notatter(t,t) = True

(2) ((Nofaftcr(fl,fz) 4 Nofaffer(fz,fi)) :)Equa!{+|.12)) = True

(3) Notafter(t,,fz) & Nofaffcr(Tz,f|) = Eqnal(fi,fz)

HERE (3) cAN RE PROVEN Fkom (2) awp (1), AND EACH
ofF (2) anp (1) cAN BE PROVEN FROM (3), SO WE DON'T

NEED ALL THREE AXIOMS.

USE YOUR JUDGEMENT.

KEeP EITHER (3) or (2) Anp (1), DEPENDING ON WHAT
YOUR EXPERIENCE AND YOUR KNCWLEDGE OF YOUR PARTICULAR
PROBLEM TELL YOU WILL BE MOST USEFUL.
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k STEPS (1) - (4) GIVE US A TENTATIVE AXIOM SET SOMETHING
LIKE THE FOLLOWING (DEPENDING ON THE CHOICES THAT WERE MADE):

- —

(1) Notafter(t,t) = True

1.

(2) ((Notafter(t ) & Nofaffer(f?,fS)):) Nofaffar(f‘,fs)) = True

i’°2

(3) ((Nofaffer(fi,fz) 3 Hofaffer(?z,fi)):) Equal(fl,fz)) = True

(1) Nofaffer(fl,fz) ! Nofaffer(f2.1|) = Jrue

{(5) Advance{t,Notimg) = t
(6) Advance(fl,fz) = Advance(f,,f')

{7) Advance(t Advance(fz,TS}) = Advance(Advance(?l,12),13)

I’

(8) Nofaffer(Advance(ii,fz),fl) = Notafter(t,,Notime)

(9) Advance(Reversea(t),t) = Notime
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g (5) TRY 70 DFRIVE A CONTRADICTION: IN THIS CASE
' YoU CAN'T (TRY ITD

‘ BUT SUPPOSE WE HAD GOOFED AMND WRITTEN
{(*) Notafter(t,t) = False

INSTEAD OF AXIOM 1; THEN LET

| ‘l‘l'-‘l‘
t, =t
¥
THIS GIVES
| ¥ Notaftor(,,1,) = Notafter(f,1) = Faise
and Nufaffer(fz,fi) = Motafter(t,t) = False \

' SO WE GET

Nofaffer(fi,fz) ! Nofaffer(fz,fi) = False

BUT THIS CONTRADICTS AXIOf 4!

; THIS WOULD REQUIRE RE-EXAAINING THE AXIOMS TO SEE WHAT
WENT WRONG; WITH A LITTLE THOUGHT WE WOULD FIGURE OUT THAT

(*) SHOULD HAVE BEEN 1.




—rTetw T ae

(6) CONSTRUCT A MODEL FOR THE AXIOMS:
' IN THIS CASE A MATHEMATICAL MODEL CAN BE CONSTRUCTED

FOR TIME TAKE THE RATIONAL NUMBERS

Notafter <
Advance +
Reverse 0-
Notime 0

THE AXTOMS THEN BECOME

(1 (r<r)=True TRUE!
(2) ((rl_i ro & r, < r3):) F f_rs) = True TRUE?
(3) ((rl_i r, 4 r, 2 rl):) r = r2) = True TRUE!
(4) (rp<r, tr, f_r‘) = True TRUE!
(5) r+0=r TRUE!
(6) " + Fy =Ty + o TRUE!
(7) " + (r2 + r3) =(r] + r2) + s TRUE!
(8) ((rI + rkt f_rl) = (r2 < 0} ) TRUE!
(9) (1) + 1 =0 ' TRUE!

SINCE THE AXIOMS HAVE A MODEL THEY ARE CONSISTENT




NOTE: THE RATIONALS ARE A MODEL FOR THESE TIME AXIONS

BUT NOT THE ONLY MODEL;
ONCE WE HAVE A MODEL, WE KNOW THE AXIOMS ARE CONSISTENT;

BUT ONCE WE KNOW THE AXIOMS ARE CONSISTENT,

WE CAN THEN CHOOSE ANY MODEL:

IN OTHER WORDS, AMY IMPIEMENTATION OF THE OPERATIONS
IS OKAY, AS LONG AS IT SATISFIES THE AXIOMS;

WHICH IMPLEMENTATION YOU CHOOSE DEPENDS ON YOUR
APPLICATION AND YOUR JUDGEMENT



¥

DATA TYPE: TiME;
PRIMITIVE OPERATIONS:
Timu3 = Advance(fimel,

boolean = Notafter(time

1im92);

I,1|me2);

time, = Reverse(fimel);

2
AX10MS:

VHERE +,1 ARE TIMES;

I"rz’-rj
VHERE Notime 1S A CONSTAMT TIME;
Notaftor(t,t) = True;

((NoTafier(Tl,Tz) & Nofaffer(TZ,TS)):D HoTaf%er(fl,TS)) = True;

({(Notafter(t ,Tz) & No+af+er(12,T|)):D Equal (1 fz)) = True;

NoTachr(Tl,+2) ! Nofaf1cr(#2,1l) = True;

Advance(t,Notimes) = +;

Advance(t, ,t,) = Advancc(fz,fll;

1’°2

Advancc(Tl,Advance(Tz,TS)) = Advance(Advance(Tl,12),13);

Notafter (Advance(t,,t,),1,) = NoTafTer(Tz,N0+ime);

i’ 2 i
Advance(Reverse(t),t) = Notime;

END TIME;

()

(2)

(3)

(4)

(5)

(6)

N

(8)

(9}
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pAaTA TYPE SCALAR

DATA TYPE: SCALAR;

PRIMITIVE OPERATIONS:

ey L e

scalar3 = SSum(scalarl,scalarz);
scalar3 = SMult(scalarl,scalarz];
scalar, = SOpp(scalarl);

scalar2 = SInv(scalarl);

AX1ICMS,

WHERE SC,5Cy,5€,,5C ARE SCALARS;

WHERE SZero,Slinit ARE CONSTANT SCALARS;

' SSum(scl,SSum(scz,scs)) = SSnm(SSum(scl,scz),scs]; (1)
SSum(sc],scz) = SSum(scz,sclj;. (2)
SSum(sc,SZero) = sc; : {3)
SSum(sc,S50pp(sc)) = SZero, 1)
SMult(scl,SMult(scz,scs]) = SMult[SMult[scl,sczl,scs}; (5)
SMult(scl,scz) = SMult(Scz,Scl); (6)
SMult(sc,SUnit) = sc; (7)
51n§(52cro) = REJECT; (8)

SMult (sc,S5Inv(sc)) = KUnit(lsc) AND KREJECT{ZSC]; %)
? PARTITION OF sc IS -

1sc|sc # Szero,
2sc[:’-c = Siero;

SMuIt(scl,SSum(sc2,5c3)) = SSum(SMult{scl,scz),snult(Scl,scS)); (10)




t
! paTA TYPE VECTOR
b

|
DATA TYPE: VECTOR,;

PRIMITIVE OPERATIONS:

t
vcctor3 = VSum(vcctorl,vcctorz);
vector, = VOpp(vcctorl);

\'cctorz = \’Mult(scalar,\'cctorl); )

§

AX10MS:
WHERE v,V ,v,,V; ARE VECTURS;
A | WHERE 5¢,8¢) ,8¢C, ARE VECTORS;
WHERE VZero 1S A CONSTANT VECTOR;

‘ VSum(vl,VSum(vz,vs)) = VSum(VSum(vl.vz),vs); | (1
VSum(vl,vz) = VSum(vz,vl); (2)
VSum(v,VZero) = v, ' (3

i VSum(v,VOpp(v)) = VZero; ' (4)
viult (SUnit,v) = v; (5)

, .
VMult(SSua(sc, ,sc,),v) = VSun(Viult(sc ,v),Wult(sc,,v)); (6)
T
% Viult (sc,Vsum(v,,v,)) = Vsum(VMult (sc,v) ), Viule (sc,v,)); (7)
| Wult ($Mult(se,,sc,),v) = VMult(se),Viult(se,,v)); (8)
{ :
i END VECTOR;
1
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DATA TYpe ADDRESS

DATA TYPE: ADDRESS;

PRIMITIVE OPERATIONS:

boole:m2 = Equal(addrnss’,addrosszl;

AX1045:

WHERE A A2 ARE. ADDRLUSSES;

Equal(AI,AI) = True;

Equal(Al,Az) = EquaI(Az,Al);

Enfai!s(Equal(Al,AZ) & EquaI(Az,Aj),tqual(Al.A

END ADDRESS;

True;




UATA TYPE: ADDRESS;
PRIMSTIVE OPERATIONS:
AXIOMS:

END ADDRESS;
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paTA Type STACK

DATA TYPE: STACK;

PRIMITIVE OPERATIONS:
Push(sfackz,integcr');

s1ack|

]

stack Pop(s*ackz);

|
lnfcger' = Top(sfackl);

AXIOMS:
WHERE Newstack IS A COMSTANT STACK;
WHERE s |S A STACK;

WHERE { 15 AN INTECER;

Top{Newstack) = REJECT;
Top(Push(s,i)) = i;
Pop(Newstack} = REJECT

Pop{(Push(s,i)) = s;

END STACK;




v

?
PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY
17-24 16 12-15 9-11 3-8 1-2
'
{ ] I T I
| ! | !
PRIORITY | PRIORITY | PRIORITY | PRIORITY ) PRIORITY ¢ PRIORITY
'8 24 | 16 | 15 l n I 8 | 2
| ! ! : | |
| I | ! 1
s &

STRICT PRVORITY QUEUE: Entrance strictly by priority; arrows show
exlt pomt. entrance points, and direction of flow through queue.
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patA Type STRICT PRIORITY QUEUE

DATA TYPE: QUEUE;
PRIMITIVE OPERANTIONS;

queue,, == Add(joh,queuel);

2

queue,, = Rcmovo(queuel);

2
job = Front{quecue);
boolcan == Equal(queuel,queuez);

natural = Size{queue);

AXIOMS:
WHERE Nullq IS A CONSTANT QUERUE,

WHERE Capacity IS A CCNSTANT NATURAL;

1. Front{Nullq) = REJFCT;
. _ 1. . 2 , 3
2. Front(add(j,q)) = ~j AND Front(“q) AND Ko ... (7q);

3. Remove(Nullq) = REJECT;

. )| 2, 2 3
. y af(: s2 AND Add(7),R : \D K :
4 Remove (Add (j,q) g AN (“),Remove ("q)) AND hREJECT( qa);
PARTITION OF (j,q) IS

l(j,q)](Equal(q,Nullq)!>(Prinrity(j),Priority([-‘ront(q)))) &
Size(q) <Capacity,

J(j,q)l(Not(Equal(q,Nullq))&i(Priority(j),Priority(Front(q))))
& sizel(q)<Capacity,

3(j.Q)|Size(q)zcapacity;

5. Equal (Nullq,Nullqg) = True;

it

6. Equal (Nullg,Add(j,a)) Faluc;

7. Fqual{add(j,q),Nullq) = False;

8. Equallddd(j,,qy), Add(i,.q,)) - Equal{jy.iy)e Rquallg,.q,)s
9. Size(Nullqg) = Zero;

10, Size(Add(j,q)) = Succ(sizcgcg)) AND Surc(Sizu(zq))ANU K (sq);

REJECT

LA N IR ATRIATE | A0S




Part 9

FUZZY SETS AND APPROXIMATE REASONING

L. Vaina
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"Both precision and certainty are false ideals.
They are impossible to attain, and thercfore
dangerously misleading if they are uncritically
accepted as guides. The quest for precision is
analogous to the quest for certainty and both
should be abandoned. 1 do not suggest, of course,
that an increase in the precision of, say, a
prediction, or even a formulation, may not some-
times be highly desirable. What 1 do suggest is
that it is always undesirable to make an effort
to increase precision for its own sake--especially
tinguistic precision--since this usually leads

to lack of clarity, and to a waste of time and
effort... One should never try to be morec precise
than the problem situation demands."

- Karl Popper
Unended Quest, 1976
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FUZZY SETS AND APPROXIMATE REASONING

Much of the decision making in the real wvorld takes place in an environment
in which the goals, constraints, and consequences of possible actions are
not known precisely. To deal quantitatively with this imprecision, we
usually employ the concepts and techniques of probability theory, and,
more particularly, the tools provided by decision theory, control theory,
and information theory. In doing 55, we are tacitly accepting the premise
that imprecision, whatever its nature, can be equated with randomness.
This, in my view, is a questionable assumption. I claim that there is a
need for differentiation between randomness and fuzziness, with the latter
being a major source of imprecision in many decision processes. By fuzzi-
ness we mean a type of imprecision which is associated with fuzzy sets;

that is, classes where there is no sharp transition from membership to non-
membership. In sharp contrast to the notion of a class or a set in
mathematics, most of the classes in the real world do not have crisp
boundaries which separate those objects which belong to a class from those
vhich do not.

What is the distinction between randomness and fuzziness? Randomness
has to do with uncertainty concerning membership or non-membership of
an object in a nonfuzzy set. Fuzziness has to do with classes ia which
there may be grades of membership intermediate between full membership
and non-membership.

Example: “The grade of membership of John to the class of tall

wen is 0.7 " is a nonprobabilistic statement concerning the membership
of John in the fuzzy class of tall men, whereas "the probability
that John will get married within a year is 0.7" is a probabilistic
statement concerning the uncertainty of the occurrence of a nonfuzzy
event (marriage).

Reflecting this distinction, the mathematical techniques for dealing with
fuzziness are quite different from those of probability theory. They are
simpler in many ways because to the notion of probability measure in
orabability theory corresponds the simpler notion of membership function
in the theory of fuzziness.
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In speaking of the variety of imprecision, a point that is in need of
clarification relates to the distinction between fuzziness and vagueness.
Vagueness is viewed as a particular form of fuzziness. So, a fuzzy pro-

class quite tall. A vague proposition, on the other hand, is one which
is (1) fuzzy and (2) ambiguous--in the sense of providing insufficient
information for a particular purpose. Seo, "John is quite tall"” may not be
sufficiently specific for deciding which size of car to buy for John.

In this case, the propositional question is both fuzzy and ambiguous,

and hence is vague. On the other hand, “John is quite tall" may provide
suf ficient information for choosing a tie for John, in which case the
proposition in question is fuzzy but not vague. Vagueness is an applica-

tion context-dependent characteristic_of a proposition, whereas fuzzy is

hot.

The theory of fuzzy sets has two distinct branches. In one, a fuzzy set is
treated as a mathematical construct concerning which one can make prov-
able assertions. This "noufuzzy" theory of fuzzy sets is in the spirit of
traditional mathematics and is typified by the rapidly growing literature
on fuzzy topological spaces, fuzzy switching function, fuzzy orderings, etc.
The other branch may be viewed as a "fuzzy" theory of fuzzy sets in which
fuzziness is introduced nto the logic which underlies the rules of manipu-
lation of fuzzy sets and assertions about them. The genesis of this branch
of the theory is related to the introduction of the so-called linguistic
approach, which in turn, has led to the development of fuz:y logic. In
this logic the truth-value as well as the rules inference are allowed to

be imprecise with the result that the assertions about fuzzy sets based

on this logic are not, in general, provable propositions in two-valued
logic. For example, the proposition "John is very intelligent" may be
"more or less true." The fuzzy "theory" of fuzzy sets is still in its
initial stages of development, but it is important as a foundation for

approximate reasoning, or equivalently, fuzzy reasoning. Such reasening
characterizes much of the human thinking and is the basis of the remark-
able human ability to attain inprecise specified goals in an incompletely

uriknown environment.
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Zadeh

. in general complexity and precision bear an inverse relation to
one another in the sense that, as the complexity of a problem in-
creases, the possibility of analyzing it in precise terms diminishes.
Thus, ‘fuzzy thinking' mayabe deplorable, after all, if it makes
possible the solution of problems which are much too complex for
precise analysis.

The essence and power of hnsman reasoning is in its capability to grasp and
use inexact concepts directly. Zadeh argues that attempts to model or
emulate it by formal systems of increasing precision will lead to de-
creasing validity and relevance.

However, it is important to keep in mind that Zadeh's analysis of human

reasoning processes and his exposition of fuzzy set theory are not one

and the same--they nust be separated conceptually. Fuzzy sets are to

approximale reasoning what lattice theory is to a propositional calculus:
a vital mathematical tool for certain approaches to the theory, but not
the theory itself.

g e W e

Informally, we have seen that a fuzzy set is a class of objects in which
there is no sharp boundary between those objects that belong to the class
and those that do not.

Definition: Let X = {x} denote a collection of objects X. A fuzzy
set A in X is a set of ordered pairs A = {(x, IA(X))}, xEX, where
TA(x) is termed the grade of membership of x in A, and PA: -1

is a function from X to space M called the membership space. When
M {0,1}, A is nonfuzzy and its membership function becomes identi-
cal with the characteristic function of nonfuzzy set. In general,
we assume that M = [0,1]. So, the fuzzy set A, despite the unsharp-
ness of jts boundaries, can be defined precisely by associating
with each object X a number between 0 and 1 which represents its

grade of monbership in A.
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NOTATION: A = {x]|x = 5} will denote the set of numbers which are approximately
equal to 5. The symbol ~ will be referred to as a fuzzifier.

NORMALITY: A fuzzy set A is normal iff SupxrA(x) = 1, the supranum of
ra(x) over X is unity. A fuzzy set is subnormal if it is not norma}l.

SUPPORT: The support of a fuzzy set A is a set S{A) such that X € S{A) &
FA(x) >0. If FA(x) = constant over S(A), A is nonfuzzy.

EQUALTITY: Two fuzzy sets are equal, A=B, iff FA(x) = FB(x),

CONTAINMENT: A fuzzy sel A is a subset of a fuzzy set B, A B, if Tp(x) <
rpix)s

COMPLEMENTATION: A' is the complement of A iff Fn.(x) = 1—FA(x).

INTERSECTION: ANDB is the largest fuzzy set that contains both A and B;
FAQB(X) = :hnirA(x)’FB(x))a (“) x€X

UNION: AUB, Tya(x) = Max (Tp(x}, Iglx)) (¥) xeX

Example: Fuzzy Goals, Constraints, and Decisions

In the conventional approach to decision making, the principal ingredients

of a decision process are:

{a) a set of alternatives
(b) a set of constraints on the choice between different alternatives

(c) a performunce function which associates with each alternative
the gain resulting from the choice of that alternative.

When we view a decision process from the broader perspective of decision
making in a fuzzy envirvament, a different and perhaps more netural con-
ceptual framework suggests itself. The most important feature of this
framevork is its symmetry with respect to goals and constraints--a sym-
metry which erases the differences between them and makes its possible to
relate to a relatively simple way the concept of decision to those of the
goals and constraints of a decision process.
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let X = {x} be a given set of alternatives. A fuzzy goal G, in x is
identified with a given fuzzy set G in X.

Example: X = R! (the real 1ine), then the fuzzy goal expressed
in words "x should be substantially larger than 10," might be
represented by a fuzzy set in R] whose membership function is
(subjectively) given by:

0 x< 10

1+ G077 g

(A) T x) -

A Fuzzy Constraint: C, in X, is defined by a fuzzy set in X.

Example: 1In R], "x should be approximative between 2 and 10,”
could be represented by the fuzzy sets with the membership
function.

(B) rc(x) = (1 + a(x-s)m)'z, where a 15 a positive number, m is a
positive even integer, chosen in such a way as to reflect the sense
in which the approximation of the interval [2,10] is to be understood.

For example, if we set m=4, a=5"4

, then at x=2 and x=10 we have
Fc(x) = ~0.71. The constraints and goals being defined as fuzzy sets
in the space of alternatives, thus can be treated identically in the
formulation of a decision.
Example: G: x should be substantially larger than 10,

C: x should be in the vicinity of 15, or rﬁ(x)

given by (A) and rc(x) by (B).

OECISION: as a choice, or a set of choices drawn from the available

alternatives; we define a fuzzy decision as the fuzzy set of alternatives

resulting from the intersection of the goals and constraints.

FD(x)=fItnc(x) = Yc(x)A Ib(x), (Y)xe X

. . (i ~2y-1 1eydy-]
ane(x) = Jr-nn(u + (x10)75)70, (1 4 (x-18)7) l0

(0 x<10
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The relation between G, €, B is depicted in

|_constraint goal

Let K be the set of points in x on which I', attains its maximum. Then the

D
nonfuzzy subset DM of D defined by

FD” (X) = {Max I'D(X), xc X

0 elsewhere

will be said to be the optimal decision.

In defining a fuzzy decision D as the intersection of the goals and con-
straints, we assume that all of the goals and constraints are of equal

importance. There are more cases where some of the goals or some of the
constraints are of the greater importance than others. In such cases D
might be expressed as a convex combination of the goals and constraints,
with the weighing coefficients relfecting the relative importance of the

constituent terms.

n m
r(x)= 5 ofx) T, {x)+ & 8.(x)r, (x)
i T T T RO

¢, and ﬁj are membership functions such that

n m
) ai(x) + % B.(x) =1
j:'] ‘j:T] J
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Fuszy Reasoning, Fuzzy Linguistic Yariable

In vetreating from precision in the face of the overpowering complexity, it
is natural to explore the use of what might be called linguistic variables;
that is, variables whosv values are not numbers but words or sentences in

a natural or artifical language. The motivation for the use of words or
sentences rather than numbers is that linguistic characterizations are,

in general, iess specific than numerical ones. For example, in speaking
of age, when we say, "John is young," we are less precise than when we

say "John is 25." Young may be regarded as a linguistic value of the
variable Age, with the understanding that it plays the same role as the
numerical value 25 but is less precise and hence less informative. The
same is true of the linguistic values very young, not young, extremaly
young, not very young, etc. The values of the linguistic variable con-
stitute its term-set. The term set of linguistic variable Age is T{Age) =
{Young + not young + very young + not very young +...+ extremely young +...
+ old, not old, etc.} in which '+' is used to denote the union. The
numerical variable Age,whose values are numerical,constitute the base
variable for Age. Each linguistic value is interpreted as a label for a
fuzzy restriction on the values of the base variable. The fuzzy restric-
tion defines the linguistic value. 1n order to characterize a fuzzy re-
striction, Zadeh introduces a compatibility function which associates

with each value of the base variable in the interval [0,1] representing

its compatibility with the fuzzy restriction. Zadeh associates the lin-
guistic variable with two rules: ({a) A syntactic rule that specifies

the mannetr in which the linguistic values which are in the term set of the
variable may be generated. (b) A semantic rule which specifies a pra-
cedure for computing the meaning of any given linguistic value. The mean-
ing of terms is both subjective and context-dependent.

Definition: A variable is characterized by a triple (X,U,R(X;u)),

in which X is the name of the variable, U is a universe of discourse
(finite or infinite sct), u is a generic name for the elements of U,
and R(X;u) is a subset of U which represents a restriction on the
values of u imposed by X. A variable is associated with an assign-
ment equation x = U: R(X), which represents the assignment of a value
u to x subject to the restriction R(X). Obviously, the assignment
equation is satisfied if and only if u & R(X).
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Zadeh introduces the concept of possibility distribution in the following
way: Let F be a fuzzy subset of U characterized by a membership function
l‘F.
the values that may be assigned to X. So X = wu: PF(u), where FF(u) is

interpreted as the degree to which the constraint represented by F is satis-

F is a fuzzy restriction on X if F acts as an elastic constraint on

fied when u is assigned to X. In order to express that F plays the role
of fuzzy restriction in relation to X, we write R(X) = F. Ve call this
equation a relational assignment equation because it represents the assign-
ment of a fuzzy set to the restriction associated with X.

Now, let us have a propasition p = X is F, where X is the name of an in-
dividual, and F is the name of a fuzzy subset of U. We express p, by
R{A(X)) = F where A(X) is an implied attribute of X which takes values

in U and signifies that we assign F to the fuzzy restrictions on the values

of A(X).

Definition: tLet F be a fuzzy subset of a universe of discourse U
which is characterized by its membership functioi Tp, with the grade
of membership, FF(u}, interpreted as the compatibility of u with the
concept labeled F. Let X be a variable taking values in U, 2nd let

F act as a fuzzy restriction, R(X), associated with X. Then the
proposition "X is F", translated into R{X) = F, associates a pos-
sibility distribution, Hx, with X which is postulated to be equal

to R(X); My = R(X), so Ny may be regarded as an interpretation of the
concept of fuzzy restrictions.

The possibility distribution function associated with X is denoted by

Ty and is defined as heing numerically equal to the membership function of
F, my = Tp. Thus "X(U)’ the possibility that X = u, is postulated to be
ecual to rr(u).

If p is a proposition p = X is F, which transiates into the possibility
"A(X) = f where T and A{(X) are as in previous definitions, then the in-
formation conveyed by p, 1(p), may be identified with the possibility
distribution “A(X)’ of the fuzzy variable A(X). thus, I{p) = ”A(X)
vhere Taxy = R(A(X)) = T.
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I will conclude here, by pointing out that Zadeh's possibility theory
provides a basis for a more adequate meaning representation of the environ-
ment of actions, tasks, goals, etc. and for the manipulation of the fuzzy
knowledge, which is the type of knowledge which underlies natural language
as well as most of human reasoning.

1f the goal of science and objective knowledge is to construct models

that are closer and closer approximations of reality, Zadeh's fuzzy logic,
that is a model for approximate reasoning with vague data is an enormous
step forward: rather than regard human reasoning processes as themselves
*approximating,’ to some more refined and exact logical process that could
be carried out perfectly with mathematical precision, Zadeh has suggested
that the essence and power of human rcasoning is in its capacity to grasp
and use ineract concepts directly. Zadeh arques that attempts to model

or emulate it by formal systems of increasing precision will lead to de-
creasing validity and relevance. Most human reasoning is essentially
"shallow" in nature and does not rely on long chains of inference unsup-
ported by intermediate data. It requires, rather than merely allows,
redundancy of data and path of reasening; it accepts minor contradictions
and contains their effects so that universal inferences may not be derived

from their presence.
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FUZZY LOGICS : A SURVEY .

(»)
Henri M. Prade

CONTENTS :

(#2)
The topic of this talk is “fuzzy logics™ -- ™logics™ with an "s" because there

are sceveral manners to interpret the expression or for example , to define an fmpii_

cation . But anyway , it deals with some kinds of approximate reasoning .

Before beginning , I would want to say that this attempt of synthesis jis the resgit

of a2 common work with Didier Dubois , who i5 presentiy at Purdue University .

Yho first part of my talk is devoled to a rather philosophical introduction about
principally fuzziness and causality . The second one deals with different kinds of
multivalent logics , tho third one with what is called “generalized modus ponens"
in fuzzy set theory , the fourth ons with fuzzy-valued logics . Naturally , I will

terminate by some conciuding remarks .

* Visiting scholar at Stanford Art.Int.Lab. Stanford University ,9430% CA. Apr.1078
The author is supported by a scholarship of the Institut de Recherches en Informati_
gue et Automatique . Rocquencourt . 78150 LE Chesnay . France .

xx H.0.5. Cambridge . MA. %/24/78 ,
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1. THIRODUCIION :

- a e e e e e e d A ke

furzy set theory was first introduced by L.A.7adeh in 1965 [38] . Since this dato ,
there have been more than a thousund of papers about this domain and its applica_

tions . A Yot of them dealed , in different manners , with set theory and lagic .

Hotwithstanding this hiy amount of works , there js some confusion sti11 , about

what s fuzziness .In fact , there are basically two points of view .

In the first one , introduced by Zadeh , we consider a universe of discourso U and
a subset A where transition between membership and nonmenbership is gradual than

abrupt . There is no well-defined boundary for this fuzzy subset A . For each utU ,

-----

m (u)e[8,)] expresses the cunmpatibility of predicate A with the element v of U . m ,
A
mapping from U to [@,1] is the membership function of A ., However , if imprecision

-- aspecinlly subjective one -- is vsually fuzzy , this fuzziness is differert from
imprecision in the sense of tolerance intervals . Linguistic description { it 1s to
say , very often , summarized description of complex situations ) are fozzy in
nature . More generally ,we can say perhaps that human perception is fuzzy . Let us
consider an example : U = {50,2290] , A = *tall” ; from the statement "X 1is tall" we

cm
may induce , as Zadeh pointed it out [31] , & distribution of possibility about the

tallness of X : m (u) can be interpreted as the degree of possibility that X's

A
height is equal to v ., We are not interested here in what way m 1s got , in fact ,
A
it can be shown that generally a precise knowledge of m 1s not important for the

A
practical applications ,

The second point of view , dual in some sense of the first one , was introduced by
Sugeno in 1974 [27] . In Sugeno's approach we are interested in guessing ( most
often subjectively ) if an a priori nun-located element ocl is an element of a

subset A of 4 ;3 A is not necessarily fuzey here . g (A) expresses the subjective
u

degree of beliel in the statement “"ueA” . g is 2 mapping from P(U) { set of the
u

(fuzzy) subset of U ) to [8,1], g fis called a fuzzy measure . The notion of fuzzy
u

measure is very general , because only increasingness is supposed , nout the additi_

189




vity . So , probability functions , the belier functien and plausibility functien
studiert by Shafer [?5%] , and even possibility fuoctions are particular cases of

fuzzy mrasares .

Let me give an exanmple to fllustrate both points of view . When we are looking at
2 Ming vase , we can sny for example that it is big or beautiful ; here , *big" and
*beautifm1" are predicates which point to fuzzy subsets in tho sense of Zadeh of U ,
set of Hing vases . But we may also try to guess -- becauso we are not experts ,just
amateurs -- if the vase is gepuine or counterfeit . Both approaches are not exclusi_
ve : we may try to guess is the vase is old where "old" is obviously a fuzzy predi_
cate . Sometimes the difference between the two approaches 3s very subtle : when I
say "X is tall" , either I may model the statement by "X is an element of the fuzzy
subset of the tall men" or I moy consider that it induces a possibility distribution
which values the possibility that X's height is an element of some fuzzy or non-fuz_

zy finterval -- for example [175,188] .

b) Implication & causality :

After having tried to explain what is fuzziness , 1 am going to end this introduc_
tiorn by some intuitive considerations about fuzzy legic ., It may be a calculus
either on the levels of belief of precise propositions or on the truth of proposi_
tions involving fuzzy predicates . In both cases , multivalent logics can be the
Jogical calculus underlying fuzziness . In most of the multivalent logics , there is
ne more excluded-middle Yaw : this situation may be interpreted as either the
absence uf decisive belief in one of the sides of & precise alterpative or tho

interforence between antonym fuzzy concepts ( e.g. "small" and "tanl® ) .

Fuzzy logics must also cope with difficult questians such as the difference between
implication aml causality . We must try to avoid confusion between deductive infe_
rence with fuzzy predicetes and causal inference with dubious premisses or/and

entoailment ( modelled by what is called "fuzzy relations" ) . In the five
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following examples , the two first ones are implications and the other ones invelve
causality :

1) If the cat is black , ha is not white .

2) If the cat is big , he is not small .

3) If the cat is run over b a car , he will be dead .

4) If the cat falls from the 18th floor , he will be more or less hurt .

5) If the cat overeats , perhaps he will become obese .

1 and 3 are not furzy , 2 ,4 and 5 are fuzzy in some sense .




2. MULTIVALENT LOGICS :

-----------------------

There are muay possibilities to extend the definition of the usual connectives of
the binary logic to multivalent logics . Most of them were first studied by

Lukasiewicz in the thirties . I will first recall them .

a) Multivalent logics using *max" and "min® {resp.) for disjunction

N T T L L L L L L L e Ess - -.---—--

and conjunction { resp.) :

P L L L L

Bellman & Giertz [1] and Fung & Fu {18] have shown that to preserve structural
properties such as associativity , commutativity , distributivity , idempotency
for conjunction and disjunction connectives , and semantic prcperties such as
continuity , growth for their interpretative functions , the only functions ,
when the valuation set is [8,1] ., arc :
min ( v(P), v(Q) }
max { v(P), v(Q) )

Most of the authors use for negation v(-P) =1 - v(P) , but it is not the nnly

v{Paq)

v(Pvq)

choice which is compatible with involution property . Excluded-middle law is no more

valid .

For the implication , many interpretative functions have been proposed :

1) v(P-0) = max { 1 - v(P) , v(Q) ) ( Dienes , Rescher {22] )

2) vwip=0Q) =min (1, 1 - v(P) + viQ) ) ( Zadeh’s logic )

3) viP0) : i(o;rgthgﬁizsi i { Brouwer implication . See [11],[287,[24] )
4) vi{pP-g) =max (1 - v(P) , min{ v(P),v(Q)) ) ( Zadeh )

5) v(P~Q) = min { 1, v(Q)/v(P) ) ( Goguen [13] )}
It will be too Jong to give here all the other classical connectives of these

legics . For example , the equivalence connective which is associated with the

implication number 2 is

v(P=Q) = | v(P) - v{(Q) |
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b) Other muitivalent logics .

There are other possibilities to define conjunction and disjunction :
* "probabilistic logic" :

v(-P) =1 - v(P)

v(PAQ) = v(P).v(Q)

v(PvQ) = v(P) + v(Q) - v(P).v(Q)

the corresponding implication is

v(P+Q) = 1 - v(P) + v(P).v(Q) = v(-PvQ)
* non-distributive logic :

v{-P) = 1 - v(P)

v(PAQ)
v{PvQ)

In this calculus , we have the excluded-middle law but no more the idempotency

max ( @ , v(P) + v(Q) - 1)
min (1, v(P) + v(Q} )

and distributivity properties . Here , [fA,1] is a non-distributive complemented
Jattice instead of a distributive non-complemented lattice with "miny and "max"
operators . This logic is not very easy to interpret although it seems to be a
candidate to model ambiguity { see [12] , [9] ) .

More generally it is possible to build new connectives as , for example ,
(1-2).max( v(P) ,v(Q) ) + a.min( v(P) ,v(Q) ) where A¢[8,1] , which has some very

attractive properties and which , for A=8.5 , can model a connective "and/or" .,

Z2) Hints for a comparison of these multivalenl Togics

-------------------------------------------------------

Some interesting points of view for a comparison are :
(1)
- Is Piaget's group kept 7 1t is always the case : for example , with the

jmplication number 4 , but it is kept with implications number 1 and 2 .

i . Let 8 be a propositional variable containing elementary propositions P,Q,R,...
joined with logical connectives . 8 is a wff symbolically written 0 = f(P,Q,R,...).
Four transformations can be defined on @ :
1) identity I(6}) = @ ; 2) negation H(O) = -8 ; 3) converse R(8) = §f({-P,-Q,...);
4) correlation C(8} = -R(®) .
Thes.r transformations ,for function compositional law , have a Klein group structure
whose talile is ( see bottam of the next page )

184




- associated set theory :
For example , the inclusion associated with implication 1 is :

AcB « max{ 1l -m(u), m({u)yz 8.5 Voued .
A B

the inclusion which corresponds to implication 2 is the classical definition
introduced by Zadeh :

AcB « m{u)ysm{u) Vuell ,
A B

- transitivity of implications :
For example , implication 1 satisfy :

v(P+(Q=R)) = v({PaQ)=R)
but 2 does not .

- modus ponens :

The modus ponens rule allows Q to be inferred from P and P+Q in propositional
calculus ., In multivalent Jogics the problem is to compute v(Q) given v{P) and
v{P-Q} . Many authors [15] have locked for a detachment operation * such that :

v(P)sv(P=Q) < v(Q)
to have v{Q) as large as possible . Some of them have proposed "min" for * , others
the product . Wit v{P-Q)= max{ 1 - v{P) ,v{Q) ) , if min{ v(P) ,v(P-Q) ) 2 8.5
then min{ v{P) , v{P-Q) ) < v(Q) < max{ v(P) , v{P+Q) ) . Here , * = min and the

validity of a chain of implications is equal to the validity of the least valid

Piaget [21]} estatlished that , for children , learning of human reasoning demands a
perceplion of these transformations that s to understand the difference between
sentences such as

"Good poets are bad husbands"®

“Good poets are not had husbands®

“Bad poets are good husbands”

“Bad poets are not good husbands"
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implication tn the chain . With + = . , the validity decreases with the length
of the chain { with implication 5 v(P).v(P-Q) < v(Q) ) .

In Dienes-Rescher logic , if P is ctalled a tautology as soon as v(P) 2 8.5 , then
every theorem of the standard propositional calculus 1is a tautology in this logic
[16] ,[5) . Gaines {11} has shown that , in some sense , Dienes-Rescher logic
was a fuzzification of the standard propositional calculus .

With v(P=Q) = min{ 1 , I - v(P) + v(Q) ) ,
if v(P) = o and v(P-0Q)

1, then v(Q) 2 a

if v(P) = o and v(P=Q) =1 -¢€¢ <1, then v(Q) =z a- ¢« ,

"

At the end of n inferences whose truth values are equal to l-¢ , the truth value of

the premise being a , the conclusion has a truth value equal to a-ne
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3. GENERALIZED HODUS PONENS :

- - e R T

In the precedent sectien , we were interested in manipulating statements as

{1) P = "uco A" where A is a fuzzy subset on U and v(P) = m (u) ( for example
"u 15 a tall man” ). 4

In this section , we consider statements as :

{2) Pz "X is A" where A is a fuzzy subset on U which induces a possibility
distribution “X = A ( for example in "X 1 tall™ , *"tall® is a fuzzy subset on the

universe of heights } . In fact , this statement can be viewed as equivalent to an

infinity of statements p = "u js the height of X" with v(p) = m {u) , ¥ uel .
A

For performing approximate reasoning with such statements as (2) , we need new
modifier rules and new rules of inference .

b)Modifier rules :

Y introduced by Zadeh [32] , [33] )
If a modifier M { e.g. "not" , "very" , "more or less" ) is modelled by a function

2 8.5% .
f(ewo 1-0.2,0.3,0.) ) then (P} has a possibility distribution f{n) where u

is the possibility distribution associated with the statement P .
Examples :
M("X is A™) « "X is M[A]
H{"X is A and Y i5 B") » "(X,Y) is M{A.B]
where A.B is the ,yoint of the fuzzy subsets A and B on U and V :
m {u,v) = mingm (u) ,m (v} )
A B

A.B

c¢) Rules of inference :

------------------------

The three follewing ones have been proposed by Beliman & Zadeh [2] ,[32] .

- the projection principte : Let = = A a possibility distribution on
{Xl,...,Xn)




the cartesian preduct of unjverses UL U2.. ... Un ., w can be restricted on the
sinhset U1, ... Us of 111.....Un in two Ways : either in fixing the "values® of

Xs+l ..., ¥Xn { conditional possihility distritntion ) or by projecting = on
Ul.....ls , taking the niximim vilue of w over Ust+l.....Un ( marginal possibility

distribution ) . Reciprocally n can be extended to Ul.....Un by cylindri_
(XL, ..., %n)

cal extension , i.e. n has the same valucs as n independent 1y
{Xl,...,%n) (Xi,...,Xm)

of the values of Xm+) ..., Xn .

- the particylarization of = = A is the modification resulting from the
(X1,...,X%Xn)

stipnlation that the pnssibility distribution n is B . Tho result is
(X} ,...,%m)

A nB where A and B are the cylindrical extension of A and B on a common universe
Ui....dl of which U.....Un and UL, ..., tim aro subsets |,
~ the enlailment principle

from n = A, wa can infer = =B YVBaa.,
(Xi,.. ,¥n) (X},...,%Xn)

What is callad compositional rule of inference results of the application of both
particularication and projection principles :

from n = A and n =B, we infer n =AoB where o denotes
L Y) (v.2) (X,2)

the wax-min composition :

m {u,w) = max min{m (u,v),n (v,w) )
AR v A B

a fuzzy subset on a cartesian nroduct of universes 15 called a Tuzzy relation
between these universes . What is called generalized ponens is a particular case

ot the cowpositional rule of inference where formn = A" and » = R, we infer
X (X,Y)

7" = Ao R . let us study now ,more particularly |, this generalized modus ponens
Y

-= which i5 a kind of interpoldation .

) Generalized nodus ponens
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V ., Practically the problem is to build R from a rule such as "If X is A, then Y is
B* whero A and B are fuzzy subsets of U and V ( e.g. A = "small" , B = "large” , U
and V are some intervals of the real line appropriate to the nature of X and Y ) .

We have m =f(m , m ) , where the question is what can wa use for f ?
R A B

- we can use any of the implications introduced in section 2 .

e.g . m(u,v)y =min( 1 ,} -m (u) +m {v))
R A B

- mainly in practical applications , a lot of authors use more simply the Jjoint

of Aand B : m (u,v) = min{m (uv) , m(v) ) .
k A B

If we denote by Ri the fuzzy relation built from implication number i , we heve
the following result :
if m (v) ¢ [0.5,1], then
B

(u,v) 2@ (u,v} 2 min(m (u),m (v))
R4 A B

m (u,v)y2m (u,v)y2zm (u,v)2m
R2 RS R1

R3

If B't = A0 Ri , the same ineyualities hold form (v ) . The "largest” B*i ,
B'i

the "fuzziest" the result .

Some particular cases are interesting : {123

A= A, thenm (v)2m(v), ¥v ; but B® coincides with B for the highest
B’i

membership elements . Thus in approximate reasoning , generalized modus ponens
provides mere valid conclusions than standard modus ponens , for any Ri or the
Joint .

A rather funny particular case of modus ponens is the well-known rule of three .
The classical rule is : If X is equal to a , and when X is equal to a , Y is equal
to g, then Y is egual to ag/a . But this rule can be extended with fuzzy numbers
( i.e. convex anw normalized fuzzy set of the real line ) namely a , @ , 8 =-- a
models a number whose value is around x ; then b = as(B%«) where e and % denotes

the extended multiplication and division ( see [4] , [6] ) ;

Here m (u,v) = m {v/u} and we have aoR=ae(p%a )
R fa




H.B. : Very recently , Diog [3]1 has proposed another way to boild R from

"If X is A, thea Y is B" as

{ max( 1 - m (u) , m (v) ) if m(u) <m(v)
m(u,v) = | A B A B
R | min¢ 1 - m(u) , m(v) ) if m (v) >m (v)
i A ] A B

This method has some very attractive properties .

More generally , practical cases involve several rules :
“¥ is A"

"If X is Al , then Y is BI"

ve s s P L ) R

wIf X is An , then Y is Bn"
then B = A o max { Rl,...,Re ) .
Some interesting guestions , which are not completely solved yet , are tinked to
this prablem :
- consistency of the rules [3]
- non-redundancy betweea the rules

- given R , extract rules ( see Tong [28] ) .
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4. FUZZY-VALUED LOGICS :

------------------------

In all the considerations of the sections 2 and 3 , we have worked with ordinary
fuzzy sets -- it is to say that the membership values were real numbers of [8,1] .
Host of these works can be also performed in a similar , but generally more diffi_
cult way , with what is called fuzzy sets of type 2", i.e. fuzzy sets whose
membership values are fuzzy subsets of [8,1] ( generally fuzzy numbers ) . I will

Just point out some features of these fuzzy-valued logics .

Warning : In the following paragraph , A , B are fuzzy sets of type 1 of [8,1] .

By means of Zadeh extension principle , the ordinary operation "min" and *max" on
(1)

type 1 can be extended to the fuzzy subsets of type 2 . Negation operation "1 - ."

can be extended in the same way in "1 - ." ; m (u) =m{(1-u) , 1 - A is the
1-A A

antonym of A . max and min denotes the extension of max and min . The practical
rule of construction of max(A,B) and of min(A,B) is : take the left most part for
the min and the right most part for the max of the pair of the increasing parts
of A and B ,do the same for the decreasing parts . max and min are commutative

associative , idempotent , distributive on each other , and verify De Morgan's law

and absorption law .

So there is no problem to compute the truth value of the conjunction and of tﬂe
disjunction of two propositions whose truth values are fuzzy sets of [6,1]) , i.e.
quasi linguistic because we can model truth values as "truth" , "false" , "very
truth" , "borderline” as fuzzy sets of [8,1] .

Generalized modus ponens can be also extended by means of a max min composition':

m  {v) = max min { m(u) , m (u,v) )
AoR v A R

= (v) , m(u), m (u,v) are here fuzzy subsets of [8,1] , and AoR , A ,R are fuzzy
AoR A R

subsets of type 2 of V ,U, UV

1. A binary operation % on real numbers is extended to fuzzy subsets A and B of the
real line by the formula :
m  (w) = max min{m {u),m (v))
AxB LI ERY A B

en




CONCLUDING REMARKS :

--------------------

I have not spoken of all the existing topics in fuzzy logics . I must mention still

- the works in switching logic by Kandel [14]) and many others about the canonica)
form of a fuzzy expression involving nax and min ( extension of the nipimization
of a boolean function ).

- fuzzy first order logic .

- the works by Shotch [26] or by Vaina [29]) in fuzzy modal logic . Schotch has
introduced an intermediary modal operator between the ordinary possibility and
necessity operators which models : “it might be possible that" .

« in the precedent development , we consider for statéments only truth values .
Zadeh [32] ,[33] has proposed also to work with probabilistic values or even
possibilistic values { which are modelled by subintervals of [0,1]), i.e. 0-fuzzy
sets ) . Sanchez [23]) has introduced a modus ponens for possibility-valued

statements .

Fuzzy logics has already been used in a lot of applicatiors . I can quote ,

for examples :

- use of heuristic rules , modelled as a union of fuzzy relations in orcer to
define a linguistic controler ( see Mamdani [19]) )

- { medical ) diagnosis { see Sanchez [24] )

- in artificial intelligence , the language FUZZY , defined and implemented by

LeFaivre [17) ,{18) to manipulate approximate knowledge .

I will conclude by saying that there is no universal or even canonical way for
building fuzzy logics . Practical applications will winnow the chaff from the

grain
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Part 11

Four Models for the Description of Systems

by
S. Cushing
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FOUR MODELS FOR THE DESCRIPTION OF SYSTEMS

In this report we compare the expressive power and perspicuity of four notational
frameworks for the specification and definition of systems and requirements.

The control maps of Hamilton and Zeldin (1976¢c), the R-Nets of Alford et al.
(1977), the commutative diagrams of mathematical category theory (Arbib and
Manes, 197%), and a modified version of the R-Net framework are reviewed and

the relationships among them discussed. The relative merits of the four fraie-
works along the two dimensions of expressive capacity and clarity or convenience
of use are evaluated, and recommendations are made for the conditions under which
each framework might profitably be used.
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1. REVIEW OF CATEGORY-THEORETIC RESULTS ABQUT HOS

Cushing (1978a) analyzes the three primitive control structures of Higher Order
Software (HOS) in terms of the arrow language of mathematical category theory
and proves the following theorems:

Theorem 1:  HOS composition is identical to category-theoretic composi-
tion, as far as the mappings involved are concerned.

Theorem 2:  HOS set-partition and class-partition are category-theoretic
duals, in that the commutative diagrams they imply differ
only in tha directions of corresponding arrows.

The proof of Theorem 1 is trivial, and the proof of Theorem 2 involves showing

that the commutative diagrams implied by set-partition and class-partition are
identical, with one minor difference in each case, to those used in category

theory to define the coproduct and product, respectively, of two sets. The sin-

gle minor difference involved is a reflection of the fact that the category-

theoretic diagrams are used to define ways of combining sets, while the HOS-

implied diagrams are used to define ways of combining functions; it has no im- i
pact at all on the proof of Theorem 2.

These considerations motivate the following three definitions:

Definition 1: Let f, g, and h be functions such that f is the parent
in an HOS composition in which g and h, in that order, are
the offspring. Then f is said to be the (functional)

composition of g and h.

Definition 2: Let f, g, and h be functions such that f is the parent in
an HOS set-partition in which g and h are the offspring.
Then f is said to be the (functional) coproduct of g and h.

Definition 3: lLet f, g, and h be functions such that f is the parent in
an HOS class-partition in which g and h are the offspring.
Then f is said to be the (functional; product of g and h.

Note that the order of g and h is crucial in Cefinition 1, but does not matter
in Definitions 2 or 3. This fact follows from the symmetry of each of the co-

product and product diaarams and the asymmetry of the composition diagram. The




definitions, Yike the primitive control structures themselves, can be generalized
in a straightforward manner to include cases in which more than two offspring
are involved.
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2. FUNCTIOHS AND CONTROL STRUCTURES IN REQUIREMENTS NETWORKS (R-NETS)

The Software Requirements Engineering Methodology (SREM) is an "integrated,
structured approach to requirements engineering activities" {p. 1-1) developed
by Alford et al. {1977). On the face of it, SREM seems to share many features
with HOS: it "begins with the translation and decomposition of system level
requirements; performs analysis, definition, and validation of the software
requirements; dand ends with documentation of the software requirements..."

{p. 1-1). It includes "a set of software support tools...to automate many of
the previously manual activities associated with requirements engineering,"”
including a “structured, formal Requirements Specification Language {RSL)."
The role played by control maps in HQS--i.e., the description of data1 and control
relationships--is played in SREM by what are called requirements networks or
R-Nets. An R-Net represents

the order of logical processing steps that must be performed.

An R-Net may contain Ands, Ors, and For Each Nodes; it must be

enabled and terminated. The processing steps are alphas or sub-

nets which may be expanded into lower levels of detail. An

?-Net may also contain validation-points . events, and interfaces
p. D-14).

An alpha, in this definition, is "a processing step in the functional require-
ments domain" {p. D-2), and a subnet represents “"the order of logical processing
steps that must be performed in order to perform the requirements of the pro-
cessing step that represents it at the next higher-level” (p. D-16). A valida-
tion-point is "a logical point in the processing at which timing, value, or
presence data must be obtainable in the real time software in order to validate
that the requirements have been fulfilled" (p. D-21), and an event is "an identi-
fied point that exists in the processing of one or more R-Nets or subnets and
which may cause the enablement of an R-Net" (p. D-7). Interfaces are of two
kinds: an input-interface is "a 'port' between the data processing system and
the rest of the BMD system which accepts data frcm the other system {e.g., the

1

Strictly speaking, data flow is not explicitly indicated on an R-Het, but it
seems to be deducible from the information that is explicitly represented,
as we will see.
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radar-returns)” (p. D-9); an output-interface is "a 'port' between the data
processing system and the rest of the BMD system which transmits rata to the

other system (e.g., the radar-commands)}" (p. D-12).

A sample R-Net, containing each of these basic elements and some others, is
exhibited in Figure 1 {p. D-34). To determine the relationship between this
F-Net and the HOS control map for the same system, we have to ask how the
system represented in the R-Net could be expressed explicitly in terms of data
types, functions, and control structures. Since the data types in this example
are not explicitly specified in the figurez, we will ignore them for the time
being and concentrate for now entirely on the functions and control structures
that do, it seems, appear in the R-Net.

The first thing we notice is that some of the elements of the R-Net become super-
fluous, when viewed in terms of HOS. The R-Net Start, Terminate, and Input-

and Qutput-Interface elements are all unnecessary, because the notions they
represent are implicit in the conventional notation for a function. In the
control map

(y1555) = lx),x5)

/
y; = 9{x) ¥y = 9(x;)

for example, we knuw autowatically that the function starts being evaluated

as soon as the inputs X1 and Xo are available and terminates as soon as the
outputs ¥q and y, are available. Nothing further need be said about starting

or terminating the processing of the system. We also neced say nothing about
whether inputs come from or outputs go to other parts of the data processing
system or other parts of the BMD system, because this will be clear from the
input-output relationships represented in the complete BMD control map. In-
puts come from wherever they are produced as outputs, and outputs go to wherever

2See Footnote 1.
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~a——— THPUT INTERFACE

Vi
—~—————VALIDATION POINT

"OR" REJOIN

"AKD" REJOIN

OUTPUT_INTERFACE

Ficure 1: Sample R-Net Structure in Graphical Form




they are used as inputs. OQutput and input are relative notions and, again,
nothing further need be said on the matter (given the complete control map).

The functions represented in the R-Net clearly include the alphas--A, 8B, D, E,

; F, G, H, and J--, but they also include the Validation Point V1, the Entity
Selection S, the Subnet C, and the Event Q. Each of these performs a function,

! in the mathematical sense, and thus would be represented as a function in HOS.
The Validation Point, for example, really just denotes a test, which can be
represented in HOS as a set partition or coproduct (Definitinn 2); the Subnet,
similarly, can be written as a control iap in itself, since, whatever its

! internal structure may be, its overall effect is to evaluate a function.

The control structures represented in the R-Net include seguential flow, de-

noted by "+", and, denoted by "&", or, denoted by “+", and for each, denoted
! by "For Each” in the figure. Consider or in the figure can be subsumed under
or, for our present purposes, and, as we will see in Section 4, we can also
ignore the for each node. Finally, we will incorporate V1, A, and S into a
single function, denoted by "A", since they are all joined sequentially by
' ' "“»" and thus form a single composed function in the mathematical sense.

This gives us the skeletal R-Net structure exhibited in Figure 2, in which all

of the simplifications we have just discussed here have been made and only the
functions and control structures that appear explicitly in the R-Net are shown.
The first thing we notice about this skeletal R-Net structure, which still con-
tains, it must be emphasized, all of the essential mathematical components of

the original R-Nel (except the For Each node), is that the HOS nntinn of level
of decomposition (Hamilton and Zeldin, 1976a) is nowhere to be seen. The sort

of level that we saw mentioned above in the definition of subnet corresponds
roughly to the HOS notion of layer, which we will not discuss here (but see
Hamilton and Zeldin, 1976b,1977a,b). One purpose of HOS decomposition levels,
as opposed to layers, is to make explicit the full set of structural relation-
ships that hold among all of the functions that get performed by a system,
Higher-level functions get performed precisely by requiring their lower-level
functions to get perfurmed instead, a form of delegating responsibility, so to

P
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speak, to use a convenient anthropomorphic metaphor (Cushing, 1977, 1978b).
Lower-level functions, in turn, get themselves performed precisely in order to
fulfill the requirements set hy their higher-level functions. This relative
notion of requirements bears some stressing, because it seems that the idea of
requirenents becomes hopelessly confusing and unintelligible without it. To
use a simplified exawple (see Figure 3), the manager's specifications--i.e.,
his instructions--become the progranmer's requirements; the programmer's

specifications--i.e., his program--become the compiler's requirements; the

compiler's specifications--i.e., the machine code it produces--become the com-
puter's requirements; and the computer's specifications become part of someone
else's requirements, depending on the circumstances. It is for this reason
that HOS uses the same language and formalism for representing both specifica-
tions and requirements; the distinction between the two notions is not an ab-

solute, but a relative one, depending entirely on one's point of view in a given
context.

In Figure 2, for example, each of A and B performs a function, but so does their
joint action. This higher-level function is their composition, in the sense of
Oefinition 1, but is nowhere to be seen {explicitly) in Figure 2. Each of E
and F performs a function, but so does their joint action, i.e., their co-
product, in the sense of Definition 2. The latter, higher-level function,
however, i5 again nowhere indicated, as an actual function existing in its
own right, in the R-Net structure of Figure 2. These two higher-level func-
tions, furthermore, also combine, according to the diagram, to form a still
liigher-level function: the product of the composition of A and B and the co-
product of £ and F. Again, one would never suspect that this function was
present, as an existing function requiring to be performed, just from the in-
formation in the R-let, because higher-level functions are not indicated ex-
plicitly in such diagrams.

We can incorporate these higher levels into an R-Net structure by determining
what higher-level functions are involved and drawina boxes around them, just as
there are boxes around the explicitly appearing functions, in this case, A, B,
c, D, E, F, G, H, J, and Q. In the case of Figure 2, we have already determined
that these higher-level funciions include the ¢/ mposition of B and C, the co-
product of E and F, and the product of this co .position and this coproduct.
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It is also easy to see that this R-llet contains, as well, the product of H and

J; the coproduct of G, this product, and Q; and the composition of A and each of
the highest-level functions we have determined so far. If we draw boxes, as
suggested, around each of these higher-level functions, and assign ecach new box

a name, denoting the higher-level function the box represents, we get the dia-
gram exhibited in Figure 4. Note that the system as a whole contains five levels
of box embedding, which correspond to five levels of decomposition in an HOS
control map.

Figare 4+ Sheleral Structure of Semple # Net Showing X!l
risher. Level Tunctices of u“mm&mt
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3. R-NETS AND CONTROL MAPS

He are now in a position to translate the R-Net structure into a control map.
The process is, at this point, fairly simple and mechanical, but going through
the steps graphically should help to put the relationship between the two sys-
tems notations into sharper relief. First we have to make certain that each

+ and & control structure receives a complete graphic description, in the sense
that each such node is correlated with a matching Rejoin node. The only nodes
in Figure 4 that are incomplete, in this sense, are those corresponding to f3
and f6’ and completing them results in the diagram of Figure 5. The dotted
circles are included only to identify the added Rejoin nodes and have no fur-
ther significance. Note also that a new sequential flow arrow has had to be
added to connect these new nodes,

Now that we have gquaranteed that every + and & node is graphically complete, by
adding the necessary Rejoin nodes, we reverse ourselves and eliminate the re-
dundancy involved in having two nodes for each control structure. Physically,
this means moving each + or & node and its matching Rejoin node tuward each
other until they meet and then merging them into a single node. This process
results, in this case, in the diagram exhibited in Fiqure 6. Note that each &
and + node is connected now to the relevant boxes by lines, rather than arrows,
since no flow is involved in & or + themselves. It is part of the meaning of
"&", in other words, that both the f4 function and the f5 function, for example,
get performed, and it is part of the meaning of "+", similarly, that eithei £

or F, for example, get performed. Flow occurs only where the arrows actually
appear now: from 8 to C in f4. from D to f7 in f5. and so on. Note also that the
graphical complication resulting from the fact that the + node in f3 connects
three, rather than two, boxes 1is entirely one of how best to

draw the graph, not one of the functions or control structures themselves.

The diagram in Figure 6, like the original simplified R-Net structure in
Figure 2, says that first we perform function A, then both function B followed
by function C and function D followed by either function £ or function F, and
then either function G, both function H and function J, or function Q. It also

contains, however, the higher-level structures that relate these functions, and




Ootted circles
surrgund rejoin
nodes needed to
conplete graphical
representations of
ircomplete control
struclure nodes,
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it embodies all of this information without the redundancy of duplicate nodes
for & and + control structures.

The next step is to turn the diagram on its side. If we take the diagram in
Figure 6 and rotate it clockwise ninety degrees, we end up with the diagram in
Figure 7 {with the labels suitably relocated). The reason for this reorienta-
tion is that it places the various functions involved more in ltine with where
they will appear in the final control map.

Having now reoriented the diagram as a whole, the next thing we do is to re-
arrange each box internally, so that each function and control structure is
located at the top center of its box. Each higher-level box should then have
the internal structure

+, &, or «+ s

boxes

as indicated in Figure 8.

8y now it should be perfectly clear what is going on, because the control map is
virtually staring us in the face. Only two more steps, in fact, are necessary to
get the overall functional structure ufl the control map from the diagram in
Figure B. First we connect each function name by a straight line to the boxes
that occur with it in its own box, and then we erase the borders of the boxes
themselves. The first step results in the diagram in Fiqure 9, and the second
step results in the diagram in Figure 10.

As we have observed in connection with Figure 6, Figure 10 also contains all of
the information about functions and control that is contained in Figure 2, plus

e

the additional information about higher-level functions that HOS shows it is
necessary to include. The overall function that is performed by the system,
according to Figure 10, is f], which consists of A followed by f2 followed by f3.
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Function f2 is performed by performing both f4, which consists of function 8
followed hy function €, and fS’ which consists of function D followed by

function 7, i.e., either function E or function F. Performing f3, in turn,

means performing either function G, function fE’ which consists of both func-

tion H and function J, or function ). A1l of this information can be squeezed out
of the R-Net structure, exactly as we have done here, but it is not included
explicitly in the R-MNet structure itself.

One reason we want this information to be included in the graphical representa-
tions of systems is, among other things, that it makes possible the formulation
of principles that auarantee the correctness of interfaces, namely, the six HOS
axioms (Hamilton and Zeldin 1974, 1976c). Higher-level functions are not rep-
resented in R-Nets because they do not entail any processing beyond that involved
in the lowest-level functions that make them up {Alford, personal communication}.
“A Requirements Net, or R-Net", after all, "is used to describe the required flow
of processing in response to a single stimulus which enables the net" (p.3-19).
The problem with this, however, is that we have to recognize higher-level func~
tional structure in order to get the relationships amonq processing steps
straight.

This is a familjar situation in science. Such forces as gravity and such entities
as electrons were first posited in physics not because they were directly observed,
but because the behaviorof matter that was observed could not be explained readily
without them, Onlyby stepping back from the hard data and constructing abstract
theories was it possible to make sense out of the data themselves. Here, simi-
larly, the bottom 1ine that we are interested in is the processing steps that
actually qet performed by the system. One of the main things we want to know
about these processing steps, however, is whether theijr interfaces are correct,
since, if they are not, the system will ultimately fail. Just as the positing

of aravitation and electrons in physics enables us to explain important aspects

of matter bekavior, the explicit recognition of higher levels of functional
structure enables us to solve this crucial problem of data processing. Qnce a
system is specified in control map form, the six HOS axioms tell us which inter-
faces are correct, which are not correct, and how to fix the latter. The inter-
faces among the terminal nodes of a control map tree are correct, if {and only

if) the interfaces among all the nodes in the tree are correct. Even if we are
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interested, in other words, only in the functions that actually constitute
processing steps, we still have to work out their higher-level functional
structure in order to check that these lowest-level functions are actually
interacting the way they should.

A second reason for requiring an adequate notational framework to provide a
way of representing higher-level functional structure is that this makes possi-
ble the formulation of a notion of abstract control structure, which, in turn,

enables us to go well beyond the complexity of systems that can be given simple
descriptions entirely in terms of 4, +, and ». An abstract control structure,
in essence, is simply the relationship amonn functions that is represented by
a control map in which one or more of the nodes is left variable (see Hamilton
and Zeldin, 1976c). Once such a structure has been defined, we can use it to
simplify control maps considerably by using its name in place of the portion
of the control map that defines it. Dependina on the complexity of the ab-
stract control structures we bother to define, some extremely complex systems
can be given very simple descriptions. What makes all of this possible, how-
ever, is precisely the ability to represent higher-level functional structure
that control maps provide us with.

Ne can make the tree structure in Figure 10 look even more 1like the customary
HOS control map by replacing "&", "+" and "+" with their approximateJ HOS equiv-
alents, respectively, "INCLUDE", "OR", and "JOIN"., If we adopt the convention
that "JOIN" denotes rFight-to-left flow, this gives us the diagram in Fiqure 11.
As Cushing (1978a) points out, furthermore, control flow in a control map is
given automatically by the specification of data flow, as long as only primi-
tive control structures are involved, so the names of the control structures
are superfluous in that case, from a theoretical point of view, once data flow
has been indicated. Control structure names are uyseful in practice, however,
because the name of a control structure serves as a check on whether the Spec-
ified data flow is allowable or not, given a library of pre-defined control
structures. This becomes especially important when abstract control structures

3“&", "+ and "+" ceem actually to correspond to the non-primitive HOS control
structures COINCLUDE, COOR, and COJOIN, but this difference need not distract us
here. Lack of explicit data flow specification in R-Nets makes strict compari-
son with control maps only approximate in any case. See note 1.
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are introduced and the library of control structures grows beyond the three
orimitives.

Let us now introduce data flow ints the skeletal control map structure of
Figure 11 to see exactly how this relationship between data and control flow
emerges. The first function that gets performed in the system, other than the
overall system function f] itself, is A, so we know that it is function A, on
this level, that gets the system input data itself as its input. UYe will denote
this input data by the symbol "innut-list” to indicate that more than one vari-
able is Jlikely to be invoived. Me also know that it is the output of A that
gets used as input to f2 and the output of f2 that cets input to f3, because of
the very meaning of "JOIN" {or of "+"), and our convention on right-to-left
flow. Function f3. furthermore, is the function on this level that produces
the system output data as its output, since it is f3 that completes the decom-
oosition of f], once A and f2 are given. Me will call this data "output-list",
since, again, more than one variable is most likely to be involved. This gives
us the partial control map exhibited in Figure 12 as a description of data and
control flow on the top two levels of our control map. Note the name "local-
data", which we will use, with primes, to indicate data that gets used only
within the system described by this control map.

Next we observe that f2 gets performed by performing both fq and fS’ so the
1ist of variables that is input to f, must be partitioned between the input

of fy and the input of fs, and the output of f2 must be divided between the
output of fq and the output of fS' Since fz inputs Jocal-data, we zall the
inputs to f4 and fS' respectively, “1oca1-data2" and "local-data,", indicating
that the variables in these two lists collectively form the full set of vari-
ables in Jocal data.4 Similarly, since f2 outputs Jocal-data', we will call
the outputs of f, and f, respectively, "local-dataz'“ and "1oca1-data]'", for
essentially the same reason. Since f4 is the composition of B and C, we |now

that the input of B must be the same as that of fq - namely, local-data2 -

4The present author prefers to subscript functions in a control map from right
to Jeft, but data from Jevi 1o ,ight., There is no theoretical significance to
this convention, and no confusion should arise, as long as it is understood and
kept in mind. Actually, the convention is useful psychologically to undermine
the erroneous notion that function and data subscripts must be related in some
way, but, again, it is not necessary.
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and the output of C must be the same as that of f4 - namely, lucal-dataz';

we must also introduce a new local variable, say, "local-data''" for the com-
munication of B and C, i.e., output of B and input of C. Function fS’ simi-
larly, is the composition of D and f7, so similar considerations apply. Func-
tion O inrcuts local—data], function f7 outputs local-data,', and a new vari-
able, say, "local-data'''", must be introduced for the output of D and the
input of f7. Finally (for this subtree), f7 is the coproduct of E and F, so
we have to partition tue input and output sets of f7, rather than the input
and output 1ists, as was the case with fp. Since f, inputs local-data''' and
outputs 1oca1-data]'. we denote the inputs of E and F, respectively, by
"210ca1-data"'“ and “1loca1-data"'" to indicate that the union of the two
input sets must be the set of local-data''’, and we denote the outputs of E
and F, respectively, by “zlocal-data]'“ and “1loca1-data]'" to indicate that
the union of the two output sets must be the set of loca]-datai'. This gives
us the data and control flow indicated in the nartial control map exhibited in
Figure 13. Note that we have reintroduced the condition (Figure 1) that deter-
mines the set partition involved in the decomposition of f7, expressing it as
a boolean-valued function of the relevant input data.

The only part of the tree remaining to be completed now is the two lower-left
levels, as indicated in Figure 13. Since f3 is the coproduct of Q, fﬁ, and G,
and since it inputs local-data’' and outputs output-list, we know that the input
sets of Q, f6’ and G must form an exhaustive and mutually exclusive partition
of the input set of f3, and that their output sets must form an exhaustive,
possihly nnn-mutually exclusive (Cushing, 1978) partition of its output set.

In accordance with these facts, we choose to denote the inputs of Q, f6’ and G,
respectively, by the symbols "lloca]-data'“. "2local-data'", and "3local-data'",
and their outputs, respectively, by "1output list", “zoutput list", and
"3output list"., Since f6 is the product of J and H, we know that the input and
output lists of f6 must be partitioned to get the input and output Vists of J
and H. Accordingly, we denote the inputs of J and H, respectively, by
“zlocal~data]'" and “zlocal-dataz'“, and their outputs, respectively, by
"2output-list]" and "2output-1ist2" (See Hamilton and Zeldin, 1976a and
Cushing, 1978a for a review of the superscripting and subscripting conventions
we have just finished using.} . The resulting completely specified control

map is exhibited in Figure 14, HNote that, again, we have reintroduced the
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condition indicated in Figure 1 as determining the set partition, expressing
it, again, as a boolean-valu -d function of the relevant input data.

Now that the data flow has been completely specified in the control map, we
observe that the control structure names are superfluous. Communication be-
tween subfunctions automatically means a JOIN (i.e., composition) control
structure, partitioning of the input and output sets automatically means an

OR (i.e., coproduct} control structure, and partitioning the input and out-

put lists automatically means an INCLUDE {i.e., product) control structure.

If we remove the control structure names from the tree structure in Figure 14,
then we get the control map exhibited in Figure 15, which, it follows, contains
exactly the same information.

Each of Figures 14 and 15 contains all of the information contained in Fiqure 2,
as we have shown, and also a lot more. Figures 14 and 15 contain explicit
information on data flow, decomposition levels, and modularization which is
present only implicitly in Figure 2. In particular, only the primitive func-
tions A, B, C, D, E, F, G, H, J, and Q are explicitly represented in the

R-Net structure, whereas all of the higher-level functions, crucial to a com-
plete modular (correct interfaces) account of the system's functional struc-
ture, are included, along with the primitive functions, in the control mans.
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4.  TRANSLATICN BETWEEN R-NETS AND CONTROL MAPS

In Section 3 we investiyated the relationship between R-Nets and control maps
by transiating an idealized skeletal R-Net structure into a functionally equiv-
alent5 control map. Since the skeletal R-Net structure we examined contains
all of the essential features (other than For Each nodes) of an actual R-Net,

at least as long as an R-Net is viewed as a specification of control relaticis
among functions, we can legitimately conclude that we have proven the following
theorem:

Theorem 3: For any R-Net that does not contain For Each nodes, there
is a functionally equivalent control map that contains
only primitive control structures.

Since our proof vus strictly mechanical, requiring no special insight once the
steps are learned, and since the R-Net structure we used has no special prop-
erties, but is fully representative of such R-Net structures in general, we
can also conciude that we have proven the following theorem, as well:

Theorem &: The translation procedure from R-Nets to control maps is
effective.

in other words, the translation process from R-Net structures to control maps
is completely general, applying to all such structures in the same way without
exception.

The converse of each of these theorems, furthermore, is also easily seen to be
true, since the mechanical transliation process from R-Nets to control maps is
readily reversed. This gives us two additional theorems, as follows:

Thenrem 5: For any control map that contains only primitive control
structures, there is a functionally equivalent R-Net that
contains no For Each nodes.

58y saying that two functional control specifications are functionally equiva-

lent, we mean that they perform the same function and contain the same functions
and that the latter stand in the same control relationships in both cases. 3See
Cushing 1877, 1978b, where the same notion is used in the proof of a different
thegram.
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Theorem 6: The translation procedure from control maps to R-Nets is
effective.

As we have observed, however, a <omplete control map contains a lot of addi-
tional information regarding data flow and partitioning that is not explicitly
represented in the corresponding R-Net. This information is lost in the trans-
lation process from control maps to R-Mets,

Information explicitly represented in the control map concerning higher-level
functional structure,  while not actually lost in the translation from con-
trol maps to R-Nets, is encoded in the R-Mets in a very non-perspicuous form.
The boxes we drew in Section 2 to indicate this additional structure, in other
words, are not generally included in an actual R-Net and, in any event, do

not seem to be a particularly enlightening or convenient way to represent this
higher-level structure (thouoh they were obviously very useful in proving our
four theorems). Uhether there is a natural, revealing, and convenient notation
for representing this structure within the R-Net framework remains to be seen,
but it is far from evident, on the face of it, what such a notation would be.

Combining our four new theorems with some older re;ults about HOS enables us
to draw one further conclusion from this discussion. Hamilton and Zeldin
(1974, 1976c) show that in order to have correct interfaces, i.e., in order
even to qualify as e real system in the fir<t place, a candidate system must
satisfy the six HOS axioms. They alsc show, furthermore, that in order to
satisfy the six axioms a system must be representable by a control map which
contains only primitive control structures, i.e., JOIN, OR, and INCLUDE. In
conjunction with Theorems 5 and 6, however, these facts give us the following
result:

Corollary: Any system that can be represented by an R-Net with For
Each nodes can be represented by an R-Net without For
Each nodes and there is an effective orocedure for elim-
inating the For Each nodes in going from the former to the
latter.

Hamilton and Zeldin's results show that any genuine system at all can be repre-
sented by a control map that contains only primitive control structures, so we
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krow that any system that can he represented by an R-Net with For Each nodes
can be represented by a control map that contains only primitive control struc-

tures.

Theorems 5 and 6, however, tell us that a control map that contains only

primitive control structures tan be effectively rewritten as an R-Net without
For Each nodes, so we know that {he original R-Met with For Each nodes can be
effectively rewritten that way as well by first translating into a control map
vith only primitive centrol structures.

One gap in this proof of the corollary, of course, is our assumption that For
Each nodes are a legitimate construct in the first place. We have not shown,
that is, that For Each nodes are even capable of appearing in a system at all

without fouling up the interface relationships in the system. The best way
to prove this assumption, and thus to fill the gap in the proof of the corol-
Tary, would be to specify the notion of For Each node explicitly as an HOS

abstract control structure,but there is a very good reason for not trying to

construct the relevant control map here. 1f the assumption is false and such
a control map cannot be constructed, then not only is the corollary false, but

the whole issue simply dissolves, since R-Nets with For Each nodes would then

not describe any real systems. One has no business using For Each nodes in
the first place, in other words, if one cannot show that they interact properly
with the other three R-Net control structures. We are willing here to accept

the legitimacy of For Each nodes for the sake of arqument and in order for the

corollary to have some suhstance, but the burden of proof rests with those who
want to use R-Nets with For Each nodes as a tool for specifying systems. What
the corollary tells us is that, if For Each nodes are Jegitimate at all, then

they are superfluous, except perhaps as a convenient abbreviatory device. If

they are not legitimate, then we cannot use them, and if they are legitimate,
then we need not use them,so there seems little point in trying to resolve the
question here.

1f, for some reason, one does decide to use R-Nets to specify systems, then

our theorems and corollary orovide a useful means of checking the R-Nets we

construct. Suppose we have an R-Net and we want to know whether the inter-

faces among the various modules represented and, in particular, among the

processing steps are all correct. All we have to do, then, to check this is
to translate the R-Met into a control map, as illustrated in Sections 2 and 3,
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and then see whether all the control structures are either primitive or defini-
able in terms of the primitives. This tells us that the HOS axioms are satis-
] fied by the control map and thus that the interfaces in the control map, and
! therefore also in the R-Net itself, are, in fact, correct.




5. 0N EVALUATING HOTATIONAL FRAMENORKS

Having investigated in some detail the relationship between R-Nets and control
maps, we turn now to an examination of the relationship between each of these
notational frameworks and that of commutative diagrams. As is the case in
any domain, the value of a notational framework in system specification and
requirements definition depends on the use we want to put it to. As long as
our systems are relatively small and our requirements are simple, a notational
framework like that of R-Nets may be just what we need, since description in
terms of primitive control structures on one level of decomposition may suffice
for our purposes in those cases. As soon as our systems become very large,
however, the restriction leads to extremely cumbersome, unnecessarily complex
specifications and, indeed, may even obstruct the development process.

Control map notation provides a way out of this situation by supporting in a
natural way both the representation of levels of decomposition and the defi-
nition of abstract control structures. Control maps have, in fact, been

found in practice to be very useful tools both in designing new systems (e.g.,
Harel, 1977) and in gaining insight into how systems already designed are
supposed to work (e.g., M05,1977). As wic saw in Cushing (1978a), this nota-
tional framework is not perfect either, however, since it was only by representing
the three primitive control sti-uctures by commutative diagrams that we were

able to discover the category-theoretic duality of two of them, as expressed

in Theorem 2.

The point, again, is that the value of a notational framework depends on its
intended use. A theoretician interested in deep mathematical generalizations
will use whatever notational system will enavle him to discover those general-
jzations, sometimes control maps, sometimes commutative diagrams, and some-
times something else. An engineer looking for a practical tool for designing
large real-world systems that work, however, would be well-advised to stick
fairly exclusively with control maps, a notational framework that emerged
directly out of an analysis of the properties of large real-world systems.

We have already bequn to appreciate the validity of this advice, as jllustrated
hy the advantages we have found of control maps over R-lets, and we will
appreciate it even ymore when we examine the relationship between control maps
and commutative diagrams.
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6. Control Maps and Commutative Diagrams

Figure 16 shows the correspondences between the HOS primitive control structures
written as control maps and the commutative diagrams that they imply, as these
correspondences were used in the proofs {Cushing,1978a) of Theorems | and 2.
Descriptions of the three control structures written in the standard notation
of first-order predicate logic are also included to clarify the meanings of the
diagrams even further for those who are familiar with that notation, and a
clarification of the notational correspondences involved is also given.

The first question we have to ask now is how we might go about introducing a
way of representing higher-level functional structure in comutative diagrams
like those in Figure 16. In control maps, let us recall, higher-level func-
tional structure becomes representable as a result of the fuct that repeated
decomposability is a natural consequence of the notation. Given any function,
such as the one in Figure 17(a), we can decompose it into subfunctions, using
one of the primitive control structures, to get a control map 1ike the one in
Figure 17(b). Each of these (sub)functions can then be decomposed, if we
like, to get a control map like the one in Figure 17{c). Clearly, this de-
composition process can go on for as long as we choose, resulting in control
maps of systems with any number of levels of functional structure.

In all of the control maps in Figure 17, f is the overall system function,

but which other functions are primitive functions, like the A, B, €, D, E, F,
G, H, J, and Q of Figure 4, and which are higher-level functions, like the f]
through f7 of that figure, depends on how many levels of decomposition are
involved. In (a) of Figure 17, if we view the figure as a control map at all,
f itself is treated as a primitive function, whereas in (b) it is g and h that
are the primitive operations of the system. In (c), (d), and (e) g and h are
highor-level functions, along with f and k in {d) and both k and n in {e). The
primitive operations in these three control maps are i, j, k and] in {c),

i, j»m, n, and 1 in (d), and i, j, m, 0, p, and 1 in (e).

Note also that higher-level functional structure can be represented abstractly
in a control map without necessarily having to specifty which primitive control
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structure is involved. Naturally a complete system description must include

a full statement of allof the control structures involved, so the value of
each "C]" in Fiqure 17 would have to be filled in to obtain such a description,
along with the relevani variables. OQur point here, however, is that the repre-
sentation of functional decomposition is uniform for all three primitive control
structures, since they all get represented by downward extension of subfunc-
tions {or “branching”, in the tree-geometric, but not the computer-programming
sense of that term).

The situation with cormutative diagrams is very different in this respect, as
ve have already begun to see. Me have seen, in Figure 17, that, while the
arrow diagrams for INCLUDE and OR are reasonably similar in form (in fact,
category-theoretic duals}), the arrow diagram for JOIN looks rather different.
Whereas ecach of (iib) and (iic) of that figure requires subsidiary arrows -
i.e., T K dk or 1k’ jk - to make all of the mapping relationships explicit,
the diagram {iia) requires only the principdl arrows f, g, and h denoting
the overall function and its subfunctions. This discrepancy obviously has
implications for the possibility of uniform decomposability, as the next two
figures clearly illustrate.

For simplicity, let us assume that all instances of "Ci" in Figure 17 denote

the same primitive control structure. Figure 18 shows what Figure 17 trans-
lates into in arrow-language terms when we take Ci = JOIN, for all i of the Ci in
Figure 17, and Figure 19 shows what happens when we take Ci = INCLUDE, for all

i of the Ci in Figure 17. The commutative diagrams that result when we

take Ci==0R, for all i of the ci in Figure 17, are identical to those in

Fioure 19, except that all of the arrows are reversed, a simple consequence

of Theorem 2, and different labels might be chosen, as well,

After even a rasual look at Figures 17, 18, and 19, it seems safe to say,
without fear of exaggeration, that, while the control maps in Figure 17 are
simple, neat, and elecant, the commutative diagrams that correspond to them

in the other two fiqures are a mess. The first problem we notice, as sug-
gested above, is the gross non-uniformity in the ways the commutative diagrams
manage to represent composition, on the one hand {Figure 18), and class
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partition{as well as set partition, via Theorem 2), on the other (Figure 19).
Hhat are simply two different manifestations of the single formal structure

in control map notation, with the difference indicated by straichtforward
specification of Lhe data relationships involved, as seen in Section 3, become
wildlv unrelated kinds of formal structures when expressed as commwtative
diagrams. The non-uniformity of the arrow representations of composition, on
the one hand, vs. the two forms of partition, on the other, is already evident
in Figure 16, of course. The arrcw representation of a composition includes
only the mappings 'n the composition, for example, whereas the arrow repre-
sentations of a partition (of either sort) requires two pairs of auxiliary
mappings for each binary decomposition. The partition arrow diagrams,
furthermore, involve a certain decompositional symmetry of the subfunctions
around the parent function and geometric parallelism of the subfunctions,
neither of which is in evidence at ail in the arrow diagram for composition.
The full extent of the comp'ications caused by these discrepancies does not
become clear, however, until we introduce more and more ievels of functional
structure, as in Figure 17, 18 and 19. What look in Figure 16 like inter-
esting, but minor non-uniformities in th2 arrow representations of composition
and partition, become a Rotational nightmare when we try tu extend those
representations beyond a single level of decomposition, as in the latter

three figures.

Perhaps most damaging to the value of commutative diagrams in system design,
however, is the apparently random way in which both the composition and
partition diagrams evoand geometrically on the page, as more levels of decom-
position are introduced. As we have seen, repeated decomposition is repre-
sented quite simply and naturally for all primitive control structures in
control maps by downward expansion of the tree structure, with whatever left-
ward and right-ward expansion is naturally involved in that. For commutative
diagrams, however, the situation is not so simple, as Figures 18 and 19 clearly
reveal.
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For composition, shown in Figure 18, the situation is complex, but perhaps
tolerable. Once we choose a direction in which to expand the initial decom-
position, further expansions are all more or less in that same general direc-
tion, at least as far as the diagrams shown in that figure are concerned.
Introducina more levels of decomposition could complicate the picture consid-
erably, however, especially, for example, if we were to begin decomposing j
and m. In that case we might find our diaoram closing in on itself around f,
unless we either expressed our further decompositions in triangles too small
to read or significantly increased the size of the entire diagram.

for partitions, however, the situation is qualitatively more complex, it
seems, than could ever be the case in composition. As Figure 19 reveals,
repeated partition decompositions are expressed in commutative diagrams not
only by outward expansion but by inward expansion, as well! Every new level
of decomposition we introduce requires us to introduce a new symmetric struc-
ture like Fiqure 16(iib) (or c) around the arrow that represents the function
ve are docomposing. In decomposing h, for example, in Figure 19(b), we have
to introduce 1 outside the diagram in Figure 19(c), automatically causing
expansiey in one direction, and k inside the diagram, creating pressure for
expansion by the need to make room for it. In decomposing n, in contrast,

in Figure 19{d), we have to introduce both o and p inside the diagram in
Figure 19{c), whereas in decomposing f in Figure 19{(a), we have to introduce
both g and h outside the diagram in Fiq:ire 19(b). All uniformity apparently
goes out the window in this case, and the diaqrams have to expand arbitrarily
in all directions in order just to remain intelligible as more and more
decomposition takes place.

It seems fair to say that diagrams of this sort would not be a very helpful
tool to the ennineer in actually specifying a real system or describing a set
of requirements, once the system or rejuirements had surpassed the most minimal
level of complexity. e have not even touched on the problem, we might add,

of what happens to the commutative diagrams, when the systems they represent
are permitted to contain instances of more than just one of the primitive
control structures. As might be expected, the complexity of the diagrams

that result in that case is truly astounding, as compared to the simule and
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straightforward control maps that they are functionally equivalent to, and
vie leave it as an enlightening exercise for the reader to investigate that
fact for himself.

Hone of this is meant to disparage comnutative diaorams, however, which

have been found to be extremely useful throughout contemporary mathematics

fn unifying a wide range of otherwise apparently disparate phenomena

{Maclane and 8irkhoff, 1967; Maclane, 1972, Arbib and Manes, 1975). We
ourselves used such diagrams to prove Theorem 2 (Cushing, 1978a), whose truth
is not evident from control-map notation. The fact remains, however, that,
however useful these diaorams may be for other purposes in other areas,

they are not very useful in designing or describing either systems or
requirements, nor are they particularly revealing of system structure or
architecture, as is amply verified in Figures 17, 18 and 19.
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7. COMMUTATIVE DIAGRAMS AND R-NETS

Our reason for stressing this latter point is that commutative diagrams are,

in fact, more revealing of system siructure than are R-Nets, and therefore more
useful in design as well, beyond the minimal level of complexity. As we saw in
Section 2, R-Nets provide no natural mechanism for representing higher-level
functional structure, whicn we had to indicate in Figure 4 by introducing

the new notational device of drawing boxes around network subconfigurations
that could be seen to be performing higher-level functions. Orawing these
boxes was useful in establishing the relation between R-Nets and control

maps, and thus in proving  theorems 3, 4, 5, and 6, but they are not an
intrinsic part of the R-Net notation itself, which does not concern itself

with higher-level functional structure. One might try to augment the R-Net struc-
ture by adopting the box device as a part of an expanded notational framework,
but, although this would increase the power of the framework to the level

of being able to describe higher-level functional structure, the diagrams

that would result from repeated decomposition would be every bit as complex

as the corresponding arrow diagrams, such as these in Figures 18 and 19.

This fact seems fairly clear just from looking at Figure 4 itself, and we

Teave any further verification of it, again, to the reader.

There is a certain similarity, in.fact, between R-Net notation with boxes
and commutative diagrams, and it is worth discussing that similarity briefly
at this point. Speaking metaphorically, we might even say that R-Nets-with-

boxes and commutative diagrams are "duals," in a very loose sense like the

sense of "dual" used in projective geometry (Behnke et al., 1974), rather

than the category-theoretic sense used in the formulation of Theorem 2.

The interchanging of points and Yines plays a role in projective geometry
analogous to the reversing of the directions of arrows in category theory.

Given any theorem in projective geometry formulated entirely in terms of points,
Vines, and incidence, we obtain another theorem by interchanging the words
"point" and "Tine," and no furiher proof of a theorem obtained in this way is

needed (pp. 15-96).

1f, aocain, we let ourselves speak very loosely, rather than with the precision
that led to Theorem 2, then we can see that there is a sense in which this

237




latter notion of duality characterizes the relation between R-Hets and arrow
diagrams. R-Nets, as our Figures 1 and 2 show, use nodes {points) to represent
functions and arrows (lines), in effect, to represent flowing contrel, whereas
comnutative diagrams use nodes (points) to represent data repositories, i.e.,
sets, and arrows (lines) to represent functinns. An R-det, in other words,
will use the configuration

(1) = F }——

to indicate that control is flowing into and then out of function f6, whereas
a commutative diagram will use the configuration

f
(2) A B

to indicate that data flows from repository A through function f into repository
B. In the R-Net the function is represented by a node and the flowing ¢ontrol
by arrows; in the commutative diagram the function is represented by an arrow

7

and it is the data repositories, and thus, in effect, control’ that get repre-

sented by nodes.

There 1is good reason to think that this "duality" between R-Nets and commutative
diagrams can be made quite precise and that a lot of interesting theoretical
results could then be derived from it. At present, however, we are treating

it as only a suggestive melaphur, as we have repeatedly stressed. The really
important fact to observe now, in our present context, is that in both cases,
the notion of control structures, except for composition, is really something
quite foreign to the notation and has to be introduced, so to speak, from the
outside. Composition, of course, is a triviality, since all it involves is
repeated application of functions, and so can be represented simply by linking
together a string of units of the forme (1) or (2). The other two control
structures, however, require special configurations in both R-Nets and commuta-

tive diagrems, as we have seen.
6

If f is a function, we can also view the arrows as denoting data flow into and
out of the functi.n. Data flow in any other sense is not represented, however,

The "duality" of data and control is discussed more fully in Cushing (1977, 1978b).
See also Cushing (1978a) and Section 3 above.

7
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In comnutative diagrams, a partition is indicated by having subfunctions run
parallel to the parent function; which partition is involved is indicated by
the directions of the arrias relative to the domains and ranges of the parent
function. In an R-Net, in contrast, & partition is indicated by having the
subfunctions "branch off" so that they have no direct geometric connection

to each other, and the parent function is not shown at all; which partition is
involved, furthermore, can be indicated only by introducing special ad hoc
symbols ("&" and "+")} to do so, since nothing otherwise already in the notation
lends itself readily to that purpose, as arrow directions do in commutative
diagrams. In neither case is the notion of control structure really an in-
trinsic part of the notation. In commutative diagrams, however, we can at
least decipher what the control structures are by carefully examining the
arrow directions in the various structural configurations, quite aside from
what symbols happen to be added as labels to the diagrams. In R-Nets, in '
contrast, it is only the symbols that tell us which sort of partition is
involved.

This difference is closely related to the loose “"duality" between R-Rets and
commutative diagrams that we have discussed. The reason that it is possible

to show parent functions in a conmutative diagram is precisely because func-
tions are represented by arrows, not nodes. Given two arrows representing
functions, it is a simple matter to represent their parent function as an arrow
paralle) and between them, as indicated in Figure 19, and higher-level functional
structure then follows by repeating this process. Since functions are re-
presented in R-Nets by nndes, however, this devi.e is no lTonger available:

what would it mean to make one node "parallel” to two others? The only solution
it seems, s exactly the one we introduced in our translation from R-Nets to
control waps, namely, drawing boxes around the nodes representing the sub-
functions to get the "node" representing the parent function. One "node" of
this sort containing two other nodes that represent functions is like one

arrnw parallel to and between two other arrows that denote functions. Qur box
notation is thus a natural analog for R-Nets of arrow parallelism in commutative
diagrans, as well as being what seems to be the only way to get

higher-level functional structure into R-Nets.




The careful reader will by now have observed that functions are also represented
by nodes in control maps and will wonder why {or whether) the same deficiencies
of R-Nets that we have pointed out result from this representation do not

also apply to control maps. The reason why they do not is easily seen by
comparing Figures 8, 9, ano 10. The function nodes in a control-map tree play

a very different role from that played by the function nodes in an R-Net, be-
cause the lines that connect the nodes are of a very different character in

the two kinds of diagrams. The lines in an R-Net connect functions on one level
to each other, possibly by way of a control structure node, whereas the lines

in a control map connect functions on one level to their parent function on

the next higher level. Whereas lines in an R-Net denote actual

control flow through a system, the lines in a control map denote relations
of control in a hierarchy of levels of control. Control map notation is based
on the notion of control structure, rather than either having to introduce
it artificially through special symbols or having to decipher it from the

directions of arrows. As Figures 8, 9, and 10 make clear, the lines in a
control map serve, in a sense, as abbreviations for the boxes in a rearranged
R-Net structure with boxes. Once we start to represent things as control-
map trees, however, the boxes become utterly superfluous and we are free to
make full use of the control-map notation itself.
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8. CONTROL MAPS, R-NETS, AND COMMUTATIVE DIAGRAMS

Qur discussion to this point is summarized in Figure 20. Relative to the
ranges of information they are each capable of expressing, R-Nets and control
maps appear to be equally perspicuous. Both notations are straightforward to
use and easy to read, providing a clear understanding of the aspects of system
structure that they describe. Control maps are considerably more expressive,
however, in that they naturally incorporate a way of describing higher-level
functional structure, whercas R-Nets do not. The two frameworks would thus
appear to be equally useful in describing small systems and simple requirements
in which problems of interface correctness and the need for abstract control
structures do not arise, but the use of control maps would appear to be advis-
able in describing larger systems and more complex requirements, in which these
issues become increasingly more important. .

Control maps, R-Nets-with-boxes, and commutative diagrams appear to be equal

in expressive power, but differ markedly in perspicuity. All three notations

are capable of expressing information ahout higher-leyel functional structure, but
only control maps provide a uniform way of representing that information.

Control maps, furthermore, expand in size, as complexity of decomposition
increases, by a simple downward tree expansion, with no alteration to the
structure of the diagram already drawn. Both R-Nets-with-boxes and commutative
diagrams, however, represent increasing functional decomposition by increasing

the internal complexity of the diagram, by drawing more boxes in the former case
and more arrow configurations in thc latter. This internal complication, in contrast
to the external downward expansion of control maps, could necessitate repeated
redrawings of the diagrams, as the need for larger dimensions to make room for
the increasing complexity becomes evidenta. Again, the three notational frame-
works would appear to be equally suitable for describing very small systems

and very simple requirements, but cantrol maps would appear to be advisable in

all other cases.

8C0mpositinn in commutative diagrams {(and in R-Nets, for that matter) does
expand outward (Fig. 18), but this only underscores the non-uniform character
of the way those diagrams represent control structures.
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