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SUMMARY

The behaviour of a vortex sheet embedded in an irrotational steady flow and
springing from a separation line on a smooth body is studied in the neighbourhood
of the separation line. It is shown first that the vortex sheet is tangential to
the wall along the separation lime. Then, under the assumptions that the body is
slender and the separation line is highly swept, it is shown that the exponent
which defines how rapidly the sheet departs from the “~dy must take one of a set
of discrete valueas. The gmallest of these, corresp Ag to the most rapid
departure of the sheet, implies an infinitely large adverse pressure gradient on
the upstream side of the separation line. The next largest exponent avoids this.

The implications for modelling separated flows are br- ~fly discussed.
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1 INTRODUCTION

Classical aerodynamics is based on regarding the flow past a streamlined
body at a small angle of incidence as inviscid and irrotational outside a thin
region which comprises the boundary layer, surrounding the body, and the wake,
extending downstream of it. The fluid in the boundary layer and wake is charac-
terised by its acquisition of rotation through the action of viscous forces and,
at high Reynolds numbers, by its turbulence. In calculating a first approxima-
tion to the external flow, displacement effects of the boundary layer and wake
are neglected, while the net rotation in the wake of a lifting surface is repre-
sented by a planar vortex sheet whose strength is determined by the Kutta-

Joukowski condition of finite velocity at the trailiag edge.

When the angle of incidence is no longer small, the boundary layer may
leave the surface of the body well upstream of the itrailing edge. This is known
as 'separation', although the process is not essentially differeat from the
departure of the boundary lsyer from the trailing edge in the classical aero~-
dynamic model. In the s<parated flow which results from boundary layer separa-
tion, rotation is present not only in the boundary layer and wake downstream of
the body but also in the external flow which surrounds it. Modelling such flows
presents difficulties of two kinds: practical, computational difficulties of
representing the rotation, and conceptual, physical difficulties of accounting
for its origin. 1In general, these difficulties are compounded by a degree of
flow unsteadiness very much greater than that of a turbulent boundary layer
upstream of separation. This unsteadiness leads the aircraft designer to avoid
such flows as far as possible, so there is some justification for their neglect
by the aircraft aerodynamicist. However, if a separation line is highly swept,
the sepsrated flow assovciated with it is frequently steady, particularly when the
position of the separation line is fixed by a salient edga on the body. The
prime example is the flow over slender wings at incidence, with the formation of

coiled vortex sheets. Such a flow is eminently applicable.

Considerable success has been achieved in modelling flows with highly-swept
separation lines along salient edges by a straightforward extension of the
classical aerodynamic model. The rotation is still represented by a vortex
sheet, the displacement effects of the separated flow are ignored, and a Kutta
condition is applied at the salient edge; on the other hand, the location and
form of the vortex sheet can no longer be assumed a priori. Most work so far has

made use of the framework of slender-body theory to reduce the computational

complexity, but it has recently been dem.onstratedl that the approach can be
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carried through more generally, in particular for fully three-dimensional

incompressible flow.

Highly-swept separation lines also arise on smoothly curved bodies, for
instance on the noses of aircraft at high incidence, on guided weapons and on
up-swept rear fuselages of aircraft. Parts of the leading edges of Concorde are
appreciably rounded and the leading edge of the US Space Shuttle is well rounded.
Elsewhere on slender wings highly-swept separation lines are found on the upper
surface beneath the primary vortices and may arise on the shoulder of a deflected

leading-edge flap.

It is therefore of considerable interest to attempt tc extend the coiled
vortex-gheet model of separation from a salient edge to model steady separation
from a smooth surface. If separation originates at a pointed apex, as for
instance on an ogival nose at high incidence, the separated flow can be repre-
sented by a coiled vortex sheet which takes a conical form at the apex; but if
the most upstream point at which the flow separates is an ordinary point on the
surface, as on an ogival nose at lower incidence, its initial form is not clear.
Apart from this initial problem, we may expect, based on experience in calculat-
ing flows with salient edges, that the boundary conditions on the vortex sheet
(that it is a stream surface with no discontinuity of pressure across it) will
define the sheet comrletely once the separation line from which it springs has
been specified, (There may be more than one solution fc¢: a given body, onset
flow and separation line, as found in Ref 2, but each is well-defined by the
conditions.) The position of the separation line must be supplied to the
inviscid model; it might be obtained from experiment or through an iteration
between the calculation of the inviscid flow and the calculation of the boundary
layer on the body upstream of separation. The background to these introductory

remarks is given at greater length in a recent review3.

It is in the immediate neighbourhood of the separation line itself that
the main differences in behaviour are likely to arise between separation from a
salient edge and separation from a smooth surface. The present analytical study
was undertaken in order to shed some light on this behaviour and to provide a
guide for choosing appropriate local representatioans in subsequent numerical
work. The results obtained define the possible types of behaviour of the vortex
sheet close to the separation line and, through the associated pressure fields,
raise questions concerning the eventual matching of the inviscid model to a

boundary layer calculation.

W
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In section 2 it is shown, with sowe minor assumptions, that the vortex
sheet leaves the surface tangentially, ie that at almost all points of the

separation line the tangent plane to the sheet is also a taugent plane to the

I TR

body. The argument is elementary, but is is set down to provide a basis for

RV AR

what follows and to make explicit the assumptions invelved.

For the rest of the study, the assumptions of slender-body theory are made.

s

This provides a manageable analytic framework and is likely to be appropriate in
most situations involving highly-swept separation lines. The method of analysis
" employed is described in section 3 and applied in detail in section 4 to the
i problem of a conical vortex sheet leaving a semi-infinite plane wall. It is

‘ shown that, if the distance of the sheet from the wall increases like y" ,
‘ where y is the distance along the wall away from the separation line, then the
only values of n not exceeding 3 for which the vortex sheet boundary conditions
can be satisfied are 3/2 and 5/2. The former is associated with an adverse pres-
sure gradient upstream of the separation line which becomes infinitely large as
the line is approached. For n = 5/2 the pressure gradient is not dominated by
the local flow behaviour. 1In section 5 it is shown that the restriction to
conical flow can be removed without altering the conclusions and in section 6 it
is shown that the results also hold for a vortex sheet leaving a smoothly curved

body. Section 7 includes a brief discussion of the results as thay relate to

AR IE YT ST TN Y MG ST 17 W R TR ORI T R, T WP T S T N M YT T TR N TR RN Y Y

modelling separated flow, both steady flow in three dimensions and time-

dependent plane flow.

2 THE VORTEX SHEET LEAVES THE BODY TANGENTIALLY

TR AP AT g

In this section it is shown that, if vorticity is being shed from an
i ordinary point of a separation line on a smooth body into a vortex sheet which
3 is emhadded in a eteady, irrotational heomentrepic flow, then the vortex sheet is

E; tangential to the body at that point.

By en 'ordinary point' is meant a point at which the separation line has a
E' single, continuously varying, tangent; and by a 'smooth body' is meant a body
E which, on the separation line, has a single, continuously varying, tangent plane,

The assumption of steady flow is primarily for simplicity. 'Homentropic' means

‘.]
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that the entropy is the same throughout the flow field. The assumption of homen-
é i tropic, irrotational flow excludes the study of vortex sheets in flows with
¥ . strorg shock waves; and of vortex sheets bounding closed bubbles of fluid which

} ; are not penetrated by fluid from the free stream. These assumptions are likely

E, to be valid for separation from a highly-swept separation line on a stationary

body producing small disturbances in a uniform stream, but it is not neceseary
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to assume that disturbances are small or that the separation line is highly
swept.

As a consequence of the assumption of irrotationality and the ellmination
of closed bubbles, the circulation of the vortex sheet can be defined. The
circulation along a path which begins at a point on one side of the vortex sheet
and ends at the adjacent point on the opposite side of the sheet, lying otherwise
in the irrotational fluid, depends only on the choice of point on the sheet. If
the point lies on the separation line at the base of the sheet, the circulation
along such a path is defined (with some sign convention) as the circulation of
the sheet at that position on the separation line. The notion of the shedding of
vorticity can now be made more precise. It is taken that vorticity is being shed
from a point on the separation line if and only if the circulation is varying
with position on the separation line at this point and the point is not a stagna-
tion point of the mean (or convective) flow. An example in which vorticity is
not being shed is provided by the inviscid model of the flow paet a combination
of a lifting wing and a cylindrical fuselage: the plane vortex sheet representing
the wake from the wing lies along the body side without being fed from the body.

The present results do not relate to such a situation.

Following this explanation, the proof is very simple. We assume first that

- the sheet is not tangential to the body and show that vorticity is not being shed.

Since the body and the separation line are continuously curved, there are
unique normals to the body and to the vortex sheet at the point considered.

These normals are distinct, since we assumed the sheet is not tangential to the
body, and the component of the fluid velocity along each vanishes, since both the
sheet and the body are stream surfaces of a steady flow. Hence the fluid
velocity on both sides of the shect is perpendicular to both normals, ie it is
parallel to the tangent to the separation line.

The second boundary condition on the sheet is that the pressure is contin-
uous across it. For steady, homentropic, irrotational flow, equality uf pressure
implies equality of fluid speed (neglecting body forces), so the fluid velocity
on the two sides of the separation line is either (a) zero, (b) equal in magni-
tude and opposite in direction, or (¢) non-zero and identical. Possibilities
(a) and (b) both correspond to zero mean velocity, ie to a stagnation point of
the mean flow, so that vorticity is not being shed. This leaves possibility (c),
according to which the fluid velocity is the same on both sides of the separation
line. Hence the fluid particles which at one instant lie on a path which

surrounds the vorrex sheet, beginning and ending at adjacent points on opposite
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sides of the separation line, at the next instant also lie on a path which
surrounds the sheet and terminates at adjacent points a short distance downstream
along the separation line. However, the circulation along such a path does not
change with time, so the circulation of the vortex sheet is not varying with

position along the separation line, and so vorticity is not being shed,

This shows that vorticity is not being shed if the sheat is not tangential
to the body. On the other hand we can see that vorticity can be shed if the
sheet is tangential to the body. It is convenient to distinguish between the two
sides of the separation line, and consequently of the vortex sheet, referring to
the side on which the sheet lies close to the surface as the downstream side.
Then on the downstream side the velocity vector must again lie parallel to the
separation line, but on the opposite, upstream, side the only restriction
imposed on the direction of the velocity is that it must be parallel to the
common tangent plane of the sheet and the body. The magnitudas of the velocity
vectors must again be equal, but this allows there to be both a non-zero com-
ponent of the mean velocity normal to the separation line and a non-zeroc com-
ponent of the vorticity parallel to the separation line. Vorticity can therefore

be shed and the circulation of the sheet can vary along the separation line.

A sketch of the configuration envisaged is shown in Fig l. The portions
of body suriface and vortex sheet lying between two parullel cross-flow planes
are represented, with the vortex sheet touching the body along the separation
line. Streamlines of the inviscid flow on the wall and on the sheet are showm
by solid lines. On the downstream side of the separation line, these are all
nearly paralliel to the separation line, whether they lie on the wall or on the
vortex sheet, On the upstream side, the inviscid streamlines on the wall cross
the separation line at an angle and continue on the vortex sheat. The skin-
frictien lines, or limiting streamlines of the viscous flow, are shown on the
wall upstream of the separation line as broken lines. These deviate inwards
from the curved inviscid streamlines, approach the separation line, but do not
cross it. On the downstream side, a nearly parallel fiow is envisaged in which
the skin-friction lines on the wall are essentially parallel to the inviscid
streamlines. The direction of the skin friction thus varies continuously on the
wall and the velocity varies continuously on each side of the sheet. The
boundary layer on the downstream side is rot obliged to separate in this concept

of the flow, for which support is provided in subsection 4.4.
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3 A BASIS FOR FURTHER ANALYSIS

The previous section showed that, under fairly general assumptions, (steady
flow, an 'open' type of separation and an absence of strong shock waves) a vortex
sheet into which vorticity is being shed from a smooth body is tangential to the
body surface along the separation line. To find out more about the form of the
vortex sheet and the flow field near the separation line a more complete analytic
framework is needed. Since, as indicated in the Introduction, flows with highly-
swept separation lines are of considerable interest, it is nstural to choose the
framework of slender-body theory. This means we are concerned with a body of
slowly varying cross-section, whose lateral dimensions are small compared with
its length, with its longitudinal axis at a small inclination to a uniform stream
whose Mach number is not large compared with unity. On such bodies extensive
flow separations of open type (ie which are penetrated by upstream fluid) are
observed, for which a vortex-sheet model is likely to be appropriate. It is to
such a model that the results obtained will apply.

According to slender-body theory, the flow is described by a disturbance
velocity potential which is the sum of two terms. The first is a function of the
streanwise coordinate only, with a form which depends on the Mach number cf the
free stream. This function only gives rise to a disturbance velocity in the
streamwise direction, and this velocity is uniform in each cross-flow plane, so
it emerges that it plays no part in the present analysis. The second term is a
harmonic function (a solution of Laplace's equation) in the cross flow plane,
and is therefore obtainable as the real part of a complex analytic function of
the complex coordinate in this plane. For a wholly attached flow, which is
completely irrotational, this function is determined (to within an additive
constant) in each cross—flow plane by ihe boundary conditions on the body surface
and at infinity. When vortex sheets are present further conditions are required.
For instance, in a linearized approach, where the vortex sheet lies in a fixed
position and represents the wake shed from the trailing edge of a wing, a
condition of pressure continuity is used to determine its strength. For problems
of separated flow, where the position as well as the strength of the vortex
sheet is to be found, the two boundary conditions that the sheet is a stream
surface and that the pressure is coutinuous across it are required. These
conditions can be written as differential equations which express the variation
of the position and strength of the vor:ex sheet in the streamwise direction in
terms of the velocity £izld in the cross—flow plane (see, for example, the

Appendix or Refs4 and 5). For a sharp-edged body, for which the separation line

is known, these equations can be integrated to trace the downstream development

-

S i . 2 i Al s o A i b e, o (ST e el AN 1 2 A A2 e i A e e s ir 2

e e el B i - sl

b T e et ns

) .tk 2 e 2 b 3 il K e o $C e ran



9

of a vortex sheet specified at some station upstreams. It is to be expected that
the same will be true for a smooth body, once the separation line is specified;
leaving the specification of the separation line and the establishmant of an

initial vortex configuration upstream as the outstanding problems.

These problems do not enter the present analysis, since no attempt is made
to determine the entire vortex sheet configuration. The more limited aim of
further restricting the possible behaviour of a vortex sheet near a separation
line can be achieved by arguments in a single cross-‘low plane, like those used
by Clapworthy and Manglet6 to discuss the vortex sh¢ ¢ leaving a salient edge in
a conical flow. Suppose that we assume a shape for the section of the sheet by
a crosg-flow plane and also specify the variation with the streamwise coordinate,
X , of that ghape in the immediate neighbourhood of the cross-flow plane, Than
the component of the velocity, in the cross-flow plane, which is normal to the
curves in which the body and sheet intersect the plane im known (by
equation (A-4), for instance) and so is the behaviour of the flow at infinity
in this plane. Hence the entire flow in this plane is determined. It is helpful

to set out one way of finding it explicitly.

Let us imagine that the entire region of the cross-flow plane, Z = y + iz,
exterior to the body and the vortex sheet (or sheets) is mapped conformally on to
the upper half of a transformed plane, 2Z* , with the point at infinity in the
Z*-plane corresponding to the point at infinity in the Z-plane by an analytic

function

Z =~ T(2%) .

In this mapping the surface of the body and both surfaces of the sheet(s) become
part of the real axis in the Z%-plane. We now construct the flow field in this
transformed plane. A source distribution is introduced along the real axis
whose strength per unit length is proportional to the product of the normal

velocity in the cross-flow plane and the moduius of the mapping:
a(y*) = 2vRGy*) = v (D) |F M|, ()

where 2 1is the point on the configuration corresponding :o the point Z* = y* |

real, ie Z = F(y*) . Then the complex potential is given by

W o= VIk + *21—,; [ q(y*) 1n (2% - y*)dy* , (2)

——
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where V is the speed of the flow at infinity in the Z®*-plane. The component of
velocity, in the cross-flow plane, which is tangential to the curves in which the

body and sheet intersect the plane is then given by
- 1
v, (Zg) vk(y®) /B 9 | (3)

where Zo = F(ya), ys real, and where v: , the corresponding velocity component

in the transformed plane, is given by the derivative of (2):

| (*)d*
v8 (54 .v+§[1;1.7§7. %)

The integral in (4) is to be interpreted as a Cauchy principal value. From the

values of v, at points on the sheet, the right~hand side of equation (A-10),

v
t

I 3y, 3z . . _ _ m .

v Avt = €08 P+ 3% &in v 5 s (A-10)

expressing the condition of pressure continuity, can be found. So, too, can
A® . If this determination can be carried through in terms of parameters whose
variation with the streamwise coordinate, x , is known, the differentiation
on the left of (A-10) can be performed and the consistency of the assumed shape

of the sheet with the pressure condition can be checked.

This procedure is not a practical way to investigate the global solution,
but it can be applied to obtain local information at points of the flow field
at which the velocity is singular. To make this idea more precise; we recall
thet a complex function of a compley variable is regular at a point if, and only
if, it can be expanded in a power series about that point, the power series hav-
ing a non-zero radius of convergence. If a function is not regular at a point,
it is singular there. The same definition can be applied to real functions of a
real variable, with the power series being convergent in a non-vanishing interval
centred on the point. (Note that a function which is singular in this sense may
be bounded, like the Heaviside step function, and even differentiable, like
exp (- l/xz) , both at x = 0 ,) There is clearly a sense in which a singular
function is unchanged when a regular function is added to it; we ghall say that
its singular behaviour is uuchanged. On a more formal level we could define
equivalence classes of functions, assigning functions to the same class if they

differ by a regula: function; but this refinement is not necessary. Note that
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the singular behaviour of In sinx and 1lnx at x =0 is the same, but that
of 2 1ln x is different; nor is the singular behaviour of (ln sin x)2 the same

as that of (lIn x)2

We can now prove a theorem which is fundamental to the analysis which
follows, viz: 1If vg is given by (4), then its singular behaviour at a point
P is uniquely determined by the singular behaviour of q {or v:) at P .

The proof follows.

We choose the origin at P and simplify the notation, writing (4) as

[ -]
v = ek [ e "
—

We wish tu prove that, if ql(n) and qz(n) have the same singular behaviour
at n=0 and vl(E) and vz(E) are related to them by (4'), then v and

v, have the sam2 singular behaviour at £ = 0 . Let a(m) = q,(n) - q,(n) and
v(E) = vl(E) - vz(a) . Since (4') is linear, q and v are also related by it,
Then, by the definition above of singular behaviour, we must prove that the
regularity of q at n = 0 implies the regularity of v at £ =0. If gq

is regular at the origin we can write, for some ¢ > 0 ,

q(n) = Z annn ’

n=0

for |n| ¢ ¢ .

Now suppose |E] < ¢ and rewrite (4') as

- © ©
2nv(E) = 2xV + I n dn f (n)dn z anIn ,
- € n=0

€ 0y
where I = [ ndgn.
<€

Writing nn = Enn“ - (£ - n)nn_] » we see that

- 2¢%/n for n

v
-
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Hence In - gn 1ln i—;-% + a polynomial in £ , and so In can be expanded as a
pover series in & for |E| < e . In the integrals over infinite intervals in

I ST W
Lo - I
.
-
[}

et aebon Al e s s G ndhe e s

the expression for 2wv(f) , we can expand (& - rg)_l as a power serics, for

el

lg] < e ¢n, giving

e n

n)dn
- n+l
E-n n

- ~

[am . .Y o [a@n

n=0

and a similar expression. Hence v(f£) 1is regular at £ = 0 and the proof is

e

complete.

The significance of this theorem is that singular behaviour is likely to

-
e .

arise on the two sides of the separation line. This may cowes Zrom the shape of

EER AL e s L L7 SRS L Ol ?Mwﬂﬁ
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the cross-section of the body and sheet, through the mapping fumction P ia

(1) and (3), or from the streamwise rate of change of the cross-section, through
the normal veloecity A in (1). Moreover, the behaviour of q or v; is

¥ locally determined, through (1). Hence the theorem tells us that the singular

1 behaviour of v: cn the two sides of the separation line is locally determined.

This can be used to provide information on the local behaviour of Ve 0 through

(3), and the comsistercy of this behaviour with equation (A-10) can be checked.

B i s

{ This provides the main result, that a number of plausible forms for the vortex ,

sheet must be rejected. 3

The last preliminary question to be discussed before embarking on the
analysis concerns the mapping function, F(Z*) . The argument above only
involves properties of F in the neighbourhoods of the two sides of the separa-

tion line. It is therefore sufficient to construct a function which maps the

B A e R Rt D Rt

l region outside the body and a truncated vortex sheet on to the upper half of the
Z* plane, provided that, near the separation line, the truncated sheet has the ]

local behaviour which is to be investigated.

The next section begins with the construction of an appropriate mapping.

E The argument is then carried through for a conical sheet on a plane wall, a case
which brings out the essential features without unnecessary complications. In
sections 5 and 6 the limitations to conical flow and plane walls are removed.

The reader who is prepared to take the details on trust may proceed to section 7.

4 THE CONICAL SHEET ON A PLANE WALL

4,1 The sheet shape and mapping function

In this section and the next, the body shape considered is a plane wall

which extends laterally to infiuity and is parallel to the undisturbed flow. Tt

O S ——
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does not, of itself, disturb this flow, so slender body theory is applicable,
provided the vortex sheet is slender. Only highly-swept separation lines are
considered and it is assumed that a vortex sheet springing from a highly—swept

separation line is slender.

The shape of the sheet is described in a cross-flow plane which is normal
to the geparation line. In this section, the sheet is assumed to be conical,
ie to be generated by straight lines through an apex, so that its entire shape
is defined by its section by the cross-flow plane, together with the distance
of that plane from the apex. In this case it is convenient to choose the origin,
0 , of the right-handed rectangular Cartesian system of coordinates at the apex,
with Ox downstream along the separation line, Oy2 to starboard and 0:2 normal to
the plane wall and into the fluid, as sketched in Fig 2. We suppose ¥q < 0 is
the upstream side of the separation line on the wall, z, = 0 . Then, near the
separation line, ie for small values of Y, and zZ, » the section of the sheet

by the cross-flow plane x = const is given by
32 ~ uy; ’ n>1. (5)

[?n this Report the tilde is used to indicate asymptotic equality, ie

a(t) -1
b(t) *

a(t) ~ b(t) 7.f and only if lim
t> 0

:

The appropriate variable, t , and limiting value, ty » is usually obvious from
the context. When an indication of difference between the left and right hand

sides is degired, the 0 notation is used:
a(t) = b(t) + 0(£(t))
if and only if there exist A and € such that
la(t) - b(t)| <« Alf()] for |t -t ] <¢ .]

As explained in the previous section, it is sufficient to replace the sheet by
any arc which has the same behaviour near the separation line. We obtain an arc
iz the plane of Z,=y,* iz, with the behaviour (5) by taking a circular arc

in a plane Z, , related to Z2 by

3

:
3
3
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1
1
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Z Z
_2_.(._3.) , m>0 , (6)
a

a

where a is the diameter of the circular arc. To obtain the required plane
wall in the 22 plane, we introduce a wall with a corner at the origin in the
23 plane, as shown in Fig 3. In the 23 plane, the fluid occupies the sector

o<63<n/m ,

- iey
where 23 r3e .

o

m must be at least } if the Z3 plane is not to be covered twice, a complica-
tion we choose to avoid. The half-lines 93 =0 and 63 = v/m represent the
wall, and the vortex sheet is represented by a circular arc of radius a/2 ,

= 0 at the origin. A general point, P , on the gheet is

R

touching the wall 93

given by

T S R T T

Ty = a8 sin 93 ’ 0 g 63 < ec (7

where the suffix C dcnotes the value of 63 at the end of the arc, Suffixea
§ ‘u and d denote the upstream and downstream sides of the sheet at P . A is
‘ the point at infinity, B and D represent the upstream and downstream sides of

the separation line.

Corresponding points are denoted by the same letters in the Z2 plane.
4 Under (6) the sector becomes the upper half-plane 0 ¢ 02 € n , where

: Z, = rzelez + The wall is the real axis and the equation of the vortex sheet is,
3

. by (6) and (7)

/ o

T, = ar—a = asin™s, = asinmg-z- (8)
: 2 a 3 m '

For small values of 92 , (8) yields
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The required behaviour (5), is therefore obtained with
1 m "
nos and a = (;) . (9)

Thus the order of contact increases as m falls, The curvature of the sheet at

the separation line is zero for m< 1, n > 2 ; finite for m= 1!, n = 2 ; and
infinite for m> 1, 1 <n< 2,

The region occupied by the fluid in the Z3 plane is bounded by straight
lines and circular arcs, all with a common point. It can therefore be mapped
on to a region bounded by straight lines by an inversion which carries the common
point to infinity:

2 = 2. (10)

The configuration in the Z, plane is shown in Fig 4. The half~lines BA and DA
remain half-lines, though the origin is interchanged with the point at infinity.
The circular arc becomes a third half-line, parallel to the real axis, since the
arc touches th? real axis at the origin., If z3 lies on the sheet,

Z3 = a sin 63ele3 » by (7), and

Za = a(cot 6y - i) ,

by (10). A convenient relation is obtained from (6) and (10):

Z AN
2 - (—}) . ()

Since the region occupied by the fluid in the Z4 plane is bounded by
straight lines, it can be mapped on to the upper half of the ZS plane by a
Schwarz-Christoffel transformation. If A maps into the point at infinity and

B, Cand D into 2. =b, ¢ and d , where b <c <d, as in Fig 4, we find the

5
mapping function is defined by

2. - ¢ (m+1) /m
El;ds— Z (z = b) ’ (12)
5 5

where a disposable constant has been chosen so that Z, ~2%; at infinity. The
rules for constructing (12) are given in standard texts which deal with conformal

mapping.
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It is not easy to integrate (12) for general values of m . Fortunately,
it is sufficient for our purpose to consider the behaviour of the transformation
near B and near D. Let us first consider the neighbourhood of B and write:

zs = b +ag , z small , 13)

Introducing this into (12), we have

£y (1 =Kk, = kG2 + +0.) (14)
ac m;rmﬂ-'-yl T 2t ~ kgt * )

vhere the omitted terms are regular and O(I;S) and

2
c-b a(d - ¢ a“(d - o)
1 d b ’ 2 c d b 3 (c"b)(d-b)z

-u-ooo. (14‘)

In integrating (14), it is necessary to consider separately the cases

mn o= { , j<m<1 , m o= | and m>1 .,

(8) m={| . Equation (14) vecomes

daz k k
4 1 2 3
—_— = 2ak,.{~ +—+—+0(l))
dg 1(';3' 2 ¢
X
therefore 24 - akl-i--—a—'* 2k3 In ¢ + const + 0(g) .
4
Hence, by equation (11),
2 (uu - k52 1 +A2;o(31 )) (15)
£ j— % -kt g +Ar+ 067 D)

wvhere A is a complex constant, so far arbitrary. Now, on BA, [ is real and
negative, so 1ln ¢ = 1n || + in , while Z, must be real, Hence the imaginary
part of A must cencel the imaginary part of the preceding term in (15):
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;

b
Lot )
Eh_j A A = k3(Ar + i") » (l ) '
E vhere A is an arbitrary real constant. Also, on BC, [ is real and positive, :
b s0, by (15) and (16)
I z z nk i
gy ' . P e { 3 C3 j
I a s :r
;t: l ‘3
Y2, ol L &
«;? i a 3 ik 3
‘ : Comparing these expressions with (5) and (9), we see we nsed i
1
S 2 3 ,
3 ik ky = 1 or 2ra“(d - ¢c) = (d-b)” . (17) ]
§ 1
e ]
() | <m< 1 . Equation (14) becomes j
To (1 F2 o D i
dg w (@D /m " T/
"
E: 3
ak K,z ]
E - 1 _ 2 1/m 2
E therefore z, ;l[m (l Tt AT + 0(g )) .
: A mk.L !
therefore 2 .5 1 + e = mAcl/m + 0(;2) . (18) :
) a km l-m 4
1 Again, on BA we require 22 real, with [ = |c|ei" + Hence ]
P _ A i
A = |Ale7im | (19)

Also, for [ real and positive, corresponding to BC, we require
3 3 5*24} - Ta,
SR ¢ and so
| ~a = ks .

Hence, by (19),

A = (cotﬁ-i)/kl ,
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] and, by (18)

""\\ .

ki z mk ¢

y 2 0 &l e—2 -plotX-i cl/m/k + 0(0;2) . (20)
o a K 1 -m m 1

ol 1

(c) m=1 ., Equation (14) becomes

dz k
. 4 N L |
- 3 lk'( 3 + T + 0(1))
i i 4
| sk, 2
T therefore z‘ - -T 1 + kzc In g = A7 + O(2 )) »
where A is an arbitrary complex constant. Hence, by (11),
2, 2
. < - E‘l. (1 - kzc Inz + Az + 0(° 1In c)) . i (21)
As in (a) above, I real and negative corresponds to z2 real and so
A = k(A +in) , (22)
wvhere Ar is real. ;
Also, for [ real and positive,
| 2
2, ™y 2 _ Y2
. T Tk ¢
and so, by comparison with (9):
wkk, = 1 or vald - ¢) = @-b)? . (23)

172

(d) m> 1. The expression for 24 in (b) above becomas

1. ? ak
o 2, = ?-7‘; () + agl/m o, O(r.))
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A
therefore 2 . _’-:_(1 - mAcl/m + O(C,EZ/m)) ]
a X

1

The same arguments as in (b) lead to the same value of A , so that

z
.a-z- - ;%( -% cot = - i c'/m+0(c,62/m)> . (24)

1

We have now, in equations (13) to (24), expressions describing the behaviour of

the mapping near B , for all relevant values of m .

Near D the form of the expression does not depend on m . Let

25 = d+aw , w small . (25)
Then, by equation (12)
’ - J
dzl& - - a @+D/n d-c 1+ a ot
dw d-b mw n ’
n=i
where a is real.
(m+1) /m = a
a d-c¢ . n . n
Therefore 24 - (-d—:—g-) — Inw + A+ z e . (26)
n=]

Now, for w real and positive, corresponding to DA, Za is real, so A 1is
real. Let B = A , so now B is an arbitrary positive constant. For ® real

and negative, corresponding to DC, J{ZJ = -3 , and So

(w+1)/m , _
-a--(—-———dfb) dmc'n’ . (27)

Hence (26) becomes

\
zZ, = -2 Bwé + o(lnto))}
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and, by (11)

i

Pt

( Tn Bo ) ( (5 nu)) . (28)

’5‘- :
i 4.2 Yocal behaviour of velocity field i
@fﬁ The first step along the line of approach described in section 3 is to g
éx obtain the normal velocity on the sheet in the cross-flow plane, 22 . In the i
AN Appendix, the boundary condition that the sheet is a stream surface is used to :
E& provide expressions for this normal velocity compunent. There, as here, the '
%. cross-flow plane is normal to the axis of x , which is inclined at a small angle

5? ! to the undisturbed stream. If the sheet is conical, with apex at the origin,

b equation (A-5) becomes (see Fig 3 for notaticn)

£

E‘; vn r . .
b - " “xsing , :: ;

-
P

where the sengse of the normal is given by a positive rotation of =/2 from the
direction of 6 increasing along the curve, ie into the fluid on BC and into

Sl g e 6 kia KD

the sheet on DC. Note that r, 6, ¢ and Vo all refer to the zz-plan.. but
‘suffixes are omitted for simplicity. Equation (8) relates r to 6 :

T = agin %) .

If o is the arc length along the sheet in the Z,-plane, measured from the

separation line,

g:_)z . r2+(dr2 - % wiarY) '?
de dé ‘.m ’

L end sin ¢ = rde/do , so the boundary condition becomes

:Un- - - -x-si m]\g) - - i-(% (m+l)/m (l . 0(02/111)) (29)

To proceed tc the next step, finding the normal velocity v; (or the
source strength q) in the zs-plane. through equation (1), we need the modulus
of the mapping at points on the sheet. By (11) and (12)
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o o laz c-z z \@/m ;
i Y ol Y 5 (-2 : (30) 3
dzs dzs dzz d - 25 Zs -b
i

We need the local behaviour of the modulus of this on the real axis near P and D,
ie for ¢ and w small and real. Since, on the sheat, do/dz, = Idzzldzsl .
it is convenient to relate ¢ to [ and w at the same time. As in the
previous sub-section, we deal first with the neighbourhood of B, for the differ-
ent values of m . By (13) and (30)

(m+1)/m
dzz - c - b ~_!; _z_g. (31)
5 d~-b~ ar \ag

(a) m=} . Introducing (15) into (31), and taking the modulus for [ real,
we find

Z2qA o Lien - 3k,z% 1 [g] + 0D (32)
dzs :r 2‘ 3C 4 4 .
!

Integrating (32) for ¢ > 0 gives
g . - 2 2
" j— (l *ht -kt ln g+ o(c )) . (33)
i

o) § <m <1 ., Introducing (20) into (31) and taking the wodulus for [ real
and positive, we have:

dz 2mk
2] L 2 _l+m LMY, 2
dz5 K (’ * icm ° kl cot o [ + ot )) * (34)
i
Integrating (34) for ¢ > 0 gives
mk
S . & 2 LB B /m 2
: kn(1+l-m; k]cot:mI; |+0(l:)) . (35)
|

(¢) m=1 ., Introducing (21) into (31) and taking the wodulus for { real,
ve find:

5 it
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dz
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aﬁ - -ill—(l - 2,z 1n 3] + 0(2)) . (36) F

TP
-
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Integrating (36) for ¢ > 0 gives

T

% - :il- (: -l ln g+ O(r.)) . (37)

(d) m>1 . Introducing (24) into (31) and taking the modulus for [ real
and positive, we have:

j - : ,‘ ..i‘. o

dzz

dZg K 1

- -% (l - -I-‘;-E——l— cot '& l;’/ﬂll + O(Coczlm)) . (33)

s

Integrating (38) for ¢ > 0 gives

(L]

- f‘- 1 - -i'-';- cot‘% Icllml + O(c.;zln)) . (39)
|

ATV ¥
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The form of the leading terms in (32) to (39) is independent of m , but the
higher order terms differ significantly.

For the neighbourhood of D, introducing (25) into (30) gives

o - (m+1) /m
- dz, e £ —d- aw z2
E. : ' dz, - aw d=b - aw y

By (27) and (28) this reducea to

:
i

s ! = - 2(-555) O+ow . (40)
+

On the sheet near D, w is real and negative, so that

InBu = 1nBlw| +ir = - «(1 - i8)/5 , (41)

where § = - —T (42)

In Blwl

is a convenient small positive quantity. The modulus of (40) becomes

de m6m+l (
—2] = 1 + 0(w)) for w<?0 (43)
dz, ww| (1 + 62)(m+l)/2

and
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dz m+l
2] _ m
o S (1 + o)) for w >0 . (48)

Note that, by (42), w is exponentially small in relation to & . Also by (42),
das/dw = Gzlwm snd so, for w < 0 :

dz d2 m-1
do | - 92’.‘ amd (1 + 0(w))
ds dzs do {{d8 Qo+ GZ)GMFT)II
and
¢ = as® + 0(s%)) . (45)

We can now find the component vg of the velocity normal to the real axis
in the zs-plane, close to B and D, By (1) and (29) we have, on BC and DC,

B -5(9.)(“‘”)/“‘
U X \a

with the normal into the fluid on BC and out of it on DC. Or BA and DA, which
correspond to the body, (A-5) and (1) show that vg - 0 . Introducing into

(46) the leading terms from (32) toc (39), (43) and (45), we find for the

velocity component w* normal to the real axis end into the fluid in the
Z*-plane:

dz 2

2/m\
Qa + 0@’y , (46)
3z,

on BA wh = v w0 h
(m+1) /m
- - -8U% l/m )
on BC wh vt*l x -l-‘m- (’ + 0(C o 1n ) &
1 47)
hal 2m+2 2
W o= - yk m 8 1+ 0¢85
on DC vk ;;F:r ( (s°))
on DA wk = gk = { .
n J

We now wish to find the tangential velocity, v* , on the real axis in the
Zg-plane near B and D. The combination wv* - jwk is an analytic function of

zs o If (vh - iv*)s has the singular behaviour of v* - jw* at B or D, then
ve can write

vk - iwk = (v - 1w*)s + (vk - iw*)R . (48)
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where the second term is regular. This term is not datermined by local arguments
«nd ve write it as

(vk - iw*)R - ZE: Ah;n (rear B) ox ji: Bnun (near D) . (49)
n=0 no0

The conditions (47) on BA and DA imply that A, and B, are real. The singular
behaviour ¢f v - iw at B and D ia determined by . .- singular behaviour of w* ,
by the theorem proved in section 3. We therefore proceed by constructing analy-
tic functions whose imaginary parts behave like w* near B and D. As before,

we start with R for the familiar four cases,

(@) m=4§ . By (47), for [ real,

0 for >0

w~{a

3

L
—x—2 for c>°o
1

k

-

Consider the function £(z) = cs(iw -1lng) . For § real and ne ative,

At = o ,

and for f real and positive,

S} = 11!;3 .
Hence
(b = s ~ RE (ir - 10 ) (50)
iw)g mx | 2 ir T) .
1
() 4 <m<1 . By (47), for [ real
0 for £ <0
wht o~
v M
L’Tkiml for ©>0,
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. ipd
wvhere 2 <py= (m+1)/m<3. For ¢ = peio , define cu - puelu , and

congider the function
£(g) = e W ¥/gin un = t"(cot ur - i) .

For { real and negative, 9 = r and .f{f} = 0., For 7 real end pogitive,
=0 and S{f} = - ¢" , real. Hence

(m+1)/m
. al /. g 4
(v - iwh), ~ <= (1 - cot ;) —m-‘k . (51
1
since cot yw = cot I .
m
(¢) m=1. By (47), for [ real
.
0 for g <0
- ~ {
U 2
a
- — for 7 >0 .
SE
Proceeding as in (a) above, we find
(vh - Qwd) .~ au 2 (iz - =l T) . (52)
s k3
1

(d) m>1 . The argument in (b) applies, with 1 <y < 2 , leading again to
(51).
Now in the neighbourhood of D, (47) gives, for w rveal,

_ mal 2m+2

P (1 + 0(s )) for w <O

0 for w>0 .

Consider the function fk(w) = (- 7/ln Bw)k/m . For w<O0,

InBuw = - n(l - i8)/6

by (41), and so
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£ = 850 - i) u
set = w¥la e o .

For w >0, J{fk} = 0 . Hence

(v* - iv¥) = mal _m )2m+l |+ 0(_ i )2 (53)
1Ws (2m + 1)wxw 1n Bw 1n Bw ‘

Equations (48) and (49), with the appropriate equation from (50) to (53) give
the complex conjugate velocity in the Zs—plane near B and D.

We can now complete the calculation by using these expressions to find the
tangential velocity, v, » OB the sheet in the Zz-plane, using a form of

equation (3):

5

dz,

t t (54)

“\

in which v: = yv* on BC and v: = -y* on DC. Again we treat first the four

cases which arise on BC, where { is real asnd positive.

(a) m=} . By (32), (48), (49) and (50)

2 al 3
1

1 2 2
P- I + 2kt = 3ky8” In g+ 11¢4 ))
1

xk

Vt'

- 14 ' 2 2
kl(Ao + AT+ 3Agk," In g+ 0(3D))
vhere Ai is another real constant. Inverting (33) to give
- k2
C kl a (l + O(U)) ’
and assuming for the moment that Ay #0 , we can write, using (17),

2
= JA " 3 /0\ - 2 B
v = Llno 1 + Ao #* pr3 \-;-/ la g + 0(0™) ’ {55)

where A'l' ia another undetermined real constant.
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() § <m< 1., By (34), (48), (49) and (51):
2 _ _al 7 (m+l)/m
Ao + AIC "'Az: 2mr ] cot mc + see
k)
v -
t “2mk
1 2 _l+m 7 1/m 2
k_m(l+l-mc o cot = ¢ +0(C))
1
R ' l+m T, l/m 2
kl(Ao+A1c+Ao kl cot = +o(t;)) .
Using the inverse of (35) and assuming Ay # 0 , we have
m ' T {a 1/m 2
- ' - | oum
vy = K[l + Al + (04 m cotm(a) + 0%) , (56)
where A; and A? are again undetermined real constants.
(¢c) m=1, By (36), (48), (49) and (52)
Ao'.’Al;" aU3C21nc+ooo
ka‘
e T '-L(I-chln;+o(;)) ,
k= 2
Using the inverse of (37) with (23), and still assuming Ao # 0 , we have:
v, = kA l+-2- 21no+0(o’) (57)
t 170 T a *

(d) m>1 ., Using (38), (48), (49) and (51) we obtain a result like (56):
1/m
v, = RTAOQ + (1 + m) cot % (-2-) + 0(0)) . (58)

It is significant that the dominant terms in \A arise in each case from the

regular behaviour of v , for which the real axis in the Zs-plane is a stream-
line, ie the dominant terms in v, near B are of the same form as they would
be if the sheet were a streamline of the cross-flow.,

We now consider ihe behaviour of v_ on DC, near D, where © is real and

t
negative., By (53) and (41)
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maue2m+1

v§ - (m + Tymxw (a+ 0(62)) '

By (48) and (49), vﬁ does not contribute to v* to this order, and so, by
(43) and (54):

naysl®! ||

t © T m+ D e

(1 + 0¢s%)) .

We can write this, by (45), as

e = TR 0 o™ 59)

In contrast to the situation near B, the dominant terms in v, near D arise
from the singular behaviour of v , so that they are uniquely determined by the

shape of the vortex sheet near D.

Having determined v,_ near D, we can justify the assumption that A is
¢ vanishes at D, while (55), (56), (57)

also vanishes at B if Ao = 0, In terms of the dis~

t
non-zero., Equation (59) shows that v

and (58) show that v,

cussion in section 2, this would mean that no vorticity is being shed from the

separation line. 1In general this would mean that the point on the separation
line was exceptional, but for the conical flow postulated in this section it
would mean that no vorticity is being shed anywhere on the separation line,
Hence AO #0.

The convective velocity 4 vt'B + vtID) at the separation line has the
same sign as Ag » B0 we conclude that A, > 0 if vorticity is being shed.
v

4.3 Consistency of velocity fiéld with continuity of pressure

For a conical field, the condition that the pressure is continuous across
the vortex sheet, (A-10), becomes
xv

t
AD = Av cos ¢ - ——| , (60)

t U
since A, y and 2z are proportiomal to x, y=r cos 0, 2z =r gin 6 and
¢=9 -6, We wish to consider whether this relation is consistent with the
tangential velocity components found in subsection 4.2 in the neighbourhood of

the separaiion line. By sieps like those leading to (29), we find
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rcos ¢ = a linm%con% = g(1 + 0(02/“')) . (61) ,

Examining equations (55) to (58), we see that the tangential velocity on the
sheet near B can be written as
'i

1/m }

"clnc - A(')(‘ + A'l'a + (m+ l)(%) f(o) + g(o”mf(o))) ’ (62) |

|

where A' Ao(c -5)™@-)"%0 and A" are undetermined real constants; 1
!

% iln o for m=§ or ! !

f(o) = (63) g

lcot% for m> § and #* 1 ; }

and the notation o0(g(g)) stands for terms of higher order than g(o) . On the i
sheet near D, the tangential velocity is given by (59) as j

WE_EP_W; (1 + 0(02/m)) . (64)

All the terms in (60) can now be represented for small values of o . By
(61), (62) and (63):

r cos ¢ - %vtm - rcos ¢ - -;ﬁ (vtlnc + vtIDC)
XA(') (1 + Co+ (m+ 1)(—) f(o) + o(ol/m (o))) (65)
-0 1 v

|
1
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vhere CI is another arbitrary real constant., Similarly

: - - )
: , bv, velae = velne
.-
] : 1/m
E i AOQ +Cy o+ (m+ l)(a) f(g) + o(o f(o))) ’ (66)
where 02 is a constant related to Cl . Integrating (66) gives
I\
A ~T = .[ v _do
0

£(o) + o(c;‘“"”""f(c)))

- AO(:+ }Ca +ma\-—/




where TI' = .l - .D {s the total circulation in ~he sheet,

When (65), (66) and (67) are introduced into (60), it becomes

o (@+1)/m

[&“ ‘ T + A(')(: + §c202 + m(%) £(o) + o@(””/‘f(o)))

%

12 1/m

E’ { a - :;%- (1 + (c‘ + cz)a + 2(m + l)(%) £(o0) + o(o”'f(o)) . (68)

There is no term on the laft-hand sids of (68) to balance the term

. - (—) f (o)

on the right, so this term must vanish. Hence, since A6 * 0, f(o) =0 .
By (63) this is only possible if cot */m=0 , and m> { , i

.‘ xA'z(m + 1)

1 m = 2 or 2/3 . (69)

[ The form of the condition makes it very likely that m = 2/(2M + 1),
‘ = M=0,1, 2, ... is a complete set of possible values of m . However, in

E subsection 4.1 the possibility that m < | was excluded in order to keep the
mapping concepruslly simple, so the present argument cannot supply a complete set.
E In fact the existence of the two possible values for m , corresponding by (9)

' to n = 3/2 and $/2 in (5), and the non-existence of intermediate values is

g ; enough for practical purposes. It is suggested in section 7.3 that larger values

of n do not occur.

‘ 4.4 Local behaviour of velocity and pressure on the wall
|

We now consider the flow on the wall near the separation line, limiting
the discussion to the two values of m , given by (69), for which a consistent
solution seems to be possible. The velocity, v , normal to the separation line,

is given by a form of (3):

....-'ll (70)

on BA and DA, where v* is the corresponding velocity component in the zs-plane

and is given by (48) =ad (49), with (51) for BA or (53) for DA,

1/m ' 1!2|

; On BA, [ 1is real and negative., For m = 2/3, { '~ = =i|g~ , and (20)

gives
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4 2 . 21,32 , o z) :
: = ;1‘7-5 (l R AR e %] « 0e™) 3 !
~ ‘ j
and so by (31), j
;::
e dz f.«
R 2 ] 3 3/2 2 ) . 7N
- | -m(l‘l'kkzc*w'( | + 0% an i
o} 5 k] ! i
: 3
oy For m =2, /. 1('3" and (24) gives %
¥ i 4
*‘ .z_z--ifn-’lc’ho(c)
E i a k r; i
Ll 1 :
E;é" Y ;
' and so by (31), ;
. |
e dz ’:
5 2l o2 fi.2 e . o2 ,
A 'zi—l -5 (l B le?| » O(C)) ) ;
:,; v 5 k‘ l 3
! ‘ By (51), for © real and negative, ’
D 1
al T i, (mel)/m
L vg ~ —gmr cosec g leT
z Bence, by (48) and (49), !
g | ; 52;2 - ._‘.gn. |;5/2| + eee for m = 2/3 *
oot 1 |
3 5 E
t ; -—‘;-,-; |;3/2| * ees for m=2 , *
; i .!kl :
and so, by (70), (71) and (72), since A %O,

- A e - |32 2) for m = 2/3
v A0Q+Al¢ I;‘l‘ | + 0@

DV R W Y

or

’

v = A6|+I3-l-|§i|+0(;)) for m= 2 ,
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vhere A! s 0 and A! are undetermined constants. Using the relations above
|

I
;' to express [ in terms of Zy and writing z2 =y, we finally find
W

3/2
v = ‘6(‘ + A';y - %(- L + O(yz)) for m= 2/3

v = A(',Q+3(-%)i+0(y)) for m=2 ,

L )

(73)

—

P Thus we see that, for m = 2 , as the flow approaches the separation line,
y = 0 , from upstream, the velocity couponent normal to the separation line falls,
\ [ and its gradient normal to the separation line, Vg becomes infinite thera.

For m = 2/3 no such behaviour arises.

On the downstream side, DA, where w is positive, (53) with (42) gives:

2m+ ]

4 - BT Gty

This dominates the regular part of v* , given by (49). The modulus of the
mapping is given by (44) and so, by (70)

s il e F 5 Db, S A . | Do, 0 A Y Sl Mt . WLt d 5 L L s L s P ittt e

aus®

vV mmT s (1*0(52)) H

s st .

or, uping (28) to relate & to Z, = y , ve have

v = 'a'n—‘]{—n; (1 + O(Yzlm)) . (74)

As would be expected from the proximity of the sheet to the wall on the downstream _,
side, this expression resembles (64) for the tangential velocity on the sheet, : :
The velocity normal to the separation line on its downstream side is zero at the

line itself and directed away from the line in its immediate neighbourhood. Bow- '
ever, it is so small that the streamlines on the surface cross the conical rays
towards the separation line, since v/U < y/x . Hence the velocity normal to the
separation line decreases along a surface streamline, despite the appearance of
(74). For m = 2/3 or 2 the velocity in the cross-flow plane is regular, to

e e .20 L B

CEPPEIE ST DT, )

the order of the present analysis.

We nov examine how far the behaviour of the pressure gradient near the
* separation line reflects that of the gradient of the velocity component normal to
the separation line, For conical flow, the pressure gradient along the separation




r - i o g TR T ""1
¢
¥ 33 é
B 3
i i
: 3
é line is zero. The gradient normal to the separation line, from the upstream to i
§ the downstreanm side, is 93p/3y . The pressure coefficient is given, in the usual !
] i
: E slender-body approximation, by !
\ ;‘ cp - - -2-&’- - -"-—-;—2'— + const. . (75)
1" % On the wall, = 0 , vhere w= 0, 3
D ; 2 °C |
5. ; To relate uy, to v’ » Ve recall that, for a conical field, i
Ef Lt x !
rﬁu ' ‘ ¢ - !F(% 'x/ %
-
E:= : and so |
W 8 3
B, ;
g | 3 ¢ = x!x + yO’ + :0' = Xu+yv+zv . %
i L Differentiating this with respect to y , 4
% ‘ é: v = 0, - xﬁy tvhyv, v, ;
E ?-
%f ; so we find, for 2= 0, 3
3 ]
\:-:"‘ 1 ; - - ]
i ‘
E. : and the pressure gradient becomes ;
5 1
i : 3
' B . - - X ;
i ! 3y pUV. (U ) 3
3 o E
; : On the upstream side, where v is given by (73), it is clear that the pressure
: F gradi ent behaves in the same way as the velocity gradient, ie there is an adverse
2B 5 gradient which becomes infinitely large if m = 2 ; while if m = 2/3 the

! ; gradient is not locally determined. On the downstream side, with v given by

(74), the pressure gradient becomes

2
B . _wUm
Jy (2m + 1)°x




‘accumulation of oil. On the downstream side, the limiting streamlines are almost
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Since the pressure itself is a function of y/x in a conical flow, it is

given by

iz 3l e e s en

2 2
P-Pp ~ ﬁ@) ’ (76)

where Pp is the pressure on the separation line, Hence, along a surface stream-
line, on which as we have seen y/x decreases as x and y increase, the
pressure falls and the gradient is favourable. With a small favourable pressure
gradient and a slowly diverging external flow, there is no tendency for the
boundary layer on the downstream side of the separation line to separate. This

el Wi e

supperts the concept of the flow advanced in section 2 and sketched in Fig 1,

regardless of the value of m .,

A marked difference in the behaviour of the limiting streamlines or skin-
friction lines between the upstream and downstream sides of the separation line

Calval aAE e ol s A Ka i Sl i s S AR i

is frequently observed in surface oil-flow visualisations, particularly in
approximately conical external flows with highly-swept separation lines, The
limiting streamlines on the upstream side turn towards the direction of the

il et

separation line very late, with high curvature and strong convergence, so that

their behaviour very close to the separation line is often masked by an

S Al T 280 M e ok it a i

straight and parallel, with very little trend towards the separation line.
Examples are: primary separation on a slender circular cone at incidence, see

for instance Nebbeling and Bannink7; secondary separation beneath the primary
vortex on a slender delta wing, see for instance Lawfordsg and both primary and
secondary separations on an upswept rear fuselage, see Peakeg. Pictures of
glancing interactions (plane shock normal to the gsurface and oblique to the
stream) by Oskam, Vas and Bogdonofflo show similar differences between the
upstream and downstream sides of a region of streamline coalescence, although the

authors do not regard the flow as separated.

Although the behaviour of the flow on the downstream side of the separation
line is, in the present treatment, little affected by the value of m , on the

upstream side the value of m has a marked effect, For m= 2, n= 3/2 , the
existence of an infinite adverse pressure gradient in the external flow makes it
probable, though not certain, that the boundary layer, whether laminar or turbu-
lent will separate before it reaches the postulated separation line. This
difficulty does not arise if m = 2/3, n = 5/2 , The implications of this for
modelling the complete flow are discussed briefly in subsection 7.5.
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5 EXTENSION TO NON-CONICAL SHEETS

We are still concerned with the behaviour of a sheet which leaves a plane
wall tangentially, in accordance with the conclusion of section 2, from a separa-
tion line which is highly swept, ie inclined at a small angle ) to the undis~
turbed stream. As in section 4 we take the wall to be the plane 2z = 0 , and
choose the axis of x to be tangential to the separation line at’the point
considered, with x iuncreasing downstream. We again study the configuration in
the cross~flow plane, x = const , and use slender-body theory. Near the separa-

[P A A S

o A it

tion liae the cross~section of the sheet is again of the form

3
- zZ = uyn n>1 , (5)

Eicd
-
R i Ml g

= but now y and n are allowed to depend on x in unapecified ways. It will be
5 assumed that the sheet is sufficiently smooth for u and n to be differentiable ;
twice with respect to x . The sequence of mappings used in subsection 4.1 still '3
applies and, by (9), the variation of u and n is equivalent to some equally
smooth variation in a and m . It is again assumed that m > § .

4 The boundary conditions for this system of axes are obtained in the
. Appendix, where the normal component of velocity on the section of the sheet in ;
the cross-flow plane is given by (A-5) as

or
v = =11 gin ¢ .
n L 0 const

By'(8), r=a sin™(6/m) and so, with primes denoting derivatives, 1

* Sy T

. 19r _ a'_ , ' (] 2, .
; -t-x a m' +nm lnm+0(6) H (77)

]

so that

v '
-2 - - -‘—— \ ' -e- 2) 3 .
i (a n' +m lnm+0(e) r sin ¢ ., | .a

oo S L o

By comparison with the first equation of subsection 4,2, we see that the normal

velocity is a multiple

of the conical distribution, plus a contribution
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v, = - m'U In (%) r sin ¢ , {(79)
plus a contribution o’ higher order. Recalling that the procedure followed in
subgection 4.2 to obtain the tangential components from the normal components is
linear, we see that the tangential velocities in the non-conical problem can be
obtained as the sum of (78) times those found for conical flow, thoss correspond-
ing to (79) and a contribution of higher order, The last will bs neglected; and
an analysis like that of subsection 4.2 will be pursued for the normal velocity
given by (79). The tangential velocities so found will be used, as in sub-
section 4,3, to check the consistency of the condition of pressure continuity.

" The same geometrical relations as were used in subsection 4.2 ensble (79)
to be rewritten as

v = - m'al -inmi(%) 1n (':_:)

- - () g

in place of (29). The geometrical relations (30) to (45) still apply, so we can

(m+1)/m
1n (%)(l + 02/®yy (80)

" obtain from (80) a set of equations like (47) for the component, w* , of the

velocity normal to the real axis in the Zs—planc. near B and D, vis:

- - Y

on BA wk vg 0
' (m+1)/m
on BC W o= v: - -E-tf-qc = lnC(l#O(Cl/m.ClnC))
k ? (81)
1
]
on DC wh = -yt = ZREU 20420 o0y 062
h o8 "I‘“I
/

on DA vk = y* = (0 ,
n

As before, we regard the analytic function v* - iw* as composed of a regular
part and a singular part, and obtain the singular behaviour from an analytic
function whose imaginary part behaves like wk , as given by (81).

Starting with the neighbourhood of B, we deal first with the possibility
that (m + 1)/m is integral, ie, in the admissible range, m = { or 1. Consider

the function:

£(r) = @D p? .

y
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2 v

For [ real and negative, J{f} w0, for ¢ real and positive,
it} = _zﬂ(mﬂ)/m 1n L . Hence

(v* - i) ~ - —l'-g-g;-r @D/ nn? .

21mk|

Adding a regular contribution, as given by (49), leads to

V* - iw* - Z Ancn - % ‘(ml)/n(iw - 1“ t)z + K] » (82)
a=0 2ok

near B, for m = | or |, vhere An is real and the terms omitted are of higher
order than the last term on the right.

Still near B, butwith m >§ and # 1 , let yu= (m + 1)/m and consider

" -
£(x) = H&'ﬁ'(‘.‘{:_ﬁ"'i“ 1nc) R

vhere 1:" is defined as p"eim, vhen [ = peio . For [ real and negative,
%evw and Jjf} = 0. For ¢ real and positive, JS'f} = t" 1n ¢ . Hence

s ~ _ m'al 1 (m+1)/m/ ~in/m - 3
(v* xw*)s FT cosec - 4 (e In T - 7 cosec n) .
|

Adding a regular contribution, as before, leads to

m'al
mkf‘“+ !

vk -~ iw* = Ancn - cosec 7"; ;(ml)/mé-m/m in T - n cosec -:-;-)-0' ves

n=0
sseees (83)

near B, for m > {4 and # 1 , vhere A 0 is real and the terms omitted are of
higher order than the last term on the right.

Now, near D, consider the function

o) (= (- w) - 1) -

1
W - b

Por ® real and negative,

M«—Lﬁ. [PSERs S wEANET TR NS WRIMAI, "~
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I Y
nba =~ T-18 °
3
so that
ry E
@ = (&) (1 +ixs + 0c®HYin 6 - L + 15 + 0¢6)
3k w k
and

6k+ 1

J{gk}-(m)(klncd-l-rowzlné)) : 5

For w real and positive, j{gk} = 0 . Hence, we have

K+
("‘u )ln §(1 + 052 1n 6)) for w<O0
Azt = 9
0 for w>0 .
L

With k = 2m + | , this is the behaviour specified in (61), and so

i P ek 2 ML AR A A A e e il Tl M B 6 S

o* - jwk m' al (_ O ik T \_ 1 84
( : )S~w7\ﬁ+!)w‘luﬁ) hl-111...)5: m + ] * (84)

i
H
E
This dominates any regular contribution, so v* - iy* ~ (v* - i.w*)s . §
‘ j
: The next step is to obtain the tangential velocities on the sheet. Consider 5
k 3
E R first the upstream side BC, near B, where [ is small and positive. (82) and
E (83) show that the corresponding corponent in the zs-plane is
; | [ @)/ 7 ;
] ' )1} )
had kl or 1 3
R = - o
vE vk z Anc / 1
n=0 ' (m+1)/m -
manS-Zm-rl coa;ln;- - if m> §
m sin o k‘ gin = and #1 .
9 4

DR N (85)

From this v, follows by (54). We can avoid the detailed argument, for which

the various values of m have to be considered separstely, by observing that,
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although the singular terms in (85) are larger than those in the previous expres-
sions (50) to (52), they are still of highur order than the singular terms which
appear in Idzsldzz|, as given by (32), (34), (36) and (38). Consequently the
singular terms in (85) do not appear in the expressions for Ve s vhich are
identical with (55) to (58). Again, the dominant terms in v, near B are the
same as they would be if the sheet were a streamline of the cross-flow.

On the downstream side DC, near D, on the other hand, the tangential com-
ponent is not the same as in the caseof conical flow. The corresponding velocity
component in the Zs-plane, v: y i8 vk = -v‘s* » @s given by the real part of
(84) for w real and negative:

Hence, by (43) and (54)
m'
Ve " ET 5(15 2+1)(1+0(6)).
or, by (45),

e = alaeny (05w @ o™ (86)

This is of lower order than the corresponding result (59) for the conical sheet.

We can now write the tangential velocity components on the sheet near B
and near D for the complete non-conical problem by combining (78) times the
expressions for conical flow with those just obtained for the special problem
defined by (79). Near B, both expressions are the same, so the result has still

the form found for the conical flow:
1/m
- A' W g 1/m '
velge AO(I +A0 + @+ 1)(S) £ + oG f(o))) ; (62)

where A(') % 0 and A'I' are undetermined constants (not derivatives!) and

(—:;_-) in o for m=4 or 1
£ (o) -4 (63)
Lcot: (ﬁ) for m >} and #1 .
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Near D, by (86) and (64), we have

] ]
Velpe = EEE%T (%" g+ %) SR 67

The condition of continuity of pressure across the sheet is given in the
Appendix as

v
t
-g—:;-?- Avt -g—; cos ¢ - -32 . (A-11)
6 const 0 const

From (62) and (87) we can write

/ 1/m '
Avt - A(')kl +Cl°+ (m + 1)(%) f(G)) '-E(gs—g—-n- 1n -:-"' ses o (88)

where cl is another undetermined constant and the omitted terms are of higher
order than the smallest term included. Integrating (88) along the sheet gives

(m+1) /u \

2
AO -T = Abéx-rczozd-m(‘%) f(o)l 'T’}m‘(%}'l“%* ces o (89)

where T 1is again the total circulation of the sheet, C2 is a constant related
to cl and the omitted terms are of higher order. This equation expresses A®
in terms of o and a number of quantities, Aé, Cz, m and a , which are func-
tions of x . It is therefore helpful to write:

9A® - 9Ad + 3AO| kL
ax 0 consat 9x o const 30 X const 3x 0 const
Introducing this into (A-11), we have
Ve
—gio bv, -g—:- cos ¢ - -g% - --—Um . (90)
o const € const 6 const

Now o = a(e/m)™(1 + 0¢8%)) , so

a 1 L
0 const
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while, by (61) and (77),

ot o' g a' 2/m
— cos ¢ = --aln—+(—-m')o 1+ 0™y .
ax 8 const (m a a )

Hence

(+2) /m

= 0(o lnog) . (91)

8 const

x 6 const

Hence, by (89) and (91), we can write (90) as

(@+1)/m Um'o? .

G‘+A'0+A o +A’ma() f(o)-m u%*...)

@elpe)? = G lg? + 0@ ™D 1 6y | (92)

where the derivative is for constant o and the velocities are given by (87) and
(62).

Now, by (62), (vtIBC)Z contains a term
'2 o tm
28" (m + 1)(;) £(0) . (93)

If m>} eand # 1 , the exponent of ¢ in (93) is fractional and

f(o) = cot (n/m) . No other term in (92) involves o to a fractionmal power as

small as 1/m , so (33) must be zero. Since A6 # 0, £(o) = cot (v/m) = 0 ,

and s0 m = 2/3 or 2. Hence m cannot take values which are close to 4§ or 1;

but m is continuous, so m can only take the values 4 or 1 if m' = 0 .

If m=4 , the term (93) is BA(')Z(o/a)2 In ¢ . The only other terms in (92) of
order 02 ln o have m' as a factor, so there is nothing to balance (93). The
term cannot vanish and so m = 4 is excluded. If me= 1 , (93) is

4A62(o/a) In ¢ and there is no other term of this order in (92). Hence m = |

is also excluded.

The only possible values for m are therefore 2/3 and 2, just as in the
case of the conical vortex sheet.

Just as the dominant termsin thetangential velocity on the upstream side

of the sheet are not affected by allowing the sheet to be non-conical, we can

see that the dominant terms in thevelocity and pressure on the wall upstream of
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the separation line are also unchanged. There are again adverse gradients of
cross-flow velocity and of pressure, becoming infinite at the separation line, if
m=2 ; but no locaily determined gradient if m = 2/3 ., On the wall on the
downstream side, a behaviour similar to that of the conical flow will be found
again, since the additional, lower-order term in the velocity field, (84),
vanishes for m' = 0 ., The details will be more complicated, owing to the extra
freedom available in non-conical flow, and will not be explored here.

6 EXTENSION TO CURVED WALLS IN NON-CONICAL FLOW

In this section the restriction that the wall should be plane will be
replaced by the weaker restriction that it should be smoothly curved. The argu-
ment is arranged so as to exploit the results obtained already and avoid repeti-
tion of the analysis.

The framework of slender-body theory is retained, so the curved wall is the
surface of a slender body at a small angle of incidence to the uniform stream.
The teparation line on it is asaumed to be smooth and highly swept, so that there
is a tangent to it at the point considered and this tangent is inclined at a small
angle to the uniform stream. We choose this tangent as the axis of x , with x
increasing downstream. The body is also supposed to be smooth at this point, so
it has a tangent plane, and we choose this as the plane z, = 0 , with z,
increasing away from the body. The yl-axis is chosen so that (x,yl,zl) form a
right-handed system. Then, according to slender-body theory, the flow in the
plane x = constant may be described in terms of analytic functions of
zl =y, * izl o

The argument is again a local one, so that the sheet and body surface can be
replaced by other curves which have the same local behaviour near the point con-

sidered. The cross—section of the smoothly-curved wall can be replaced locally
by a parabola:

z, = -k, h = h(x) . (94)
Then the conformal mapping
z, = 2, - ihz’ (95)
1 2 2

maps the region above the parabola (94) in the Zl-plane on to the upper half of
the zz-plane. We regard this as the region occupied by the fluid, so that the
body is locally convex if h > 0 ., The Z, and Z,~planes are sketched in Pig 5.
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On the same basis, the sheet isreplaced by the same curve in the zz-plau that
was used in sections 4 anu 5 to representthe sheet in that plane, ie

102 92
Z, = r,e . r-asin-;, 0<02<Iﬂc. (96)

—a—ains

2 2

as in equation (8). The same sequence of transformations as before maps the
region exterior to the body and sheet on to the upper half of the zs-plan., but
we shall not need to make explicit use of these.
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3 ‘ We must first check that a general choice of the parameters a and m
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Bl N PR ot
i PO e

.z:
i
i
k
]
! : (and of their variation with x) provides the desired degree of generality of %
‘ ' sheet shape in the cross~flow plane. If the distance of the sheet from the body, i
E; L measured parallel to the zl-axis, is denoted by £ (yl) » then by equations (94) to i
S (96): |
L |
[ : s 2 - 2 2 i
g_ v, * if(y,) = 2, + ihy] = Z, - ihZ; + iby) i
1. )
' {
2o - iep _ ., 2 2i87 _ ., 2 .
| r,e 1hr2e + 1hyl . z
- Hence, for small values of 6, , ]
3 79 \ B i
- 2 2) .
3 4 r, cos 0, + hr, sin 28, ~ a(m} i
Lo and o 21 ;
: | . 2 2 2 ]
f P f(yl) - r, sin 9, - hr2 cos 262 + hy] ~ nu(-m—) :
P
b @+1)/m

y
~ m(—l) .
a
This corresponds to the general form expressed by equation (5) if

m-nl‘ and a-('—&)m,

T R

el -

just as in (9), The form given by (96) is therefore sufficiently general.

The first stage of the argument is to relate the normal velocity on the

T

sheet in the Zl-plane which is required to make it the section of a stream
surface of the three-dimensional flow to the normal velocity imposed on the

TR g R o

corresponding curve in the Zz-—plane in the previous sections. At the same time
we treat the normal velocity on the wall. The stream surface boundary condition
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is expressed by equation (A-4), in which the parameter held constant in forming
the x-derivatives may be chosen at will.

On the wall Y, (vhich equals Yy o by (95)) is held constant, so that
(A~4) becomes

v os oz dy
v ox 1 ox do, °*
Y2 Y2
from which
1.2. ) 1n_l_ dzl . Val do, i} Ozll clyl
]
U U clz2 i} doz ox y d°2

2
vhere Vai and v,y are the normal velocities in the zl and 22 planes. Now

9, =y, =y, on the wall and z is given by (94), so

- - h'yg . (97)

c:l E:"

On the sheet 62 is held constant, so that (A-4) gives

-v_l& ) v :l.o_!. ; azl dyl ) ayl dzl
U U d02 ox o dt:r2 x A d02
2 2
Inserting (96) into (95) gives
2 .
Yy, = T, cos 92 + hr2 sin 202
(98)
z, = 1, sin 62 - hrg cos 202 »
from which
1
9y, , 7 I .
= - (cos 02 + 2hr2 sin 202) o +h r, sin 262
) (99)
oz 8:2 2
- - — !
(sin 92 Zhr2 cos 262) = h r, cos 262 y
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Also, remembering that cos ¢, = ch.-zlda2 and sin - "2“2/“2 , and that
02 - °2 + 02 » where 02 is the inclination of the saction of the sheet to the

real axis, we have

dy

= cos "2 + 2hr2 sin (92 + '2)

S

} (100)

ds
1 .
3.3.2. = sin ¥, - 2hr, cos (8, *+ ¥,) .

L

Introducing (99) and (100) into the boundary conditioﬁ above yields

v r
—:—2- - - (I + khrz sin 0 + bhz g) -2 sin 02
- h'rg cos (62 - 02) + Zh:'z sin 02) . (101)

To find the dominant terms in (101), all the quantities need to be ezpressed in
terms of one, say 02 . By (96)

nd
do - dr.\ )
-aTi- - r; (dez) - aoinm_!-az- ’
so that ei " 1:.'2d62/clc12 = gin (ezlm) R
¢, = _:_‘Z_ (102)
and
m
g, ~ (.:TZ) . (103)
arzlax Tow ven ¥ 1) with the onntted suffix 2 regtored and r, itself is

given by (96). Neglecting eg "m (02, a) 2/m in comparison with unity, as in the
previous analysis (of. (29) and (80)), we can write (101) as

) m+1 0 o+l 2m
Va2 2 , 2,
'T' Y 1n-—+a-am 1 + 4h —- +4hl

+ h'a (—) 1 + Zha--
n
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From this we can pick out the dominant terms in (101):

v ar
n2 _ _2 - 2
T " 3x tiné; -hio; . (104)

Which of these two dominates depends on the value of m , 8o both are retained,
using a small extension of the tilde notation.

The normal velocities specified by (97) and (104) are the sum of two
contributions:

vhz arz
(a) Voo " 0 on the wall and T " = sin 02 on the sheet, and

v v
®) —;—2- - -h'yi on the wall and -g—:-z- = -h'og on the sheat.

The linearity of the relation between the normal and tangential velocity distzibu-
tions can be exploited, as it wae in section 5, so that the complete tangential
velocities can be obtained as the sum of those corresponding to distributions (a)
and (b). Now distribution (a) is precisely that treated in sections 4 and 5,
arising from the sheet on the plane wall. For distribution (b), we guess a
complex potential

L ih'Uzg/S (105)

and verify that it gives the right behaviour on the wall and sheet. For the
wall, it is enough to differentiate Ws and set Z2 =¥y » real:

v % dw.
---—-u'2 - 2 - l—b. - - ih! 2 a = ht 2
] T "{u dzz} $ {ih'y,} Ky, -

This verifies the behaviour on the wall. For the contribution from W, on the

b
sheet, it is convenient to write
v - iv [ -——d"b = -d-w—b- iiz-
t2 n2 do2 z2 da2
Now dzzldc2 = eiw2 - e1(m#l)02/m » by (102). Hence
_ e ih'ieladi(3mt1)e,/m
Veo ivhz ih Ur2e 2 ’ (106)
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so that

v
n2 a2 2/m
T ““26*0(“2’) '
and the behaviour on the sheet is verified, to the usual approximation. Hence,
to leading order, the tangential velocities in the Zz~p1nne axre those found in
the previous section, augmented by those derived f£rom (105).

The final step is to consider the compatibility of these tangential
velocities with the condition of continuity of pressure across the sheet. This
condition can be written in the form (A~10), and it is again convenient to choose

the parameter n to be 92 « Then:

v
dy L} t
9Ae 1 1 . ul
= |y A"n(‘ar o ¥y x| tie¥ "1“1“) ‘ (on
2 8, o,

where the subscripts 'l' indicate quantities in the Z,~plane. In section 5 an
expression, (89), was found for A® in terms of o . Sint: the extré velocity
(106) is continuous across the sheet, this expression still holds, to the order
considered, with o replaced by Oy + It is therefore convenient to consider, -

as bafors, its derivative for constant Gy s and write

ane| _ asel | ase|:3%
ax 3x 3o ox | *
02 2 2'x 62

The velocity componerts in the Z1 and Zz-planes are related by

do do
Av = Av 2 and v -y (——ii
tl cza'c'; tml cmz\dc:1 .
With these relations, (107) becomes: )
do 2 dy dy 22 dz do 2 90 v
asel o 2 1 L, oo 1_ (S0 2 - om2) 08
ax t2\do ox do ox do do ox U *
e 1 2 2 2
2 62 62 02

Using equations (99) and (100) and the relation

2

da, 2.2
33; = ] + ahrz sin 62 + 4h T, (109)
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which holds on the sheat, we find

ay, clyI aal dzl dt;l 2 arz 2

x| @, "% | T, - \&, W ¥ * b'ry (sin (8, = 9p) ¢+ 2hr, cos ‘2) ¥
0 o, * “ |
2 2

esssae (llO)

Introducing (110) into (108) and recalling (91), we have

2
do Vem2
249 2 2 - -
FL i “’:2(',1'5‘) (heain (0, = 4 + 20r; cos 4) - §
2

I
+ o(:z‘“'*z)/“ in o)) . i

The additional tangential component of velocity deriving from "b is given by
{(106), so that

Vem2
U

tm
- —— ' L]
T h r, 62 and Avt:2 Avt »

where v__ and Av_ are just as they were in section 5. Using (103) and (109)

.again, we find the condition of pressure continuity becomes

ox 2 2 2 m 2

. v
| Avt(l + 4hr, sin 0, + 4hie? (— —%—“— +h'r2 gin | 1,
g
2

()
+ h'rg sin = - ! 62 + Zhh'rg cos -;2- + O(c:z(““'z)/"l In c)) . (112)

The corresponding equation in section 5 is (92), which can be written

v
340 - _ _tm @+2)/m
% Avt( T 0(02 1n o)) . (113)
o
2
It was shown that this contains an unbalanced term of order. cl/m if m> |
and m#¥ 1 or ul/m Inoc if m=4§ or 1. Recalling that Avt and Vem B8T€

both of order unity, we can see that the orders of the extra terms which appear
in (112) and not in (113) are too high for them to balance this crucial term.
It must therefore vanish, and the argument in section 5 which follows

equation (92) again holds, showing that the only possible values of m in the
range § €@ < o are still 2/3 and 2.
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The extra freedom afforded by the smoothly curved wall is not therefore
sufficient to allow a different behaviour of the sheet close to the separation
line, Further, since the additional velocity field defined by (105) and (95) is
regular, the singularity in the pressure gradient on the wall found previously
on the upstream side of the separation line for m = 2 (n = 3/2) will still

arise,

The shape of the sheet is described most simply in terms of its distance
f(yl) from the wall, Y, being the same, to the first approximation, as the
distance along the wall. We have

I\
f(yl) ~ ry ’

wtere n= 1 + 1/m is 3/2 for m= 2 and 5/2 for m = 2/3 . In terms of the
Cartesian coordinates Yy and z, measured parallel and perpendicular to the

tangent to the body cross—-section (see Fig 5), the shape is given by equations
(95) and (96) as

3/2
4|
:zl ~ Za(--) for m= 2
a
5/2
2 +hy? ~ 2401 for m = 2/3
R I8 .

7 RESULTS AND CONJECTURES

7.1 Main results

It has been shown that, under the assumptions of slender—~body theory, the
shape of a vortex sheet which contains circulation being shed from a highly-swept
separation line on a smoothly curved wall in steady flow is restricted in form,
If, in the vicinity of theseparation line, the distance of the sheet from the
wall increases like yn » where y is the distance from the separation line,
then the only possible values of n not exceeding 3 are 3/2 and 5/2. 1f
n = 3/2 , there is an adverse pressure gradient on the wall upstream of the
separation line which becomes infinite at the separation line itself. If
n = 5/2 , the pressure gradient at the separation line remaines finite. 1In both
cases the strength of the vortex sheet (its circulation per unit length) varies

linearly with the arc length along the sheet, close to the separation line.
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For a conical sheet on a plane wall, the inviscid flow on the downstream f
side of the separation line is favourable to the growth of an attached boundary
layer, so that it is only the boundary layer on the upstream side which separates.

These results are expected to be helpful in numerical treatments of vortex

e ekl e

sheet models of separated flow and in understanding the mechanics of flow
separation in three dimensions.

7.2 Equivalent results for unsteady plane flow

There is an exact analogy between slender-body theory for steady flow and
the theory of the time-dependent, two-dimensional flow of an inviscid incompress-
ible fluid., The time, t , in the plane flowis related to the downstream dis-
tance, x , in the steady three-dimensional flow of undisturbed speed U by

SRR PPN

(2]
'
=TT

(114)

The plane flow takes place in the cross-flow plane. Variations in the cross-
section of the slemder body corvespond to changes with time in the shape of the

body in the plane flow and variations in its inclination to the undisturbed

[T PR T DRSNS SLISNEP AT T JORE TV R P CEPUES SR gt i

stream correspond to changes in the relative velocity between the body and the

fluid in the plane flow. The term 3%/3t which arises in the time-dependent
form of Bernoulli's equation corresponds to the contribution from the streamwise
perturbation velocity u = 3®/3x to the slender body form (75) of the tkree-
dimensional'Bernoulli relation. It is straightforward to verify that the
boundary conditions on the vortex sheets correspond through equation (114). ;

The results of the present work therefore hold also for the behaviour of a
vortex sheet representing an 'open' type of separated flow in plane, incompress-
ible time-dependent flow, whether the time variations are in the imposed

velocity, the body shape or the position of the separation point. In particular,

the same two exponents 3/2 and 5/2 are the only ones (not greater than 3) which
can occur in flows of this kind, and the smaller is inevitably associated with
an infinite adverse pressure gradient.

7.3 Relation to previous results for plane flow

A considerable amount of work, dating back to Helmholtz and Rirchhoff,
has been done on steady two-dimensional flows past a body from which spring a
pair of constant-pressure streamlines, Since, in this context, constant pressure
implies constant speed, hodograph methods can be used and, with their help, com-
plete flowfields can be described analytically. A summary account, with

R T .
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.i references to tha original papers, is given by Thvaitnsli. The constant-pressure
i streamlines leava the body surface tangentially and, in soma sense, enclose a :
1 finite or infinite region downstream of the body. The fluid inside this region
must be at rest at the separation point itself, since it lies between the ;
constant-pressurs streamline and the downstream side of the body, which meet at

a cusp. Since the atatic preasure is continuous, the constant pressure on the

s‘l separation streamlines wust ba the stagnation or total pressure in the downstream
region. The total pressure is therefore different in the downstream region from
its value in the main flow and the separated flow cannot be of the 'open' type

& discussed in the present Report. There are two conventional interpretations of
: the downstream region: either the fluid there is the same as the mainstream
. fluid and it is at rest (a deadwater region), or, more plausibly, it is occupied

by a fluid whose density is negligible compared to that of the mainstream fluid
(a cavity in a liquid, filled by its vapour or another gas), Neither of these
interpretations gseems to have any aerodynamic significance in itself; but, since
the constant-pressure streamlines are particular cases of vortex sheets springing
from a smooth body, their behaviour near the separation point invites comparison

o R RS i L 1, e 3
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with the present results.

In the vicinity of the separation point, equations (168) and (169) of
Ref 11 describe the behaviour of the curvature, k , of the streamline and the
upstream pressure gradient on the wall. In condensed form:

L

k = T( - 02)'l + 0(0 - 02)! ]

&, -4 4
T~ M@, - O 400, -0,
' where T is a constant, 8 1is the distance along the body surface in the direc-

tion of the upstream flow and ¢ is the velocity potential on the sheet or body,

taking the value 02 at the geparation point. We can see that if T > 0 the
curvature and pressure gradient behave in the same way as the present results
predict for n= 3/2 , If T <0 , the solution is meaningless, as the constant=-
pressure streamline lies initially within the body. If T = 0 , both the curva- é
ture and pressure gradient vanish. The present results are that the curvature {
and pressure gradient are finite for n = 5/2 ; the curvature is that of the body
and the pressure gradient is not locally determined. Hence the previous results

PO

for the neighbourhood of the separation point reduce almost, but not quite, to a
special case of the present analysis. The difference concerns the curvature of
the sheet in the case for which it is finite: the constant-pressure streamline
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has zero curvature, the 'open' type of vortex sheet has the same curvature as the
body. It is plausible that such a difference should arise, since the flow
between the sheet and the body, on the downstream side of the separation point,

does not enter the previous analysis,

The previous results also suggest the role played by the solutions for
n=3/2 and 5/2. To see thie, we confine our attention to the so-called

Kirchhoff flow past a circular cylinder, the flow for which the pressure on the
, constant-pressure streamline is the same as the pressure in the undisturbed

:'I stream, as illustrated in Fig IV.14 of Ref 11. There is a one-parameter family
" of these flows, corresponding to a variation in the position of the separation

points on the cylinder. If the position of separation is specified by its
| angular displacement 6 from the front stagnation point, then for 6> es = 56° ’

it is found that T >0 . As 6 falls towards es » T falls, and vanishes when

e T i et o o v S ST 60 X 2t L e i

s

8 =6, . Separation which occurs with T = 0 is called 'smooth'. Suppose, now,

1 that we find a vortex sheet xepresentation of the separated flow past a slender

3 cone (cf general cross-section) with an assumed inviscid separation line along

? a generator chosen at random; then it seems likely that the behaviour near the

ot 0 st AR Lr SO vt Bl 4

separation line will correspond to n = 3/2 , The behaviour corresponding to
n = 5/2 is not likely to arise for more than a finite number of positions of the A

separation line, though such positions may well be significant in relation to the

YRR T RTINS

real flow, as discussed in subsection 7.35. Vortex sheets which lie even closer §
te the surface, which might arise frowm values of n greater than 3, seem

unlikely to cccur at all. 3
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7.4 Range of validity of present results i

‘ The detailed results of the preseat work have been obtained within the
assumptions of slender-body theory. It is relevant to ask whether they hold more 3

widely.

On the one hand, the proof in section 2 that a vortex sheet representing

separation must be tangential to the wall depends crucially on the equality of
the entropy on the two sides of the sheet. This clearly sets a limit to the

RTINS s eyt 7 LA
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extent to which the later results about the flow near the separation line can be

generalized. On the other hand, since the arguments used in obtaining these }

results are local ones, it seems unlikely that the global limitations required
for the application of slender-body theory are actually necessary. This impres-—

sion is confirmed by the applicability of the present results to plane flow, a

two~dimensional body being completely 'nmon-slender'. Further, the applicability




of the present results to unsteady plane flow suggests that the initial limita~-
tion to steady flow was unnecessary. q
It seems that it might well be possible to extend the present results to

unsteady incompressible flow past general bodies, and, perhaps, to compressibile
flows in small-disturbance approximations in which entropy changes are negligible.

?'“ 7.5 Prediction of separation line

Studies of inviscid flow, like the present, are meant to lead to useful
models of real flows. As suggested in section 1, vortex sheet models of flows
v* separating at highly-swept separation lines are expected to be adequate if the
: position of the separation line can be determined. In Ref 3 it was suggested )
‘f that this should be attacked by an iteration between a boundary-layer calculation ;
which uses a given external velocity field to predict the location of separation ]
and a calculation of an inviscid model of the separated flow which uses a given
separation line to predict the external field. For turbulent boundary layers
this still appears to be the way to proceed, but for laminar flows there may be

an alternative procedure.

The resemblance between the present results for separation from highly-

swept separation lines and earlier results for the constant-pressure streamline
2

model of two-dimensional separation suggests that an amnalogue of Sychev's vork‘
for plane flows may exist for highly-swept separation lines. Sychev seeks a

local solution, wvalid near the separation point, to the Navier—Stokes equations
for the steady flow of an incompressible, viscous fluid past a smooth body in

) two dimensions. He finds the structure of such a solution in the form of an
asymptotic expansion in fractional powers of the inverse of the Reynolds number.
. As the Reynolds number tends to infinity, the solution tends towards an inviscid
] flow with a constant-pressure streamline which separates smoothly from the wall.
For finite Reynolds number, the point of separation is further downstream, by a ;
distance proportional to Re-”16 . The constant of proportionality remains to i

be determined by a numerical calculation, which is required, in principle, to

confirm that a solution with this structure actually exists.

1f such an analogue of Sychev's work does exist, and preliminary work by
N. Riley at the University of East Anglia indicates that it may do so for conical
external flows, then the outcome of the iteration proposed asbove is predictable:

since laminar boundary layer theory represents the limit of infinite Reynolds

number, it is smooth separation which will emerge. This would be the best that
could be achieved with a boundary-layer calculation and it could be achieved
without it, by examining the behaviour of the inviscid model. Furthermore, if

1
1
!:,4
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i
,
1
k
]
:
]

the numerical solution to the analogue of Sychev's problem were known, the lead- ;
ing term (of order Ra-l/ls) in the correction to this infinite Reynolds number ?
solution coiild be found, sand the inviscid model corresponding to this corrected ;
position of separation could be calculated for large, but finite, Reynolds

numbers.

T i AR e 1

This is all speculative at present, but already has a bearing on the con-
struction of an inviscid nodel of the flow separating from highly-swept separa-

e e A o At

tion lines on smooth surfaces. If such & model is intended eventually to form ;
part of a method which predicts the position of the separation line, £

(a) it must represent the shed vorticity near the separation line in a
continuous form, ie a vortex sheet representation is the simplest likely 1
to be useful, 3

(b) the curvature of the sheet must be allowed to tend to infinity like the
inverse square root of the distance from the separation line, and ;

(c) the covefficient of this singularity should be determined explicitly by the
calculation procedure.

Finally, since the constant-pressure streamline model has figured so

Y R RGN R TR tos UL WP N

prominently in this section, its role should perhaps be clarified. The resem-
blances between the mathematical properties of the vortex sheet model of open
separation (vhether in steady flow from a highly-swept separation line or in
unsteady two-dimensional flow) and the constant-pressure streemline model of
steady two-dimensional separated or cavity flow have been noted and partially 4
exploited. It is not suggested that the constant-pressure streamline model has L
the same relevance to closed separation in two-dimensional steady flow as the
vortex sheet model is believed to have to open separation. Indeed, a more
satisfactory approach to two-dimmmsional separation would be to recognize its
essentially unsteady character and treat it as a time-dependent problem involving

vortex sheets.
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Appendix
BOUNDARY CONDITIONS

In this Appendix the boundary conditions on the body and on the steady
vortex sheet are expressed in terms of quantities in & cross-flow plane, under
the ususl assumption of small disturbances. The expressions obtained are equiva-
lent to those given by Smith4 and Clarkes; but their derivation is a little more
general, in that the axis system is no longer required to be exactly aligned with
the undisturbed stream, and a little simpler, in that vector algebra is avoided.

The boundary conditions are that the body and the vortex sheet are stream

surfaces of the three-dimensional flow and that the pressure is continuous across

the vortex sheet. Since the sheet is assumed to be embedded in an irrotational

flow, the continuity of pressure implies the continuity of speed across it.

Congider a right-handed system of rectangular Cartesian axes with O0x
inclined at « small angle XA to the undisturbed stream of speed U . Denote the

components of the velocity parallel to the axes O0x, Oy and Oz by

Ucos A +u, v and w, so that u, v and w are small compared with U by

the assumptions of small disturbances and small inclination. Suppose the vortex

sheet or body surface, % , is defined by F(x,y,z) = 0 and also, in parametric
form, by y = f(x,n), z = g(x,n) , where n 1is a parameter which variess along

the curve % in which the cross-flow plane x = constant meets I . Then
F(x, £(x,n), g(x,n)) = 0 ,

vhere the¢ identiry sign means that equality holds for all values of x and n

in the ranges which define I . Hence the identity can be differentiated with

respect to x and n to give:

F + Fyfx +Fg, = 0 (A-1)

Fyfn +Fg = 0 . (A-2)

Since . 1is a stream surface of the three-dimensional flow:

(U cos A + u)Fx + va + sz - 0 ,

or, since A is small and u is swall cumpared with U ,

e Y g 1t " et e . . -
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UF, + va +wF_ = 0 . (A-3)

The three equations (A-1) to (A-3) are linear and homogeneous in F*, Fy and
Fz » and they have a non-trivial solution, so the determinant of the coefficients
vanishes. Expanding the determinant gives:

wfn -vg, = U(fngx - snfx) .

This provides an equation for the component v, of the velocity in the cross-
flow plane, normal to % . If the sense of the normal is given by a positive
(anticlockwise) rotation from the direction of increasing n ,

. _ . . _ 2 2.4
v, wcos y -~ v sin ¢ (wfn vgn)/(fn + Sn) ’

where ¥ is the inclination of the tangent, in the sense of n ingreasing, to

the axi¢ Oy , and where the positive value of the radical is understood. Hence

L L
U 2 2
(fn + sn)

- %& cos y - %% siny . (A-4)

The parameter n does not appear explicitly in (A-4), but the same parameter
must be held constant in the two partial derivatives. Particular cases of (A-4)
are

v
n _ 9z ) 4 . - = Jr . -
T T y cos ¢ x|, sin y T le sin ¢ , (A-5)

where (r,0) are polar coordinates and ¢ is the inclination of the tangent to
the radius vector, as in Fig 3.

It is sometimes conveaient to work with the stream function, ¥ , in the
cross-flow plane. If tlie velocity potential & is the real part of the complex
potential W(Z) , where Z =y + iz , then ¥ is the imaginary part of W .

Hence, on ¥

%
!
é
j
}
4

b,
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On the other hand, the jump in & across I 1is

Hence, by (A-4): .
£
y 9z _1
U a sin ¢ - 3% €O w do - dz - —— dy . (A-6) )
v !
t Equations (A-4) to (A-6) are equivalent expressions of the condition that I is %
a gtream surface. i
The second boundary condition applying when I 1is a vortex sheet is that ?
the fluid speed is continuous across I , ie i
1
A((U cos )‘+u)2 +v2+w2) = 0 , ;
where A 1is a difference operator across I . To be definite, A is chosen so i
that AA = Al - A2 , where the suffix 1 denotes the side of I towards which 4
the normal points and 2 the opposite side. Because )\ and the disturbances are
small, this condition reduces to
Lo - 2. 2 :
v 2UAu +A(V” +w") = 0 . (A-7) ¥
P ]
; | wa, if v, is the component of velocity in the cross—-flow plane, tangential to ;
; ; % , in the sense of n increasing, ?
L 2,2 _ 22
% , v +w vt + v H ;
F |
@ while, to the order of accuracy of this analysis, (A-4) shows that va is con- ]
E; tinuous across I . Hence (A-7) reduces to
UM +v Av, = 0 , (A-8) i
t t j
K ) w :
é ; vhere ve is the mean value of v, across L . Now, if the velocity potential !
b . m -
L ; in the fluid on the two sides of f is 0,(x,y,2) and Qz(x,y,z) ,
¢ i
. % A = ¢ - ¢ = A .
é \ u lx Zx xly,z

A = ¢l(x. f(x,n), g(x.n)) = & (x, £(x,n), s(x.n))
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9A®

axn

therefore Mx + foOy + 3::“;

= Au + fov + ngw . (A-9)
Since v is continuous across I ,
Av = Avt cos V and dw = Avt sin y ,

so that, by (A-9),

Au = —:-2—0 - Avt(fx cos Y + 8, sin y) .

Hence, the condition of continuity of pressure, (A-8), becomes

v

t
e oy 3z . - _m -
I Avt 3% CO8 V o+ 3x %in ¥ <l - (A-10)

As in (A-5), the parameter n does not appear explicitly in the boundary
condition, but the partial derivatives on both sides of (A-10) must be calculated
for fixed values of the same parameter. If, for example, the polar angle 0 is
fixed, (A-10) becomes

v

t
L1Y ) or m
|, T Mels|, 0T @b

For conical flow, with 8 = Kx , this reduces to the familiar form

sV
tm
Ad = Avt(r cos Q-Tﬁ—) .

Similarly, Clark's equations, (A-18) and (A-19) of Ref 5, are obtzined from
(A-5) and (A-10) when the sheet is defined in terms of his parameters.
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LIST OF SYMBOLS

a diameter of circular arc in zs-plune
AO’ A, A; +++ undetermined real constants
b, ¢, d coordinates of points B, C, D in zs-plann

i
i
i
)
J
4
i
Y
]
]
:

arbitary positive constant
pressure coefficient, (p - p_)/ipl!2 .
curve in wvhich I meets the cross—flow plane

(2]

o

- A

SRR 2 B S o

mapping function

e AR D D bt . S ns

parameter describing local shape of wall, see (94)

o SR Tyt MR SR

constants defined by (l4a)

w 1/(n - 1), exponent, see (6) ;
exponent defining order of contact, see (5); also normal to & ;
pressure

source strength

polar distance in cross-flow plane

time

&+ no vV 8 B KT W

speed of undisturbed stream é
u, v, ¥ disturbance velocity components parallel to Ux, y, 2z
normal and tangential components of cross-flow velocity

mean value of vc across vortex sheet

W complex potential

s

X, Y, % right-handed, rectangular Cartesian axes
z y + iz, cross-flow plane 3
B pA final transformed plane j

total circulation of sheet
small positive quantity, see (42)
difference operator across vortex sheet

£
3
5
;
:
v
4
8
o
E‘,
L
s
%
k.
‘e
*
:

small complex quantity, see (13)
parameter on % in Appendix; dummy variable on real axis

i 2o L st 2,

polar angle in cross—-flow plane
inclination of x—axis to undisturbed stream

dummy variable on real axis

deneity; |t

Q o Mm > @ 3 N D> O

arc length on &
surface of body or vortex sheet
inclination of tangent to % to radius vector

® © M

velocity potential
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L LIST OF SYMBOLS (concludad)

v inclination of tangent to # to Oy

) stream function in cross-flow plane 1
‘;"'Ti w small complex quantity, see (25)
. I b
R affix % denotes a quantity in the transformed plane 2% or zs :
M suffixes 1, 2, 3, 4, 5 denote quantities in successive transformed planes
* suffixes S, R denote singular and regular contributions }
B |
.
3
: 'vf
. ;
| 1
A 3
| 3
R
’ 1
. 4
3
j
|
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