
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB017872

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
only; Test and Evaluation; 11 MAR 1977. Other
requests shall be referred to Navy Fleet
Material Support Office, Mechanicburg, PA.

FMSO ltr 7 Jul 1977

"■^»gy1"1^1'' |bi, ^^^^iw*-^a«^if!^»-% mr^vmr

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED,

Unclassified
SecuritV Classification

DOCUMENT CONTROL'DATA -R&D
iSt't'unty I'lassilication ot tltto, ln>dy vf ubsttnct t*ntl ittüexin£ annot tUcn must hv entrrrd when tin- uvvrall rvpn^^^^^t^Tsitieit)

1 0»IGIN4TING AC ri vi TY fCorporale aulhor;

Navy Fleet Material Support Office
Code 9642
MechanicsWg, PA 17055

20. REPORT SECURITY CLASSIFICATION

Unclassified
?h. GROUP

3~ Ri^ejaa.!. Tin a

Simulation Specification for modeling the Logistics Data Communications Network

/£>
work. I

A-
« DESCRIPTIVE NOTES fTVpe O

None
/ report and inclusive dates} J^**f

tp ■
—i

5. AUTHOR(S) (First name, middle initial, last name)

(// '3
Network Analysis Corporation ;
410 Pine Street
Vienna, VA 22180

REPORT pftTg

LL ^7^
«. CONTR^gT 9« CRANT

N001p4-76-D-5532
W'gJKCT NO.

2j, L
ft^jm

TO. TOTAL NO OF PAGES

79
7b. NO. OF REFS

None
9a. ORIGINATOR'S REPORT NUMBER(SI

/FIU)95^02 ,

9h. OTHER REPORT NOIsi (Vlny other numbsr« (haf may ba •«•/fried
thi% report)

None

Q
DISTRIBUTION STATEMENT " ' ^ J

SUPPLEMENTARY NOTES It | I 2. SPONSORING Ml LI T AR V AC Tl VI TY

^7',

'-P
\ ^one
NU/ABSTR«

Naval Supply Systems Command
Washington, DC 20376

BSTRACT

'A simulation strategy that can be used to model the Logistics Data Communications
Network (LDCN) is described in detail. The various components of LDCN and
their interconnections are set forth. The modeling strategy is reported with
particulars including the inputs and outputs of each model in the system. Also
presented is a scenario life-cycle for a transaction from the origination at
the terminal through the network and back to the terminal.

KEYWORDS
simulation
modeling strategy
simulation program structure

JJ LDCN global network model
LDCN host model
LDCN Front End Processor (FEP) r,iodel
LDCN concentrator model

y

DD .^..1473
S/N 0101.807-6801

(PAGE I)
I//Q o?;,. Unclassified

Security Classification T
-'•■-■».■' .., i

' mmmm-^^'w^^^^^^^^ w*f

SIMULATION SPECIFICATION

FOR

MODELING THE LOGISTICS DATA

COMMUNICATIONS NETWORK

October 1976

P**

)V'
^

» fttl

B&
vo Ä^

A'" A0 .M>w A0^
tfftf r^ Prepared For

O
Fleet Material Support Office

Naval Supply Systems

Mechanicsburg, PA 17055

FR. 095.02

•:'■ -ä -'

Prepared by

Network Analysis Corporation

410 Pine Street

Vienna, VA 22180

;■,.:,:. iv i ■■■■■■

W^^W'^^WWWPi^lliBipsWBBPWWPWWWtpipilp^piiHpiiPBP fPftW.iiMllUtJ.,-!

Network Analysis Corporation

TABLE OF CONTENT:

Chapter Page

1. INTRODUCTION

2. SYSTEM DESCRIPTION

3. MODELING STRATEGY

3.1 GLOBAL MODELING STRATEGY 3,1

3.2 SIMPLIFIED SIMULATION WITH SELECTED DETAILED SUBSYSTEMS. . .3.3

3.3 SELECTIVE DETAILED MODELS 3.6

3.A SIMPLIFIED DETAILED MODEL LINKAGE 3.7

3.5 BASIC MODELING STRATEGY 3.8

4. SIMULATION PROGRAM STRUCTURE

4.1 MONITOR A.l

4.2 UTILITIES 4.3

4.2.1 FRONT-END (I/O) 4.3

4.2.2 TRAFFIC GENERATOR 4.5

4.2.3 STATISTICS 4.5

4.3 MODELS 4.7

4.3.1 THE LDCN GLOBAL NETWORK MODEL 4.7

4.3.2 THE LDCN HOST MODEL 4.10

4.3.3 THE LDCN FRONT-END PROCESSOR MODEL 4.15

4.3.4 THE LDCN CONCENTRATOR MODEL 4.22

4.4 THE STRUCTURE OF THE DETAILED PORTION OF THE LDCN MODELS . . 4.25

5. INPUT TO SIMULATION PROGRAMS

5.1 SYSTEM CONFIGURATION 5.1

5.2 SOFTWARE DESIGN 5.3

5.3 DEMAND AND SERVICE CHARACTERISTICS 5.5

5.4 INPUT TO THE SPECIFIC LDCN MODELS 5.7

5.4.1 INPUT TO THE GLOBAL NETWORK MODEL 5.7

5.4.2 INPUT TO THE HOST MODE1 5.8

5.4.3 INPUT TO THE FEP MODEL 5.9

5.4.4 INPUT TO THE CONCENTRATOR MODEL 5.10

^^^■„^^■■-.■-.vi,|V.|M
^^i Bi^l^^JlAM^tfril^fahrirfl

UtiH ■"'

J,UJIIIJ|,,, I..,!. . —">---~r—■; ■■■ .. . (lytflll^iJIIWW^WIIlfl^ft!»»™*»1 iVIW^.i^PLi^lWlJSWJSlW'-WJ^^-yi riWllHtt!p#«»1J.ff-^l|W^,"tiWP^f ^i^. K^.^^i^^^^m^W^^^r- •„ ,., iiMl,J.lii|,ll.l!i||lW, mu [(i i

■ ■

■ ■

»
Netuork Analysis Corporation

6. OUTPUT

7. LINKAGE METHODOLOGY

7.1 LINKAGE FORM 7.1

7.2 METHODOLOGY FOR USING THE LINKAGE INFORMATION IN THE LDCN

MODELS 7.3

8. IMPLEMENTATION CONSIDERATIONS

9. CONCLUSIONS

REFERENCES 9.4

BIBLIOGRAPHY. 9.5

.._...

F" mm» ... , ,..,,....,,,....^—-.,«,. mm^^^^rn^^f^^s^mmm swtm^w.mvm^t^?*!i?**w*^?wwrtf*$^i,*m*m?'*v^''m™' ^'"•WW.^mitjiii^pjip^^iiiiiiji^

Network Analysis Corporation

LIST OF FIGURES

Figure Page

2.1 NETWORK CONFIGURATION 2.3

3.1 NETWORK FLOWCHART 3.A

4.1 COMMON PROGRAM STRUCTURE A.2

4.2 UTILITIES STRUCTURE 4.4

4.3 EXAMPLE OF INTERACTIVE GRAPHIC OUTPUT 4.6

4.4 EXAMPLE OF INTERACTIVE GRAPHIC OUTPUT 4.6

4.5 THE GLOBAL NETWORK MODEL 4.8

4.6 HOST MODEL .4.11

4.7 THE 494-HOST MODEL 4.12

4.8 FRONT-END PROCESSOR MODEL 4.16

4.9 FRONT END PROCESSOR MODEL 4.18

4.10 ALTERNATE FRONT-END PROCESSOR MODEL 4.19

4.11 CONCENTRATOR MODEL 4.23

4.12 CONCENTRATOR MODEL 4.24

5.1 SYSTEM CONFIGURATION INPUT 5.2

5.2 SOFTWARE DESIGN INPUT 5.4

5.3 SERVICE AND DEMAND PARAMETER INPUT 5.6

7 .1 PROGRAM LINKAGE OPTIONS 7.2

■mam ..^.iK^ud»: -i iml HHMIM
,;,

■Mail •--' "-^-'■' ^-^—--i.,^.

<^w ^-^v^^riF^^^^^mmmmmmrmmmm^w^m^mmmmmr^^ ■u IJI. mim^mmm
ammmmmii,.:,.,..

Netuork Analysis Corporation

1• INTRODUCTION

The Navy Fleet Material Support Office (FMSO) is in the implementation

phase of an integrated real-time data communications network to make logistics

information available to a large number of dispersed Navy users. This in-

formation is necessary for effective and efficient logistics support. The

Logistics Data Communications Network (LDCN) will provide direct access

from remote locations to two Inventory Control Points (ICPs) which maintain

and manage ma^or logistic data bases. Kach TCP computer complex has two

U494 computers; one also has an IBM 370 while the other has a Burroughs

3500. Each complex will have a Front-End Processor (FEP) to provide the

communications functions needed and relieve the Host computers of these

tasks. Programmable communications concentrators at selected Navy sites

will be used to interface low-speed terminals and provide cost-effective

remote access. Each concentrator will be connected via high-speed full-

duplex lines to each of the FEPs.

i:

To assist management of the operational system and future developments

to satisfy new user requirements, FMSO has identified the need of an ef-

fective simulation tool to model system behavior under various load condi-

tions and design variations. Such a tool can be used to assist operations

personnel when unresolved problems occur in the existing network. The

results of a simulation run can be used for detailed examination of each

system resource utilization and to trace the progress of activity in the

system, thereby giving insight to a problem that empirical observation

cannot. In addition, a simulation program is essential when expanding the

capabilities of the network. It can be used to isolate potential bottle-

necks and quickly and cost-effectively evaluate potential alternatives to

alleviate such bottlenecks before the capabilities are required and imple-

mented.

When modeling a single processor, as opposed to the entire network,

simulation provides an economical means of evaluating various design al-

ternatives, both hardware and software. The primary objective of processor

modeling is to economically attain designs satisfying the performance re-

quirements.

1.1

^^^1^ w, »M»lr,^iat|^|fah^
 •--' ...-^.^.^iijiiijgiifliiji uaUtKuuu »am,

■ ■■ ■

^liMHiiiiiiiiNiHtiiitt

HJ. JL .UJIIJJJJIJIP,!! 1 '

Network Analyais Corporation

However, the effect of various performance requlrementa on a particular
f

processor configuration can also be obtained vln simulation.

In general when dealing with such complex systems, simulation can pro-

vide management and operations personnel with the off-line examination of

system operations needed for future growth feasibility studies as well as a

tool for verification of the actual implemented system.

This report describes a simulation strategy that can be used to model

the LDCN. The strategy presented allows total system modeling (i.e., the

network) and system element modeling (i.e., the processors). We begin in

Chapter 2 by giving a description of the various components of LDCN and

their interconnections. We also present a scenario life-cycle for a trans-

action from the origination at the terminal through the network and back to

the terminal. In Chapter 3 we present the modeling strategy. In Chapter A

we describe in detail each of the models presented in the previous chapter.

The inputs and outputs of each model are described in Chapters 5 and 6 res-

pectively. In Chapter 7 a methodology for linkage of the various models

is discussed. Implementation considerations and, in particular, how

various simulation languages could be used to handle the specialized pro-

blems faced in coding the programs are described in Chapter 8. Finally in

Chapter 9 the conclusions and recommendations are presented.

1.2

•d,;-,,;^-.^^.^, ■■■..i,..,..;;^«, ■.^h,l...aiatail.

"'■";^-s*^iiifl(lii(ii'ntiliTi'iMiiini'i1itffil

Network Analyeie Corporation

2. SYSTEM DESCRIPTION

The Logistics Data Coiranunicatlons Network (LDCN) is composed of five

classes of devices:

1) Host Computers or simply Hosts

2) Front-End Processors - FEP

3) Concentrators

A) Terminals (e.g., CRTs, RJE, TTY)

5) Communication Lines

In terras of the simulation strategy we will exclude the terminals from

consideration as they are not programmable and can be viewed as sources and

sinks of traffic. It is essential, however, to include the low-speed lines

that connect the terminals to the concentrators.

LDCN is composed of two main computer complexes; one ICP at Mechanics-

burg, Pennsylvania (SPCC), and one ICP at Philadelphia, Pennsylvania (ASO).

At Mechanicsburg, the ICP computer complex contains two U494 computers and

one IBM 370. At Philadelphia, the ICP computer complex contains two U494

computers plus a Burrought 3500. At each ICP, one UA9A supports real-time

processing activity for an Inventory Control (IC) data base, and the other

U494 supports real-time processing for a Weapons System (WS) data base. Each

ÜA9A can access the other's data base in a read-only mode. The 370 and

B35Q0 also support real-time processing but have access only to their own

data base.

In addition, each complex has a Front-End Processor (FEP) minicomputer

to serve the communications functions for the host computers. The FEP is

a dual-CPU Interdata Model 7/32 minicomputer with moving md fixed-head

disks and several tape drives. The FEP is connected to each Host via a half-

duplex hard-wired channel.

I"■l"l ■"P^'T^ ""JlTiMWiJBip^* ^^w*TmmmQvwsfm*?*mm*r™*ww-?*ivm
 " "' ■ ' ■—■

Network Analysis Corporation

A total of nine remote concentrators are planned for the system; each

concentrator connected to both FEPe. The concentrator Is an Interdata 7/32

minicomputer with limited peripherals. The FEP-to-concentrator connections

will be via high-speed dedicated full-duplex channels.

A variety of terminals will be accessing the concentrators via low to

medium speed half-duplex dedicated or dlalup circuits. The configuration

of LDCN is shown in Figure 2.1.

The system is transaction oriented wiih the terminals entering transac-

tions via the concentrators, which are then forwarded to the FEP where some

fraction are in turn forwarded immediately to a Host, and the others are

spooled for batch processing. Outputs generated by the Host are inmedlately

transferred to the FEP where they are buffered for segmented delivery to the

concentrator followed by transmission to the originating terminal. The life

cycle of a transaction is the sequence of steps describing its progression

through the system from its origin to its termination. Examining the life-

cycle of a typical transaction will provide substantial insight to the

various simulation models and the rationale of their structure. Transac-

tions originate at the terminal where a logged-on user keys in the message.

The characters are buffered in the concentrator where editing by the user

ran be performed. After the end-of-message signal is sent, the concentrator

transmits the transaction to the FEP via the high speed lines. The FEP will

be .; dual -CPU configuration; each CPU will effectively be connected to the

Hosts and the concentrators. Each CPU can take messages from the concen-

trators and deliver them to the appropriate Host and vice versa. In

addition, one CPU can receive a message from either Host or concentrator

and the other CPU can deliver it. When one CPU fails, the FEP will continue

to function. As transactions are received by the FEP, they are processed

lor error detection and to verify user validity, program availability, and

type. Two basic transaction types are identified: Real Time Transactions

(RTT) - those to be sent Immediately to a Host on a First-In/First-Out

basis, and Possible Batched Transactions (PBT) - those to be spooled on

disk until a batch criteria is satisfied (time or volume) and then trans-

ferred to a Host.

2,2

■■■■a-.,-.... . J..

|ipipiU.Ui^TlJ!Pl„|JUAW

§

H W ><

02^

b w >•

H w ><

g2r

£H W >*

g2^

H w ><

02^

2.3 y

llHiiiiilrr''i1i''l''-'-:i'--J'-l-iI';"'-"- '-■■■ - ä >LiM». !.ftkuiä&te<iili£ " - - ■ —-" ■^^^'^^■■'^^M^^^^^^..,,. ilirmf m li ii mil ^^^.^..^^

llpiBWMlBW^^^Sig^^Pl^iWWi.tJ^

Network Analyem Lvrporatiun

Two types of Real-Time Transactlon.s for the l)Ws are also Identified;

1) Upqulres - those RTT's that can be sent only to a specific

Host because they Imply a write operation (update of daua) ,

and

2) Inquires or shared transactions - those RTT's that can be

sent to either 494 because they imply a read-only operation.

Both 494's has access to both WEPS and ICS data bases in a

read-only mode.

In the FEP there are 2 queues (each FIFO) for each 494 Host; one for

the upqulry real-time transactions, the other for the batch transactions.

However, there Is one additional queue for the 2-494's that hold the

shared real-time transaction. (The decision as to which 494 gets these

shared requests is done by an algorithm in the FEP that receives utiliza-

tion information from the 494's in the header of received transactions.)

The procedure for messages destined for one of the 494's is to alternate

between the 3 queues (real-time, shared real-time, and batch) and transmit

the message (if any Is present) at the top of each queue. For the other

Hosts (370, B3500) there will only be 2 queues - one for real-time, the

other batch. Both queues are FIFO.

Transaction processing by a Host results in an output to be returned

to the user. This output is usually quite long, and since concentrators do

not have auxiliary storage, the content must be buffered via auxiliary

storage at tie FEP. Thus, when outputs are received by the FEP, they are

transferred to disk to queue for buffer availability at the concentrator

for transmission to the user. Double buffering for each user communications

facility is used at the concentrator to obtain continuous transmission of

outputs to the user. As each buffer is emptied, transmission of the next

buffer is initiated, and a request for a new output segment (or RFNM for

Request for Next Message) for the emptied buffer is sent to the FEP. The

FEP then reads the next output segment from disk and transmits It to the

concentrator. The life-cycle of a transaction terminates after the last

output block is transmitted to the terminal.

2.4

m^:^ä^^MiM&Uf^MrMhldM!!ik^iMä^Mä^i

'- •.vJ'fliwy» ww—'

Network Analysis Corporation

3• MODELING STRATEGY

Development, operation, and management of a network such as the LDCN

requires the facilities to predict network and network suhsystem perfor-

mance as a function of traffic characteristics and design variations.

During the initial development phases, such a capability can be used to

determiiu' appropriate sizing factors and configurations for the given

performance objectives and traffic requirements. As development proceeds,

it can be used to examine sensitivities to changes In requirements and to

determine appropriate corresponding configuration adjustments. Once the

network is operational, such a capability can be used to assess the signi-

ficance of trends in traffic changes and to predict necessary design ad-

justments betöre the need becomes critical.

The capabilities described above are basic objectives for develop-

ment and use of a system simulation model. The LDCN is a complex sys-

tem, composed of major subsystems in concentrators. Front End Processors

(FEPs), and Hosts, unified via data communications lines into an operational

system. Major design issues can focus on the network as a whole, or on

any subsystem, and may deal with hardware or software. Development of a

simulation model as a general tool to enable examination of such issues

requires major consideration be given first to the overall modeling strategy

The strategy must address the issues of modeling the individual subsystems

as well as modeling their interaction in a unified system. The purpose of

this report is to present an appropriate strategy for modeling the LDCN.

The disucssion presented below outlines a modeling strategy that

allows both types of results. We begin with the global network strategy

and then show how detailed processor models can be extracted from the

global model.

3.1 Global Modeling Strategy

As an input to development of a total system modeling strategy, the

entire network of Hosts, FEPs, concentrators, and communications lines has

been functionally defined and portrayed in a simple system schematic.

3.1

Mtitt^^^^ TTTfillLiMiAllffilltWlttMIliUT ■ilili'rfilYy*'^*'-''***

Ä^w^ÄfcT^ f J^^Ml ?Pi-^^ffÄ^ ^^ ■^*","*,^"w"
rw

Network Analysis Corporation

PrevlouH work has defined the baäic operational, hardware, and Boftware

characteristics envisioned for the implemented system, and the traffic

load and flows it is required to support. With these factors given, two

basic simulation strategies for global network modeling may be considered:

1) Detailed Simulation;

2) Simplified Simulation But With Selected Detailed Subsystems.

The first choice is to make one large program that encompasses the

entire network. Each processor would be modeled at the desired level of

detail. From such a program would come results on the inner workings of

each processor as well as global network performance measures. This

concept is obviously infeasible for the LDCN due to a variety of rea-

sons:

1) The number of computers involved in the network (in LDCN -

6 Hosts, 2 FEPs, 9 concentrators) would make the program

exceptionally large and require extensive computing resources

for execution;

2) The program would be required to simulate, in detail, the same

type of device several times concurrently. This is certainly

wasteful. One should simulate the same processor only once

for a given set of conditions;

i) There exists a time unit disparity. The level of detail desired

for the processors would be in the micro to milli-second domain

whereas the communication line delays are on the order of a milli-

second to a second. All the simulation time would be spent in

the devices, processing the message. Very few messages would be

transmitted between the processors. The execution time of the

simulation model may be an order of magnitude greater than the

elapsed time of the actual network being simulated.

^k^

3.2

^ .;.;.,.i^|J.,...l-^-.»~^...,.^..-.>.M^.Jl -■ -■ - -■■ ■ —^-■-. .- - ... —».^

iiimJiiPwuiiitiPMwwJiiwwjpw i!iipajwMM^j.-:i,ii,,i.iiaui..jg,,iMWt lipjuwi^Jwau.lM'WMIMPIIHMI

Nrl.work Analijnin Corporatüm

The second basic strategy for simulating the network as a whole would

be to simplify and reduce the most detailed portions of a model similar in

concept to the one presented above. The most detailed portions of such a

model are found in the processors. Their basic functions as communications

processors, are to receive messages, apply various validity and error-

correcting functions to the messages, and then to forward the message onto

the next processor. This is a much simplified description of their func-

tions but it is, in essence, their primary task. When evaluating the

total network performance, the designer is not interested in the specifics

on how the processor performs its task. He would simply like to know that

given an input message, the processor will generate some form of an output

at a finite time later. If this delay can be quantified and replaced by

an aggregate expression, which we will call a service time distribution,

the problem of modeling the entire network becomes tractable. The network

can be represented as a flow chart of single-servers with queues and

storages in the appropriate places (see Figure 3.1). A simulation program

depicting this model becomes straight forward.

3.2 Simplified Simulation With Selected Detailed Subsystems

The above discussion may appear to over-simplify the task of global

network modeling, but simplified simulation with selected detailed sub-

systems has several advantages that make this approach attractive:

1) The model and subsequent simulation program are cost-effective;

the program would be relatively simple to code. The execution of

such a program would be efficient thereby allowing many design

experiments to be run with each run simulating a longer real-

time period.

2) The results of interest from such experiments should and would

be the global performance statistics only. Time and money are not

spent in obtaining detailed statistics associated with a particular

processor. These results will be determined by selectively incor-

porating detailed subsystem models in the experiments.

3.3

"--'"■"■■'■'^•:' nrmTr-mmm,mm^mm^fm^ . . mmmmmm»«mmi

.■lpi,ll1..il.|„LJ..t,w,l,!iy 'tmm^sm^nmmmmmmmmmigmmmmimmmmmmimmimmmmmii

t.

r

^

Q

o

6

Traffic
Generator

Network Analysis Corporation

H)st

Half Duplex Channel

Front End

Full Duplex High-Speed Lines

Concentrator

Half Duplex Low-Speed Line

Figure 3.1

NETWORK FLOW CHART

3.A

. .^..^>.-..,.- -.„.....u/..^.-;..^

Network Analysia Corporation

J) liy effective program repreuencatiun ot each device, auch an by a

macro in GPSS or a matrix entry in FORTRAN, reconfiguration of the

network, either by adding or removing devices, requires minimal,

if no, program modification.

The service time distribution can initially be obtained by best esti-

mates of what the service time will be in each processor at zero-load

conditions. In some cases, for example the Host, the service time might

already be known.

Using this service time as a constant, independent of load conditions,

preliminary experiments can be quickly undertaken. One set of experiments

could be the evaluation of the performance of the network under varying

traffic loads and patterns. A base-line traffic pattern could be obtained

from existing statistics and future projections. The sensitivity of

varying a class of processors' service time can also be examined. Early

detection of potential bottlenecks can take place. In addition, initial

design constraints can be formulated.

The above discussion outlines a simulation strategy that can bo used

and implemented for quick and easy evaluation of a communications network

such as LDCN. However, the results of such an evaluation are clearly

suspect due to the many assumptions being made to simplify the model and

reduce unknowns. Inappropriate assumptions might produce results that

eventually turn out to be orders of magnitude wrong. This global model

is meant to provide the first gross performance trends quickly and cheaply

and to act as the framework for more detailed models as it evolves into an

accurate global performance measurement tool. The weakest element of this

model is the fact thac the service time of the processors is obtained by

estimation. This can be remedied by the selective incorporation of de-

tailed subsystem models without incurring the negative effects of a de-

tailed model for the total system.

3.5

^.^^^. ■■.^..- ..->■ ^^.^^^

,, ,., :;...„..,,,.._.„,.,..„„...MMjm,,;.!

m*^mmmiii\,mumM ii «ppm "— mmmm

Network Amlyaia Corporation

3.3 Selective Detailed Models

We mentioned above that one goal of the simulation effort is to acquire

the ability to model, In detail, particular processors. This can easily

be accomplished for stand-alone machines. Simulation of computer systems

has evolved out of the evaluation of a single processor, usually a main

computer. Typical studies are concerned with the effect of operating sys-

tems, memory allocation, peripherals, etc. The problem we are faced with

here is when the processor is an element of a total system network.

Typically the major areas of concern are the sequence of events that

occur inside the device; i.e., what happens to the quantum of interest (job,

task, transaction, message, etc.) after it enters the device and before it

leaves. What transpires before it enters and after it leaves is usually

not important.

But communications processors are bi-directional devices. Typically

after a message passes through the processor on the upstream path, it or

some function of the original message reappears at the processor traveling

in the downstream direction. The simulation model must, of course, account

for this bi-direction flow of traffic.

The interaction between the modeled processor and its surrounding

environment is an integral part of the simulation. The protocols, imple-

mented and envisioned, dictate a majority of the functions required at a

processor. Since there is this heavy interaction in two directions, and

the fact that once a message leaves a processor, it is usual'y not terminated

but reappears, the external environment of a communications processor is

much more important that in a stand-alone machine. In fact, the exogenous

events are the ultimate driver of the model itself.

How does one correctly choose the external environment for the com-

munications model? This Is where the global network model comes into play.

One simplified single-server model of the particular device in the global

network is replaced by the more detailed version of the model. Next, since

3.6

^....^.^^^^......M,......,.»».^
— ■-

.ttM*^^.^

r fWPP- rJ.iPI^Hf,-. JVf^^^r^ST^- ^I^^*T«V**W -■!-™-"^','r™"'-' ■ü ' " ' '

Network Analysis Corporation

most devices do not communicate with devices of the same type (as in LDCN),

all other single-server models of the same class in the global model are

removed. Further reductions are made until what remains is one detailed

model of a particular processor with the external environment being all

the simple single-server modeling devices that directly communicate with

it. This scheme will become clearer in the next chapter when we apply

this technique to LDCN. But the aim is to maintain as much of the global

network model as possible when performing detailed modeling of a processor.

However, the simulation program that arises from this type of model

might still be too large and complex. In this case, reductions in the

structure of the external environment should occur first. There might

be a point, however, where further reduction of the environment could

lead to inaccuracies and inflexability. If the program is still toe large,

minor features of the detailed model might be removed. This would be

least attractive, but it should be kept in mind that the external environ-

ment of the detailed model is almost as important as the model itself.

Yet the purpose of the detailed model is to perform detailed modeling.

What to sacrifice is a critical decision to make and can only be made at

implementation time.

3.4 Simplified Detailed Model Linkage

Once the detailed model is built, accurate descriptions of a device's

service time distribution can be made. These distributions can then be

used in the global network model, replacing old approximations. Many ser-

vice time distributions can be obtained for various hardware (peripheral

and memory) configurations at the device. The global network program can

then be run using the various distributions to obtain the global effect of

such configurations. The distributions will also serve, eventually, as

the more accurate description of the external environment of some other

processor.

3.7

«^^^^^^•^^^^Aj^^-^^^^j^^^^^^-^^^^

mmmmmmmmmmm. ummmw imj wmmnim mmi m*m" mmxn Hp^fHWWR^

Network Ana Lysis Corporation

3.5 Basic Modeling Strategy

The problem of modeling and simulating a complex data communications

network, such as LDCN, can be approached with the strategy proposed above.

This strategy can be used to satisfy the two basic goals of such a simula-

tion effort:

1) The ability to obtain simulation results for the entire network;

2) The ability to obtain simulation results for any particular

processor or device in the network.

The strategy .is a two-fold hierarchical plan. The first milestone

and the highest level of the hierarchy is the development of a gross

simplified queueing model of the entire network. Each processor is

modeled as a single server. Service times are obtained from best estimates,

design goals, or existing statistics. Once the global network modol is

formulated, the development of each of the detailed processor models can

be initiated. Meanwhile, the global model can be coded and experiments

quickly started. The development of each of the detailed models can take

place in parallel or sequentially, as no one model is directly dependent

on another. The structure of the detailed model is obtained from the

framework of the global model as described above. The external environ-

ment of any detailed model is critical and should not be overlooked. The

detailed model can be used to simulate the processor at any desired level.

If program size becomes critical, two alternatives exist:

1) Reduce the scope of the model and therefore hopefully the

size;

2) Replace a complicated section of the program by a simpler one

and model this portion in detail in a stand-alone mode. This

concept can be viewed as another level of the hierarchy of the

models.

3.8

. ,-

mmmumm ,„r„,™
mmmm

Network Analyntn Corporation

As results are obtained from the detailed model, they are fed back Into the

global network, model and are used in modeling the external environment of

other detailed models.

As the global model is fine-tuned with results from the detailed

models, more confidence can be placed in the global performance results.

More meaningful experiments can be undertaken. One such series of experi-

ments could be the evaluation of future enhanced capabilities. The pos-

sible scenario for one experiment could be the following;

1) Use the global network program with service time distributions for

the processors that were obtained from the most current configura-

tion, traffic load and pattern;

2) Run the program, introducing the new set of conditions, e.g.,

increased traffic load;

3) Isolate any bottlenecks that occur in the model, e.g., a satura-

ted processor;

4) Run the detailed model of the saturated processor using the

same set of new conditions;

5) Isolate the cause of the bottleneck locally;

6) Reconfigure the processor until the bottleneck is removed. This

might require that the detailed model be run several times;

7) Using the new service time distribution obtained from 6), return

to the global network model and rerun the experiment;

8) If performance requirements are met, then the new capability can

be accommodated and the steps needed to provide it are known.

9) Otherwise isolate the new bottleneck (might be the same one) and

go to that processor's detailed model;

3.9

^■^-^^^.i:,^^^.^.., J;....U, ■,.l;^Aj,,,,^

Natwoi'k AnaLyoiB Corpora Hun

10) Continue with Step 6.

Given this hierarchical approach to network modeling, we will see, in

the next chapter, how it can be applied to the specific case of LDCN.

;,.- ^-^...-^-:.,.^^L. :"J-..-J.IJ ,.^,.:>,..:.w^ ;triimiiiiiii>^iiiyi'

3.10

,..;.;:..;..ja... ■..„.■■.Jj;j.i..Ja.mJ:.«-.....«..„.- ■„..;..::^.......^. • '■..-.■..^■t»--«-^^^"

•■■-"-!■ -;—-.■-'■ l^-TJ..,,,,. ., „ „„.„„(.«a^
WHiVKnuuumiWip-

Network Analyeio Corporation

4. SIMULATION PROGRAM STRUCTURE

The common structure of an integrated model is a modular program

functionally divided into three main areas:

1) Monitor;

2) Utilities;

3) Models.

The organization has many parallels to common operating systems with execu-

tives, utilities, and application programs. The monitor is the coordinating

element for all the modules and real-time activity. The utilities are pro-

gram modules handling routine functions that are independent of a particular

model implementation such as report generating. The models are the basic

program modules. Each module models some particular component or function

of the system. In this chapter each area of the common structure is

briefly described; the models being described in more detail.

4.1 Monitor

The level-one structure of the modular program is portrayed in Figure

4.1. Each of the main functional areas interacts with the other two and

with a common data structure maintaining facility tables, queues, event

chains, state vectors, etc. The monitor serves to coordinate the flow of

events in the system. It has primary responsibility for maintaining the

endogimeous and exogeneous event chains. As events progress, it advances

the simulation clock and at appropriate times invokes the utility routines

necessary for system statistical snapshots, state-recording, etc. It moni-

tors operator input messages and exercises control over simulation resources.

In some language implementations, some form of the monitor is automatically

provided.

4.1

i. . .. ■. ; . ■■■.■■:

..■..,,.....„...^J,..,^i,^w,.,s...„ ^.„ai,,-, , , .,.,„.,
 ,..„....■...

ppp—■ T^-r^—n-, '. — - -v .,,,..,.,..„ ,. : ;.■ : ,...,,.,,. ,..,,.;,,,,.„.,,.,,,„,-...., ■^^W^BfpWSWPlSWWPSBWIMpilSPiHraWPW

Network Analysis Corporation

<r
UTILITIES ^-

MONITOR

DATA
BASE

> MODELS

Figure 4.1 - COWtON PROGRAM STRUCTURK

4.2

.. -.,..>.,.-^-.^-,......m...»..~-^......-.^..-^,....-J-.. ^...■..,-, __.-.... ,. ■■^■,J,.....^.:^

■

ipPi-#WMWW8'jWWBMiaW<*Jw- ■■■■' ^ J^W.PWlUW'.WW'IWW.Jii !P^. jllHjIIBftiliipipiiwiWWa^'''' ' mPIBWBWPWP '«»^-^■■^■'■■"T:'~ 1
 " ■ ■

Network Analysis Corporation

4.2 Utilities

The utilities are divided into three main areas:

1) Front-End (I/O);

2) Traffic Generation;

3) Statistics

Each of these areas is further subdivided to yield the basic structure

shown in Figure 4.2. An important part of the utilities package is its

common interface structures with other program modules. All interfaces

are through the three main area levels and are subject to coordination

control of the monitor.

4.2.1 Front-End (I/O)

The front-end modules of the utilities provides both the inputs to

the entire program from the user and the outputs from the program to the

user. In terms of input, probably the most convenient and cost-effective

mechanism is via an interactive program. Such a front-end could allow the

entering of parameters, control options, etc., in free format and provide

extensive prompting for and error detection of such input. This front end

could create a batch-type file that contains the JCL needed to run the

simulation program along with the required input data. This file then

could be submitted via RJE to the simulation programs. If a graphics

capability is available, the network can be displayed, quickly verifying

its configuration.

The output of a simulation run is usually voluminous. Listings are

the typical form of output. Report generators are the modules that perform

this task. However, along with an interactive input module, the output

could also be viewed with interactive programs. Specific reports and text

could be scanned with text editors. If graphics are available, histograms.

r

I^PPOpipipim-r-i'n— -'-T-.I n,.,m~.mf, PPIMPlit-!" ■'Ji.'^w»a^A#tiiH,ilia»jl^l|l|»it»p'jipi^iM^

NetWork Aruilytnii Corporation

1. Front End (I/O)

1.1 Interactive Interface j

1.2 Input

1.3 Report Generator

2. Traffic Generator 1

2.1 Stochastic Source

2.2 Attribute Descriptors i

i 3. Statistics

3.1 Statistics Gatherer 1

3.2 Trace |

3.3 Statistics Processing

Figure 4.2 - UTILITIES STRUCTURE

^■^Uu^

4.4

^..:...., ^..-_v, „ - ■ ^ .■■■■. — -..■■. .. ,..,.,,..■ -.. J_,^.. „.a..^....^...^.,,.^. .:„^.^....-.:„,J„,Jm.-.-.—>.^.

Netoork Analysis Corporation

distribution and throughput-delay curves can be viewed quickly. It is even

possible to superimpose several curves to linraedlately compare results.

Figures 4.3 and 4.A are examples of interactive graphic output displays.

4.2.2 Traffic Generator

Essential to every simulation program is the traffic generator. It

serves as the driver of the models. Transact ions are usually characterized

as following a random distribution in time with the mean arrival rate being

used as a measure of demand on the system. At generation time, attribute

descriptors are also created. Attribute descriptors define values for

attributes of a transaction that are also specified by random distributions.

Such attributes may include input message length, input duration (for

operator entry of a transaction on a character basis), output message

length, priority, etc. The user should be able to specify such distribu-

tions through a general, flexible, all-purpose traffic generator that can

be used by all simulation programs.

4.2.3 Stat istics

The primary form of output of any simulation program is the statistical

information describing system behavior. Three functions are identified in

obtaining statistics. Modules are needed to gather the statistics as the

simulation program is running. As the state of a facility changes or as a

transaction leaves a certain processor, statistics are recorded. The

ability to trace a particular transaction through the model not only pro-

vides the analyst with more information about system behavior but assists

the programmer in the debugging phase of program development. After the

simulation program is finished running, various post-procensing modules are

required to transform the raw statistical data into utilization, distribu-

tion, etc., results. These post processors can be part of the simulation

program itself, taking the data from internal data structures, or they could

exist in a stand-alone mode reading in a file that was dumped by the simula-

tion program. In either case, they would have to interact with the report

generator modules in the front-end portion of the program.

4.5

'"»■"■""'■"■'"-' -M'"*-^«»M..tm.l.-..-I- ^^....^^. lÜH -■—

,*™P«(«':'«WtM,»»™ mm™*r*~~*m**~.

Network Analysts Corporation

-.4^ "•Tit" ' »Ti»
*t.»n »t. oc/.«
41 M4

M toi umT *n O/««.«» t IT 0« «>«*

^ J.. i ilii

•.ftr
» ♦»• • •«
t.tH
t.*M
t.»W
• tct «•»
«•It
*.IM • «»
• ••11
• .Ml • ««
• .MI
• .IM • .•!•
• ■•N
• ••I«
• -•I*
• .«• • •»
• .•M
• ■•It ,•.•!•

t.f'O
• 1(0

• .C4(

• in

O.OtJ
• 119
• .K»

• •«

• •«0

•.c*o
• .«•9

t'.M
I» 4M C0(». «r «MiaTtON« • M

• .*4

Figure 4.3

EXAMPLE OF INTERACTIVE GRAPHIC OUTPUT

I.M x

+ I

DCLÄY
(SCO

!.»• +

• .M +

i.M -f

i.J» +

KSPONSC TIIC VS. Tt«0UCf«>uT

/" 5

*■«. ■-..'-

i

to

*M. •—. »M. ISM.

TMtQUGMniT (KMTS/SEO

ENTER OUTPUt C0W1M« Oft 1 <

Figure 4.4

EXAMPLE OF INTERACTIVE GRAPHIC OUTPUT

4.fi

m#.

PaPPPS!PW'?'SP*P*S»!BSFSPtP?ra***
wmmmmm

Netuork Analysis Corporation

4.3 Models

The third compunent ol the Simulation program is the model moduli-.

We now present the flow charts depicting the models for the LDCN devices.

We begin with the global network model, describing the sequence of faci-

lities visited by a typical transaction. We then describe each processor

model (Host, FEP, cone.) in the context of the global network and in more

detail as a stand-alone program.

A.3.1 The LDCN Global Network Model

The schematic diagram for the LDCN Global network model is shown in

Figure 4.5. A couple of general comments are given before we proceed.

First, the model represents the configuration and functions of LDCN to

the best of our knowledge. If say, a storage facility is actually imple-

mented as a queue, it is easy enough to modify the model to reflect this.

Half-duplex lines or channels are modeled as a single server in both

directions; full duplex lines are modeled as two servers in one direction

each. It is also easy enough to modify the model when the line status

changes from half duplex to full duplex or vice versa. The communications

processors (Front-End Processor and Concentrator) are modeled as two

servers; each server functioning in one direction, upstream or downstream.

This allows the measurements and service times to be taken for both input

and output which typically require different processing and therefore

imply different delays. However, the concentrator is implemented as a

single-CPU processor and even though the FEP is a dual-CPU configuration,

each FEP-CPU is not dedicated exclusively to input or output. The division

of functions in the model is meant only as a convenience in implementing

different service times. The exact model should reflect that only one CPU

or two CPUs "in parallel" are performing both functions.

We now describe the sequence of events, or life-cycle, that a trans-

action would take through the global network model.

1) The transaction is initiated by the traffic generator at the con-

centrator. We assume that the transaction is one complete

4.7

mmmmmmFmmmmw!^'r' .laUPWiluingiiiiiJ I^^^P^I^^^

•ZEH Netuork Analysis Corporation

I
Nu.k - , v ; J

[L,

4.8

..^^..^^^.^.^■„^..■„^^^ -■■ - i.M.ii.-»....».,..!.!.« IL-LffiH

www. ■,typi,wnil»ji>iiiup

Network Analysis Corporation

message. Several options exist at the level of detail for the

traffic generator. There could be one traffic generator per

terminal, one per concentrator, or one for the entire system.

We feel that the way we have depicted the traffic generator

here for the global model (one per concentrator) allows for both

general and specific characterizations of the traffic pattern

and load. Consequently, the traffic generator must tag the

transaction, in addition to other attributes, with the origina-

tion terminal i.d.

2) The transaction then seizes the low-speed line server; here

represented as half duplex. The service time is known and

is equal to the transmission rate of the line.

3) The transaction then queues for service at the concentrator.

4) It then seizes the upstream concentrator server. The service

time is obtained initially from estimation but subsequent by

results from the detailed concentrator model.

5) After being served, the transaction queues for output to the FEP.

6) After seizing the high-speed line server for a duration equal

to the transmission rate of the line, it enters the FEP.

7) If the message was a RFNM (request for next message), it then

progresses to the downstream FEP server. Otherwise, the upstream

module processes the transaction in preparation for transmission

to the Host. Again the service time is obtained either by es-

timation or detailed modeling results.

8) The transaction is then placed on an output queue depending on

destination Host and transaction type.

'-iiiii'fmi» ■i"'!--i:--

9) After seizing the half-duplex channel server, for a duration

again equal to the transmission rate, the transaction enters the

Host.
4.9

..j.^»^,.

p P-M mrnmm rn^rn
IHHBHHifl^HBl

RIJNMW««'"!!!!!!»!!!!!.!!! ipmpiwiyt.jij||

Netuork Analysis Corporation

10) The transaction queues for processing alter which the Host server

performs part or all the processing required. After completion

of the processing, the transaction is now an output message

which begins its downstream journey.

11) After queueing for the channel server and being served, the

message enters the storage buffers in the FEP.

12) After being served by the downstream FEP server, output blocks

are then sent to storage buffers awaiting transmission to the

concentrator.

13) After seizing the high-speed line server the output block enters

storage buffers at the concentrator.

14) Subsequent to being processed by the downstream concentrator

server, two output blocks are prepared for transmission on a

per terminal basis.

15) After seizing the half-duplex line server, each output block

is terminated and a RFNM generated for transmission back to

the FEP. This RFNM joins the upstream input queue at the con-

centrator.

As the processor models are presented below, each of the above steps relevant

to each model will be described in more detail.

4.3.2 The LDCN Host Model

The Host model is depicted in Figures 4.6 and 4.7. Figure 4.6 shows

the relationship between the Host model and the global network model.

Figure 4.7 shows the Host model in a stand-alone mode. Notice that the

only element In the external environment is a reduced version of the FEP

model. In addition, the simple single-server model of the Host is now

replaced with the more detailed version. This basic model can be used to

4.10

-^M.-^M^'.;.,.-^.!.: ,■..., ..i.^v.üi ■■- '■- "■■■ ■•■'Mti'i.'L*^.^ -— —— - —^.^-^ - -^

k jpwwii ■
1 ' J^Mmmr' IMUX UJ»ltll«]1|.J,.|iilPIIPiip«PflP(l(L|liJJL..Jll,»«W,«i»^ ■»»..«IM»».., I,,JI.,I1IU-, J. Wlipilipi

►-Jilt"

w
Q
O £

to
O

D
O
H
fa

■ '

•aa^-''—^-^ ■'•-"—

' •mh--m-',-'-i '- -''-'■^■'™^-Jll--Nl'l.'*-iJ'IMl.'^WJllMfc!»,M,^Wa<IWHUWilW^^^^ ~ I f I' I ,,-,,.™-,-..i. ,i,u:Mii|pl|1|)|p;tpijitW|i);uJ t-^f

Network Analysis Uorporatvon

t

Front End
Output
Storage

Service time of
Host = to ~ ti

Half Duplex Channel

-| to other 494*

FIGURE 4.7; 494 - HOST MODEL

* If modeling a non-494 Host, remove Inquiry Storage and Path.

4.12
„^

WKi . ..-.::.■;... iai.,i.^i-.mjkj,».,:^.La.;,^:i.v,^* ":-- "

«I ' '»'I " ' wmK^mmFK. LJ.H. ,. m,-tjm:hvmmmm»m\['^mt.*m'»*-*''™^^-'''''i''^'^*-"- Mnpn

Network Analyeia Corporation

model any type of Host in LDCN. We will now trace the life cycle for

transactions in this model.

1) Transactions are generated and immediately placed on an output

queue at the FEP. There are two queues; one for real-time trans-

actions, the other for batch transactions. However, when modeling

a U494 Host, there is an additional facility; i.e., a storage,

that is used for real-time transactions that can be processed at

either A9A (inquiries). We will describe how this mechanism is

used to eliminate the necessity of modeling the two 494s simul-

taneously.

The traffic generated for the Host is only the amount to be pro-

cessed by the particular Host under consideration. However, when

modeling a U494 Host, the inquiry traffic generated should be the

amount destined for the complex under consideration (ASO or SPCC).

As an inquiry transaction is generated, it attempts to enter the

storage mechanism (really a finite-length queue) in the FEP. If

the storage is full, the transaction at the head of the storage is

removed and terminated, thereby making room for the new trans-

action which then joins the storage. Terminating the transaction

in the above manner simulates an inquiry transaction that even-

tually is processed by the other 494 Host. This mechanism

prevents the buildup of a "standing-wave" of inquiries queued for

a 494 when the 494 becomes momentarily unavailable during processing

of a large batch of transactions. It is during such an interval

that the load-sharing feature of having a second 494 should be of

greatest significance. Without such a feature, the "standing-

wave" effect would result in serious performance degradation on

inquiries for a period exceeding the momentary service disruption.

By varying the length or size of the storage, one is able to vary

the amount of inquiry transactions processed by the Host. A zero

length storage would imply no inquiry processing; an infinite

length would mean that this Host process all the inquiry tr<ins-

actions. Measurements must be taken on the amount of inquiry

traffic terminated and it should be verified that the other 11494

is able to accomodate at lease that amount. The scenario could be:

4.13

"«— ...i-.—.-.. ..,,.« I i .11 M^MM^^,,^,,,^^^ J.a:^Vv...J,v...,. ,:;.,...„..,,.,...,.,.,-.., ..^W^. • i 1 ̂ ^^^^

Ill" -I — nnmmtJ " »~J^ .J. iiMJipi-yMWW'^W^atJIWHyWJWiWiJiPilM'.'a mwmmwwvmm?*w*mmm!*mmwm**w*?W*%*** mmfVH'- ÜPlipp ^•»-•.■■vvmmrr

Network Analysis Corporation

a) Run one 494 model with all the inquiry traffic destined for

the system using a finite size storage;

b) Measure the amount of inquiry traffic terminated ut the FEP;

c) Run the other 494 model with only the amount of inquiry

traffic measured from b) using an infinite size storage.

Thus, all the inquiry traffic would be serviced by either

U494.

2) Transactions wait for the availability of the half-duplex channel

modeled as a single server in both directions.

3) After seizing the server the transaction joins the Host input

queue. The time it joins the queue is re(

used as the starting of the service time.

queue. The time it joins the queue is recorded as t,, to be

. i^..

4) After reaching the head of the queue the transaction enters the

detailed Host model. It is at this level where the various

functions of the host are simulated in detail, such as scheduling,

overlaying, peripheral access, CPU execution, etc. The trans-

action is terminated, and an output message is generated as a

function of the input transaction.

5) The output segment then joins an output queue, in preparation for

transmission to the FEP. The time it joins the queue is recorded

as t . The Host service time for that transaction is then defined
o

to be t - t,.
o i

6) After seizing the channel server, the output segment enters the

FEP storage buffers awaiting processing by the FEP modeled as a

single server. If the storage is actually implemented in parti-

tions dedicated to separate Hosts, the size of the storage should

be equal to the size of the partition allocated to the Host being

modeled.

7) The processing in the FEP is only that amount required to store

the output segment on auxiliary storage, i.e., disk or tape.

Once that is accomplished, the output is terminated.

4.14

1*

(feilitMittiil'i ifl tii'iAfalMtt^tliiiiliMiÜlB "--' - auktaumttm t^Mmmmm

ipwjwM»»ii.aii«»il»wgw<tw^wii ■'-. y','»i-iM4!u_jumpii;
»5n^ll.WlW.W,W™>-WlUlUW..""» ~TCTi—l.'»'W ,.ll.,,lBW...>...HM^T»

Network Analysis Corporation

The model is fairly simple and straightforward. The level of detail

inside the detailed portion of the model is arbitrary and can be left up

to the designer. It can start as a simple, gross model evolving into a

more sophisticated program as simple functions are replaced with more

elaborate subroutines. The only portion of the external environment re-

quired are those functions in the FEP that directly communicate with the

Host. Those are the upstream output queues and the downstream storage

buffers and single server processor.

4.3.3 The LDCN Front-End Processor Model

The FEP model in the context of the global network model is shown in

Figure 4.8. It is by far the largest model of the three processor models.

Using the methodology presented in Chapter 3, the FEP model is obtained by

reducing and eliminating portions of the global network model. Concentra-

tors are connected only to the FEP under consideration. Therefore, the

number of high-speed lines has been cut in half. The FEP only communicates

with three Hosts, consequently, the number of Hosts in the model has been

again reduced by a factor of 2. In addition, the input queue at the Host

has been removed. The service-time distributions for the Hosts in this

model are obtained from the detailed Host model presented in the previous

section. There, we measured the time before it entered the input queue.

Therefore, in this model, the input queue is not needed. These Host

service-time distributions should also be the ones that the FEP under

consideration communicates with (i.e., when evaluating the traffic pattern

for the ASO FEP, the ASO Host computer service-time distributions should

be used.). In addition, the resources at the concentrator, buffers, queues,

input lines, CPU processing power, etc., should be proportional to the

number of terminals that are communicating with the particular FEP under

consideration. The concentrator portion has also been modified by enbed-

ding the traffic generator Inside the concentrator. This eliminates the

4.15

j|||P|^P|!P!!Wim"l,-.W|,«l-'lu|iJ-11^^^^^^ l,,JU...l,»jmi,ilU.,.i«W»f.»!pJWW mwmmmmmfmmmmi-'.'imKm',

W
Q

2
O

U)
W u
s
Q
Z
w

I

Z

s

oo

D
O
H

■

^i^.j,^ iHfc ■- - - -^

ippnnwppiiR mmmmmm i >i.p ■iiiniiwapiin.ii ii lj(fH.ii]Wi,ij".'wi"JV'Hiw"M .1, .,; «>iqiip!||iiiiii|iii|iii|«||

Network Analyais Coloration

necessity of simulating the upstream concentrator server. All these

changes are shown In more detail In Figure 4.9.

Again, using the modeling strategy described in Chapter 3, the

simplified single server model of the FEP Is replaced by the detailed

version of the model. The dual-CPU configuration of the FEP is modeled

in the detailed portion. Again we have represented the detailed portion

as two servers; one in each direction. This was done only to point out

that the service time distributions are typically different in each di-

rection. The simulation program Itself must take into account that there

could possibly be only one CPU that is processing both the upstream and

downstream traffic simultaneously. >

If the simulation program for the FEP is too large, an alternative

approach to modeling the concentrator (probably the largest component of

the external environment) is possible. This is described below and

depicted in Figure 4.10.

The life cycle of a typical transaction through this model is quite

similar to that of the global network model. Therefore, we will only

describe the differences.

1) As mentioned above, the traffic originates from within the con-

centrator. The traffic generator tags the transaction with the

terminal identifier to be used on the downstream path later on.

Again, the traffic pattern and load generated should correspond

to that destined for the particular Hosts and, therefore, the'

particular FEP being evaluated.

2) As the transaction enters the detailed portion of the FEP model

on the upstream path, the time is recorded as t .
1

3) The detailed upstream portion of the model allows simulating, as

in the Host model, the various phases of processing involved.

These include error-checking, CPU execution, the writing of batch

4.17

.■......:„-:■:....■>;....:.. -.
^^

^MM^WWIiniUUJIll ,».....»1........... nj, L.M. I.HHUUL PWBi^^WW

HOST HUST

f

s y*

T

i -K s €>7, I

B T B T R ^"JtPQJÜJPOL |y IB "£

*11 * m uwmnrmmm

IALF DUPL
CHANNELS

RFNM

SERVICE TIME (OUTPUr.

02 01

SERVICE TIME
(INPUT)

= t. - t.
12 ^-l

FRONT END

CONCENTRATOR

—t.

FULL DUPLEX HIGH SPEED LINES

BUFFER SPACE ALLOCATED TO THIS
FRONT-END

OF THESE)

ONE PER TERMINAL COMMUNICATING
WITH THIS FRONT-END

HALF DUPLEX LOW SPEED LINES

FIGURE 4.9: FRONT-END PROCESSOR MODEL

te'-'"- ■-■■■ '•—■'^•^"■'•-■^-'■- ■' ■■"-' ■.■.iJ..A...v:.^,,.,^tt^iM>aiiajrilaa
igte-^^"^"-- ^-^-^■-

-'^-—--—■ ^-■^■^■*"- ^^^^

wpiujpm»! wi iiiiiPiij m limn i m iji» . IHBlPiPBPWP^I^MIIBIIippjIliliipiWilllllliPIWJ.1-;^ ■ ■ ■ , *mv&mm

$OST HOSi ilUbT

HALF DUPLE
CHANNELS

01 SERVICE TIME (OUTPU

02 01

HIGH SPEED FULL DUPLEX LINES

CONCENTRATOR
(4—9 OF THESE)

BUFFER #2 ONLY

^»LOW SPEED LINES
SERVICE TIME = ^COMMUNICATING TO

THIS FEP

ALL BUFFERS

"■' "•'•■ -" -■-■- ■■■■ - ■ '■' ' '-" .■--■••■■-—-a»^M--m^t—i»-^-''i^

FIGURE 4.10: ALTERNATE FRONT-END PROCESSOR MODEL

"«uutotmmmmt "iniiimi ^^iitmtmmmMätSlilMiMäitllli

■» ■"»'' „^mmt-rnm:",^ ^mi,i,j,mnvm-mmmwf'"". -K™ • m.mit.--w*>'*mv-'i'^i"f Kmmmjvmw mmmm,!m>... .ui ü.W..:UI,!.!1.U™.II».I m ^

Network Analysis Corporation

transaction onto secondary storage, retrieving batch transaction

from secondary storage, etc.

A) As the transaction leaves the detailed upstream portion, the time-

is recorded again, this time äs t ir The service time then for

this transaction through the FEP in the upstream direction is

ti2 " tii-

5) After the transaction is processed by the Host and an output is

generated, it enters the downstream detailed portion of the FEP

model via the half-duplex channel. Here again, the time is

recorded as to1• It is at this point that the functions and

tasks performed in transmitting output to the concentrator by

the FEP are simulated in detail. These include the storing and

retrieving of output messages to and from secondary storage,

processing involved in segmenting the output messages from the

Hosts, processing the RFNM, interleaving and transmission of

output segments to the concentrator, etc. Because the concen-

trators have no auxilliary storage, a scheme of double buffering

is used to provide continuous transmission from the concentrator

to the terminal. At the start of output, two output blocks are

sent to the concentrator. As a buffer is emptied, a Request for

Next Message (RFNM) is sent by the concentrator to the FEP. As

the first two blocks leave the detailed portion of the downstream

FEP model, the time is again recorded, this time as t02. There-

fore, the service time of the FEP for the storing of the entire

output message and the retrieval of the first two blocks is

ton ~ toi• The FEP service time for retrieving subsequent output

blocks depends on when the RFNM is received by the FEP, Therefore,

we define another time stamp tD as the time the RFNM arrives and

initiates retrieval of the next output block from storage. There-

fore, the service time for output blocks other than the first two

is equal to t02
_ tR.

6) Output blocks terminate after being served by the low-speed line

server at which time the RFNM is generated. It is necessary to

4.20

 ■■■ * ■■■ * - ■-■■■*- MfWiOinlMiHiMMlMiitiMiiniHniiiHiliMlniliiitmir -

•»" -"", »ij-pu.,.,,!,.,.,^,»!,.«. WUl «lip UM .im. mi II ~—*r ,^ 'MV : ^ • , ,-.:-^ ir-, 7^^«^^' PWWIS.W.I-.PS „.„ „1. ,)..,Ji|Wjp|jpHll(l4 .I»»».!««™

I

Netuork Analysis Corporation
i

Include the low-speed terminal lines in this FEP model because the

generation of the RFNM which will initiate FEP processing occurs

after the transmission of an output block on the low-speed lines.

This requirement could make the FEP program very large and costly

to run. On the average only half of the total terminal popula-

tion need be Included in the program. (Recall that only the

terminals communicating with the particular system and, therefore,

the particular FEP are required.) This still (approximately 350)

might limit the level of detail obtainable in the FEP program. In

the next section we present an alternative scheme to resolve this

problem.

An alternative approach to modeling the concentrator in the FEP pro-

gram is shown in Figure 4.10. All the low-speed line servers are replaced

by one single server with service time equal to the sum of the line speeds.

This is not totally accurate in the low traffic case, but in the high to

peak traffic load, this technique does return the average line speed ser-

vice time. The goal is to remove the necessity of simulating every low-

speed line in this model, therefore, reducing the size of the program. The

above scheme does this for the lines themselves, but the double buffer

mechanism still remains. That also can be replaced by the following

sequence of changes:

1) Two priorities are associated with output blocks sent from the

FEP to the concentrator. The higher priority is associated

with the two buffer message that initiates output. The lower

priority is associated with all single buffer messages that are

initiated as a result of a RFNM.

2) After the two-buffer message is processed by the concentrator

server, it is split into two messages. The first message seizes

the low-speed line server and subsequently generates a RFNM and

terminates. The second message has its priority lowered and is

fed back in the queue for processing as a single buffer message.

Only the first two output buffers are split in this manner.

4.21

.jiij.4M' L,J.I,I,.„UI. A.,..» jpiim.
' " ■" '•

:7,...,.-„,„.:,IV-_v:,.-,„..r,.,

■iPwy""--'-1 '' ■■'■""»■^ ■WWW»

Netuork Analysis Corporation

Of course, this does not exactly model what Is occurring in the con-

centrator. However, this approximation should be sufficient. The goal

in this model is the detailed simulation of the FEP. Approximations in

the external environment should be tolerable, since they lead to problem

and program reductions, thereby allowing greater flexibility in the de-

tailed model.

From the FEP model, we also define a system service time distribution

which will be used by the detailed concentrator model. If we take the

time interval t02 - t^ for all messages in the FEP model, that defines

the amount of time required to orocess an input message, create an output

message and prepare it for transmission to the concentrator. This interval

is the total turnaround time seen by the concentrator. This delay will,

of course, depend on which system (ASO or SPCC) and which host at the

system the transaction requires. Consequently, a substantial amount of

statistics must be gathered from the FEP model that will be used in the

concentrator model. These statistics are more fully described in Chapters

5, 6, and 7.

4.3.A The LDCN Concentrator Model

The LDCN Concentrator Model is shown in Figures 4.11 and 4.12. The

model is the same basic structure as in the global network model. However,

the FEP and Hosts have been replaced by an Input/Output Function Box that

given an input message or RFNM, generates an output according to the sys-

tem service time distribution obtained from the FEP model described in the

previous section. In addition, the simple single-server model of the con-

centrator is replaced by the more detailed version of the model. The life-

cycle of a typical transaction is again similar to that in the global net-

work model. The differences are described below:

1) The time an upstream message enters the detailed portion of the

model is recorded as t^.. As it leaves the detailed portion, the

time is recorded as tj», thus attaining an input service time as

ti2 - tir

4.22

■^■„.^Wr-.^ ^.-^
....... .-.,■.

'"""•'" Ttlifttlilliii

i " wiimiiMi. ™i!J.,M i i^luiiJW((H||p(ail)llHIU,.i!U!. ,.„», \mmm^mmmmm- ll|pppBl«UW|JiWM!»«i™lw»,,-^'ll'J-,!lTF»

♦nrH

^D—i

r€nm-i

-OHM

Sflh-i

OJl-i

o

Network Analyeie Corporatior.

S3.-

4.23

BB1 AVAILABLE COPY

.1^!^.^^u..,.^....,iJ...J.^^.^^ ■■,■-, , «•j-Ä.

Network Analysis Copporation

SPCC ASO

HIGH SPEED
FULL DUPLEX
CHANNELS

SERVICE TIME
FOR INPUT
- t, - t.

STORAGE BUFFERS

1 SERVICE TIME FOR
OUTPUT = t - t o2 o1

DOUBLE BUFFERS

J,)
^

• • •

r ^ V w- fl
L

r
- - 1

i ^ 4 4
TRAFFIC j

GENERATOR 1

LOW SPEED
HALF DUPLEX
CHANNELS

FIGURE 4.12: CONCENTRATOR MODEL

4.24

— ■ - — - ■ - a

m^mmm ^ußßmmmmßmßmsm^w wmmm ^mmm^ym^mmimmmii.mmf'iimm^n^ii^^fV'' u.i ni«!IIP»ip»>>m^||upig| m&mm^mmvf^'m*''^

Neüj.rk AnaLyaia Corporation

2) After seizing the high-speed line server, the message enters a

system input/output function box. This device models both the

FEP and Host that the transaction would use. The service time

is obtained from the distribution mentioned above.

3) As the output segments enter the detailed portion of the model,

the time is recorded as t0,. As it leaves, the time is re-

corded as t0„ giving a downstream service time of t0- - t0,.

Various experiments can be run using the basic concentrator model.

The goal is to obtain characteristics of the concentrator delay for all

nine concentrators. Typically the local access configuration (number and

speed of the low-speed lines) at each concentrator will be different. In

addition the traffic load and pattern will differ. The same program can

be used for the experiments if the local access configuration is supplied

as input. Service time distributions for the concentrator can be obtained

for each configuration and used in the various other models. However,

when a new feature is Implemented in the concentrator, the corresponding

simulation program must be run several, if not nine, separate times to

verify that all concentrators can accommodate the new feature. However,

when a change in the local access configuration of one concentrator oc-

curs (a change that might happen frequently) if other concentrators have

existing configuration similar to the new updated one, a new simulation

run need not always be performed.

4.4 The Structure of the Detailed Portion of the LDCN Models

Up to now we have left open the structure of the detailed portion of each

of the processor models. In this section we describe two alternative ap-

proaches that could be used and Implemented in the simulation programs.

Each technique has advantages and disadvantages which are also presented.

The first approach, and probably by far the most classical, is to code

the specific functions and tasks directly into the program. The life-cycle

or sequence of facilities inside the processor visited by a transaction are

4.25
■

-■■•■—■ -^ ■ --—'-* — —■■■ in rri—iiliiiiiftMi'Hi

■PPMpHH I l— i'»J"" ""■'■"■ u 1,1» III»HII iu.i i i i mm H^MBPHUP W«iBH. "«■

Network Amlyais Corporation

enbedded Inside the code. This method conveniently allows the functions

and tasks of the particular processor to be described and documented in

the simulation code. The program designer would be free to structure the

detailed portion as he wished, thereby allowing greater flexibility in

choosing the areas of most concern and desirable levels of detail. How-

ever, three separate program modules must exist and be maintained. In

addition, every change in the life-cycle of a transaction implies a change-

In the code, a re-compilation of the module or subroutine, and a reloading

of the entire program.

The other approach is what can be referred to as the "unified" method

of processor modeling. It is based on the principle that every transaction

in a computer system goes from one "server" to another in an orderly and

predetermined fashion until its processing is completed and/or exits from

the system. This sequence of events or "cycle-vector" would be different

for each processor. However, if the detailed portion of each of the pro-

cessor models were structured as the same general flexible skeleton, the

cycle-vector for each processor could be read in as input and thereby

create different "programs." This concept avoids recompiliation and re-

loading of the simulation program. Only one version of the program need

be designed and coded. However, there are some disadvantages to this ap-

proach. There is an overhead involved in reading in the cycle-vector and

Initializing data structures in such a program. Design runs on a fixed

model would run longer and cost more with this approach than the first.

The input is more complicated, possibly requiring a pre-processor for

verification. Also, a general program, to accommodate all possible fea-

tures, might be so large that other features specific to each particular

processor might have to be reduced or removed. However, a well-designed

program structured in this manner could be both general and flexible in

addition to being cost effective.

The tradeoffs of each approach must be made at implementation time

and in conjunction with the various simulation languages. Certain high

level languages that provide desirable features might be restrictive in

terms of the second method. Other more primitive languages that allow

A. 26

 ■ iilMHi—MMlialM UMiilimini .— - ■ -^""-^

fP!!|P^iSUPMPIM ^"■^^■^TOIMiWP

Network Analyeie Corporation

extensive 1/0 might not provide the capabilities of others. A inorü detailed

description of simulation languages and proRrara Implementation Is presented

in Chapter 8.

4.27

"■'-'—■'—"^ ■-"-■•-- riiiniriliii'l^iArii^^iiiri'if'iiiiilfei

„.,— ...,. .,.1. .1—. wN^ijjp^^.!,^^ji^^^^M^j^^^-- v :- --^^^iipep^pff^ppi^f^isF^vp^^^p^iP^^^^^'-

Network AnaLyai» Corporation

5. INPUT TO SIMULATION PROGRAMS

A general modeling program for a communications system should reflect

three fundamental dimensions in which variations may be examined:

• System configuration,

• Processing cycles of messages, i.e., software design,

• Demand and service characteristics.

These dimensions may be viewed as a hierarchical structure. The hardware

configuration of a communications system is usually viewed as the most

fundamental aspect of the system. For a given configuration, several soft-

ware designs may be examined. Each such design is characterized by the

processing cycles of the messages. Finally, for each hardware and soft-

ware design, performance is appraised for a range of traffic characteristics

and service times of the hardware and software elements.

5.1 System Configuration

The system configuration inputs are divided into two main levels:

network topology defining the overall system structure, and link and node

model attributes providing details for each structural component. The

basic structure of the configuration data base is shown in Figure 5.1.

Note that the data structure has provision for information for network

analysis beyond that required for network modeling. This permits a

common input front end to serve network performance modeling and topologlcal

design data bases. Each simulation program extracts only the required

information needed as input. As output is generated, such as the service

time distributions for the aggregate model attributes, it is either

substituted for the old, outdated information or is added as another

statistic generated for a different set of conditions (e.g., a different

traffic pattern or load).

5.1

iiiirti^iiiirti Mil ■ NI HI it rii 11

"' ' "' !«■ ■" ' ' I ■" UI^IMllillllliMPMilitP ■■'■" ~ -.-.-„.—..

Natuovk Aruilijuiti Corporation

1. Network Top ology

1.1 Nodes (N)

1.1.1 Node l.d. !

1.1.2 Node Descriptors j

1.1.3 Position Data (only if other than operational modeling !
desired) |

1.2 Links (L)

1.2.1 Link i.d.

1.2.2 Link Descriptors

1.2.2.1 Node at First End

1.2.2.2 Node at Second End \

1.2.3 Tariff Data (only if other than operational modeling j
desired)

2. Link Attributes (L#) 1

2.1 Nomina 1 Line Speed j

2.2 Error Rate

2.3 Half or Full Duplex 1

3. Node Models (N#)

i 3.1 Aggregate Model Attributes (A)

| 3.1.1 Priority

1 3.1.2 Service Time Distribution i

| 3.1.3 Average Queueing Delay

| 3.2 Detailed Model Attributes (D) 1

3.2.1 CPU j

3.2.1.X CPU attributes

| 3.2.2 Peripherals

3.2.2.X Peripheral Attributes 1

j 3.2.3 Memory

3.2.3.X Memory Attributes |

3.2.4 Buffers

3.2.4.X Buffer Attributes

1 3-2'5 Communications Interfaces

3.2.5.X Communications Interface Attributes

Figure 5.1 - SYSTEM CONFIGURATION INPUT

^IfUtlUliMiVHiltfil iii i I'I li'i ill i IIKI i liiVii

5.2

■■H-UJ-UJ' '"- ' •.:■ .i,i--U,.IW.,!Tm. ^r-^r^™^^
^™, yupjuy,, —™™»n?' IJBillllpiiiJJJllBllJllllliljl

Network Analyaia Corporation
^•2 Software Dealgn

The software design of the system Is defined by the processing

cycles of the messages. The processing cycle of a message Is specified

by the sequence of servers visited by the message, and the state the

transaction Induces In the server at each stage. As mentioned in

Section 4.A, two alternatives exist In modeling the software design of

a communications processor. The first is to imbed the software functions

and tasks directly into the simulation program code. This method requires

no input but necessitates recompilation and reloading of the program if

a different software design is investigated.

The other alternative Is to have the software design, i.e., the

processing cycle of messages, read In as input. Thus, a state vector

la defined for each server (or facility), where each distinct state is

characterized by interrupt time distribution, service time distribution,

and priority. For each message type, the sequence of servers and their

appropriate states are then defined In a cycle vector. The state and

cycle vectors provide the linkage with the facilities to Interconnect

the queueing structure in the detailed processor model. The basic Input

structure is shown In Figure 5.2. For the global network model software

considerations are not too Important. As a consequence, the state and

cycle vectors would not be used there.

The use of message processing cycles is a particularly convenient

means of specifying the system operation and structure. Most designers

frequently think In terms of the "life cycle" of a message, that is, the

sequence of events followed by a message as it moves through the system.

Such a life cycle is Illustrated by the extremely simplified sequence of

events listed below:

1) Transmission of a message to an input buffer,

2) (After being queued) processing by the CPU,

3) (After being queued) disc access.

5.3

^■^»iau^Ä^,

PIPjlllll, llfllllll III ~........ ..I. J.. Ill ■.. ■■■■« 11 ■ „"-,-, IJMft'ip^^jMMPPPW^IW^roiggBPW'H'i- ■.!.'-.-I' 'jWJktfiujiiMtifPjiwJWJP'WamtiJiwi-iii-ii

Netuork Analysis Corporation

•"— •
- ■ — — — '

._— —

1. Mesa age Type

2. Cycle Vector

2.1 Facility l.d.

2.1.1 State Type

2.1.2 State Attributes
•

2.2 Facility l.d.

3. State Vectors

3.1 Facility i.d.

3.1.1 State l.d.

3.1.2 Priority

3.1.3 Pre-Emptive/Non-Preemptive

3.1.4 Cycle Stealing Rate

3.1.5 Interrupt Processing

3.1.6 Processing Time Distribution

3.1.7 Operational Functions Subroutines (e.g. , Protocol)

3.1.X State i.d.

3.2 Facility i.d.

Figure 5.2 - SOFTWARE DESIGN INPUT

5.A

■J$££jJiüätä±^MjAjit

|PBPPW"™P™™^™^"W,,!!W'WWW"iliWlliWiP!"!5 — o-v- |(!JJ|J|M^l^|Ji,.JWpi^ iij»inuiiK«Liip.nwiMwimi .IL»| ii 'KW "gj«i;i~v::-—-;

l.
L

network. AnuLyuto Lurpoi'attun

4) Processing by CPU,

5) (After being queued at an output buffer) transmission of the

reply on an output transmission line.

.

There is almost a direct translation from the "life cycle," illustrated

above, and the processing cycle needed for specification in the model.

Only refinements in modeling are needed, and are easily developed.

For example, from the above illustration, at the beginning of the event

"1," an "interrupt" would advance the simulated clock while delaying the

completion of all the messages already in the CPU. As the input message

is being transmitted, the impact of character interrupts can be approx-

imated by reducing the CPU processing power by a certain "percentage."

Thus, the impact of event "1" on other messages can be given in terms of

"interrupt" time and "percentage" CPU processing power degradation.

The impact of the other four events can be described in a similar

fashion.

L

L

The incorporation of system control logic is handled by sub-

routines triggered from the state vector processing. Thus, such logic

can easily be excercised at the discretion of the designer.

5.3 Demand and Service Characteristics

The third level of the hierarchy is the demand and service char-

acteristics. Most modeling exercises are not to determine system behavior

for only a single set of conditions, but rather for a range of possible

conditions. A general program must be easily changeable to reflect

different conditions. This is accomplished by specifying the conditions

through a set of parameters.

The basic parametric structure is shown in Figure 5.3,

5.5

.■^■^^^^-.^..^■--^^ia..^..,^. ..i ,1^-,.ia„.„.^.J.^;..J.., .,;.„..:...- - ■ .U.A. . ■ -^^.u -- ■-■■- ■ ■ --" ; -■■■ ■-'■'■■ ^-^—.^

^mmmmmmmmm1' mmm*mmmmii.mM~jyA-)..i)mi,u'mm'''imi> i".»,u J*IW»TO»H«*W.'.WUI*-WIW!WJIIIMUII WM^ipippililli|tppi|!|jBBPIpu..

Network Analyovs Corporatton

1. Message Type Attributes 1

l.l Type

1.2 Priority

1.3 Message Length Distribution

2. Arrival Patterns

2.1 Scheduled

2.2 Random \ \

2.2.1 Interrival Distribution i

3. Traffic Mix

3.1 Message Type

3.2 Percent of Total Traffic ,

1 ^• Traffic Matrix

4.1 Message Type |

4.2 Percent of Type

4.3 Origin

4.4 Destination

! 5- Traffic Levels

5.1 Lowest Level

5.2 Highest Level

Figure 5.3

SERVICE AND DEMAND PARAMETER INPUT

5.6

rü^taA^^^^^tuymi^^^^^^

<**'. ■.tfäsastods^ysä .^■mwmmmmM-^.• - -mm

iiettiiui'K Analyuua Lurporattun

5.A Input to the Specific LDCN Models

5.4.1 Input to the Global Network Model

The basic input to the global network model is the system config-

uration, consisting of network topology, and aggregate nodal attributes.

In particular, the following inputs are identified:

1) For each Host -

a) Service time distributions

2) For each FEP -

a) Service time distributions for both upstream and downstream

directions

b) Interconnections to Hosts

c) Output buffer storage size

3) For each Concentrator -

a) Service time distributions for both upstream and downstream

directions

b) Interconnections to FEFs

c) Output buffer storage size

d) Local access configurations of terminal lines

It is at the concentrator level where the traffic load and pattern

characteristics are required for input.

iifc_. ■ - 1 M^Mli

5.7

jMjjjlljÄ^jLjj^jgiU^Ju^jji^i^ ■i^lji.i^äi\^U^

—*—— WPWi

Network. Analyaxe Corporation

5.4.2 Input to the Host Model

The Input to the Host program can be divided Into 2 parts: those

that deal with the Host itself, and the others that deal with the external

environment, namely the FEP.

The system configuration input, relative to the Host, consists of

the hardware configuration at the Host. These include memory, peripherals,

etc.

The software design input for the Host consists of the state and

cycle vectors describing the various operating systeEis Implemented in or

under consideration for the particular Host.

The input to the Host model that pertains to the FEP consists of

configuration data, software considerations, and service and demand

characteristics. Of course, the speed of the channel connecting the

Host and FEP must be specified. In addition, the output buffer

storage size, which is used as a throttling mechanism, should be input.

Obviously this should not be the total amount of storage available at

the FEP. It should reflect the amount available to the particular Host.

It is either the amount dedicated to that Host (if partitions are imple-

mented) or proportional to the amount of traffic processed by the FEP

for this particular Host (dynamic implementation). For U494 Host models,

the size of the inquiry storage mechanism (used for the shared transactions)

must also be specified.

The nominal service time distribution to process the output message

(remove from primary storage and store on secondary storage) Is required

as input.

The traffic that arrives at the Host originates at iht; FEP. Tho

traffic generator in the FEP will generate traffic according to input

parameters. These include distributions by transaction type (Inquiry,

upquiry, batch) and size. For batch transactions, a utilization

criterion for acceptance by the Host must be specified.

5.8

••lii'rltiffiiihilw

mnmm\- ■un IM H mmmmmmmmK^iii

mtworK Analysis Corporation

If aggregate traffic statistics for a particular Host are not

available from measurements, a traffic preprocessor can be applied to

the traffic loads and patterns used at each concentrator to extract

only the traffic destined for that particular Host.

5.4.3 Input to the FEP Model

As in the Host model, the input to the FEP model can be divided

into 2 areas: The FEP itself and the external environment. This time

the external environment is composed of two classes of devices: Hosts

and concentrators.

For the FEP, the input consists of the hardware configuration and

the software design. The hardware input includes amount of main memory,

number and speed of peripherals, and amount of secondary storage. The

state and cycle vectors describe the software implemented in or under

consideration for the FEP. Some of the software-related functions and

tasks that can be evaluated are as follows:

a) Various queueing disciplines,

b) Dual - CPU servicing disciplines, cutover thresholds,

c) Overhead involved in gathering network statistics,

d) Whether statistics gathering is in effect or not

There are various inputs required for the external environment of

the FEP. The number and identity of the Hosts and how they are connected

to the FEP must be input. For each Host, the service time distribution

Is required. The number and identity of the concentrators and the line

speeds of the connections are required input. A full description of the

configuration of the concentrator is necessary including the number and

speed of the local access lines and the percentage of resources available

at the concentrator for the particular FEP under evaluation. The down-

stream service time distribution of the concentrator Is

concentrators are the source of the traffic for the FEP

needed. Th«

Therefore, It

^

5.9

 ■ - - .

t.|.wW^1.-..i...w-v..|i,..i.-..,.w..wB,»« J.^JaPj^BwimpuM^^ ™—, aJWI+iiiHUIflHfflJiiiJijiiiptyippspii ■»iiJinmqw.,jiijiM»ijiiiwiia

natworK Analyaia Lurporatzon

is here that the traffic load and pattern distributions are »pecifled.

Recall that these traffic statistics should only be for the FEP under

evaluation (ASO or SPCC). Again a preprocessor could be used to extract

this information from the traffic data base at each concentrator.

5.4.A Input to the Concentrator Model

The input to the concentrator model consists mainly of input

describing the concentrator. The only input for the external environ-

ment is the system service time distributions obtained from the FEP

model.

At the concentrator, the hardware configuration which inciudes the

communication interfaces and the number and speed of the lines, both to

the terminals and the FEPs are required for input. Hit state and cycle

vectors defining the software design in the concentrator are input.

In addition, the traffic load and pattern for the local config-

uration, which drives the concentrator model is required input. These,

however, are typically different for each concentrator. However, the

same program is used; only the input is different.

5.10 i
—- --- --—■^■T |ir-...^.-~^^ waM^"*>- t^mmiiäimi M

•—"■"■ ":'—» -1

L

Network Analysis Corporatton

6. OUTPUT

L

The principal output of the simulation programs Is the statistical in-

formation describing system or processor behavior. In addition to the

statistics obtained from the simulation, the report generator should pro-

vide a description of the network or processor configuration being

evaluated plus a listing of all input parameters for easy cross-referencing

and verification. Also, when the tracing of a message option is in effect,

that output will aid both designers in attaining insights to the system as

well as providing debugging facilities for the programmer at implementation

time and for future updates.

The statistics output by the report generator that are common to all

the LDCN models include:

L 1) For each server or facility (e.g., communications line,

processor, or facility within a processor (CPU, memory,

peripheral etc.))

a) utilization

b) number of tines occupied

c) average time per occupation or service time

d) availability

2) For each queue

L

L

a) maximum and average contents

b) total and percent of entries that did not

have to wait (sero entries)

c) average queueing time for all and only-

delayed transactions

»„-^„^.»«■J-.i.. .„„f., '..„. -,,, , M

.- • I»'. ii.Jiii.i ii L -r i. ——

Network AnalyaiB Corporal ion

d) buffer space used by queues

3) For each message type

a) the average lifetime in the system (i.e. round-

trip delay)

b) the maximum and minimum observed lifetimes

c) the number of messages generated and serviced

by the processors.

In the detailed processor models, the software design Is evaluated by

examining the state and cycle vectors. Therefore, additional output

includes:

4) For each state in each cycle vector

a) the average time spent in each state

b) the number of times entering a particular

state

c) maximum and minimum time spent in each state

Flexibility exists in the form and style of the simulation output.

Some high level simulation languages automatically provide some form of re-

port generators and plotting capabilities. If these are not sufficient,

programs can be written that can present the output In any manner desired.

The report generator provides several options to the user, ranging from

simple summary reports to extensive detailed reports. The model user has

the option of specifying retention of only needed information or all Infor-

mation resulting from exercising the model. This allows efficient model

execution when only particular information is desired. Exercises can be

Jä/^w..*-.^.,,-....^ ..„-y,' v,.._. J*^:^: ;j.^iL.^fem^ttü»..JÜ

6.2

.t.,..,.,^^.....,^.,^^^^,...^,^..,.^..,.^ .,.„,..,

■" - " mnpmnvpnnpi i.i WJIIJUUI. ,.<

Netuork Analyaie Corporation

tracked by summary reports with the total Information retained for presenta-

tion In detailed reports at a later time.

The above statistics provide the systems designer with the luformatlun

necessary to evaluate the performance of the processors and the entire net-

work. Because the modeling strategy presented relies on the interaction

between the various simulation programs, additional output is required to

serve as input for other programs. We have identified the linkage informa-

tion to be the service time distributions for the various processors.

These distributions would be for a fixed set of conditions; traffic load,

mix and pattern but would be a function of the message size (both input and

output) and message type. This information is available from the set of

statistics presented above, and in fact, would provide the designer with

further Insights as well as serving as the linkage between the simulation

programs. The form and methodology of this linkage information is described

in the next chapter.

6.3

I
-'---^

J
"--"

J
"'-- ■■ ..^^U.,,...!...^.-,^ ■.-,.,..„, ...^.^ ■.^.-J.- - ...~

mmmm mm —■»- mmmmmm

Network Analysis Cox%>ovation

7. LINKAGE METHODOLOGY

In Chapter 3 we presented a modeling strategy that allows global net-

work modeling as well as detailed processor modeling. Because of the bi

directional nature of communications processors, it was identified that

for processor modeling some form of the external environment need also

be simulated at the same time. The external processors were to be modeled

as simple single servers with service times according to service-time

distributions. These distributions were to be obt*ined from the outinic of

other detailed processor models and also be used in the global network

model. In this chapter we describe a methodology for obtaining this link

age information and its use in the detailed models.

7.1 Linkage Form

The Information that links Che LDCN models together are the service-

time distributions of each of the processors. As stated in the previous

chapter, these distributions are a function of message type and size.

This output is obtained from the report generators for the user and is

usually in the form of a histogram or an approximated continuous curve.

It is now necessary to transform this information into machine-readable

form to serve as input for the simulation programs that require it. This

can either be in punched-card format, kept on-line in a data set or file,

or presented in a manner that can be transcribed by hand and then input

manually. Post-processing routines can perform this task at the end of a

program run and create the appropriate form of input. Alternatively, pr»

processing modules can take the raw output data from one program and ex-

tract the required information. A third option is to create a stand-alone

program that performs this task. These options are shown In Figure 7.1.

The decision as to which scheme is the best depends on how the report

generators are implemented. One can take advantage of how the other

statistical output is generated by obtaining this linkage information in

the same manner.

7.1

,$*"-..«

., .^^.^~w^ttMini.n
^'^^-''-^ ■

nnnni

wmm m"m" ' wrmmmmmm '

Network Analyaia Corporation

c
o
4J 1

u
OOCQ
0

(/]

- - .

u
0
(fl

31 0)
4 (U

a. o
0
u

PL<

0
o

1-1
4J
ft

•r-t

u
00 fQ
0
u

CO

O I
Oti

o 01 s
l- H
3 J
61)
H £
il i

c:
C
tc
r-

M
O

u
w
o

04

0) n 5 u
o u A

a o

3

Pr
og

ra
m

A

1
(/)

e
0

5

8
o u

w

•

0
o

n)
H

M

o
£

W

7.2 i:

; ii. ^iiiM-"'1»'-■""-"■'— Mtiliji

1 "l" ' ■"^BBB-W

Netuork Analyeie Corporation

7.2 Methodology for Using the Linkage Information in the LDCN Models

The global LDCN network model provides no linkage information but

uses those of the other detailed models. At first, since the detailed

models are not built, simple routines can be written to read in the gross

service-time distributions of the processors. As more accurate distribu-

tions become available from the detailed models, this linkage in'ormatlon

must be available to the global network model.

Each detailed model also requires the service-time distributions of

other processors for Input as well as providing it on output. The order

in which these distributions are obtained is Important in attaining

meaningful, accurate results and avoiding repeated simulation runs for a

fixed set of conditions.

The recommended sequence of simulation runs for the LDCN detailed

models under a fixed set of conditions (traffic load, pattern, and mix)

is as follows:

1) Run the Host model using the nominal FEP output service time;

2) Using the accurate Host service-time distribution from 1) and

the nominal concentrator output service time, run the detailed

FEP model;

3) Using the system service time distribution obtained from the FHP

model, run the detailed concentrator model;

A) Compare the new service time distribution obtained for the con-

centrator with that distribution used in the FEP model. If they

are equivalent, then stop;

5) Otherwise, rerun the FEP model using the new concentrator service

time distribution and go to 3).

1 '««■■■" mv*m»m***vy*T*>em!<

Network Atialynia Corporation

It Is only necessary to simulate the Host only once for a given set

of conditions. The service-time distribution of the Host will not depend

on how fast or slow the FEP serves the output messages. The output queue

at the Host might grow very large, but the service time, which we have

defined as the time in the Host until bei.ig placed on the queue, will not

change.

The FEP and concentrator models, however, rely heavily on each other.

Of Interest is the conjecture - is there any direct relationship between

the service times of the FEP and concentrator? If one changes, does the

other change and thereby cause a change in the first?

The sequence of steps shown above will detect this as well as validate

the linkage information between the models. Oscillation between the

concentrator service-time distributions used as linkage input to the FEP

model and that actually obtained from the concentrator model can be ex-

pected. However, continual oscillation indicates an unstable relationship

between the two processors. The results from the simulation runs should

provide insight into this problem. Oscillations that converge rapidly

indicate that only the preliminary assumptions were incorrect.

<*-?*•■—■'™'

Network Amlyaia Corporation

8. IMPLEMENTATION CONSIDERATIONS

Choosing the appropriate simulation language for the LDCN models de-

pends on many elements. The general considerations Include availability,

procurement cost, operating cost, training cost, portability, support, etc.

Other considerations pertain to the effectiveness of each language to solve

the various coding problems posed by the models proposed In the previous

chapters. In this chapter we present a comparison of the three primary

languages used for simulation programs: FORTRAN, General Purpose

Simulation System (GPSS) and SIMSCRIPT II. We also describe a relatively

new language, ECSS II, that was developed particularly for modeling compute:

systems. We then describe the advantages and disadvantages each language

exhibits when actually applied to the LDCN models and modeling strategy.

Reltman provides an excellent review and comparison of the three

most widely used simulation languages: FORTRAN, GPSS, and SIMSCRIPT II.

The comments are grouped into four basic categories: short term results,

ability of the simulation to represent the real world, long term results,

and effort required to use the language. A synthesis of his review is

presented below.

Procedure Oriented Languages - (FORTRAN, ALGOL, PL/1) They are

not really simulation languages, but more like mathematical pro-

gramming languages. However, they have been used for simulation.

1) Short term results

• programmer must have good background in the language be-

fore it could be used for simulation

• have to provide the simulation structure; none exists

• statistics gathering functions Internally have to be

structured

• not very flexible - revisions in complex systems require

major modifications

8.1
■i . .■ . ■ ■,■

-■'■. ^ ■■- —.■,...■:....■ -,......^^.

llipililllliPBRPBWPSpi«*^^

Network Analysis Corporation

• no graphic cnpabll 11 ien built In, addJtlona] programnitr<K

Involved

2) Ability of simulation to represent the real world

• could model almost any real-world situation

• the more complex systems require much greater effort

• mathematical capabilities are excellent, many special-

purpose techniques for data smoothing and linear

programming

• list processing is weak. Any simulation program requires

some form of list processing to structure the model,

some form must be provided for these languages

• maximum program size is flexible; overlays are possible

3) Long term results

• language generality, supported universally

• documentation left up to programmer, cross references

available

• system designers other than original program should be ab I«

to follow the logic and detail of the simulation

4) Effort required

• considerable, but several programmers can work on Che si

latlon in parallel if conventions governing the exchange

between subroutines is specified in advance

 rTtii'iMMü'üiirWiir

8.2

■J^,..,..^.^...^..^,;.,.^.„t :.^„...,......:^J^..^-..^il..

IBHÜH^UM..! J.ii -■■■.■."■•■■ ^,i,yin,J.Li...«imBW-1.lwu-<,,J.W^u,,iiJ..riT ■■^^iw^itiwiuwi^vfMpmwtH'W^^Wjw-wKw^w^

i

Network Analysis Corporation

B. GPSS - the first real programming language geared specitically

for simulation

1) Short term results

• geared to get results quickly

• simulation structure is strongly evident

• many built-in features, format, organizarion and

diagnostics

• statistics are maintained automatically both during and at

conclusion of the simulation

• flexible; easy to change logic, data and results selected

• debugging aids are many

• graphic presentation of output is available

2) Ability to represent the real world

• desired level can be obtained

• can use byte, half-word or full-word arrays

• logical situations are well represented by Boolean

equations

• mathematical capability is adequate for problems that do

not require complex equations. However, the fact that values

are stored as integers causes scaling problems and loss of

precision in arithmetic computations such as division

8.3

u

^,I^M^..

Network Analysis Corporation

» list processing Is available, allowing FIFO, L1F0 t>i an-,

priority structures

t Maximum size of program is „.he tradeoff between avallabl

core storage and execution time. Overlays are possible.

3) Long term results

© benefits from the highly structured language

m documerttation capability is very good, comments can be \-.

of every statement

® transferability of GPSS programs is excellent;

4) Effort required

GPSS provides the most working model for the effort ei X\fU

C. SIMSCRIPT IT. -■ programming system developed by RAM) designed

particularly for simulation

1) Short term results

pro grans« sr should be coffipentent In SIMSCRIPT II

« no inherent, structure for the simulation. Consequent 1.y

an extensive problem definition and structure should '■•--•

developed before coding the model,,

« relationships are through the entity •- attribute -- set

relationship

statistics obtained either during or after model exec

are programmed by the system designer

äiäMaSäaässiäM^äääMi&^säk I^^S^^^^^I

^ ■

■WIWWITW'S'W-™^"«!^^ mmtmmmmm r^r-rrm^, ~- ^--.T^-m:! ^n .n,™™,,™,^-^,^.,«,,,,,

Network Analyaia Corporation

• the language allows access to anything at any time, but the

structure and format of the statistics has to be specified

by the user

• flexibility is tied in with the basic subroutine structure

of the programming approach. Individual subroutines can be

compiled and added or substituted into the model. The same

model may be run with different input data.

• programs to display output in graphic form are not built

in, they have to be coded

2) Ability to represent the real world

• logical situations can be well represented with the Boolean

capability. Very complex situations can be structured.

• mathematical capabilities will depend on the particular

installation since SIMSCRIPT II is a separate programming

system. Libraries of utilities will have to be developed.

i

• list processing capabilities are strong, owing to the

structured data storage system. FIFO, LIFO and any prior-

ity structures are easily developed

• maximum program size again, depends on available computer

storage. SIMSCRIPT II is a compiler language. As such,

the compiler might use up an excess amount of storage.

Overlays are possible.

3) Long-term results

• syntax of language is almost readable English

• as a consequence, the documentation throughout the program

is excellent. Additional comments may be placed anywhere.

Users other than the original nrogrammer should be able to

follow the model in detail easily.

8.5

- .*■'■■■ ^•■^"■' .. ^.^1..i.v.;,^F. ri-.iiii^nw^

mm ^^uf^iMiifflWM^'mM^J.^.J11^ *~wm'.« «ujiiiin ni,i..L.j„m .I.1IIUJJ

L

Network Anulyais Corporation

however, the structure of the prugrum la Htill u; t(ihn

programmer. For complex problems the readability does not

describe the relationships between different factors.

Simultaneous events are difficult to document. Changing th

logic of an existing model is difficult for those changes

which require restructuring of data or system attributes.

it) Effort required

• comparable to GFSS, yet the more complex models require

siderable more effort

More recently, work has centered on creating simulation language:.

designed specifically for modeling computer systems. There are now severa]

languages available that allow a programmer the freedom to write his

program referencing common computer hardware and software terms as part of

the code. Typically the language is implemented as a preprocessor to a

general-purpose simulation language. One such example is the Extendable

Computer System Simulator II (ECSS-II) developed at RAND. ECSS-II is

based on the SIMSCRIPT II language, with that language Included as a subset,

Consequently, all the advantages of SIMSCRIPT II are present in ECSS-II,

plus some of the inadequicies are removed. In [2], Rosy states that:

"[ECSS-II] provides a rich variety of statements and data
structures for describing common computer hardware configurations,
software operations, and workload characteristics in a natural
and straightforward notation. Using these statement), one cm
compactly express, for example, the name, quantity, and per-
formance of each kind of simulated hardware device, the behavlor
and resource requirements of each kind of Job to be processed,
the policies by which resources are assigned to jobs, the ch r
acterlstics of messages sent through I/O devices within the
model, and how the simulated system is to be loaded by jobs
and messages from its environment."

The authors of ECSS-II have taken advantage of SIMSCRIPT II's Inherent

readability to create a language that utilizes computer hardware and sott

ware Jargon.

/

8.6

. ■ ' : ■■■! .-^AL: ,. ».^■^^■^.■,■»1^. Mt..^.^..Ji.^^HM.

II'WJILIJ
•!^^^-"" "^t

Network Anatyata Coifwration

In addition, the added simulation structure provided by ECSS-II is

directly applicable to modeling computer systems. In an early Interim
f 31

report comparing ECSS-II (then, Just ECSS) with FORTRAN and PL/1 , Rosy

highlights these added structural features:

"To this [SIMSCRIPT II] base ECSS adds four new elements to
describe the statics and dynamics of computer systems for
simulation: the System Description, Load Description, the
Service Routines, and an extension to the preamble called
the Definition Description.

The System Description consists of a group of declarative
statements that specify the number of each type of device
in the system, the names of the devices, the characteristics
of each device, and how this hardware is interconnected.
One can define CUPs, core storages, terminals, disks, or
any other kind of device in terms of its data transmission
capabilities, instruction execution rates, and storage
capacity. In general, these hardware elements are the
resources to be allocated and utilized during the simulation.

In the Load Description section, special routines called
"jobs" are defined to describe a system's dynamic behavior.
Jobs simulate the work of real application and control
programs by indicating sequences of hardware utilization
commands. These commands are used, for example, to indicate
amounts of data transmission and instruction execution, to
get and free simulated storage space, to define conditional
delays, to start and terminate jobs, and so on. Jobs are
processes—simulated time advances as a job is executed and
many different changes to the state of the system are usually
included in one job. Quite detailed representations of
computer program behavior can be described by intermixing
ECSS and SIMSCRIPT commands within the jobs. Jobs and events
can be used together in the same model to provide an extremely
powerful composite world-view of system dynamics.

The Service Routines are a collection of SIMSCRIPT II routines
which Implement the Load Description commands. They assume the
details of job processing and time advance, as well as updating
the variables that define the state of the system as jobs inter-
act with devices. Also Incorporated into the Service Routines
are a number of resource-management algorithms that provide a
kind of built-in operating system. This capability gives
the user the power to specify multiprogramming, contiguous-
storage management, conversational messages and other high-
level activities with only a few statements.

The Definition Description is of lesser importance than the
previous three elements, but it does supply the user the
ability to define his own commands, to use his own termi-
nology for certain computer-related dimensions (bytes for

8.7

 .,V..,^:,.J^^^....., ,.»—.-...-.....■ ., "•to&LiUlitfr'faahiiiiV

Netuork Analytiia Corporatxcn.

transmission, say, or pages for core space), and a statement
for compact definition of table functions, all of which are
lacking in SIMSCRIPT II.

We now describe some of the advantages and disadvantages of each of

the above languages when applied to the specific application at hand;

i.e., the LDCN models.

FORTRAN, because it is not a simulation language, is probable the

least attractive for such a large simulation project. Considerable effort

would have to be expended in providing even the basic simulation structure

List processing capabilities, essential to any complex simulation program,

are generally weak; however, we are aware of some available list pro-

cessing packages for FORTRAN programs. The I/O capabilities of FORTRAN

are probably the best. The software design of the processors could be

implemented using the cycle and state vector approach and input to a

skeleton program that could be used for each of the detailed processor

programs. Also the I/O of the linkage data would be easier in FORTRAN.

The previously delivered stand-alone concentrator simulator was designed

with the vector approach and written in FORTRAN. The language is a

viable one but there are better ones.

GPSS, because it is a simulation language, would be better than

FORTRAN. However, because of the general purpose nature of the language,

it may still not be the best language to use. Limited I/O facilities

prohibit using the vector approach for evaluation of various software

designs in the processors. There is no inherent way to selectively

change only portions of the program without "recompiling" the entire

program. However, the diagnostics and queuing structures are strong.

Since the LDCN models rely heavily on queues, the programming effort

might be reduced. In addition, the U494 stand-alone Host simulator

was written in GPSS and existing FMSO personnel are proficient in GPSS

SIMSCRIPT II is probably the better of the two simulation languages.

Complex models, of which the LDCN models are ones, are more flcxable

when written in SIMSCRIPT II than In GPSS. Limited I/O capabilities,

again, limit the use of cycle and state vectors for defining softwart

L 8.8

'-—^-—-—■■ll-nv. .;..-^ .^......-■^.„i-.^-.a ■vmM^^^^iu^^^u '

mwmrm '*~—~~* i ■■•■■""" ■•iimii
 , «|#IMI!IJlpiUIMj;ililB,lJpptlJ4jPJ|l^^^

Network Analysis Corporation

design In the processors. However, separate modules or subroutines that

handle the software Implementation could be changed and recompiled separately

But it might be difficult to structure the programs in this manner (all

the software functions in one or two routines). In addition, personnel

familiar with SIMSCRIPT II might be limited.

ECSS-II Is a relatively new and untested language. However, the

syntax is geared specifically towards computer systems modeling, which

is the problem faced here. It conveniently allows both hardware and

software evaluation. It has all the capabilities of SIMSCRIPT II plus

developments have been made to improve the deficiencies (e.g., statistical
[A]

Instrumentation) . It might not provide the level of detail desired

in the processor models ("the language is oriented...at the millisecond
[3]

level and above") . Procurement and training costs might be a

problem because the language is PO relatively new. However, the Army,

in conjunction with FEDSIM, has recently used ECSS-II for simulating

a communication system with favorable results ,

In conclusion, a simulation language such as GPSS or SIMSCRIPT II

would be more versatile for the LDCN modeling effort than FORTRAN.

However, variations in ehe software design of the processors would be

more easily evaluated in FORTRAN because of its extended I/O capabilities.

GPSS is probably too general for this effort, however, it does have some

merits. If SIMSCRIPT II were to be selected as the language to use,

serious consideration should be given to the ECSS-II language, as it in

based on SIMSCRIPT II, while providing a closer fit to the LDCN application.

8.9

f^^iliM^M^aftigfiij^jj^^^^. mtm '•''^itfiiiriiiMirthiBii
iiif iiiriiiil

mwm,., t-i.. u..<». ...g.«,.,.,,.,,^,... ^-^.- UllMWJIJiiippili ,^,.^„^,^1. .j^iiLuppmu^^,..!, mm,vm„:m

Netuork Analysis Corporation

9. CONCLUSIONS

The LDCN is a complex system, composed of major subsystems in con-

centrators, Front End Processors, and Hosts, unified via data communications

lines into an operational system. Major design issues can focus on the

network as a whole, or on any subsystem, and may deal with hardware or

software. Development of a simulation model as a general tool to enable

examination of such issues requires major considerations be given first

to the overall modeling stragety. The strategy must address the issues

of modeling the individual subsystems as well as modeling their inter-

action in a unified system. The purpose of this report has been to

present an appropriate strategy for modeling the LDCN.

The major conclusions of this report are as follows:

- Because of the size of LDCN, one large program that allows

detailed processor modeling as well as global network modeling

is infeasible.

- An appropriate strategy is hierachically structured; at the

highest level is a similified global network model with the

processors modeled as simple single-servers. This model serves

two purposes;

1) It will serve as the framework for the detailed processor

models as they are built;

2) It will provide the first gross performance trends quickly

and cheaply as it evolves into an accurate global performance

measurement tool.

The detailed processor models are extracted from the global model

by replacing one simple server model of a processor with the

detailed version of the model, removing all servers of the same

class, removing all servers that are not directly connected via

communications lines to the detailed servers and finally reduce

the scope of the model until it becomes tractable.

9.1

~~, L . Wl ... , si^ WWW .^ l.l .■■>«■ .M. ^1. H. PT«. '^~^™-^^-'-~^"^^~~

Network Analysis Coppovaiion

Wien modelIng rommunlcat ions processors, the external environment

is very important. Slmplillcatlonu and omlsülons muni be treated

carefully to prevent Inaccurate results.

The element that links the detailed processor models together

is the service time distribution. Initially, best guess esti-

mations are used to characterize the service time of. the external

processors. Measurements are obtained from the detailed model and

these distributions are then used to model the environment of a

different processor.

The service time distributions are used in the global network model

to obtain more accurate global performance statistics.

The common simulation program structure is composed of a monitor,

utilities and the models themselves. The utilities are made up

of a Front-End for input and output, a traffic generator and a

statistics package.

The detailed portion of the processor models can be structured in

two ways:

1) Inbed the software design of the processor directly into the

simulation code. This requires no program input, but the

evaluation of variations in the software design requires

repeated simulation program modification.

2) The software design Is read in as input, consisting of cyclti

vectors - the sequence of servers or facilities visited by

transactions, and state vectors - the state induced on each

server In the cycle vector. A skeleton program is designed

that reads in this input to create different "programs."

- The input to the simulation programs consists of:

9.2

 ..■ ■-- .,.,^..,.^*..^—J.J..., ,.:..........:, „.-^.Ä-aK

.. .uiHiipiiW ^mKSlKKKKmmm ..l...l.-m«-M,wl.»w.w»j.,W!ippj

1) System (network or processor) configuration Including the

linkage Information;

2) Software design - If Implemented with the vector approach;

3) Demand and service characteristics.

- The output from the simulation programs Includes:

1) Statistics describing system (network or processor) behavim

2) Linkage information to be used In other programs.

- Because of the excessive amount of interactions between the

various programs, the order in which the programs are run is

Important. Care should be taken to avoid repetitions of runs

and Inaccurate results.

- Three languages that could be used to write the simulation programs

are FORTRAN, G?SS, and "SIMSCRIPT II. Each has its own merits and

drawbacks. Of the three, SIMSCRIPT II would probably be the best,

with GPSS and FORTRAN tied.

- However, new languages are available that are designed specifically

for simulating computer system. One such example is ECSS-II,

written at RAND. Based on SIMSCRIPT II, ECSS-II has built-in

features that relate directly to computer hardware and software.

9.3

^^^^^^\^^^^m

Network Analysis corporation

REFERENCES

1. Reltman, J., Computer Simulation Applications, Wlley-Intersclence

New York, 1971.

2. Rosy, Donald, The ECSS II LanRuage for Simulating Computer Systems,

The RAND Corporation, Santa Monica, CA, December, 1975.

3. Rosy, Donald, "An Interim Empirical Evaluation Evaluation of ECSS

for Computer System Simulation Development," Proceedings of the

Symposium on the Simulation of Computer Systems. National Bureau

of Standards, Gaithersburg, MD, June, 1973.

A. Feingold, R. and Y. Chao, "Statistical Instrumentation of ECSS

Models," Proceedings of the Second Symposium on the Simulation of

Computer Systems. National Bureau of Standards. Gaithersburg. MD.

June, 197A.

5. Sprung, J., P. Beatty, J. Canery, and J. Norrell. "An Introduction

to the Simulation of a Multiple CPU Military Communications System,"

Proceedinga of the Fourth Symposium on the Simulation of Computer

Systems, National Bureau of Standards, Boulder. CO. August. 1976.

iaiU.^^^^^.^J.^^M^^.^.,.^.;...l^.lt:!(|!ji)|jg(i(^ . .

"IÜLf"',,wü" ^--^m^mmmmimmmm!mmmmmmK!mm^,'am l!U|(piHWlHll41Wft«»'li^1.!Ju,™jl»^

Network Analyaia Corporation

BIBLIOGRAPHY

1. Chou, W. and P. McGregor, "A Unified Simulation Model for Communication

Processors," Proceedings of Trends and Applications 1975: Computer

Networks, Symposium at NBS, June 1975.

2. McGregor, P., W. Chou, and R. Kaczmarek, "Communications Processor

Simulation: A Practical Approach," Proceedings of the National

Telecommunications Conference. December 1975.

-

3. Chou, W., H. Frank, and R. Van Slyke, "Simulation of Centralized

Computer Communications Systems," Proceedings of 3rd Data Communications

Symposiumi Data Networks Analysis and Design, November 1973.

4. Gordon, G., System Simulation, Prentice-Hall, Inc., Englewood Cliffs,

NJ, 1969.

5. Martin, F., Computer Modeling and Simulation, John Wiley & Sons,

New York, 1968.

6.\ Van Slyke, R., W. Chou, and H. Frank, "Avoiding Simulation in

Simulating Computer Communication Network," Proceedings of the

National Computer Conference, Montvale, NJ, Vol. 42, AFIPS Press,

1973, pp. 165-167.

7. Maisel, H. and G. Gnugnoli, Simulation of Discrete Stochastic

Systems, Science Research Associates, Inc., Chicago, 1972.

8. Network Analysis Corporation, "Capacity Analysis of Data Communications

Concentrator," April 1975.

9. Network Analysis Corporation, "Communications Processor Simulation

Program (CPSP) - Users Manual," May 1975.

10. Network Analysis Corporation, "Feasibility Analysis of PDP-11 Mini-

computer Front-End Processor," January 1976.

9.5

——ww mmmm m—sw _ mmgmis^miwzff!**'

■'

Network Analysis Corporation

-

-

DISTRIBUTION LIST;

NAC:

J. Eckl

R. Kaczmarek

P. McGregor

Project 95 File (Accounting Office)

Other:

!

J. Sowa

J. Alexander

G. Mountz

Code 9642, FMSO

Mechanicsburg, PA 17055

Richard des Jardins

Code 510

NASA/Goddard Space Flight Center

Greenbelt, MD 20771

L

. —^..^.^ ^tetiidBtftf iMBiirMri^Biiiiflfr i

