NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies only; Test and Evaluation; 30 AUG 1976. Other requests shall be referred to Naval Air Systems Command, Washington, DC 20361.

AUTHORITY
USNASC ltr, 3 Aug 1978
THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
FINAL REPORT for Period 30 September 1974 to 30 June 1976
Submitted

B. E. DOUDA, Manager
Chemical Sciences Branch
Pyrotechnics Division
Applied Sciences Department
Title: Photometric and Near Infrared Radiometric Measurement Systems

Authors: Forrest L. Burton, Carl E. Dinerman

Performing Organization: Naval Weapons Support Center
- Applied Sciences Department
- Crane, Indiana 47522

Controlling Office: Naval Air Systems Command (AIR-350E)
- Washington, D.C. 20361

Report Date: 30 August 1976

Project Area & Work Unit Numbers: 6226ON, WF53538, WF53538500

Security Class: Unclassified

Distribution Statement: Distribution limited to U.S. Government agencies only; Test and Evaluation: 30 August 1976. Other requests for this document must be referred to Commanding Officer, Naval Weapons Support Center, Applied Sciences Department, Crane, Indiana 47522.

Supplementary Notes:

Key Words:
- Pyrotechnics
- Radiometry
- Radiation
- Photometer

Abstract:

This report describes the details of calibration operation, and construction of a photometric, and a 0.73-0.97 μm near infrared radiometric measurement system, both constructed at NAVWPSUPPCCN Crane for measurements of flare plume candlepower and radiant intensities, respectively.
INTRODUCTION

In the improvement of existing flares and in the development of new flare concepts, it is necessary to measure candlepower and near infrared radiation. This report describes the details of calibration, operation, and construction of a photometric measurement system, and a 0.73-0.97 μm near infrared radiometric measurement system, both constructed at NAWPNUSUPPCEH Crane. The block diagram (Figure 1) is the same for both systems. The report describes each system separately. The description of each system is divided into two sections: (a) calibration and operation; and (b) construction details.

PHOTOMETER SYSTEM

Calibration and Operation

The photometer, details of which are described in the Construction Details section of this section, is calibrated against NBS Standard Lamp No. 9789, 1000 watt tungsten filament lamp rated at 1070 candlepower. An optical bench is used and the lamp is properly shielded. We use the relationship

\[
\frac{1070}{D^2} = E
\]

where \(E \) is the calculated illuminance in footcandles, and \(D \) is the distance in feet between the photometer and the standard lamp. For each distance, the irradiance \(E \) is calculated using equation (1) and plotted against the observed voltage at that distance. See Figure 2. The luminous intensity (candlepower), in candles, is calculated for a flare according to

\[
I(\text{cd}) = E \cdot D^2
\]

where \(E \) is the illuminance in footcandles, as determined from the observed voltage by using the calibration curve, and \(D \) is the distance in feet between the photometer and the flare. If the approximate candlepower of a flare is known beforehand, the photometer-to-flare distance is adjusted to keep the output in the linear region of operation.

\(^1\)General Electric Co., Cleveland, Ohio.
The output is recorded on a Moseley2 strip chart recorder, and can be integrated as well.

Construction Details

The photometer system and the radiometer systems were built on printed circuit boards for easy component replacement and troubleshooting. The systems use all solid state circuitry and precision components.

The photometer system uses a Weston 856 photocell3 corrected for eye response. An opal glass filter was inserted over the face of the photocell for uniform distribution of light. The field of view is ±12.5°.

The photometer detector/opal glass combination is mounted in a separate housing from the amplifier and the output signal is fed to an amplifier circuit through a coaxial cable. The input amplifier for the detector is also mounted on a printed circuit board in a precision current to voltage amplifying mode. The amplifier is a Burr Brown4 3341/15C inverting field effect transistorized line driving operational amplifier. This amplifier has an extremely wide bandwidth with fast slewing and settling characteristics, along with high gain accuracy and linearity. This amplifier is designed to withstand input voltages as high as the supply voltage without damage. The output stage is internally current limited to withstand short-circuit to ground conditions.

The feedback resistor is a precision 10 turn variable resistor to give a linear 0 to 5 volts output. The output of this amplifier is then coupled to a BNC connector for input to the recorder or integrator.

Figure 3b and 3c show the electronic schematics.

The Model P2.15.300 power supply5 features dual ±15VDC output with up to 0.01% regulation, automatic short circuit protection, and is encapsulated with hermetically sealed components and tantalum capacitors for full rated operation through +85°C.

2Hewlett-Packard, Inc., Palo Alto, California.
3Weston, Inc., Newark, New Jersey.
4Burr-Brown Research Corporation, Tucson, Arizona.
5Semiconductor Circuits Inc., Haverhill, Massachusetts.
The power supply is identical in the photometric and near infrared system. See Figure 4 for a schematic.

NEAR INFRARED (0.73-0.97 μm) SYSTEM

Calibration and Operation

The total relative system response (filter and detector) is shown in Figure 5. The wavelengths 0.73 and 0.97 μm were chosen since they are the points at which the relative response has fallen off to 0.5.

The equations regarding the calibration and operation of the radiometer are as follows:

\[V = c \cdot A \cdot R^{-2} \int N(\lambda) \cdot s(\lambda) \cdot \tau(\lambda) \cdot \tau_a(R, \lambda) \, d\lambda \]

(3)

where

\[V \] is the volts observed on the meter or chart recorder

\[c \] is a constant, in V/W·cm⁻²

\[A \] is the area in cm² of the blackbody source aperture

\[R \] is the source-to-detector distance, in cm

\[N(\lambda) \] is the known radiance of a blackbody, in W·cm⁻²·sr⁻¹·μm⁻¹

\[s(\lambda) \] is the (dimensionless) relative spectral response of the detector

\[\tau(\lambda) \] is the (dimensionless) transmittance of the filter

\[\tau_a(R, \lambda) \] is the (dimensionless) transmittance due to atmospheric constituents.

In the spectral region 0.73-0.97 μm, \(\tau_a = 1 \). Therefore,

\[V = c \cdot A \cdot R^{-2} \int N(\lambda) \cdot s(\lambda) \cdot \tau(\lambda) \, d\lambda \]

(4)

Since \(N(\lambda)A = J(\lambda) \), the radiant intensity in W·sr⁻¹, we can write

\[V = c \cdot R^{-2} \int J(\lambda) \cdot s(\lambda) \cdot \tau(\lambda) \, d\lambda \]

(5)
Calibration in this spectral region consists of placing the radiometer on an optical rail at a series of distances from a properly shielded and powered NBS-traceable lamp, of known spectral radiant intensity \(J(\lambda) \), and recording the voltages obtained. Plotting \(V \) against \(R^{-2} \) will allow \(c \) to be calculated in \(V/\text{W} \cdot \text{cm}^{-2} \). Figure 6 shows the results of a calibration, performed with a 1000 watt tungsten-halogen lamp (EG&G standard lamp serial number A163A, and their calibration test number 107019).

In order to determine the \(W \cdot \text{sr}^{-1} \) from a flare, (5) is used, except that \(J(\lambda) \) is now the unknown instead of \(c \). If we assume that \(J(\lambda) \) doesn't vary much in the 0.73-0.97 \(\mu \text{m} \) interval, then it can be taken out of the integral.

\[
V = c \cdot R^{-2} \cdot \int s(\lambda) \cdot \tau(\lambda) d\lambda
\]

(6)

where

\[
J' = \frac{J(\lambda) d\lambda}{\Delta \lambda} .
\]

(7)

Then

\[
J' = \frac{V}{c \cdot R^{-2} \int s(\lambda) \cdot \tau(\lambda) d\lambda}, \ W \cdot \text{sr}^{-1} \cdot \mu \text{m}^{-1} .
\]

(8)

Finally

\[
J'_{\text{band}} = J'_{\Delta \lambda} = J'(0.234), \ W \cdot \text{sr}^{-1}
\]

(9)

Construction Details

The radiometer system uses a PIN-10D silicon photodiode\(^7\) responding from about 0.35 to 1.1 \(\mu \text{m} \). A Corning 1-64 and 2-58 filter combination\(^8\) was selected to limit system response to the near infrared. The field of view is \(\pm 12.5^\circ \).

\(^6\)EG&G, Electro-Optics Division, Salem, Massachusetts.

\(^7\)United Detector Technology, Inc., Santa Monica, California.

\(^8\)Corning Glass Works, Corning, New York.
The output signal is fed to the amplifier circuit through a coaxial cable.

The input amplifier for the detector is mounted on a printed circuit board, in a precision current to voltage amplifying mode. The amplifier is an Intech A157 F.E.T. input operational amplifier. This amplifier has wideband, fast response characteristics and provides stable operation with capacitive loads up to 1000 pF. The feedback resistor is a handpicked precision 10 kΩ resistor to give a linear voltage output from 0-10 VDC. The output of the amplifier is then coupled to a BNC connector for input to the recorder or integrator.

See Figure 3a for a schematic.

The power supply has been described in Construction Details in the Photometer System section.
<table>
<thead>
<tr>
<th>Designation</th>
<th>Catalog Number</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-1</td>
<td>P2.15.300</td>
<td>Semiconductor Circuits, Inc., Haverhill, MA</td>
</tr>
<tr>
<td>F-1</td>
<td>AGC 1/2</td>
<td>Buss, fuses, St. Louis, MO</td>
</tr>
<tr>
<td>LS-1</td>
<td>36U2311</td>
<td>Allied Electronics, Elgin, IL</td>
</tr>
<tr>
<td>S-1</td>
<td>5222S</td>
<td>J.S.T. Instruments, Inc., New Haven, CT</td>
</tr>
<tr>
<td>Fuse Holder</td>
<td>HJM-H</td>
<td>Buss Fuses, St. Louis, MO</td>
</tr>
<tr>
<td>DT-1</td>
<td>856</td>
<td>Doystrom Inc., Newark, NJ</td>
</tr>
<tr>
<td>DT-2, DT-3</td>
<td>PIN-10D</td>
<td>United Detector Inc., Santa Monica, CA</td>
</tr>
<tr>
<td>Filter 1-64</td>
<td>1-64</td>
<td>Corning Glass Works, Corning, NY</td>
</tr>
<tr>
<td>Filter 2-58</td>
<td>2-58</td>
<td>Corning Glass Works, Corning, NY</td>
</tr>
<tr>
<td>Opal Glass</td>
<td>2149</td>
<td>Edmund Scientific Co., Barrington, NJ</td>
</tr>
<tr>
<td>B.N.C. Connector</td>
<td>UG254A/U</td>
<td>Amphenol Connector Div., Broadview, IL</td>
</tr>
<tr>
<td>C-1</td>
<td>CD7FD151J</td>
<td>Cornell-Dubilier Electronics Div., Newark, NJ</td>
</tr>
<tr>
<td>C-2, C-3</td>
<td>CD6CD100K</td>
<td>Cornell-Dubilier Electronics Div., Newark, NJ</td>
</tr>
<tr>
<td>R-1</td>
<td>RN55D1002F</td>
<td>Allied Electronics, Elgin, IL</td>
</tr>
<tr>
<td>R-2</td>
<td>3359P1K</td>
<td>Bourns, Inc., Riverside, CA</td>
</tr>
<tr>
<td>R-3, R-4</td>
<td>224P25K</td>
<td>Bourns, Inc., Riverside, CA</td>
</tr>
<tr>
<td>A-1</td>
<td>A-157</td>
<td>Intech Inc., Santa Clara, CA</td>
</tr>
<tr>
<td>A-2, A-3</td>
<td>3341/15C</td>
<td>Burr-Brown Research Corp., Tucson, AZ</td>
</tr>
</tbody>
</table>
Figure 3. Detector Circuits for Near Infrared Radiation (a), and Visible Radiation (b) and (c).

NOTE:
2. A2 & A3 - BURR-BROWN 3341/15C
Figure 4. Power Supply for Both Photometric and Near Infrared Radiometric Systems
Figure 5. Relative System Response for the 0.73-0.97 μm Radiometer. This curve results from multiplying the detector response by the filter response and normalizing to 1.0.
Figure 6. Calibration Curve for the 0.73-0.97 μm Radiometer
<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>COPIES</th>
</tr>
</thead>
</table>
| Commander
Naval Air Systems Command
Department of the Navy
Washington, D.C. 20361
Attention: Code AIR-954, Technical Library
Code AIR-53235, Mr. R. Szypulski
Code AIR-350, Mr. E. Fisher
Code AIR-310C, Dr. H. Rosenwasser | 1 |
| Commander
Naval Sea Systems Command
Naval Sea Systems Command Headquarters
Washington, D.C. 20362
Attention: Code SEA-09G3, Technical Library
Code SEA-033, CDR J.R. Gauthey
Code SEA-0332, Dr. A.B. Amster
Code SEA-0332B, Mr. G. Edwards
Code SEA-9921, Mr. W. Greenlees | 1 |
| Administrator
Defense Documentation Center for Scientific and Technical Information (DDC)
Building 5, Cameron Station
Alexandria, Virginia 22314 | 2 |
| Commander
Naval Weapons Center
China Lake, California 93555
Attention: Code 6082, Mr. J. Eisel
Code 533, Technical Library
Code 454, Mr. D. Williams
Code 45403, Mr. H. Larsen
Code 4544, Dr. M. Nadler
Code 45401, Dr. R. Reed
Code 454A, Mr. E. Allen | 1 |
| Commanding Officer
Naval Avionics Facility
Indianapolis, Indiana 46218
Attention: Code PC-010, Mr. P. Collignon | 1 |
| Commander
Naval Surface Weapons Center
White Oak Laboratory
Silver Spring, Maryland 20910
Attention: Code WR, Research & Technology Dept.
Code WX-21, Technical Library
Code WR-12, Mr. B. White | 1 |
<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>COPIES</th>
</tr>
</thead>
</table>
| Commander
Naval Surface Weapons Center
Dahlgren Laboratory
Dahlgren, Virginia 22448
Attention: Code DG-50, Mr. R. Morrissette | 1 |
| Commander
Naval Ordnance Station
Indian Head, Maryland 20640
Attention: Code 5232V, Mr. W. Vreatt
Code 5111A, Mr. F. Valenta | 1 |
| Commanding Officer
Frankford Arsenal
Philadelphia, Pennsylvania 19173
Attention: Code SARFA-MDP-Y, Mr. W. Puchalski | 1 |
| Commander
Edgewood Arsenal
Aberdeen Proving Ground, Maryland 21010
Attention: Code SAREA-DE-MMP, Mr. M. Penn
Code SAREA-DE-MMP, Mr. A. Deiner | 1 |
| Commander
Ballistic Research Laboratories
Interior Ballistics Laboratory
Aberdeen Proving Ground, Maryland 21005
Attention: Code DRXBR-IB, Mr. J. R. Ward | 1 |
| Commanding Officer
Picatinny Arsenal
Dover, New Jersey 07801
Attention: Code SARPA-FR-E-L, Mr. T. Boxer
Code SARPA-FR-E-L-C, Dr. F. Taylor
Code SARPA-TS-S, Technical Library
Code SARPA-AD-D-R-4, Mr. A. Neigh
Code SARPA-FR-E-L-P, Mr. J. Tyroler | 1 |
| Commanding General
U.S. Army Missile Command
Redstone Arsenal
Alabama 35809
Attention: Code DRSMI-REI, Mr. T. Jackson
Code DRSMI-REQ, Mr. G. Widenhofer | 1 |
| Commander
Army Aviation Systems Command
Avionics and Weaponization Division
St. Louis, Missouri 63166
Attention: Code DRSAV-EVW | 1 |
<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>COPIES</th>
</tr>
</thead>
</table>
| Commander
U.S. Army Material Systems Analysis Agency
Aberdeen Proving Ground
Maryland 21005
Attention: Code DRX-SY-RE, Mr. J. Sheldon
Code DRX-XY-T, Mr. P. Topper | 1 |
| Commanding General
U.S. Army Tank Automotive Command
Warren, Michigan 48090
Attention: Code DRSTA-RHFL | 1 |
| U.S. Army Foreign Science and Technology Center
220 Seventh Street, N.E.
Charlottesville, Virginia 22901
Attention: Code DRXST-CSI, Mr. J. Jacoby | 1 |
| Commander
Wright-Patterson Air Force Base
Ohio 45433
Attention: Code AFWAL/DO, Technical Library | 1 |
| Commander
Aeronautical Systems Division (AFSC)
Wright-Patterson Air Force Base
Ohio 45433
Attention: Code ASD/ENAMC, Mr. M. Edelman
Code ASD/AEWE/ENADC, Mr. R. Sorenson
Code ASD/ENADC, Mr. H. Wigdahl
Code ASD/ENAMC, Mr. G. Runseiman | 1 |
| Commander
Air Force Avionics Laboratory
Wright-Patterson Air Force Base
Ohio 45433
Attention: Code AFAL/CC
Code AFAL/WRW-3, Mr. F. D. Linton
Code AFAL/RWI, Dr. B. Sowers | 1 |
| Commander
Armament Development and Test Center
Eglin Air Force Base
Florida 32542
Attention: Code ADTC/SD-3, Mr. S. Lander | 1 |
| Commander
Air Force Armament Laboratory
Eglin Air Force Base
Florida 32542
Attention: Code AFATL/DLJW, Mr. A. Beach | 1 |