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1.0 INTRODUCTION 

» 

I 

1.1    BACKGROUND 

The history of digital computing can be meaningfully traced for some 

three decades, to the ENIAC and UNIVAC I systems of the 1940's.    For the 

first half of that period, limitations of computer hardware were the primary 

constraint on the application of digital systems.    In the past ten to fifteen 

years, however, hardware technology has improved to the poir-t where software 

technology has become the limiting factor.    The tremendous speed and com- 

putational power of modern computers has made possible very complex and 

sophisticated systems.   The software imbedded in such systems provides not 

only the mathematical data transformations required, but also provides the 

control functions of many of the system components (such as radars) and 

of the system as a whole.   Therefore, the software is uniquely critical to 

the successful operation and performance of the system. 

The need for improving the techniques of designing, building, testing, 

and managing software has been well understood for several years and has 

resulted in vigorous research and development within the Government, indus- 

try, and the universities.    This has led to the development of improved 

programming languages, development support tools, and management approaches, 

as well as a strong theoretical basis in such areas as queueing theory and 

dynamic programming and many pragmatic development approaches such as struc- 

tured programming and top down design.    While significant improvements have 

been obtained in the state-of-the-art in program design, implementation, and 

testing, much additional research is needed and is being actively pursued — 

especially in such areas as proof-of-correctness, data base design, etc. 

there Is an additional phase of software development which is especially 

critical:    the definition and specification of the functional and performance 

requirements which the software must satisfy.   This phase is especially 

critical due to the very high cost and schedule leverage which exists.    Sim- 

ple errors in the requirements, if not detected until after the software has 

been built, are extremely expensive in terms of time and manpower to correct. 

While it has been apparent for quite some time that the state-of-the-art in 

developing requirements needed improvement, it was not possible to accurately 
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identify and quantify the improvements needed until after the design imple- 

mentation, and test phases became more predictable and controlled.   Thus, 

in the fall of 1973, BMDATC initiated the Software Requirements Engineering 

Program with the objective of developing a set of tools and techniques for 

defining and specifying the software requirements for ballistic missile 

defense (BMD) software.   The result of that research is the Software Require- 

ments Engineering Methodology (SREM) which is described in this report. 

The first step in developing the Software Requirements Engineering 

Methodology was to determine the properties required of a specification 

and of the individual requirements of which ft is composed.   Returning to 

first principles, we note that: 

0 A specification is the set of all requirements which must 
be satisfied, and the identification of the subsets which 
must be met concurrently; and 

t     A specification is neither legally binding nor realizable 
unless it is consistent with both the laws of logic and 
the laws of nature. 

In addition, we observe that 

• A specification defines the properties required of a product 
such that any delivery satisfying the specification satisfies 
the objectives of the specifier. 

Taken together, the above truisms lead to a set of properties which 

a specification must have from a technical point of view: 

• Internal Consiste icy 

• Consistency with the physical universe 

• Freedom from ambiguity. 

Economic and management considerations lead to an additional set of 

properties which a good specification must exhibit: 

• Clarity 

0  Minimality 

t  Predictability of specification development 

• Controllability of software development. 

• 

KMMM HMRM 
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Since freedom from ambiguity is mandatory, we naturally looked to a 

machine-readable statement of the requirements.    It is a known principle 

of computer operation that input ambiguities can be tolerated only insofar 

as they are designed into the software.    Thus, by employing an unambiguous 

language, and by translating and analyzing it with a program intolerant of 

ambiguity, we can ensure an unambiguous statement of requirements.    However, 

the need for clarity of communication strongly suggests a language resembling 

common speech, so that the specification can be read by managers, systems 

enginetrs, and others who are not specially trained in the language. 

To provide an internally consistent specification, analyses of the 

requirements statements are incorporated into the system supporting the 

language.    These analyses include semantic and syntactic decomposition of 

the individual  statements, and analysis of the composite flow of data and 

processing.    Support of consistency with the physical universe is accomplished 

by converting the specification unambiguously into a model  (simulation) 

which can be executed against a model of the real world. 

Finally, to support control of both the specification process and 

software development, a means of selective documentation and analysis of 

the specification is provided.    The integration of these tools with a 

sound and methodical engineering and management approach provides predict- 

ability in the specification process and aids in avoiding overspecification. 

1.2    SCOPE AND CONTENT OF THIS MANUAL 

This manual  is essentially a SREM User's Guide for development of 

software requirements specifications.    It is not a cookbook, in that it does 

not attempt the inherently impossible task of converting the genuinely 

creative aspects of specification development into rote, deductive opera- 

tions.    However, it does define guidelines through which these creative 

operations are recognized, applied and restricted to their natural roles 

in the specification development process.    In this manner, the scale and 

range of creativity can be defined and contained, thus allowing the speci- 

fication development process to be scheduled with some degree of confidence. 

It should be noted that creative features remain in the methodology and as 

a consequence the major development effort must be conducted by experienced, 

knowledgable engineers.    However, SREM has been structured in a manner such 
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that many elements of specification development can be identified and 

isolated to permit junior engineering personnel to perform the details 

of specification statement definition and documentation preparation. 

This manual is organized into two parts: Part I deals with the 

technical aspects of software requirements engineering. The methodology 

is described in detail, step-by-step, in the context of an example begin- 

ning in Section 2. Part II discusses the management of the specification 

development process with emphasis on how the specific features of SREM and 

Its tools can be used to advantage in the management of the activities. 

This document is intended as a User's Guide for the requirements 

engineer. It describes the steps of the Software Requirements Engineering 

Methodology and defines the techniques, procedures and tools to be used 

during application of the methodology steps to the development of a Process 

Performance Requirement Specification. The language (RSL) and tools which 

form the Requirements Engineering and Validation System (REVS) are described 

in Reference [1] and should be familiar to the reader prior to attempting 

to apply the methodology. 

1.3 OVERVIEW OF SREM 

The desired properties of a requirements specification discussed 

above are rather general in nature. These can be precisely defined In 

terms of nine characteristics of a good specification: 

• Communicability • Traceability 

• Testability t Correctness. 

• Consistency • Design Freedom 

• Completeness • Flexibility (Changeability) 

t Feasi bility 

These characteristics, which are self-explanatory, formed the specific 

objectives which Influenced every aspect of the development of SREM.   They 

are repeated here to establish the contex   of our objectives.   Justification 

of the methodology presented here against these goals Is contained In [2] 

and will not be repeated here. 
9. 
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The reader who wishes to learn how to write software requirements 

using the SREM techniques should first study the language and support 

software capabilities described in the REVS Users Manual [1]. However, 

a general understanding can be obtained from this manual alone. To 

facilitate this, a brief overview of RSL and REVS is provided here. 

i.3.1 The Requirements Statement Language (RSL) 

RSL is an extensible language which means that certain primitive 

concepts are built in and the user can use these to define more complex 

language concepts. The primitives are elements, attributes, relationships, 

and structures. From these, we have defined a nucleus of concepts which 

to date have proven sufficient. Future users of the language can add to 

these by means of the extension features as required. These concepts are 

introduced as they are used in this manual, and are presented in full in 

Appendix A. 

The Requirements Statement Language is a user-oriented mechanism for 

specifying requirements. It is oriented heavily toward colloquial English, 

and uses nouns for elements and attributes and transitive verbs for rela- 

tionships; a complementary relationship uses the passive form of the verb. 

Both syntax and semantics echo English usage, so that many simple RSL 

sentences may be read as English with the same meaning. However, the 

precision of RSL, enforced through machine translation, is not typical 

of colloquial speech; as a result, most complex RSL sentences are a some- 

what stylized form of English. 

1.3.2 The Requirements Engineering and Validation System (REVS) 

REVS is an integrated set of tools used to support the definition, 

analysis, simulation, and documentation of software requirements. A key 

concept of REVS is that all requirements are translated into a central 

data base called the Abstract System Semantic Model (ASSM). The RSL 

statements themselves are not stored in the ASSM. Instead, they are 

translated into representations of the information content of the require- 

ments statements. This provides an efficient and flexible means of main- 

taining a large software specification in a relatively small computer 

data base. 
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The ASSM is a relatioral data base providing a common source for all 

requirements analysis and modelling and for documentation. The commonality 

of all data ensures that any combination of extractions from the ASSM at 

any time (e.g., a document and a simulation) will be mutually consistent. 

That consistency is essential to asserting that the requirements modelled 

in validation of the specification are equivalent in every sense to those 

written in the specification. 

REVS provides two mechanisms for entry of data into the ASSM, trans- 

lation and interactive graphics, and a powerful set of tools for analysis 

termed collectively Requirer'nts Analysis and Data Extraction (RADX). 

Translation is the process of converting RSL statements into the ASSM 

information, where the source of the statements may be cards, card images 

on tape, or keyboard entry from a terminal. Interactive graphics (RNETGEN) 

Is a software package executing in conjunction with the the Anagraph color 

graphics console to provide ASSM entry and illustrative documentation. 

It permits entry of structures and referenced elements in a manner parallel 

with the translator, and in fact may be used in conjunction with translation 

in an operational environment. Significantly, RNETGEN allows the user to 

attribute graphical information to his structure, both for multicolor 

display on the Anagraph and for documentation via CALCOMP. 

Information held in the ASSM may be selected and output using RADX. 

That tool is responsive to user direction In selecting either a recreation 

of the information translated Into the ASSM, or the formatted abstraction 

of that information in a user-defined HIERARCHY. The combination of these 

features allows complex selections to be effected, so that all Information 

needed for documentation and much that is essential to configuration manage- 

ment can be abstracted from the system without the encumberance of irrele- 

vant data. Since all data abstractions are drawn from a common ASSM (and 

since that data base is confirmably consistent within itself), even redun- 

dant assertions in data extractions are absolutely consistent with one 

another. 

Both static and dynamic analysis are provided by REVS in order to 

determine the Internal consistency of the ASSM and Its validity with 

respect to the laws of nature. Static analysis is performed in RADX 

which examines the data connectivity through the requirements to determine t 
1-6 
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that the laws of logic and the conventions of the language are fully 

satisfied throughout. Some forms of completeness testing are also accom- 

plished, determining, for example, that constants are provided as required; 

the scope of completeness testing is largely at the discretion of the user, 

since he may define extensive static analyses through RADX commands to 

supplement those inherent in the system. 

No amount of static testing can fully validate a set of requirements. 

To do so, the system they represent must be exercised against a model of 

the environment in which the system is to execute. Such simulations are 

provided by an automated simulation builder (SIMGEN), and a software 

package supporting its execution (SIMXQT). Two different levels of simu- 

lation are supported: analytic, in which high-fidelity models of the 

environment and explicit performance measures are provided, and functional, 

in which the connectivity of the system is validated with non-analytic models. 

1.3.3 The Engineering Methodology 

Historically, the methods for developing a software specification 

have been as numerous as the developers of such documents. In fact, few 

cases can be cited in which any formal methodology could be quoted. Until 

the specification appeared (often after tens or hundreds of man-years of 

effort), nothing was in hand to show that it would be generated. In 

addition, it has frequently been true that the quality of the specification 

even with respect to elementary consistency from one requirement to another, 

could be verified only very late in software development. Since the prob- 

lems were discovered only when the cost of correction was prohibitive, the 

requirements were frequently changed, degrading system performance in 

order to have some workable product. 

The methodology developed within SREP is not only formal, in that it 

provides an explicit sequence of steps leading to the specification, but 

also manageable, in that it illuminates multiple phases for management 

review and analysis. Along the way, it supports early detection of high- 

level anomalies, since it works from the highest levels of software defi- 

nition (processing and data flows) to the most detailed (analytic models 

and d?ta content) in a systematic manner. A key feature of SREM is that 

the processing functions and data communications are considered in parallel, 
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rather than have either follow the other. As a result, the connectivity 

of the system is always complete, and it becomes possible to partition the 

requirements effort among several groups early in the process without 

risking divergence, omissions, or inconsistencies. 

1.3.4 Specification Management 

The management of a specification developed under SREM benefits 

most from the common source in the ASSM for all representations of the 

requirements. Thus, the simulation of the specification and the documen- 

tation of its requirements must be consistent at any time, since both 

have a single source of data which generate each without human inter- 

vention. In addition to a common data base, the methodology itself 

supports an orderly development which can be annotated with milestones, 

recorded on PERT charts, and otherwise controlled with the tools of the 

last several decades to provide predictability and control. This is not 

to suggest that the creativity of the specification process can either be 

scheduled or bypassed; it is still needed, but the methodology isolates 

it into segments with high visibility, supporting management cognizance 

of its progress and impact. 

1.4 APPLICABILITY 

These tools and techniques have been developed to address the needs 

of BMD software development.   With perhaps minor exceptions, however, 

SREM is directly applicable to the specification of the requirements for 

any central software process for a large real-time system.    In fact, 

since the methodology is inherently and deliberately computer Independent, 

the techniques are not limited strictly to software in the form of com- 

puter programs.    The requirements for any process composed of logical 

decisions and computations performed on data can be expressed via SREM — 

regardless of whether the end product will be software, hardware, firm- 

ware, or some combination of the^». 

1.5 TERMINOLOGY 

At the risk of introducing confusion, we have introduced soma non- 

standard terminology.    This has been done for two purposes:    (1) to emphasize 

the different Interpretations given to some concepts, and (2) to emphasize 

1-8 

0 

mmmmmm mwinwi 
■ --*»■ "t mi mil rf*'— 

■;» ^^.-...-w»....- ■!■—!■»■■■ 



:^P' 

the generality of the methodology application.    An example of the first 

is the use of the term ALPHA for a processing step.    The more common term 

"function" would be misleading to some because there is, in fact, a wide 

variety of common interpretations of "function".    To avoid misunderstanding, 

we use the new, unfamiliar term in order to emphasize its specific meaning. 

An example of the second is the name applied to the resulting requirements 

specification which we call  the Process Performance Requirements (PPR). 

No docunientation system currently in use recognizes a document called a 

PPR.    Here, our point is that an^ software requirements specification, 

whether called a B-5 (in MIL-STD 490) or something else in some other 

system, must contain a certain set of information.    That set of information 

is what we call a PPR. 

If this use of new terminology causes confusion, we apologize. 

However, once the techniques are understood, they can be applied to any 

program and the terminology adapted to the needs of the user. 
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PART II - TECHNICAL APPROACH 

1 

( 

2.0 SREM OVERVIEW 

The Software Requirements Engineering Methodology has been developed 

during the past several years in conjunction witn development of the 

Requirements Engineering and Validation System and as a consequence has 

resulted in a clean, clear and comprehensible compatibility between the 

methodology and the instruments it uses to formulate and test a require- 

ments specification. While REVS embodies the language and tools required 

for orderly development of process requirements specifications, SREM 

defines the techniques and procedures within which the tools and sound 

engineering and management practices are comlineü to generate a specifi- 

cation containing the desired properties under a controlled environment. 

SREM encompasses four major areas of engineering activity that begin 

with receipt of the set of information which defines the system level 

requirements on the Data Processing Subsystem. We call this set the 

Data Processing System Performance Requirements Specification (DPSPR). 

The DPSPR as used here includes the Data Processing System Interface 

Requirements Specifications and any external subsystem Performance Require- 

ments Specifications which influence the definition of the Process Per- 

formance Requirements. Using these source documents as a stimulus, the 

requirements engineer becomes involved in the four major engineering 

activities defined by SREM to develop the Process Performance Reciuire- 

ments Specification. These engineering activities are: 

Identification, definition and development of the 
functional requirements. 

Identification, definition and development of the performance 
requirements. 

Development of the Process Performance Requirements Speci- 
fication and 

Development of the process design feasibility demonstrations 
which are generally conducted sequentially and separately. 

ARECKDINS FASS 
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The inherently sequential nature of the steps of the methodology 

appeared at first to make incremental specification of software awkward. 

Experience on many programs, notably Systems Technology Program, has made 

it clear that the new technology should assume that knowledge of require- 

ments will increase continuously throughout the development of the software 

specification, rather tha^i be complete when software requirements are first 

initiated. Thus, the tools and methodology of SREP were developed to 

allow for incremental development of the specification. Specific features, 

such as VERSION and the qualified inclusion of R_NETs in a simulation 

provide the capability either for defining segments of the software require- 

ments at a time, or for augmenting a full subsystem with additional func- 

tions. The consistency and integrity enforced by the system are fundamental 

to success in incremental specification. They ensure that: 

•  Portions of the system specified later than some segments 
will be consistent since their connectivity with the early 
segments was defined at the highest levels; and 

t  Any extension of trie system will be compatible with prior 
specification, since any inconsistency would preclude 
entering the extension into the ASSM. 

During each activity of JREM the features of REVS are utilized to 

control, monitor, test and maintain the evolving collection of requirements 

statements. The functional requirements are defined in RSL statements and 

catalogued by REVS in the ASSM through the TRANSLATOR segment. The accuracy 

and correctness of these RSL statements is verified by the Static Analyzer 

portion of the RADX segment of REVS. Continuity and completeness of these 

RSL statements is analyzed through the SIMGEN and simulation execution 

segments of REVS using algorithms for each functional requirement repre- 

sented as executable PASCAL procedures implemented as BETA models. Next, 

the performance requirements are defined in RSL statements and catalogued 

by REVS in the ASSM through the TRANSLATOR and attached to the functional 

requirements each CONSTRAINS. The accuracy and correctness of these RSL 

statements is again verified by the Static Analyzer portion of the RADX 

segment of REVS. Continuity and completeness of these RSL statements is 

analyzed through the SIMGEN and simulation execution segments of REVS 

using algorithms for each functional requirements, represented as executable 

PASCAL procedures implemented as GAMMA models. Validation of the func- 

. 
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tional and performance requirements testability is confirmed by REVS through 

the Post-Processing Analyzer using executable PASCAL procedures implemented 

as EXTRACTOR and TEST models.    In this way, the existence of a feasible 

design solution for the collection of functional and performance require- 

ments statements is confirmed by REVS through use of candidate algorithms 

used as the GAMMA models, and a model of the system environment and threat 

(SETS).    The models are executed against one another with a variety of 

scenarios to demonstrate the existence of a solution to the requirements 

statement in the AS5M.    Finally, data collected through RADX are formatUJ 

and published as a Process Performance Requirements Specification. 

The preceding information has been provided to introduce and orient 

the reader to the global view of SREM and the REVS instruments used in the 

methodology to create a PPR, and to validate it through automated simulation. 

The detailed description of the SREM technique of specifying software 

functional and performance requirements is presented in Sections 3 and 4. 

The methodology is described in the context of an example which is worked 

out to the degree necessary to illustrate the method.   The example is a 

hypothetical system called Track Loop System (TLS).    TLS is representative 

of the kind and complexity of real BMD systems, and yet is simple enough 

to serve as a comprehend!ble example.    A complete DPSPR (including the 

interface specifications) for TLS is provided as Appendix F.   The system 

is summarized below. 

2.1    THE TRACK LOOP SYSTEM EXAMPLE 

The Track Loop System (TLS) is a subset of a Preliminary Ballistic 

Missile Defense System that is capable of nearly autonomous execution in 

response to external stimuli.    It is the simplest known subsystem with 

properties of interest for software definition, and it is one which has 

been studied extensively, both In the academic literature and in such 

practical programs as Site Defense.    Therefore, it has been selected as 

the testbed for supporting experimentation in development of the methodology 

for software requirements.   A pictorial representation of the TLS is pro- 

vided In Figure 2-1. 
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i 2.1.1    Preliminary Ballistic Missile Defense System 

A Preliminary Ballistic Missile Defense System (PBMDS) has been 

postulated as an environment in which the TLS would execute.    It is a 

generalized representative of the class of systems currently in develop- 

ment, and is particularized for the TLS through representative but non- 

real specifications where required.    In the Conduct Engagement mode, an 

object entering the search region will be detected and designated, tracked, 

discriminated, and engaged (as required) in defense of the ground facilities. 

Those functions are implemented through the Data Processing System (DPS), 

a radar or other sensor, and a means of neutralizing hostile objects.    For 

the purpose of the TLS, only the radar need be defined in detail; other 

system elements are identified only to the extent that they impact DPS 

requirements. 

C 

2.1.2   TLS Requirements 

The TLS is required to perform five system level functions:    1) system 

initialization and engagement initiation, 2) engagement termination, 3) tar- 

get tracking, 4) control of system resources and 5) recording of data during 

the engagement.    The system includes:    the DPS, the Radar and the recording 

media and directly interfaces with the external environment through commu- 

nications and control  (C ). 
o 

In general,  the functions of TLS are initiated by messages from C , 

however, track maintenance and certain control  functions are autonomous. 
2 

The engagement is initiated and terminated by C    messages; during engagement, 

radar data are reported periodically autonomously.    When an image is handed 
2 

over to TLS through C  , it is tracked without further direction, until  it 

is dropped either by command or by determination within the DPS.    This 

configuration thus demonstrates both exogenous and endogenous process 

excitation, and in other ways provides a microcosm of a BMD process. 

t 

2.2   SUMMARY OF APPENDICES 

The Appendices provide a summary of the Requirements Statement 

Language and a complete development of the TLS requirements statements, 

A complete description of RSL is provided in the REVS Users Manual 

(Reference []]). 
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Appendix A simimarlzes the RSL Terminology by providing a copy of 

the RSL nucleus which defines each element of the language and an illus- 

tration of the symbology.   Appendix B contains the set of hand-drawn 

representations of TLS requirements which correspond to the results ob- 

tained from application of the methodology defined in Section 3.1.   Appen- 

dix C represents the TLS kernel which contains the flow and data hierarchies 

developed as a result of the methodology defined in Section 3.2.   Appendix 

D presents the set of R_NETs und the SUBNET produced by the Calcomp capa- 

bility of the interactive graphics segment of REVS.   Appendix F represents 

the complete TLS Data Base maintained in the ASSM as extracted by the RADX 

segment of REVS.   Appendix F contains the TLS source sporifications from 

which the TLS requirements were developed. 

Appendices C through E have been produced by REVS from the ASSM in 

much the same manner that the information content of a software specifica- 

tion would be developed.   Editing of this information Into a specification 

document would be adapted to the particular needs of a specific program. 

A sample PPR specification was produced in Reference [2] and the review It 

elicited has underscored the need for adaptation of the extracted infor- 

rnatlon to the specifics of an application.   Therefore, neither REVS nor 

SREM Is designed to produce a specific specification format.   This simple 

final step is left to the discretion of the user. 
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3.0    FUNCTIONAL REQUIPIMENTS 

It i;  possible and practical  to view a software requirement as de- 

fining either what must be accomplished or how well it must be done.    The 

former is termed a "functional  requirement", since it specifies data process- 

ing functions;    the latter is termed a "performance requirement" since it 

constrains the quality of performance of the function in the system.    In 

another sense, it is useful  to look upon the functional  requirement as 

defining the required output in terms of the available inputs.    In a sir"p1c 

case, a program might be named SUMMER and have a functional requirement of 

generating the sum of a sequence of input numbers (X.).    Defining the output 

after i  inputs to be Y.,  trie performance requirement might be that (Yi+i  - 

Y.) be within E of X.+1. 

Note that while the functional requirement specifies what is to be done, 

and the performance requirement constrains how well  it must be accomplished, 

the means of accomplishment is left to process design; since the means of 

implementation is not specified, the requirements are said to be design-free. 

The form of representation of functional  requirements has evolved in 

recent years, end has culminated in Requirements Networks (R-Nets).    Origi- 

nally, verbal descriptions of functions were attempted, but the verbiage was 

found to be cumbersome and ambiguous.    Later, througn Engagement Logic and 

Functional  Flow Block Diagrams (FFBD's), diagrams replaced many words (the 

pictures being worth thousands of words apiece).    Unfortunately, much of the 

ambiguity was retained.    Notably, it was difficult in practice to trace re- 

quired processing paths; data definitions were incomplete; and the mechanism 

did not lend itself to consistency or completeness analysis. 

To avoid the problem of recognizing processing paths, a thread de- 

scription was attempted; unfortunately, the number of threads in a real 

system proved so large that the (essentially one-dimensional) representa- 

tion was almost as hard to use as English text.    Conversion to thread trees 

somewhat reduced the magnitude of the thread problem, but left the other 

difficulties of undesired specificity (in AND branches), ambiguity (espe- 

cially in data), and awkwardness for analysis. 
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The properties preserved in defining R-Nets were: 

• graphic representation of functional requirements; 

• path orientation for specification of threads; 

• design (implementation) independence. 

In addition, the use of R-Nets permitted the addition of the following 

properties: 

• unambiguous statement; 

• analyzable models; 

• explicit data specification. 

In effect, those six properties became the top-level specification of the 

tools and methodology of the SREM functional specification. 

It is significant t ?" the properties carried over from previous means 

of statement are those relating to subjective measures of legibility,  util- 

ity and design freedom.     The added properties are objectively assessable - 

most readily by demonstration.    Thus, a part of the program has been 

the demonstration of completeness, freedom from ambiguity, and other attri- 

butes through static analyzers of the explicit (machine-readable) Require- 

ments Statement Language (RSL).    By expressing the functional requirements 

in machine-readable form, and by using the tools developed on a variety of 

programs in both industry and academia, it is possible to generate an ulti- 

mate test of a functional specification - a functional simulation. 

A simulator built without human intervention from a specification is 

a total demonstration of the consistency, precision, and completeness (In 

at least a limited sense) of that specification.   With a suitable driver, 

such a simulation provides a useful tool for defining frequency of transac- 

tion and examining the gross aspects of system tradeoffs. 

Fundamentally, there are three different ways of conceiving of soft- 

ware requirements.   The classical approach is functional:   what operations 

are to be performed by the system logic, as embodied in the software.   A 

thread approach is more nearly mechanical:   what are the interfaces and the 

properties of the messages required to be communicated through them.   The 

third concept may be termed philosophical:   what are the realities of the 

world the DPS perceives, and what information about those realities must be 

manipulated.    Clearly, each approach can lead to mechanisms by which 
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requirements may be generated; SREM uses all  three concurrently. 

The functional  approach is embodied in the concept of a Requirements 

Network (N-Net), which defines the processing flow required of the software. 

The mechanical concepts are reflected in the heavy dependence of SREM on 

definitions of messages through interfaces in establishing the top level 

of data hierarchies, and philosophy is preserved in the implementation- 

independent hierarchies defined under entities.    The three viewpoints are 

merged in the simulation-level definitions of requirements as data and 

executable descriptions; the interrelationships of the three points of 

view are realized in the simulation itself.    Sections 3.1 and 3.2 provide 

the methodology for generating the highest level of requirement from each 

perspective, 3.3 carries the definition to the next level and begins to 

interrelate them through RSL statements, and 3.4 completes the methodology 

for their realization in the executable description.    Sections 3.5 and 3.6 

suggest the means for adding descriptive and supportive information to 

support specification management and documentation.    Section 3.7 extends 

the methodology into analytic modelling. 

3.1    PHASE 1  - DEFINITION OF SUBSYSTEM ELEMENTS 

There are two different "structural" elements to be defined in the 

first stage of functional specification.    One is the flow connectivity 

previously represented with Engagement Logic or FFBD's.    The other is new 

with the current methodology, and defines the data hierarchies required. 

Previously, there was no specific methodology even for the definition of 

flow connectivity; the approach used was often to lock an appropriate num- 

ber (typically 3) of the "right people" in a room for a few weeks, and watch 

the product appear.    By adding the data hierarchy to the structures, we have 

been able to identify a step-by-step mechanism for the top-level development, 

in which only the areas requiring creativity are left uncontrolled, and 

those areas are clearly identified. 

The first-time SREM user may find that he has to reorient his thought 

processes in order to effectively use the methodology and the REVS software. 

In time, he will find that the steps herein form a natural progression for 

the job to be done.    He should always keep in mind that his job is to develop 

the requirements for software, and not to design the software itself.    He 

should constantly ask himself, "How can I precisely state what the DPS is 
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required to do in the most general way, so that the designer has the maximum 

range of choice in deriving the solution?" 

A typical specification process usually starts with a notion of the 

processing steps involved and later considers the data needed to support 

that processing. SREM partially reverses this order of consideration. The 

user must first ask two questions: 1) "What data are presented to the UPS 

for processing?", and 2) "What data are expected from the DPS as output?" 

From the answers to these questions, the user derives his concepts of the 

processing steps in between. 

It is suggested that the user accomplish the work at each step 

across the breadth of the project before proceeding to the next step. In 

large projects, involving many people, the needs of communication and 

coordination make this mandatory. In smaller projects, especially those 

involving one or two people, there is often a rush to do all the steps 

for one small area of the system before considering the next area of 

concern. This may be possible for a DPS problem where the processing 

functions are independent, but, at best, many valuable insights into the 

required operation of the DPS as a whole may be lost. At worst, a signif- 

icant amount of rework may be involved. 

* 

3.1.1    Initial Inputs 

The initial inputs required for application of SREM are, typically, a 

system specification and its companion interface specifications.    The objec- 

tive is to generate a complete specification for tta data processing sub- 

system (DPS) from these basic inputs.    Usually, at this early stage of sys- 

tem development the input specifications are incomplete, contain many ambi- 

guities, and leave several issues for future resolution.   The SREM user need 

not wait for all gaps to be filled.    Instead, the user should proceed from 

that which is clearly defined, and use the facilities of the RSL management 

segment to spotlight issues needing resolution.    Assumptions and decisions 

may be necessary, often based on inadequate data.    The SREM user should not 

avoid these, but should note them in the ASSM using the RSL element DECISION 

and its attributes.   The important thing is to make these entries as they arise. 

In this way the SREM user not only leaves a traceable record of current f 
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Status for others, but leaves a valuable record of the evolution of his 

thoughts about the subsystem for his own future reference. 

3.1.2    Interface Definition 

The first RSL entries in the ASSM are concerned with identification 

of the DPS interfaces which CONNECT with other subsystems.    Usually, these 

are the elements which are most clearly defined in the originating speci- 

fications.    Also, it has been found that the interfaces, and the messages 

passing through them, are the key focal  points for progressive development 

of the requirements structure. 

Consider the TLS specification (DPSPR) and interface specifications 

(IFSs) contained in Appendix F0   These documents refer to two subsystems 

which interface with the DPS, namely the Radar and the C    (Command and 
p 

Communications).    We will refer to C   as a subsystem for convenience, even 

though it is a separate system, external to the TLS.    A closer examination 

of the DPSPR reveals that the DPS is to output data to permanent files. 

Although not explicitly required by the specification it will later become 

apparent that it is conceptually useful to define permanent storage as a 

third subsystem separate from the DPS, even though it is embedded in the 

DPS.    For REVS use we will  name the three subsystems SSRADAR, SSC2, and 

SSPERMFL, respectively. 

In the specifications, three separate interfaces between the DPS and 

the radar are mentioned.    Through one input interface the radar sends re- 

turns to the DPS; through another it sends clock inputs to the DPS.    The 

DPS issues commands to the radar through an output interface.   We will name 

these interfaces RADARJN, RADAR_CLOCK_IN, and RADARjOUT, respectively.    The 

names are arbitrary, but should be meaningfully related to the specification 

terminology.    Note that an interface is designated as "input" or "output" 

from the viewpoint of the DPS. 
2 

Similarly, the specifications call out one input interface between C 

and DPS.    We will call this input interface CC_IN.    Data recorded by the DPS 

in permanent storage apparently are never accessed from that source during 

DPS operation.    Therefore, we will link the DPS to our conceptual subsystem 

SSPERMFL via an output interface, DATA_RECORD. 
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At this point, the subsystem and interface definitions, and their 

relationships, can be coded in RSL for entry into the ASSM. Figure 3-1 

shows one way of expressing these data in RSL. Note that the management, 

segment attribute, DESCRIPTION, has been used to explain the nature of 

SSPERMFL. This entry is for example purposes here, and will not be per- 

petuated in the TLS example. However, notations such as this have value 

in a real system development project and should be encouraged. 

Note that the DPS itself is not entered into the ASSM as a SUBSYSTEM, 

since it is inherently the object of all software requirements. 

3.1.3 Message Definition 

Having defined the subsystems, the interfaces, and their connections, 

the next logical step is to examine the discrete blocks of data, or MESSAGES 

which are PASSED BY the interfaces. A MESSAGE is MADE BY its contents, 

whether they be DATA or FILEs. 

One must be careful to separate the concepts of "message name" or 

"message category" from that of "message type". In RSL, the identifier 

associated with MESSAGE refers to the message name or category. MESSAGES 

are distinguished by differences in their data contents. Thus, two blocks 

of data with different data contents, which pass through an interface, 

must be defined as different MESSAGES, hence must have different message 

names. The message name is not contained in the data, it is an external label 

On the other hand, two packets of data may have identical data con- 

tent with different values, and may require different processing to be 

done on the data, within the DPS. In this case one would have two instances 

of the same MESSAGE, but with different "message type". One would further 

expect that one of the data elements in the message would be a message type 

identifier, with a unique value for each type. Otherwise, the DPS could 

not distinguish between types of messages ard perform different processing 

operations on each type. Messages with different names must also have a 

unique identifier in order for the DPS to distinguish between messages. It 

is most economical to require that all messages, whether of different name 

or type, contain a type identifier as a data element, with a unique value. 
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first branch point.    Data elements unique to a specific message are placed 

on the branch unique to that message.   Elements common to two or more mes- 

sages, but excluded from others, are placed on ?n Intermediate branch lead- 

ing only to the appropriate messages.    (The TLS example discussed below will 

illustrate this latter condition.)   The data element names may refer to data 

items, or files.    It is useful to note files as such on the diagram.   A 

file is a collection of instances of data items each instance having the 

same structure.    If desired, the SREM user can note the types of each 

message below the message name.    While the diagram format shown has proven 

useful, it is in no way mandatory.    The user is encouraged to adopt what- 

ever notation or format aids him«   The Important point Is;    organlz« the 
material on paper before writing the RSL inputs. 

A useful rule-of-thumb for using SREM is;    don't define details until 

they are needed for the purposes of the moment.   At thl,   stage of our analy- 

sis, we are interested solely in the elements which are common to, and 

unique to the various message types.    No further detail Is needed.    For 

instance, if it is known that an identifiable group of data is unique to 

a given message, it is only necessary to name the group as a data item on 

the tree.    In practice this is often easy, because the exact composition 

of the group may be ambiguous long after the group Itself Is Identified. 

In any case, the composition of a group is easily defined by the RSL rela- 

tion INCLUDES when that level of detail is needed. 

Now, let us consider the messages in the TLS example, starting with 

those coming from the C2 "subsystem".    Paragraph 3.2 of the TLS C2/DPS IFS 
2 

states that four types of messages are transmitted from the C   to the DPS; 

• Initiate Engagement Mode 

§ Terminate Engagement Mode 

• Handover Image 

• Drop Image Track 

Implicitly common to all these message types Is some sort of message 

type identifier.   Since these are all common messages we will call this 

Identifier COMMANDJD.    Paragraphs 3.2.1 and 3.2.2 of the IFS imply that 

there are no other data elements in the first two message types.   Both of 

these types have a common function, namely to command a change In the 

J 

# 
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operating mode of the DPS.    Thus, they form a single MESSAGE category 

which we will name MODE_CHANGE.    Hence, as shown in the diagram of Figure 

3-3 , we have a message MODE_CHANGE, of two types, with a single data ele- 

ment, COMMANDJD, which distinguishes the two types. 

The remaining two message types contain other data elements, in addi- 

tion to COMMANDJD, as stated in paragraphs 3.2.3 and 3.2.4.    Common to 

both is an element called variously "image designation", or "image desig- 

nator", but which is obviously a single element which we will call H0_ID 

(shortened from HANDOVER_ID).    This additional element completes the defi- 

nition of the "Drop Image Track" type message.    Since the data content of 

this message is unique, it forms a message category by itself.    We will 

name this message TERMINATION because we wish to reserve DROPJTRACK for use 

as an enumerated value of COMMAND_ID. 

The remaining message type is also in a category by itself, which we 

will name a HANDOVER message.    In addition to COMMANDJD and HOJD, para- 

graph 3.2.3 of the IFS states that this message contains a data element 

"image estimated state".    However, paragraph 1.1.2.1a of the DPSPR refers 

to an "estimate of state", while paragraph 1.2.2.1g states that "each 

handoff shall consist of a unique designator, the state vector, and its 

covarlance matrix."   At this point we could be content with defining the 

data element as INITIAL_STATE_ESTIMATE.    But, it seems worthwhile to state 

the main components, since they are not stated In the IFS paragraph where 

one would expect to find them.    Thus, we define two data elements, INITIAL^ 

STATE and INITIAL_COVARIANCE, to represent the vector and matrix, respec- 

tively.   The prefix "initial" is used to avoid confusion with state data 

generated by the DPS in the course of subsequent processing.    Note that 

there is no need, at this point, to define the vector components and ma- 

trix elements individually.    We have now completed, apparently, the defi- 

nition of messages related to the CCJN interface, as shown in Figure 3-3. 

These messages can be defined in RSL as shewn in Figure 3-4.     Although not 

shown here, it is useful to use the capabilities of the management segment 

of RSL to note the source of the state data definitions in the handover 

message, and to point out that the IFS is incomplete or at variance with 

the DPSPR. 
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3.1.4 The Interface Data Hierarchy 

At this point we have partially defined the elements of one of the 

two major data hierarchy types associated with SREM. This Is the "inter- 

face data hierarchy" depicted in Figure 3-5. 

A SUBSYSTEM is CONNECTED TO either an INPUTJNTERFACE or an 0UTPUT_ 

INTERFACE which PASSES blocks of data called MESSAGES. A MESSAGE Is MADE 

BY individual Items of DATA, end/or  by a group of DATA which INCLUDES 

Individual DATA Items, and/or by FILES. In turn, a FILE CONTAINS individual 

DATA items. The RSL concept of FILE Is more general than the usual software 

connotation. It is simply a collection of Instances of data, each Instance 

having the same content of data items, without regard to the details of 

storage, and without ordering unless specified. 

In general, a data Item must have a different DATA name in each hier- 

archy in which It appears, even though the different names refer to the same 

information. The exception Is that DATA o9' FILEs may exist in more than one 

MESSAGE. This Is due to the fact that only one MESSAGE can be active In the 

system at any time. Therefore, the assembly of DATA and FILEs into a MES- 

SAGE is unambiguous regardless of the number of MESSAGES that may be MADE 

BY that element. For example, a MESSAGE PASSED THROUGH an INPUTJNTERFACE 

only exists at the instant of passage (I.e., the enablement of the Interface 

network). An ALPHA accesses not the MESSAGE but the DATA it contains; there 

can be no ambiguity among those DATA Items regardless of the number of MES- 

SAGES which might contain them, since there can be no more than one MESSAGE 

entering the system for a given enablement. 

SREM Is heavily oriented toward an orderly analysis of the Interface 

data hierarchies, in a "top down" direction, as the first step In defining 

DPS requirements. This is a natural direction, as the Interfaces and the 

messages crossing them are usually the most clearly defined elements of the 

originating specifications. As the user develops the data definition In 

progressively greater detail, the definition of specific processing steps, 

or ALPHAs, begins to emerge, as well as the processing flow STRUCTURE which 

links the ALPHAs. 

t 

* 

For INPUT_INTERFACEs, the "top down" cons iaeration of the data hle-- 

archy follows the flow of processing. For OUTPUT INTERFACES, the "top dcwn" 
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direction Is opposite to the processing flow. However, backward tracing 

from the output interface is a valuable tool 'n constructing the steps neces- 

sary to form an output MESSAGE. 

Initially, the internal processing required of the DPS may be ill- 

defined and ambiguous. The requirements engineer will have to draw heavily 

on experience to synthesize the connections between input and output. As 

an aid in this creative process, he should continually ask, "What must be 

done to the data I have in order to provide the output data I need?" 

t 

3.1.5   Preblems of Definition 

"Who wrote this mess?" 

That is the question one is tempted to ask when he encounters sub- 
2 

paragraphs 3.2.5 and 3.2.6 of the C /DPS IPS.    Two Innocent subparagraph 

titles lead to a number of confusing questions, which are typical of pre- 

liminary specifications. 

The titles of subparagraphs 3.2.1 through 3.2.4 correspond to clearly 
2 

defined C to DPS message types, and the content of the text addresses those 

types. The contents of 3.2.5, titled "Message Acknowledgement", and 3.2,6, 

titled "Error Handling", are TBS (To Be Specified). Do these titles Indi- 

cate additional input message types. In conflict with the clear definition 

in paragraph 3.2? If so, what message is being acknowledged by "Message 
2 

Acknowledgement"? No messages from DPS to C have been defined, and no 
2 

requirement for a DPS output Interface to the C system is indicated. In 

fact. Figure F-l of the DPSPR (Appendix F) clearly Indicates that message 

traffic 1$ one-way, from C to DPS. 

On the other hand, a requirement for the DPS to acknowledge receipt 
2 

of any of the four defined C to DPS message types by transmitting a reply 

to C2 may be intended. If so, both the DPSPR and IFS must be modified to 

reflect this, without ambiguity. Similarly, "Error Handling" .night refer 

to either a message type, or to processing in response to erroneous messages. 

Resolution of these questions is important because major differences in DPS 

definition result from the alternatives. 

The SREM user can either stop work until the problems are resolved, 

or can proceed tentatively with the assumptions which make the most sense. 
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If he chooses to proceed, he should take time to note the problem in the 

ASSM and identify what elements are affected by his assumptions.    Figure 3-6 

shows one way of doing this, for the message acknowledgement problem, using 

the RSL management segment.    These entries announce the problem and indicate 

changes needed later if the assumptions are wrong. 

The user may object on the grounds that making these entries and 

recording these questions is tedious and ta^s up his time.    True.   How- 

ever, more of his time would be taken up by other people asking the same 

questions over and over again.    Worse yet, others may make different assump- 

tions or fail to detect the ambiguities.    The result is more time spent 

later on rework.    With the information recorded in the ASSM, the answers 

are available to everyone - even to those who haven't yet thought of the 

questions. 

It is not within the scope of this manual to explore all the aspects 

of traceability and uses of the RSL management segment.   With this brief 

illustration we will drop the subject.    For further development of the TLS 

example, we will assume that the problems are resolved as follows: 

• A message called ACKNOWLEDGEMENT consisting of one data element, 
COMMANDJD, is required. 

? 
• This message is passed from DPS to C   via a new output inter- 

face. CC_0UT. 

• "Error Handling" refers to error processing required of the 
DPS when a message from C2 is not identified as one of the 
four defined types, 

3.1.6   R NET Definition 

A Requirements Net, or R_NET Is used to describe the required flow of 

processing in response to a single stimulus which ENABLES the net.    This 

stimulus may be either the passage of a MESSAGE through an INPUTJNTERFACE, 

or an EVENT defined by arrival at a node on the subject R_NET or on some 

other R_NET associated with the DPS. 

Each INPUTJNTERFACE must enable an R_NET.    Otherwise, DATA in a 

MESSAGE passing the interface could not be processed by the DPS.    Hence, 

there must be at least one R_NET for each INPUTJNTERFACE, since only the 

processing on an R_NET can distinguish between the arriving messages.   Thus, 

the first logical step in defining the R_NETS of the DPS is to define one for 
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each INPUT_INTERFACE.    In the TLS example, three such interfaces have been 

previously defined, so we need to develop three corresponding R_NETs. 

R_NETS may be entered into the ASSM manually from the Anagraph termi- 

nal, or via a card deck of RSL statements.    No matter which method is used, 

the net should be diagrammed on paper first to develop the concept fully and 

minimize revisions. 

As a first example, let us consider the R_NET enabled by interface 

CC_IN.    Following the initial node on the net, one draws the INPUTJNTERFACE 

itself.    It is reasonable then, but not mandatory, to provide an ALPHA for 

common processing of all MESSAGES through that interface, for such purposes 

as validating data common to all MESSAGES.    Thus, we have this typical 

starting structure. 

{   CC IN J> 

VALIDATE 
HEADER 

€ 

It was noted in defining the MESSAGES that they are distinguished by 

the differences in their data contents. Since the input to an ALPHA is fixed, 

there must be a unique ALPHA for each MESSAGE. There also may be several 

message types for each MESSAGE, and it is reasonable to expect different pro- 

cessing, hence different ALPHAs, for each type. While not always true, this 

is usually a profitable assumption at this stage of R_NET development. Fur- 

ther, an additional ALPHA is usually needed for error processing of messages 

not recognized as one of the valid types. Therefore, it is possible to draw 

the following skeleton associated with an input interface with the information 

gained from our preceding analyses of the specifications. (Refer to Appendix 

A for symbols and allowable structures.) 
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INITIATE 
TRACK " 

1 <^jy 
VALIDATE 

HEADER 

* 

TERMINATE_   I 
TRACK   "    1 

*   ACKWyLEXE 

/CC_OUT\ 

INITIATE_ 
ENGAOEHEHT 

TERM:-)ATE_ 
ENGAGEMENT 

PR0CESS_ 
CC ERKOR 

The OR node with multiple branches, as shown, is described in RSI with 
the aid of the CONSIDER phrase. The object of consideration is a data ele- 

ment with an enumerated set of values, in this case the data element C0MMAND_ 

ID. If the value of COMMANDED in a particular message does not match the 

value of any branch, the OTHERWISE branch is invoked. 

The ALPHAs defined above reflect all processing required for a given 

message type. The names chosen reflect a gross conception of the nature 

of the processing. They are subject to change. As analysis proceeds the 

definition of the R_NET will be refined. The first tentative ALPHAs may 

expand, and the branching structure will be modified for all but the sim- 

plest systems. Hence, the SREM user should not rush to enter an R_NET into 

the ASSM at the first opportunity. He should wait until the definition of 

the net has stabilized and possible relations with other R_NETS are 

comprehended. 

Where the previous effort was purely mechanical, it is now necessary 

to apply some creativity to complete the interface network. There are two 

fundamental approaches to that completion from the available documentation: 

thread tracing and sentential analysis. Both should be used so that com- 

pleteness of statement is assured. 

0 

• 
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The first operation is thread tracing.    By reading the source speci- 

fications, the processing steps required may be traced from an input port 

to their logical  termination.    When all  paths have been traced, not only 

for the input networks but also for those developed in the following para- 

graphs, the set of processing steps  (ALPHAs) required should be complete. 

Sentential analysis provides a cross-check by separating each specification 

sentence into its nouns (which correspond to system data) and its verbs 

(which correspond to ALPHAs).    The two sets of ALPHAs should be identical; 

if not, they are made to be through refinement of the diagrams. 

The result of specification analysis is completion of the paths from 

each INPUT_INT£RFACE.    For example, there is a requirement in the TLS that 

each MESSAGE received from the CC be acknowledged.    Therefore the AND node 

is added, an ALPHA is provided to FORM the MESSAGE:    ACKNOWLEDGEMENT, and 

the appropriate OUTPUTJNTERFACE:    CCOUT is indicated.    Continuing the 

process, we arrive at the following diagram.    It is a complete R_NET for 

RESP0NSE_T0_CC requirements for TLS except that it does not yet reflect 

inter-network connectivity.    Note that each hranch ends at either an 0UTPUT_ 

INTERFACE, or at a TERMINATE symbol. 

7 
VALIDATt 

HEAUER 

I *   ACKNOWLEDGE 

/cC_0UT \ 

INITIATE 
TRACK " 

TERMINATE 
TRACK 

/ DATA \ 
\ RECORD / 

T~ 
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\ RECORD/ 

INITIATE 
ENGAGEMENT 
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ENGAGEMENT 
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In tracing input networks, many of the MESSAGES to be output by the 

software will have been isolated.    However, not all messages for any 0UTPUT_ 

INTERFACES, nor indeed any MESSAGE for some of them, may be defined.    Thus, 

there is an inverse operation for output networks which trace back from an 

OUTPUTJNTERFACE through individual ALPHAs for each possible MESSAGE to the 

earliest operation required of it in the specifications. 

This procedure is not necessary for the network above.   All MESSAGES 

passed by CC_IN require an ACKNOWLEDGEMENT message response to be passed by 

CC_0UT.    All HANDOVER messages clearly require a TRACKJNITIATION message 

to be passed by DATARECORD.    The above network completely describes the 

only conditions where these responses are generated within the DPS.    A 

TRACKJTERMINATION message is passed by DATA_RECORD in response to an input 

TERMINATION message passed by CC_IN.    However, this case represents only 

one condition where a TRACKJTERMINATION message is generated by the DPS. 

The remaining conditions will occur on other R_NETs.   But, all of these 

responses have one thing in common.    Each is a single MESSAGE passed through 

a specific OUTPUTJNTERFACE in response to a given MESSAGE or class of 

MESSAGES passed by a single specific INPUTJNTERFACE.    These are examples 

of "synchronous processing":    the input is joined to the output by a direct 

path of processing steps, and none of the data used are modified by process- 

ing performed on any other path. 

In the context of R_NETs, logical connectivity is maintained, not only 

by a continuous path through one R_NET, but perhaps through additional R_NETS, 

by means of EVENTS.   An EVENT is an alternate means for enabling an R_NET. 

A single logical path is formed by the path leading to the event on the 

enabling R_NET and continuing on a path on the enabled R_NET.    Such paths 

represent "synchronous processing" only if none of the data used are modi- 

fied by an independent path., 

"Asynchronous processing" is a more complex concept to grasp.    This 

type of processing is implicit when two R_NETs are related by data, but 

without the "logical connectivity" represented by flowing tokens.   An exam- 

ple Involving three simple R_NETs will serve to Illustrate the basic forms 

of "asynchronous processing."   The example is defined 1n Figure 3-7. 

Whenever a subsystem SSI passes an XIN message through the DPS inter- 

face SSIJN, the R_NET named XJ/ALUE is enabled.    This R_NET accepts the 
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R NET- X VALUE 

MESSAGE: XIN 
MADE BY DATA: NEW X 

NEW X VALUE AVAILABLE 

\7 
R_NET:  ZZJALUE 
(EVENT:  DLLTAJ) 

NEW Z AVAILABLE 

SQUARE Z :z=z' 

(E)DELTA T 

A 

R NET: Z VALUE 

\z 

SS2 IN 

MESSAGE: YIN 
MADE BY DATA: Y 

Z«X+Y 

SS2 OUT 
MESSAGE: ZOUT 

MADE BY DATA: Z 

Figure 3-7 Three Asynchronous RJIETs 
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data NEW_X In the message and, if NEW_X satisfies certain conditions, up- 

dates the value of a global variable, X, to the value of NEW_X. Whenever 

a second subsystem, SS2, passes a YIN message through the interface SS2_IN, 

the R_NET named ZJ/ALUE is enabled. This R NET accepts the data Y in the 

message and adds it to the current value of X defined in the data bast to 

form Z (defined as a global variable for this example). The value of Z Is 

contained in the ZOUT message sent to SS? via SS2_0UT, but is also retained 

in the DPS because Z is defined as globa.' data.    Further, a third R_NET 
2 

named ZZ_VALUE periodically enables itself, to compute Z , by means of an 

event on its own structure and an associated time delay.    The value of Z 

which is used is, of course, that which is current in the data base.    There 

is no specific order of enablement required of the R_NETs. 

When the reader experiments with this system a little, he will 

quickly realize that the values of Z and Z   depend not only on the inputs X 

and Y (or their previous values), but also on the sequence of enablement of 

the R_NETs.    Thus, within a given time interval, there is not a one-to-one 

correspondence between the latest values of X and Y and the latest values of 

; 

Z and V 
-.2 

For that matter, no such correspondence exists between Z and 

A simple example of "asynchronous processing" in the TLS example 

might be the use o^ radar clock time.    The sole fun:tion of the R_NET 

called RADAR_TIMING is to accept timing inputs from the radar and update 

the global variable RADAR_CLOCK.    If another R_NET needed radar time, it 

would use the value of RADAR_CLOCK.    This value does not reflect the cur- 

rent time, but rather the time at which the radar formed the message which 

was last accepted by the R_NET called RADARJTIMING. 

The mejor, and most complicated, example of "asynchronous processing" 

In the TLS 1s the relationship between radar returns and the next set of 

radar Cümmands.    Synchronous tracking would require that data from the last 

radar return from an object be used to produce the next succeeding radar 

order related to that object.   Asynchronous tracking allows use of the last 

data available In the DPS, even though more current data may be coming soon 

from the radar.   Asynchronous tracking allows less stringent DP response 

times, better time-line usage, and permits gradually degraded response with 

Increased system load.   Synchronous tracking, on the other hand, places 

3-24 

-w— 



x 

stringent constraints on the DP which lead to saturation and loss of track 

under relatively light load. 

The definition of an asynchronous processing concept is subtle and 

difficult, and is fraught with traps for the unwary. No cookbook solutions 

can be offered for this creative process. First, the R_NETs must be traced 

both forward from the input interfaces and backward from the output inter- 

faces. The data and logical connectivity to fill the gaps between must then 

be added through an active and creative engineering thought process. Note 

that SREM does provide a framework of organization which fosters consistency, 

and ultimately leads to a simulation which can detect errors of concept. 

While the SREM user is filling in the gaps in the DPS definiticn, Se 

must constantly remember that he is not designing software. Rather, he is 

defining the requirements which that software must satisfy. When he has 

invented a construct which appears to meet the needs, and which survives 

simulation, he should view it only as an example which demonstrates that 

a DPS solution to system requirements is feasible. It is probably not the 

only valid solution, nor should it be specified as such. The SREK user 

should constantly reexamine his constructs to ensure that they embody the 

requirements in the most general statements he can formulate. If he pur- 

sues details beyond the point needed to clearly state the required proper- 

ties of the DPS, he is overly constraining the design. 

When the user reaches an impasse in further defining the R_NETs, he 

will find it profitable to define the "entities" with which the DPS is con- 

cerned, and the data hierarchies associated with them. These are discussed 

in 3.1.7 and 3.1.8. These steps will sharpen his concepts of the data flow 

within the  DPS, and should suggest ways of bridging the gaps in the processing. 

Then the user can return to complete the R_NETs, and possibly add intervening 

R NETs. 

> 

3.1.7 Entity Definition 

One of the most powerful concepts used in SREM is that of an "entity". 

This concept allows the user to express more clearly the role of the DPS 

requirements in the same operation, and the RSL facilities provided tend to 

enforce that perspective. An "entity" is simply a thing, or category of 

3-25 

"'-"- 
ÜBT 



,^, ^—-»——A-*^--«-. 

things, In the external world about which the DPS must collect, process, 

and maintain data.    Entities are closely tied to the reasons for the exis- 

tence of the system and its DPS.    They are usually implicit in the wording 

of the originating specifications, although the new SREM user must train 

himself to recognize those which are of significance. 

For instance, the basic purpose of the TLS is to gather data on the 

position and velocity of designated objects within its detection range in 

order to predict the position and velocity of those objects at some future 

time.    This suggests that "objects" might be an entity.    However, "desig- 

nated objects" would be a better candidate, because the TLS is not expected 

to detect any objects other than those the C   System orders it to track. 

If we were considering the TLS as a whole, this might be a reason- 

able choice.    But, we are focusing on the DPS.    The DPS is not "aware" of 

objects because it does not perceive them directly.    The radar performs 

the sensor functions.    Thus, the DPS is only aware of what the radar per- 

ceives as objects and reports to the DPS.    The nomenclature of the DPSPR 

calls these "images".    Further reading of the DPSPR shows that much of the 

DPS processing is concerned with the proper classification of these images, 

and eventual elimination of those which do not correspond to real objects 

(ghosts), or which are redundant images of the same object.    During the 

time that an image is considered an "image in track", a certain instance 

of data items must be maintained in the DPS and be associated with the 

proper image.   When the DPS decides that the image is probably redundant 

or a ghost, or should drop track on that image for other reasons, the DPS 

must maintain, for a time, a different set of data about that image. 

Thus, we have a notion of a general category of things called "Images" 

which are of importance to the DPS.    In SREM, such a category is called an 

ENTITy_CLASS.   Hence, for TLS we will define an ENTITY_CLASS named IMAGE. 

We are aware of two types of IMAGE, distinguished by the different data 

associated with each type.    Therefore, we will designate two ENTITYJTYPEs, 

called IMAGEJNJRACK, and DROPPEDJMAGE.   Each IMAGE of which the DPS Is 

aware has an Instance of data uniquely associated with It.    This Instance 

may be composed of DATA Items and FILEs.    The composition of the Instance 

Is a function of ENTITY_TYPE and, by definition, should be different In some 

manner from at least one other type in the class.   However, data common to 
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all  types may be associated with the ENTITY_CLASS itself.    Two types may 

have identical data associated with them.    These usually imply a tran- 

sition from a common earlier state (e.g., an ENTITY_JYPE I is set to 

either ENTITYJTYPE J or ENTITY_TYPE K depending on some decision in the 

DPS). 

A second ENTITY_CLASS is defined in TLS for each radar PULSE.    The 

pulse is an external  phenomenon (an electromagnetic signal) about which the 

data processor is found to need data, and which exists in multiple copies. 

Therefore, it satisfies the criteria for consideration as an ENTITY_CLAS5. 

The fact that data must be  'remembered' about each pulse while it is in 

transit, and the required data themselves, derive from the IPS through the 

process of defining the functional requirement.    Thus, when considering the 

determination of range to the target, it is necessary to know both the start 

time of the range gate relative to the start of transmission and the time 

within the gate that the signal was detected.    The IPS asserts that the 

radar return contains the time within the gate; the start time of the gate 

must therefore be 'remembered' by the data processor from the command which 

gave rise to the return.    Thus, the data required on a pulse in transit have 

to do with the transmission parameters relevant to different pulse waveforms. 

Consideration of data and logical usage differences leads to the definition 

of four ENTITYJTYPES  named T1-T2, T3, RETURNED_PULSE, and LOST_PULSE within 

the ENTITY_CLASS PULSE. 

3.1.8   The Entity Data Hierarchy 

The second major data hierarchy associated with SREM is the "entity 

data hierarchy" depicted in Figure 3-8. The means for manipulating data 

contained in an entity herarchy differ from those used with the interface 

hierarchies of 3.I.4. 

An ENTITY_CLASS is COMPOSED OF one or more ENTITY_TYPE5.    If there 

are data elements common to all ENTITY JYPES, then the ENTITY_CLASS ASSOCIATES 

these DATA items and FILEs.    For data elements specific to an entity type, 

the ENTITYJTYPE ASSOCIATES the applicable data elements.    Once again, the 

DATA item is the lowest element in the hierarchy.    Each FILE CONTAINS items 

of DATA. 
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The chief characteristic of the entity data hierarchy is the unique 

method of manipulating data which is implemented in RSL. There is no way, 

in RSL, for a user to specify that a FILE be created or destroyed by an 

ALPHA. FILEs may only be modified by ALPHAs (although instances in files 

are created or destroyed in the BETA models). RSL provides a mechanism to 

require that an ALPHA is to CREATE or DESTROY the knowledge that an instance 

of an ENTITY_CLASS exists in the environment. When an ALPHA creates a new 

instance of an ENTITY_CLASS, a new instance of all the common DATA and FILEs 

ASSOCIATED WITH that class is initialized. The ALPHA may then assign proper 

values to those data elements. These data elements are retained throughout 

the life of the instance. 

The ALPHA can also SET the ENTITYJTYPE. When this is done, an instance 

of all the specific DATA and FILEs ASSOCIATED WITH the ENTITYJYPE is 

initialized and can be assigned proper values. When the instance of ENTITY_ 

CLASS is SET to a new ENTITYJYPE, the specific data elements unique to the 

old type are destroyed and a new instance of data elements specific to the 

new type is initialized. 

As the data processing system gathers information about an entity, it 

may first identify the entity as being of one ENTITYJTYPE, and then another. 

Instances of a class of entities thus evolve from one type to another, but 

instances of one class (e.g., IMAGEs) can never evolve into another class 

(e.g., PULSEs). Each ENTITYJYPE therefore COMPOSES just one ENTITY_CLASS. 

An instance belongs to one ENTITY__CLASS after an ALPHA CREATES it, and it 

belongs to the last ENTITYJYPE to which an ALPHA SETS it. Eventually, an 

ALPHA may DESTROY (knowledge of) the instance, and all data associated with 

the instance vanish. Although the RSL statements for CREATE and DESTROY 

refer to the name of the ENTITYjCLASS, the operation is applicable only 

to a single instance. 

This concentration of the requirements for creation and destruction of 

knowledge about external entities, rather than the mechanics of data struc- 

tures, allows the user to focus on the requirements for the DPS as a part 

of the system in which it is embedded. Otherwise, the user would tend to 

stray into process design issues, such as when to set up FILEs. 
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As was done with MESSAGES in 3.1.3, it is useful to diagram the entity 

data hierarchies before coding them in RSL.    Figure 3-9 shows diagrams 

of the TLS hierarchies associated with the two ENTITY_CLASSes, PULSE and 

IMAGE.    When the user decides that the definitions are stable and ready to 

enter in the ASSM, the entries can be coded in RSL as shown in Figure 3-10 

for IMAGE. 

3.1.9    Independent FILEs 

When the user is defining the processing requirements, he may become 

aware of the need for data sets which fit in neither a transient Interface 

data hierarchy nor a permanent entity data hierarchy.    These should have 

the properties of 1) multiple Instances of a data item or data group, and 

either 2) a need to be retained as GLOBAL data, or 3) a need to be ordered 

In some particular way, or 4) a need to be temporarily maintained as a class 

of data meeting some selection criteria.   These needs can be satisfied by 

defining an Independent FILE.    This FILE exists in the DPS at all times, 

even though it may be empty.   Although instances in the file can be created 

and destroyed within BETA and GAMMA executable descriptions of ALPHAS, the 

FILE itself cannot be created or destroyed.    It can only be modified.    FILEs 

can be INPUT TO ALPHAs or OUTPUT FROM ALPHAs or both. 

The distinction between the concepts of ENTITY_CLASS and Independent 

FILE often may appear fuzzy.   The key distinction is that a FILE is a set of 

data, an ENTITY_CLASS Is the subject of data. 

In the TLS, there exists a file of constants called WAVEFORMJABLE. 

This FILE Is part of the site-adaptation data for the system, and Is inde- 

pendent of real-time input.   Two other TLS examples of Independent FILEs 

are those called COMMAND and CANDIDATE.    These files are dynamic (I.e. 

change in response to real-time data).   Both of these files are used to 

ttltct Instances from ENTITY_TYPE IMAGE_IN_TRACK and to order the extracted 

data to determine new instances of ENTITY_CLASS PULSE.   Thus, these files 

are part of the data bridge between the two ENTITY CLASSes in TLS. 

If ■ —„^, 
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3.1.10   Summary of Phase 1 

This section has outlined a general  procedure for defining the ele- 

ments needed to specify the requirements for the DPS.    At this point many 

of the definitions are gross and tentative.    The constructs may have been 

entered into the ASSM as they were defined, or they may just exist on paper. 

This choice is up to the user, and depends upon the size and nature of the 

DPS problem, and the number of people involved. 

The following "top down" sequence of steps has proved to be the most 

effective: 

1) Define the subsystems relevant to the DPS. 

2) Define the interfaces connecting the DPS to the sybsysterns. 

3) Establish the messages passing through the interfaces, and 
define their data contents. 

4) Develop the R_NETs originating at input interfaces. 

5) Construct processing steps, tracing backward from the output 
interfaces when necessary. 

6) Define the entities of concern to the DPS, and the associated 
data hierarchies. 

7) Define independent files as necessary. 

8) Refine the R_NETs and create new ones, as needed, to link 
the input and output interfaces. 

Some variation on this sequence may be appropriate to certain problems, but 

the basic principle is to move from known interfaces to internal processing 

steps, using the data definitions as a vehicle. 

The ALPHAs defined at this point will be primitive, and will  reflect 

high level  concepts of the nature of the processing.    In Phase 3 (Section 3.3) 

they will be modified, and expanded into subnets, as necessary.    But first. 

Phase 2 (Section 3.2) is needed to consolidate the information developed and 

to ensure that it forms a consistent basis for detailed development. 

3.2    PHASE 2 - EVALUATION OF THE KERNEL 

Before completing the definition of the functional requirements struc- 

ture, it is prudent to enter the information derived in Phase 1 (3.1) into 

the ASSM and check the results, both manually and with the aid of Require- 

ments Analysis and Data Extraction (RADX) procedures.    Therefore, all infor- 

3-33 



mation from the paper constructs that has not been previously entered for 

convenience should be loaded into the ASSM at this time.   This nucleus of 

information, called the "kernel", constitutes the irreducible minimum needed 

to document the major elements of the functional requirements definition. 

In this section we will suggest particular points for the user to check, 

and will refer him to TLS examples in Appendix C. 

3.2.1    Data Naming Conventions 

RSL has been designed to force the user into precision of thought, 

with respect to data definition, at an early stage.   A single item of infor- 

mation may require several different DATA names in the course of its exis- 

tence in the system.   These are applied as the usage of the information and 

its properties of transience or permanence dictate.   Naming is a tedious 

process, and may lead to a variety of awkward names, but it is mandatory 

in the development of a coherent, unambiguous DPS model.   While the RSL 

translator will detect most common ambiguities jr conflicts, the user should 

continually refine his understanding of the data flows within the DPS In 

order to catch more subtle errors. 

The entity data are the first to display the constraints imposed by 

RSL naming conventions.    In general, it is necessary that a data element 

exist in only a single hierarchy; the sole exception Is that it may exist 

In multiple MESSAGES.   Thus, we find that the Identifier of an image being 

tracked Is both the TARGETJD ASSOCIATED WITH PULSE and the IMAGEJD ASSO- 

CIATED WITH IMAGE.   The two values are the same when the TARGETJD Is 

assigned, but note that the destruction of an Instance In one ENTITY_CLASS 

is unrelated to the existence of an Instance of any other.   The meaning of 

a single Identifier, If the IMAGE Instance were destroyed while the PULSE 

was still active, would be Indeterminate.    It Is only to resolve such Inde- 

terminacy that the naming rules are Imposed; here, the "same" information 

is given different names for the two occurrences In different hierarchies. 

The identifier used for an IMAGE is given to the RESPONSEJXKC R_NET 

as a H0_ID (handover Identifier).   The same name is applied to a drop-track 

command when a TERMINATION message is sent, and also any of three MESSAGES 

through the DATA_RECORD Interface, whenever Information about that image Is 

updated.   However, when the Information Is to be held In global storage f 
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(such as for an entity), a difference name must be applied (IMAGE_ID for the 

IMAGE class, TARGET_ID for PULSE).    The requirement for renaming to avoid 

ambiguity is needed in order to construct an executable description (Section 

3.4). 

3.2.2   Structural Data Definitions 

R_NETS can be entered into the ASSM in two ways.    Using REVS in the 

ONLINE mode, the nets can be entered interactively via the Anagraph terminal 

at the ARC facility.    Using REVS in the OFFLINE mode, the nets can be speci- 

fied by an input deck of RSL statements.    If the offline mode is used, cer- 

tain DATA which are integral  to the R_NET structure must be defined with 

appropriate statements before the set of statements which define the STRUC- 

TURE of the R_NET can be integrated.    Prior data definition is not necessary 

if the Anagraph terminal  is used, but should be accomplished within Phase 2 

for completeness of the kernel. 

Structural DATA elements include those which are referenced in FOR EACH 

statements, CONSIDER statements associated with an OR node, and conditional 

expres?icns associated with an OR node.    The latter two types are called 

"selection variables."    Other DATA which should be defined at this point are 

those which DELAY the occurrence of an EVENT or ORDER a FILE. 

The FOR EACH statement may be absolute or conditional.    The object 

upon which the statement operates can be an ENTnY_CLASS, ENTITYJTYPE, or 

FILE.    While the FILE is usually associated with one of the interface or 

entity hierarchies, assumed to be defined previously, some FILFs may exist 

independently from any hierarchy, as discussed In 3.1.9.    The user should 

verify that all elements used in FOR EACH statements are declared in the 

ASSM prior to the R_NET which uses them.    Elements used in the condition 

part of a conditional  FOR EACH must be defined as discussed below for 

selection variables. 

Selection variables require added definition at this point because 

of the mechanics of the RSL translation process.    In addition to declara- 

tion of the DATA name, its TYPE must be identified.    Further, if the TYPE 

is ENUMERATION, the RANGE of values must be defined before the RJET STRUC- 

TURE can be translated. 
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While not mandatory, It is recommended that the LOCALITy and USE 

attributes for selection variables also be defined at this point, and be 

verified manually.    This Is because REVS consistency analysis does not 

Include DATA referenced In conditional expressions.   Thus, the software 

cannot detect definition errors until execution of a BETA or GAMMA simu- 

lation.    Figure 3-11 shows RSL Inputs which are typical TLS examples of 

selection variable definition. 

The Identification of selection variables within a systm Is usually 

straightforward.     These are simply the decision parameters whose value 

determines whether one series of processing steps or an alternative Is to 

be done.    When multiple message types pass through an INPUTJNTERFACE, the 

type Identifier contained In the message Is, with no known exceptions, a 

selection variable (e.g.,COMMAND_ID In the CCJN Interface hierarchy).   Since 

the data Input to an ALPHA Is fixed, and since each message type Implies 

either different data content or different processing, there must exist 

at least one unique ALPHA for each message type. 

3.2.3   Entering R_NETs In the ASSM 

The required Information about each R_NET Is Its name, enabling 

mechanism, and structure.   In the current version of REVS, names assigned 

to R_N£Ts, SUBNETS, and ALPHAS must be unique within the first eight 

characters.    For all other RSL elements, names must be unique over a 

field cf sixty characters, which Is the maximum name length allowed. 

The enabling mechanism of an R_NET Is either a single INPUTJNTERFACE 

or a single EVENT.    If a message passing through an Interface Is the mecha- 

nism, then the first statement In the R_NET STRUCTURE Is an INPUTJNTERFACE 

name declaration.    In the case of EVENT, the EVENT name does not appear In 

the STRUCTURE of the enabled R_NET.   However, It appears In the STRUCTURE 

of the enabling R_NET at the appropriate point. 

When the R_NET Is entered Into the ASSM via card Input, data elements 

which appear In the STRUCTURE must be predefined In the ASSM.   These date 

are discussed In 3.2.2.   The R NET STRUCTURE Is discussed In 3.2.4. 

1 
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3.2.4    The STRUCTURE of ?.n R NET 

Flows through the system are specified in RSL as Requirements Networks 

(R_NETs).    R_NET flow STRUCTURES consist of nodes, which specify processing 

operations, and the arcs which connect them.    The processing nodes are ALPHAs, 

which are specifications of functional processing steps, and SUBNETS, which 

are specifications of processing flows at a lower level in the hierarchy. 

The processing nodes are single-entry, single-exit. 

In addition to the simple sequential  flow whi^h may be represented by 

connecting this type of node, more complex flow situations are expressible 

in RSL by the use of structured nodes which fan-in and fan-out to specify 

different processing paths.    These nodes are variations of AND and OR nodes, 

and include an OR with a CONSIDER statement.    The REVS Users Manual contains 

an extensive discussion of these structural elements anu should be reviewed 

by the new user.    The TLS examples in the appendices of this volume should 

also be studied to understand the format of various structures.* 

*NÜTE: In the version of REVS used to generate this document there were two 
differences between acceptable STRUCTURE inputs and listed outputs.   These 
concern the CONSIDER and FOR EACH statements.    In each case the element-type- 
names, which are automatically inserted in the output, must be omitted in the 
input.    Where the output list would read: 

CONSIDER DATA:    MODE 

FOR EACH ENTITY TYPE:    RETURNED PULSE 
DO ALPHA:    SUMMARIZE USAGE END 

the input statements must read: 

CONSIDER MODE 

FOR EACH RETURNED PÜSE 
DO     SUMMARIZE_USFat UIQ 

The current version of REVS will accept inputs in either format. 

m 
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Indentation is used in the STRUCTURE declaration to facilitate reading, 

hen entering the declaration on cards, using REVS in the offline mode, the 

user should follow the indentation format typified by the REVS output exam- 

ples in the appendices.    This is not mandatory, but it is strongly recommended 

in order to check the output against the input.    In this way, the user 

can quickly detect where REVS has interpreted the STRUCTURE in a different 

way than the user visualized. 

In addition to describing the processing flow of an R_NET, the STRUC- 

TURE declaration may also serve to declare the existence of the named ALPHAs 

and SUBNETS.    The STRUCTURE of any SUBNETS should also be declared at this 

time.    Further definition of the attributes of ALPHAs will  take place in 

Phase 3. 

If Anagraph or CALCOMP plots of the structures are desired, graphic 

data must be entered for each R_NET.    Currently, this graphics information 

can only be entered from the Anagraph terminal.    The Anagraph plots are 

useful while working interactively at the terminal.    The CALCOMP plots are 

more useful for permanent retention, and for documentation, as in Appendix D. 

• 

3.2.5 Checking the Kernel with the Aid of RADX 

As part of the auditing process, it is useful here to define a set of 

RADX directives which assist the engineer in determining the completeness 

of his entries into the ASSM at this stage. Two operations are recommended 

which are simple, but revealing: 

1) APPEND R_NET STRUCTURE, ENABLED. 

LIST R_NET. 

2) APPEND SUBNET STRUCTURE, REFERRED. 

LIST SUBNET. 

These directives generate a listing of the RNETs with their structures and 

enabling events or interfaces.    Clearly, each R_NET requires a structure, 

and an enabling condition, and any failure of that class is detectable here. 

Similarly, the correctness (agreement with intention) of E^NT naming may 

be confirmed. 
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While it is possible to confirm the structures by inspection of the 

RADX output, most people find reading the equivalent diagrams (generated 

by RNETGEN) simpler; since they are equivalent representations, either the 

CALCOMP illustration or the RADX listing may be employed for the purpose. 

(Note that viewing the Anagraph output at the terminal is less useful since 

all element names are truncated to three characters and since branching 

criteria are not immediately displayed.) 

It is in data analysis that the RADX tools are most useful at this 

stage.    Let us define two hierarchies for data output: 

HIERARCHY FILES = FILE CONTAINS DATA     DATA INCLUDES DATA. 

HIERARCHY DATUM ■ DATA INCLUDES DATA. 

Now, we wish to identify the DATA items and the FILEs which are not linked 

with higher data levels (entities, or messages). One way derives from the 

following definitions: 

SET A = ALL WITHOUT ASSOCIATED. 

SET ß = A WITHOUT MAKES. 

SET C = B WITHOUT CONTAINED. 

SET D = C WITHOUT INCLUDED. 

Now the RCL (RADX) directive:    LIST B WITH HIERARCHY FILES will generate 

both the file names and the data comprising each such file where the file 

is not associated with an entity and does not make a message.    Such a free- 

standing file should be a conscious product of requirements engineering and 

not an accident. 

Free-standing DATA may be extracted by:   LIST D WITH HIERARCHY DATUM. 

Note that the HIERARCHY DATUM is used here as a convenience to limit the 

output to the names of the top data level not constituting part of a hier- 

archy; it does not in fact cause INCLUDED DATA to be output, since the SET 

from which the extraction is effected (0) has no members which are INCLUDED 

in any DATA.    To complete tracing of the data hierarchies, yet another SET 

would have to be defined containing the DATA extracted by LIST D WITH HIER- 

ARCHY DATUM, and that SET would then be LISTed with HIERARCHY DATUM. 

Typically, free-standing DATA and FILES may be local or global con- 

stants.    Each item extracted by the methods outlined above should be assessed 

to determine whether in fact It should be isolated or Is properly a constituent 
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of an entity or interface hierarchy. 

Finally, the following HIERARCHies may be defined, and each may be 

used to complete the RADX directive: LIST ALL WITH HIERARCHY  . 

HIERARCHY ENTITY = 

ENTITY_CLASS ASSOCIATES DATA 

ENTITY_CLASS ASSOCIATES FILE 

ENTITY_CLASS COMPOSEP ENTITYJTYPE 

ENTITYJTYPE ASSOCIATE? DATA 

ENTITY_TYPE ASSOCIATES FILE 

FILE CONTAINS DATA 

DATA INCLUDES DATA. 

HIERARCHY INFACE = 

INPUTJNTERFACE PASSES MESSAGE 

MESSAGE MADE DATA 

MESSAGE MADE FILE 

FILE CONTAINS DATA 

DATA INCLUDES DATA. 

HIERARCHY OUTFACE - 

OUTPUTJNTERFACE PASSES MESSAGE 

MESSAGE MADE DATA 

MESSAGE MADE FILE 

FILE CONTAINS DATA 

DATA INCLUDES DATA. 

The result is to extract from the ASSM the complete kernel of the require- 

ments, as illustrated in Appendix C. 

3.2.6 Summary of Phase 2 

This phase has been a period of consolidation, between the initial 

definitions of Phase 1, and the completion of those definitions in Phase 3. 

Nonetheless, the end of Phase 2 is an important milestone in the total effort. 

For the first time, the kernel of the requirements construct has been 

loaded into the ASSM as a whole. Many of the early mistakes and inconsis- 

tencies will be detected by the RSL translator during the entry process. 

More important, the requirements engineer can now use the facilities of the 
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Requirements Analysis and Data Extractor (RADX) to aid him in checking his 

work. 

The introductory uses of RADX, in 3.2.5, will be built upon and ex- 

panded in Phase 3.    Eventually, the user will compile his own library of 

RADX procedures he values.    In future efforts he can use these "off-the- 

shelf" procedures as part of th-i evaluation sequence which he finds most 

productive. 

3.3   PHASE 3 - COMPLETION OF THE FUNCTIONAL DEFINITION 

The work through Phase 2 has provided definition of the higher-level 

elements of data hierarchies; definition of R_N£Ts, their STRUCTURES, and 

their enabling events; and declaration of the existence of ALPHAS and their 

place in the R_NETs.    This information has been entered Into the ASSM and 

has been subjected to some form of checking. 

It now remains to complete the definition of these elements to pro- 

vide a basis for construction of an executable simulation.    Each ALPHA must 

be defined In terms of Its data transactions, and definition of all DATA 

which are known to be INPUT TO or OUTPUT FROM an ALPHA must be completed. 

In general, the DATA which can be described at this stage are either those 

global to multiple R_NETs, or those local DATA which make messages.   The 

need for additional local data Internal to the R_NETs will be discovered 

In the development of executable descriptions (Section 3.4).   At that time 

the need for definition of lower levels of the existing data hierarchies 

may be apparent. 

During this process, the original primitive ALPHAS will often need 

redefinition.   Additional ALPHAs can be added, or the original ALPHAs 

can be redefined as SUBNETS, which prtserves traceablllty and minimizes 

modification of the R_NETs.   Occasionally, the STRUCTURE of the net may 

change, or new nets may be added, as the processing requirements evolve. 

The following phase will be devoted to construction of a functional 

simulation, using BETAs, which are executable descriptions of the ALPHAs. 

In preparation, the user should bear In mind that he Is going to execute 

a simulation of the requirements for the DPS «oftware, and not of the soft- 

ware itself.   His primary goal In this simulation Is to ensure that the 

requirements are complete and consistent. 
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Since the major interactions of the R_NETs have been defined in the 

previous stages (Sections 3.1  and 3.2), it is now practical  to partition 

the work into essentially isolated efforts for  several engineers.    Each 

parcel must consist of one or more R_NETs, each considered by a single 

engineer or group.    Since the relationships among R_NETs have already been 

defineu, the interactions among parcels will be restricted to joint agree- 

ment on the content of communications (usually individual  DATA) between 

pairs of engineers, and need not be coordinated extensively over the 

system as a whole.    The sole exception to that rule is in naming conven- 

tions, where a possibility of conflict exists, and where control  is useful. 

3.3.1    Data Transactions 

The user presumably had some concept of the DATA which were to be 

INPUT TO and OUTPUT FROM each ALPHA when he named the ALPHA and placed it 

in the STRUCTURE of an R_NET.    After all, the inputs and outputs determine 

the processing needed to be done and dictate the function of the ALPHA. 

Now the gross concept must be precisely defined.    During this process, 

additional data definitions or more detailed definition of existing hier- 

archies may be necessary. 

As the user develops the data transactions and the hierarchy transi- 

tions discussed in 3.3.3, he will be forced to consider the processing 

steps within each ALPHA which transform the inputs into the required out- 

puts.    He may wish to note his conceptual ideas of the procedure into the 

ASSM, in English text, using the RSL attribute DESCRIPTION.    A structured 

English description of the processing can later be used for reference during 

development of the BETAs which are written in PASCAL.    If, at this point, 

it becomes apparent that significant logical branching must occur within 

the ALPHA, the ALPHA can be redefined as a SUBNET.    In this manner the 

logical structure requirements are made explicit in the STRUCTURE definition 

of the SUBNET and new ALPHAs are defined to specify the operations within 

this structure. 

As «n example of the thought process involved with data transactions, 

consider the ALPHA named INITIATEJTRACK.    This ALPHA is on the CC_RESPONSE 

R_NET and is on the processing path activated by a HANDOVER message of type 

HANDOVERJMAGE (= COMMANDJD).    Since COMMANDJD was used as a selection 

•- 
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them as OUTPUT FROM the ALPHA. Figure 3-12 shows the declaration, in RSL, 

of all the data transactions of TRACKJNITIATE. From our concept of the 

processing, it appears that the original ALPHA is adequate and no additional 

ALPHAs, or redefinition as a SUBNET, are required. 

3.3.2 RADX Evaluation of Data Transactions 

In addition to confirming entry of attributes and relationships through 

RADX directives (e.g., LIST ALPHA.), it is now useful to extract the specific 

cases which are potential errors, or are at least anomalous to the point 

where they demand special attention. For example, it is possible for an 

ALPHA either to have no INPUTS or to have no OUTPUTS, or even to have neither, 

without its being erroneous; but the normal case is that each ALPHA will have 

both. Having completed the RSL declarations about the ALPHAs at this stage, 

it is meaningful to define the following: 

1) SET A = ALPHA WITHOUT INPUTS. 

2) SET B = ALPHA WITHOUT OUTPUTS. 

3) SET C = A WITHOUT OUTPUTS. 

Remembering that the declaration of a SET generates a count of its members, 

we may discover that SET C is empty; that would indicate that each ALPHA has 

either an INPUTS or an OUTPUTS relationship (or both). However, in TLS, 

several ALPHAs have neither. In particular, the error-processing elements 

are required to exist, but have no other specifications; therefore, they 

have no accesses defined. Similarly, the ALPHA:ACKNOWLEDGE exists solely 

so that the ACKNOWLEDGEMENT message may be FORMED; since the processing 

modifies no DATA, the ALPHA has neither INPUTS nor 0U1PUTS. 

In general, an ALPHA without INPUTS is one which operates on the sys- 

tem as a whole, rather than on information retained by the DPS. For example, 

ENGAGEMENTJNITIATION and TERM_ENGAGEMENT accomplish their purposes by the 

occurrence of the appropriate message; only the value of the selection var- 

iable (COMMANDID) is required to initiate them, and those ALPHAs execute 

independently of the state of the global data base. 

In general, an ALPHA with INPUTS but without OUTPUTS is a signal of 

a specification problem. Trivially, the only reason for acquisition of DATA 

for processing is that it may effect some generation of DATA for OUTPUT. We 

have not yet been able to construct a valid case for an ALPHA which must 
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accept INPUTS but is not required to provide OUTPUTS. 

Since the work described in 3.3.3 and 3.3.4 often proceeds in parallel 

with that of 3.3.1, we will address those topics at this point.    We will 

return to a more detailed look at RADX evaluation in 3.3.5. 

3.3.3   Hierarchy Transitions 

In addition to the elementary data relationships, each ALPHA may 

modify DATA within hierarchies in a variety of ways.    Given the engineer's 

concept of the action of the ALPHA, it is possible to express its action on 

the hierarchies in terms of the RSL directives:    CREATES, DESTROYS, SETS, 

and FORMS. 

There are two fundamental generative operations that an ALPHA may 

express:    CREATES and FORMS.    They declare the need for a new instance of a 

named ENTITY_CLASS, or for a named MESSAGE, respectively.    In response to 

either directive it is required that the specified INITIALJ/ALUEs for all 

associated DATA with such values be assigned.    This is done automatically 

when REVS acts upon an INITIALJALUE definition.    If an INITIALJALUE is 

not defined, REVS will assign a default value according to the TYPE of the 

DATA.    These values are (0, 0.0, FALSE, first defined value in the RANGE) 

for the respective types (INTEGER, REAL, BOOLEAN, ENUMERATION).    Once the 

DATA associated with the instance are initialized, they may be assigned 

current values by assignment statements within the BETA. 

When an instance of an ENTITY_CLASS is CREATED, it will normally be 

SET by the generating ALPHA.    Otherwise, only the DATA and FILEs common to 

all  types in the class can be defined.    As the instance persists in the 

system, its type will evolve (i.e., be SET to a different type).    The ALPHAS 

in which such changes are effected are normally obvious from the R_NET.    In 

each case, such an ALPHA SETS ENTITY TYPE to the appropriate ENTITYJYPE 

name. 

For example, the discussion, in 3.3.1, of the ALPHA named TRACK_ 

INITIATE revealed that the ALPHA performs all of the actions above.    It 

FORMS the MESSAGE named TRACKJNITIATION.    Also, it first CREATES an in- 

stance of ENTITY_CLASS IMAGE, then SETS the instance to ENTITYJYPE IMAGE_ 

IN_TRACK.    Figure 3-13 shows how these declarations are written in RSL. 
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When there is no further need for the DPS to retain data related to a 

specific instance of an ENTITY_CLASS, or to be aware of the existence of the 

instance in the external world, the (instance of the) ENTITYjCLASS can be 

DESTROYED BY an ALPHA.    The disposition of a PULSE in the TLS depends on 

whether it is a LOST_PULSE or a RETURNEDJULSE.    For a LOST_PULSE, the 

instance is DESTROYED (no longer needed) after it has been accounted for 

in the ALPHA named ALLOCATE_AND_CONTROL_RESOURCES.    For a RETURNED_PULSE, 

the instance is not destroyed until  it has also been accounted for in the 

ALPHA named SUMMARIZEJJSAGE.    Note that, in this case, the instance of 

PULSE can be DESTROYED in either of the two ALPHAS, but not before it has I 
been accounted for in both.    This Ijs because the R_NETs in which the ALPHAs 

reside execute independently of one,another, and no specific sequence is 

otherwise required. 

C 

• 

3.3.4 Further Data Definition 

Through the previous work many, if not most, of the DATA in the system 

have been named, and their relationships with ALPHAs have been established. 

In order to complete the requirements specification and construct an execut- 

able simulation, however, the "attributes" of the DATA must be defined. 

The three principal attributes are LOCALITY, TYPE, and USE. In 

general, the user will have a fair idea of these properties when he first 

declares the DATA element. His concept is further sharpened when he sees 

how the ALPHAs utilize the DATA. 

3.3.4.1 Locality 

DATA and FILES may have different required accessibility in the sys- 

tem.    The range of accessibility of an item is denoted by the attribute 

LOCALITY, which may have values of LOCAL or GLOBAL.    Items of DATA or FILEs 

which are LOCAL are associated with the R_NETs in which they are used and 

are unknown outside of these R_NETs.    Implicit in this definition is a con- 

cept of permanence:    LOCAL DATA exist only during the invocation of the 

R_NET to which they are LOCAL.    They are created when the flow token is 

generated at R_NET ENABLEment and cease to exist when the flow token leaves 

that R_NET.    ALPHAs which use LOCAL DATA and FILEs may appear on more than 

one R NET; it is possible for a single DATA item or a FILE to be LOCAL to 
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more than one R_NET.    These are different instances of the DATA or FILE 

which have no relation to each other, each has a completely separate exis- 

tence, controlled by the R_NET in question. 

GLOBAL DATA and FILES are accessible by more than one R_NET and exist 

over more than one R_NET invocation.    DATA and FILEs which are ASSOCIATED 

with an ENTITYJTPE or an ENTITY_CLASS are tied to the entity instances to 

which they belong.    They are created when the instance is CREATED and last 

until the instance is DESTROYED.    Items which are not ASSOCIATED with any- 

thinr are permanently in the global data base, and may exist throughout the 

duration of the system. 

Thus, DATA and FILEs which belong to an interface data hierarchy are 

implicitly LOCAL.   DATA and FILEs associated with an entity data hierarchy 

are implicitly GL0B/1L.    DATA and FILEs not associated with either type of 

hierarchy have no implicit locality.    Even if the locality is not explicitly 

defined, an item exists in the data base at all times, accessible to the 

R_NETs, but in an "undefined" state.    Failure to declare LOCALITY can pro- 

duce weird consequences later, if the element involved has no implicit 

locality.    On the other hand, declarations are not needed if the locality 

is implicit.   At best they are redundant, and at worst they are misleading 

because REVS overrides any declaration in the ASSM which conflicts with the 

implicit locality. 

While the user may clearly identify which DATA and FILEs need LOCALITY 

declarations, and which do not, it is easier and less risky to use a RADX 

procedure to do this.     One such procedure is discussed in 3.3.5. 

For the remaining items which need a LOCALITY declaration, the user 

should consider the source of the item.    If an independent DATA item or FILE 

is not OUTPUT FROM some ALPHA on an R_NET previous to its being INPUT TO 

some other ALPHA on that net, It certainly cannot be LOCAL to that R_NET. 

If the item is OUTPUT FROM an ALPHA on some other R_NET, the item is cer- 

tainly GLOBAL unless an error has been made in the INPUTS and OUTPUTS defi- 

nitions.    In many cases the correct locality is obvious.   The inability to 

find a source for an independent item on any of the R_NETs Indicates a 

specification deficiency. 

o 
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If a DATA item or FILE is OUTPUT FROM an ALPHA on a net other than 

that which uses the item as input, the indicated LOCALITY is GLOBAL.    If 

no other R_NET generates the item, then the origin of the item is on a 

previous execution of the R_NET which uses it. 

If the ALPHA which OUTPUTS an item does not clearly precede the ALPHA 

which INPUTS it, care must be taken to ensure that the item has an initial 

value.    The default values assigned by REVS in the absence of an INITIAL_ 

VALUE declaration were described in 3.3.3.    If these are unacceptable, the 

user must declare the correct INITIAL_VALUE.    Note that "clearly precede" 

in the context above means that the ALPHA which OUTPUTS the item is either: 

1) before the ALPHA which INPUTS it, on the same path within an R_NET, or 

2) precedes the ALPHA which INPUTS the item on a single path linked by 

enabling EVENTs. 

3.3.4.2    Type and Range 

Other details about DATA must be known for purposes of simulation. 

BETAs and GAMMAs are executable code which are meaningful only if more is 

known about the DATA than should be stated as a requirement.    In addition, 

a hierarchy of DATA may be stated as a requirement, but a functional  simu- 

lation  (using BETAs) may employ DATA only part way down the hierarchy.    That 

is,  the simulation may use one DATA to represent a part of an entire hier- 

archy.    The characteristics of this summarized DATA must be stated for the 

simulation to execute.    Since an analytic emulation (using GAMMAs) might 

not employ the same DATA, the type information for BETAs may be different 

from that for GAMMAs.    The only DATA that can be used in the BETAs and 

GAMMAs and have their values communicated between ALPHAs, however, are those 

whose TYPE has been defined. 

The attribute TYPE contains the necessary information for typing of 

the DATA.    This attribute may have values REAL, INTEGER, BOOLEAN, or ENUMERA- 

TION.    A DATA item with type enumerated corresponds closely to one with a 

scalar type in PASCAL; that is, it has values which are denoted by identi- 

fiers.    The legal values for ENUMERATION types are given in the RANGE attribute. 
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The TYPE declared need not correspond to that of the actual data In 

the real DPS. Rather, It should be chosen to reflect the purposes of the 

functional and analytic simulations, and the fidelity required in those 

simulations. For instance, in the real DPS, unique alphanumeric text strings 

may be used to identify objects. If these are an open set, we cannot repre- 

sent them by a DATA element with TYPE; ENUMERATION because that defines a 

closed set. However, for purposes of simulation, the DPS property of interest 

is the ability of the DPS to distinguish between unique identifiers. Thus, 

by defining the identifier as TYPE: INTEGER, and representing each object 

or class of objects by a unique integer value, we have an adequate repre- 

sentation for our purposes. 

Similarly, in TLS, identifiers such as HOJD, IMAGEJD, and RADAR_ 

0RDER_ID are represented by integers. In the real TLS some symbolic code 

convention, which is irrelevant to us at this stage, would be used. In 

like fashion, message identifiers such as COMMAND__ID which form a closed 

set are represented as DATA with TYPE: ENUMERATION. The values defined 

are for explanatory purposes. The values in the actual TLS would :erta1nly 

be different. 

Since the appropriate TYPE for DATA is strongly dependent on its USE, 

the choice may be deferred until the USE has been determined. 

. 

3.3.4.3 Use 

Further qualification of the use of a DATA item in the simulation 

is given by the attribute USE. The value of this attribute may be BETA, 

GAMMA, or BOTH denoting that the data item is the lowest level in the data 

hierarchy which will be used in the corresponding simulation. 

Frequently, even the first declaration of a DATA item makes clear 

Its USE in the system. For example, if the element is known to correspond 

to a single unit of information (bit, byte, or word) In implementable soft- 

ware, then It Is probably to be used in BOTH beta and gamma models. Nor- 

mally, a selection variable will be in this class. Similarly, it Is likely 

that an Item which INCLUDES others in the detailed modeling, but which may 

be treated as a whole for functional modeling will have USE:BETA. It Is 

unlikely that any element with USE restricted to GAMMA will oe recognized 

at this stage of development, since Its declaration would be primarily In 
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support of analytic simulation; the exception would occur if a highly de- 

tailed interface specification gave low-level DATA definitions, for which 

higher levels would suffice in a functional model. 

For example, in the TLS definition,  INITIAL_STATE is a single DATA 

element with USE:BETA.    In the external world "state" is defined by a posi- 

tion vector, a velocity vector, and perhaps an acceleration vector, each 

with three components.    Such detail  is not needed for the functional simu- 

lation.    However, an analytical simulation has need for these elements. 

Thus, eventually each of the components will be defined, with USE:GAMMA. 

Similarly, for the functional simulation, INITIAL_C0VARIANCE can be repre- 

sented by a single element with USE:BETA.    Later, its matrix components can 

be defined with USE:GAMMA when they are needed for analytic simulation. 

3.3.4.4    Values 

Values are the ultimate object of defining DATA.    At the lowest level 

in a hierarchy of DATA the requirements engineer may specify the attributes 

UNITS, MAXIMUMJALUE, MINIMUMJ/ALUE,  iNITIAL_VALUE, and RESOLUTION.    The 

attribute UNITS is given separately from the various types of values, both 

to maintain consistency with their specification and to enable requirements 

engineers to indicate the minimum possible information about a DATA'S value, 

its UNITS.    In nearly all cases an engineer will  know whether he is talking 

about milliseconds or microseconds even if he is unsure of the value.    Sepa- 

rating UNITS from the values enables him to provide the best information that 

he has at the initiation of defining a DATA item. 

Since the attribute? UNITS, MAXIMUMJ/ALUE, MINIMUMJALUE, and INITIAL_ 

VALUE are not vectors, the definition of different UNITS and values of a DATA 

set above the  lowest level in the hierarchy is not possible.    RESOLUTION 

describes the required maximum value of the least significant bit for the DATA 

in units described in the UNITS attribute. 

3.3.5    Evaluation of the ASSM Using RADX 

The Requirements Analysis and Data Extraction (RADX) function of REVS 

is the tool used by the requirements engineer to observe the state of the 

Abstract System Semantic Model.    RADX provides commands that allow the per- 

formance of several  functions: 

3-53 

ÜWi 
"MMaiMHWnHHIBM 



■■■    ■ ■ 

f 

identification and listing of elements in the ASSM that do 
or do not meet some criterion. 

listing of ASSM elements in such a manner as to be suitable 
for inclusion in requirements documents. 

listing of RSL element, attribute, and relation definitions. 

analysis of the ASSM to identify requirements that are 
ambiguous or inconsistent. 

The requirements engineer should actively use RADX to extract specific 

data for analysis and to detect inconsistencies and omissions in the ASSM, 

This capability is also used by technical managers to evaluate progress of 

the development activity, and by independent analysts who may be assigned 

to verify the work 3f the requirements engineer. 

The following subparagraphs discuss typical uses of RADX in evaluating 

the work done in Phase 3, and in identification of work remaining to be done. 

These examples are not meant to be comprehensive, nor are they the only way 

to do the task.    A comprehensive catalog of RADX procedures would be a very 

thick document, and,    there are many ways to do a specific extraction task 

effectively.    Other examples can be found in the REVS Users Manual.   Our 

purposes here are merely to suggest some of the uses of RADX, and to encourage 

the user to creatively use these facilities In his work. 

3.3.5.1    RADX Evaluation of Data Origin and Usage 

A DATA item may be entered into the data base in any of the following 

ways: 

1) It may be OUTPUT BY an ALPHA; 

2) It may be INCLUDED IN a DATA OUTPUT BY an ALPHA; 

3) It may be CONTAINED IN A FILE OUTPUT BY an ALPHA; or 

4) It may MAKE a MESSAGE which is PASSED BY an INPUTJNTERFACE. 

(Let us include in the last category DATA INCLUDED in DATA which MAKES such 

a MESSAGE and DATA CONTAINED IN a FILE which MAKES such a MESSAGE.) 

We wish to extract exceptions to the above rules, since they consti- 

tute apparent cases of 'creative memory' — data extractable from the global 

data base which never need to be entered.   An obvious and legitimate case of 

creative memory Is a constant with a defined INITIALJ/ALUE; in fact, DATA 

constants are properly defined in just such a manner.   But any non-constant \ 
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data item which fits in none of the above categories is an apparent error, 

and worthy of detailed analysis. (Note that a DATA element which is never 

INPUT TO an ALPHA and which does not MAKE a MESSAGE which is PASSED BY an 

OUTPUT_INTERFACE is also worthy of scrutiny, and may be similarly analyzed 

at this itage. Among the DATA which will properly be detected at this step 

are those REFERRED by an R_NET-- e.g., selection variables.) 

With the aid of the hierarchy definitions in 3.2.5 we can construct 

RADX procedures to isolate the DATA described above. First we will define 

RADX commands which are used in both cases: 

SET INALPH - DATA THAT IS INPUT BY ALPHA. 

SET OUTALPH - DATA THAT IS OUTPUT BY ALPHA. 

The additional commands below will provide a listing of DATA INPUT TO 

an ALPHA which does not have an INITIAL VALUE, and is not in a MESSAGE 

PASSED BY an INPUTJNTERKACE, and which is not OUTPUT FROM some ALPHA on 

some R_NET. 

SET INMSG = ALL IN HIERARCHY liirACE. 

SET INDATA = INMSG AND DATA. 

SET INOUT = INALPH MINUS OUTALPH. 

SET INOUT = INOUT MINUS INDATA. 

SET INOUT = INOUT WITHOUT INITIALJ/ALUE. 

LIST INOUT WITH HIERARCHY DATUM. 

If, instead, we use the commands below, we will get a listir.q of DATA 

which is OUTPUT from an ALPHA and not INPUT TO an ALPHA and not in a MESSAGE 

PASSED BY an OUTPUTJNTERFACE. 

SET OUTMSG = ALL IN HIERARCHY OUTFACE. 

SET OUTDATA = OUTMSG AND DATA. 

SET OUTIN » OUTALPH MINUS INALPH. 

SET OUTIN = OUTIN MINUS OUTDATA. 

LIST OUTIN WITH HIERARCHY DATUM. 

Doubtlessly, the imaginative user can invent more efficient and 

powerful procedures to do the same task, as well as others which investi- 

gate other aspects of data usage. The flexibility of RADX command capa- 

bility allows many valid approaches to the same goal. 
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,).:),rj,^    KAÜX Evaluation of File Activity 

In 3.3.1 we dis.,.ssed the interpretations to be made when a FILE is 

INPUT TO and/or OUlPüT FROM an A.PHA.    RAUX commands can be used to isolate 

various INPUT/OUTPUT combinations for verification.    The following are 

useful. 

SET A - FILE WITH  INPUT. 

SET 13 = FILE WITH OUTPUT. 

Al C = A OR b. 

SET U = FILE MINUS C. 

SET E - B MINUS A. 

SET F -- A MINUS B. 

SET G = A AND B. 

Set i) consists of FIEEs whicn are- neither INPUT TO nor OUTPUT FROM an 

Al PHA. 

Set L consists of FILEs which are only OUTPUT FROM some ALPHA. We can 

assume that additions were made to tne FILE for some purpose, "ihe only valid 

purpose, other than for INPUT TO some ALPHA, is to MAKE an output MESSAGE. 

The following RAUX commands provide a listing of the remainder which do not 

MAKE an output MESSAGE and which should be checked for errors. 

SET h = E MINUS OUTMSG. 

LIST II. 

Set F consists of FILEs which are only INPUT TO some ALPHA. This indi- 

cates that the FILE instances are accessed, and possibly deleted, within the 

ALPHA. . Since the FILE is not OUTPUT FROM an ALPHA, it cannot originate with- 

in the UPS. Therefore, it must appear in an input MESSAGE. The following 

RAUX commands provide a listing of the remainder which do not MAKE an input 

MESSAGE and which should be checked for errors. 

SET I = F MINUS INMSG. "-■-..._ 

LIST I. 

Set G consists of FILEs which are both INPUT TO and OUTPUT FROM some 

ALPHAS, not necessarily the same ALPHA. These FILEs, together with the 

ALPHAs which operate on them, can be extracted by the following commünds. 

0 

lr 
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APPEND FILE INPUT, OUTPUT. 

LIST G. 

This listing should be examined to ensure that the FILEs are operated 

upon as intended. Particular attention should be paid to ALPHAs which both 

INPUT and OUTPUT the same FILE. It is these ALPHAs which either modify the 

instances within a FILE, or add new instances when an appropriate one cannot 

be found. 

3.3.5.3 RADX Evaluation of Entity Activity 

It is also useful  to verify that ENTITY_CLASSes and ENTITYJTYPEs are 

manipulated appropriately within the system.    Each ENTITY_CLASS must be 

CREATED BY some ALPHA.    Each ENTITY_CLASS should be DESTROYED BY some ALPHA. 

If it is not destroyed, there must be a valid reason for retaining the asso- 

ciated data.    Further, each ENTITYJ"YPE within an ENTITY_CLASS must be SET BY 

some ALPHA.    The members of the following sets are apparent deviations and 

should be examined. 

SET A = ENTITY_CLASS WITHOUT CREATED. 

SET B - ENTITY_CLASS WITHOUT DESTROYED. 

SET C = ENTITY TYPE WITHOUT SET. 

The following hierarchy is useful  to determine the actions on each 

ENTITY_CLASS in the system. 

HIERARCHY ENTITYCHECK = 

ENTITYJCLASS CREATED BY ALPHA 

ENTITY_CLASS COMPOSED ENTITYJTYPE 

ENTITY_TYPE SET BY ALPHA 

ENTITY_CLASS DESTROYED BY ALPHA. 

The following RADX command will  provide a structured listing of each 

instance of the hierarchy suitable for further analysis. 

LIST ALL WITH HIERARCHY ENTITYCHECK. 

3.3.5.4 RADX Evaluation of Data Attributes 

Data extraction can be of major support in development of the execut- 

able description, although it is not a major contributor to assessment of 

the result. The fact that RADX cannot penetrate the contents of a BETA to 
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determine its consistency with declarations of relationships and attributes 

is of little significance, since the consistency and completeness are 

thoroughly analyzable with the static analyzers, and since the crucial test 

of simulation generation is then executable. 

One of the key operations at this stage of specification development 

is defining the LOCALITY, USE, and TYPE of all DATA required for functional 

simulation. LOCALITY is the easiest of the attributes to specify: 

1) Using the definitions of 3.2, LIST ALL WITH HIERARCHY 
ENTITY generates a collection of GLOBAL DATA; 

2) Using those definitions, LIST ALL WITH HIERARCHY INFACE and 
LIST ALL WITH HIERARCHY OUTFACE generates a collection of 
LOCAL DATA; 

3) LIST B WITH HIERARCHY FILES generates the collection of 
DATA CONTAINED IN FILEs which are not linked to higher levels. 
Since each such file is inherently either local or global in 
scope, all CONlAINED DATA have the same LOCALITY as their 
parent; and 

4) LIST D WITH HIERARCHY DATUM identifies the top level of 
DATA which are not linked into higher levels. Each such 
item is then assigned a LOCALITY, which is also the value 
assigned to any DATA item INCLUDED in that top level. 

Since the system provides an override of any LOCALITY declaration for ASSO- 

CIATED DATA or those which MAKE a MESSAGE, any LOCALITY provided by the user 

would be at least redundant, and at worst misleading. Therefore, it is 

recommended that each DATA item and FILE generated by (1) and (2) above be 

checked to ensure that no LOCALITY is declared. Similarly, it is best to 

declare the LOCALITY for each FILE derived from (3), and then to omit LOCALITY 

for each DATA item obtained. Finally, each DATA item obtained in (4) is 

assigned a LOCALITY, and the same LOCALITY is assigned to each DATA item 

included in it. 

Data extraction also supports assigning USE tu the DATA items. Define 

SET A = DATA WITHOUT INCLUDES. Each item in that set must have USE GAMMA 

or BOTH. It is given USE BOTH exactly if it is to be a part of the BETA 

model of some ALPHA. For each item with USE:BOTH, no DATA above it in the 

hierarchy can have a USE assigned. Note that USE:B0TH and USE:GAMMA may 

be applied only to the lowest level of DATA defined. Once it is determined 

that a given lowest-level DATA item will not be included in the functional 

model, an item above it in the hierarchy must be assigned USE:BETA. That 
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i item may be anywhere above the one with USE:GAMMA, except that it cannot 

also INCLUDE (either directly or through a chain of INCLUDES) any element 

with USE:BOTH. 

By defining a SET A = DATA WITH USE, the engineer determines the items 

requiring TYPE. It is not mandatory at this stage to TYPE DATA which are to 

be used only analytically, so that the subset, required for functional simu- 

lation can be obtained through SET B = A WITHOUT USE = GAMMA. Through 

examination of the STRUCTURES and BETAs, the TYPE of each such item is 

defined, and enumerated DATA are also assigned RANGE. 

Note that it is at least misleading, and sometimes likely to induce 

errors, to define attributes for elements which do not require them. Thus, 

a LOCALITY:LOCAL declaration for an item ASSOCIATED WITH an ENTITY_TYPE 

would be overridden by REVS, but would be entered into the ASSM and would 

appear to the reader of the specification to control the DATA item. Such 

a condition would clearly degrade legibility of the document, and should 

be avoided. The data extractor can be used to determine if any over- 

specification of this sort has been attempted. (Note .hat the ASSM for 

TLS as documented in the Appendices includes such cases. At the time of 

it: development, the capabilities of the extractor were more limited than 

at present, and manual methods were employed to complete the data base.) 

I 

3.3.6 Summary of Phase 3 

This section has outlined a general procedure for completing the 

definition of the functional requirements for a DPS. The following steps 

were done: 

t  The data transactions of each ALPHA were defined. 

• The hierarchy transitions performed hy  each ALPHA, if 
any, were defined. 

§  The user has redefined ALPHAs into SUBNETS, has added 
ALPHAS, and has modified R_NLT STRUCTURES if the Phase 
2 baseline was inadequate. 

• The user has evolved a clear concept of the processing 
done within each ALPHA, as a starting point for develop- 
ment of BETAs. 

t  The definition of all necessary DATA and FILE attributes 
has been completed, to the extent possible without 
developing BETAs and GAMMAs. 

^ 
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•     The completeness and consistency of the ASSM has been 
analyzed and verified with the aid of RADX capabilities. 

We have reached another milestone.    The definition of the functional 

requirements is hypothetically complete.    In Phase 4 we will develop the 

executable simulation needed to verify that assertion. 

3.4    PHASE 4 - DEVELOPMENT OF FUNCTIONAL MODELS 

Specification of the functional  requirements entails development of 

functional models which define the outputs of processing in terms of its 

inputs.    In essence, the only things known to a data-processor specifica- 

tion are the contents of its interface messages; all other information 

should be defined within the specification in terms of mathematical opera- 

tions on the input data stream.    Such a definition is in effect a model 

of the processing operations required, and with sufficient fidelity would 

provide the analytic models of Section 4.    Where the model  reflects only 

the gross characteristics of the transformation required, 1t may be 

said to be functional; such models in REVS are termed BETAs.    The BETA and 

GAMMA representations of the DPS must be driven by a system level simulator 

which SREM assumes to exist, due to the prior need for such a simulator in 

deriving the originating specifications.    The TLS example presumes exis- 

tence of ä System Environment and Threat Simulator (SETS). 

3.4.1    Betas 

A BETA is a PASCAL procedure which models the transformation of the 

DATA ani FILEs  INPUT 10 an ALPHA into the DATA and FILEs OUTPUT FROM it. 

The function of a BETA is to implement the data flow required for func- 

tional  simulation in order to determine the sufficiency of a functional 

specification.    To that end, the fidelity of each BETA is dependent on the 

capabilities required of the functional simulator, and in particular on tiie 

data contents determined for SETS. 

Generation of a BETA is more or less creative depending on the fidelity 

desired.    At the simplest level, assignment statements may be employed in 

place of complex mathematical operations.    In TLS, the ALPHA: UPDATE_STATE 

is modeled by assigning to STATE (a DATA item ASSOCIATED WITH ENTITYJTYPE 

IMAGE INJRACK) the value of the DATA returned by SETS.    In an analytic 1 
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rrodel, the equivalent operation would be execution of a high-order Kaiman 

filter.    The simple model  is appropriate since it follows the logical con- 

nectivity of the system data flow, while providing a means for SETS to acti- 

vate the required branches of the R_NETs. 

One of the ALPHAs of TLS is REDUN_DETERMINATION.    It embodies the 

requirements for identifying two images as redundant if their state esti- 

mates are close enoi,gh (relative to their uncertainties) for them to be 

considered duplicate detections of the same object.    The real  processing to 

implement such a requirement would have to select at least a subset of all 

images then being tracked for state comparison, then to determine redundancy 

by an appropriate algorithm.    For a functional  model, it is sufficient to 

define the USE of STATE (a multielement vector in reality) as BETA and its 

TYPE as REAL.    Then two instances of IMAGEJNJRACK would be redundant if 

their values of STATE were equal.    The corresponding SETS activity is 

implemented by having the DATA returned in the radar message selected to 

give the required probability of redundancy. 

The BETA for REDUNJDETERMINATION is given in Figure 3-14. 

It scans all  instances cf IMAGEJNJRACK (the ENTITYJYPE)  to find any 

value of STATE equal  to that of the instance to which the current return 

is related.    If redundancy is found, the REDUNDANTJMAGE DATA is assigned 

TRUE; otherwise,  it is FALSE. 

I 

3.4.2    Local  Data 

In developing the BETA for each ALPHA, the requirements engineer also 

pins down attributes about the DATA flow.    As already noted, he will define 

some high-level  DATA as being sufficient for functional modeling, and will 

give them corresponding attributes of TYPE and USE.    Similarly, he will 

specify USE:B0TH for DATA required in a functional  model at the same level 

of fidelity as in an analytic model.    In addition, he will  identify some 

DATA required for intercommunication of ALPHAs on a single R_NET during a 

single transaction (enablement) of that net.    For example, the STATE of the 

IMAGEJNJRACK corresponding to the current return must be compared in 

REDUNJETERMINATION with that of all other instances.    Therefore, a DATA 

element may be defined as OUTPUT FROM ALPHA:UPDATE_STATE which is the 

CURRENT STATE.    That definition is needed since the current instance of 
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IMAGEJNJTRACK (with which a value of STATE is associated) changes during 

execution of the ALPHA:REDUN_DETERMINATION.    Therefore,  the DATA:CURRENT_ 

STATE is declared, and given LUCALITY:LOCAL, TYPE:REAL, and USE:BETA.    Since 

the value of the state vector is also an output for recording, and since a 

MESSAGE uses only LOCAL DATA,  the element may be the same as the one which 

MAKES the MESSAGE:STATE_UPDATE which is also required from that R_NET. 

RADX procedures as discussed in 3.3.5 are of continuing use in analyzing 

the correctness of the DATA definitions.    The user is encouraged to develop 

his own procedures which are meaningful  to his particular project. 

3.5   TRACLABILITY 

Traceability is a feature of the specification supporting its 

management, rather than one required for its technical quality per se. 

Therefore, the requirements for traceability are developed in the manage- 

ment volume, and are addressed here only in terms of their mechanical 

entry. 

3.5.1 Originating Requirements 

The originating requirements for a software specification are most 

commonly contained in higher-level specifications.    In general  (depending 

on management decision) each identifiable software requirement in each 

higher-level  specification will be called out as an ÜKIGINATING_REQUIREMENT 

in the ASSM.    The DESCRIPTION attributed to an ORIGINATINGJEQUIREMENT may 

be a literal excerpt of the source, or may be an interpretation, again at 

management discretion.    Note that ORIGINATING_REQUIREMENTs in REVS do not 

trace to one anottir; thus, the lowest level of requirements to which a 

DECISION or specification element traces should be entered as the ORIGI- 

NATINGJEQUIREMENT. 

3.5.2 References 

• 

There may be sources of information which define specifics of the 

software requirements, but which are not specifications in themselves.    For 

example, a table of constants, or a book defining a standard atmosphere 

model may be referenced in the source specifications or applied by the 

requirements engineer in developing the software specification.    Such a 

REFERENCE is also recorded in the ASSM, since it EXPLAINS some feature of 
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the required processing.    Note that a REFERENCE may be changed during 

development of either the specification or the software; when such a 

change occurs, its impact on the specification may be followed through 

the EXPLAINS relationship. 

3.5.3   Decisions 

As was noted in 3.1.5, the process of developing the DPS requirements 

may expose system issues which cannot be resolved immediately in a formal 

manner, but which may have significant impact on the direction of further 

work.    Each such issue is recorded in the ASSM as a DECISION which TRACES 

FROM the ORIGINATING_REQUIREMENT{s) eitner directly or through other 

DECISIONS.    As each issue is encountered it should be given a DECISION 

name, and entered in the ASSM with at least its key attributes: a statement 

of the PROBLEM, the recognized ALTERNATIVES, ar,d the CHOICE among them which 

was made to allow work to proceed.   When the CHOICE is reviewed by system 

engineering, its correctness can be confirmed, or the implications of re- 

vising it can be assessed through analysis of those elements which TRACE 

FROM the DECISION.    Paragraph 3.1.5 gives an example of the input needed 

to state one of the TLS issues. %# 

3.5.4   Relating to Sources 

The relationships TRACES and EXPLAINS have been defined to link 

requirements to their sources.    Each element of the ASSM should be TRACED 

TO its ORIGINATING_REQUIREMENT(s) either directly or through DECISIONS 

which may be TRACED themselves.    In general, the ORIGINATING_REQUIREMENTs 

may be entered into the ASSM before their traceability is developed (i.e., 

before any of the elements have been defined).   As the R_NETs are built and 

as the other elements are entered, their links with any ORIGINATING_REQUIRE- 

MENT may be recorded through the TRACES relationship.    Whenever a DERIVATION 

is encountered, it should be entered and TRACED TO its source. 

Chronologically, it is likely that the first entries made into the 

ASSM will be the 0RI6INATIN6_REQUIREMENTsi some REFERENCES may ulso precede 

development of the R_NETs.    As elements are developed, DECISIONS and 

additional REFERENCES will be recorded, and at least some TRACES and 

EXPLAINS relationships will be provided.    Before publicati)n of the speci- 

fication, management may require element audjit to confirm some level of 
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t completeness of tracing;  throughout development of both the specification 

and the resulting software, the linking should be monitored to track, in 

the specification, evolution of requirements.    Note that it is good prac- 

tice in requirements engineering to explore,  through the data extractor, 

the impact of any projected modifications to requirements.    Particularly 

at the terminal, it is convenient to query the ASSM to the effect:    What 

if the DECISION (name^ is modified?    It would be accomplished LISTING ALL 

WITH an appropriate HIERARCHY that TRACED TO that decision, then examining 

the attributes of each element that was so related.    Judicious engineering 

would then focus on the requirements with the least impact when looking at 

the set which might be altered to reflect a change in the software environ- 

ment (e.g., the threat). 

€ 

3.6    INFORMATIVE MATERIAL 

Sections 3.1  through 3.4 have shown the development of the technical 

content of the ASSM from the entry of the kernel  through recording func- 

tional models.    In addition to such mandatory material, there is a family 

of supportive information which might be recorded for any element.    Charac- 

teristic of that family is the DESCRIPTION, an attribute which allows an 

English-language text to be entered (other languages might be used except 

for restrictions due to character sets)  to explain the intent of the 

element.    Note that informative material  is not constraining on the pro- 

cess designer, and is not, in fact, a require^ient subject to test; it is 

merely supportive of communication between the requirements engineer both 

his peers and the process designer.    The need for any informative attribute 

and the auditim of its entry are options for project management, and are 

discussed in the management volume, 

f 

3.6.1    Description 

A text string of arbitrary length may be entered to describe any 

element of the ASSM under the attribute DESCRIPTION..    Even where the element 

carries a self-explanatory name, or where it has another attribute formally 

specifying it, a DESCRIPTION is usually valuable.    For example, the IMAGE_ID 

is as simple a concept about an IMAGE as can be promoted.    Nevertheless, it 

would be useful  to describe it as being assigned from the HOID of the ini- 

tiation message, and as being embodied also as the TARGETID in the ENTITY_ 
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CLASS PULSE. The linkage among the elements is defined in the BETAs of 

appropriate ALPHAS, of course, and the DESCRIPTION is not binding. But 

following all of the references to that DATA item to find the meaningful 

assignments is tedious at best, where the DESCRIPTION is easily absorbed. 

3.6.2 Synonym 

A synonym may be declareci and EQUATED TO any other element for the 

convenience of the engineer. Frequently, the SYNONYM will be a short name 

for a frequently referenced item, so that at least some of the references 

are simplified; occasionally, the naming conventions imposed by the language 

will prompt the use of a cryptic element name, so that an explanatory 

SYNONYM is desired. The relationship ABBREVIATES may be regarded as equiva- 

lent to EQUATES; it is an artifact of early REVS design. 

3.6.3 Authorship 

In the current REVS, there is an attribute ENTERED_BY which permits 

the author of information about an element to record his name and the date 

of entry.    If required, that operation could be automated, so that the' 

attribute would become a log of changes made, with the entry provided by 

the system whenever a value or relationship was altered. 

3.6.4 Complementary Relationships 

Each RSL relationship defines a connection between two elements; 

since it is transistive, it has a complement which simply reverses the 

subject and object.    When information is extracted from the ASSM, both 

directions of the relationship are derived from a single link; thus, both 

the relationship and its complement are extracted, and redundant but 

absolutely consistent information is obtained.   Since consistency is 

assured, redundancy is constructive in informing the user about all 

relationships on an element under examination. 

3.6.5 Structural References 

In the structure segment, an R_NET makes use of other elements. 

Implicitly, it has a relationship to each such element which appears on 

its STRUCTURE; that relationship is termed REFERS, and is implicit in use 

of the data extractor (RADX) of REVS.    The relationship and its complement 
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are visible to the user in the RADX output, but are entered automatically 

and implicitly through STRUCTURE declaration, not through the conventional 

explicit declarations. 

3.7    ANALYTIC MODELS 

In order to support analytic simulation, detailed models of data 

transformations must be provided in the ASSM.    For each ALPHA,  that model 

is entered as its GAMMA attribute in the form of a PASCAL procedure. 

In general, an analytic model will be an idealized method of per- 

forming the operations required by the ALPHA.    Typically,  it will  be un- 

realizable in a real-time system due to its size or complexity.    Since the 

requirements statement is independent of the machine on which its implemen- 

tation is to execute, real-time constraints do not apply, and the idealized 

algorithm is suitable for the existence proof that the analytic simulation 

is to provide. 

Another useful way of looking at an analytic model is to begin with a 

TEST of a PERFORMANCE_REQUIREMENT. In general, such a TEST wUl be a func- 

tion of the outputs of processing (MESSAGES and DATA entered into the global 

data base) relative to DPS inputs (MESSAGES). In a mathematical sense, the 

TEST might be inverted to provide an algorithm for converting the inputs to 

the required outputs. If that inversion is partitioned into the ALPHAS along 

the processing path, it might become the set of GAMMAs needed at this stage. 

For example, if the requirement is that a specific differential 

equation is to he satisfied,  the equation itself serves as the TEST (see 

Section 4), while the GAMMAs for the appropriate ALPHAs provide one means 

of solving the equations.    If we did not require that a set of GAMMAs be 

generated and validated, we could not confirm the correctness of the speci- 

fication.    Thus, it is simple to specify a perpetual-motion machine (the 

power available at the output port equals or exceeds that supplied at all 

input ports), but very difficult to provide a proof of one's existence. 

The GAMfiAs may, in principle, be generated in exactly the same way 

as the BETAs.    In practice, only the simplest will  be treated in so light 

a manner; the majority of the ALPHAs will require modelling by a team of 

experts in the particular disciplines required for that processing.    For 

3-67 

, ,.„ 



1 

■ 

example,    the ALPHA:UPDATE_STATE has a very simple BETA model.    Its GAMMA 

would probably be a high-order Kalmai, filter requiring months of develop- 

ment.    Time and cost limitations have precluded generation of GAMMAs for 
any ALPHAs of TLS. 

1 

1 
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• 4.0    PERFORMANCE REQUIREMENTS 

Performance requirements specify how well  the functional  requirements 

must be implemented within the real-time process.    While the set of func- 

tional  requirements specifies the meaning and integrity of data to be out- 

put by the process, each performance requirement constrains one or more 

mathematical expressions over a collection of these outputs and internal 

data.    In general, the system specification will establish performance 

criteria at a level  higher than that of the functional criteria; consequently 

the methodology provides for performance requirements to be specified as 

constraints on a collection of data Produced from a series or combination 

of functional requirements, thereby indirectly constraining each embodied 

functional requirement.    This provision within the methodology does not 

preclude the requirements engineer from decomposing the system specification 

performance criteria into component performance requirements for allocation 

to separate elements; however,  it does support flexibility to enhance 

design freedcm for the process designer. 

An example of a simple performance requirement might be a specified 

accuracy of an output relative to a defined precision of the input from 

which the output is determined.    Similarly, in a real-time process it is 

often necessary to constrain the interval of time between arrival of a 

stimulus at an input port and the appearance of a response at an output 

port.    Most often, a performance requirement establishes the criteria for 

a mathematical expression which must be satisfied when applied to the data 

in the process, and,frequently applies over the course of an engagement 

rather than at any single point in time.    Consequently, performance require- 

ments in a system specification tend to be global  in nature and ^re defined 

at the subsystem level. 

Historically, performance requirements have been stated in the English 

language and, as a consequence, were subject to interpretation.    Frequently, 

these interpretations were not unique and the meaning and understanding 

achieved by the developer did not coincide with that intended by the specifier. 

As an example, in the track loop problem the specification established a 

constraint on the total  energy to be allocated to an image.    Within the 
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Track Loop System construct, there exist three possible applications of 

this performance requirement depending on the particular interpretation of 

the developer: if (1) the requirement is applied at the output of the 

allocator, allowance for scheduling conflicts or for radar subsystem 

performance is not included; if (2) the requirement is applied at the out- 

put to the radar subsystem, provisions for scheduling conflicts would be 

included; however, if (3) the requirement is applied at the point where 

radar returns are input and processed, then scheduling conflicts and radar 

preemptions are accounted for and, in addition, the non-DPS term which 

correspond; to radar processing between transmission of the signal and 

receipt of the return at the processor interface is also included. 

In an effort to eliminate ambiguities in the statement of performance 

requirements to the process designer, SREM employs a machine-readable 

language (RSL) with clearly defined elements, structures, relationships 

and attributes. With RSL, the requirements engineer can specifically and 

discretely specify performance requirements to the process designer. 

Within the validation segment of REVS, the requirements engineer states 

the performance constraint as a procedure which operates on data collected 

at specified points, VALIDATIONJOINTS, along the R_NET STRUCTURE. For 

each constraint an unambiguous pass/fail decision is determined for the 

explicit TEST which the requirements engineer formulates and asserts Is 

sufficient to declare that the PERFORMANCE_REQUIREMENT is satisfied. 

In the track loop example mentioned above, where the test to assure 

satisfaction of the performance constraint is applied at the output to the 

radar subsystem, the collection of data to be operated on by the test 

procedure includes those data which make the outgoing radar message and 

the remembered copy of the data from which the outgoing message was formed 

and which is ASSOCIATED WITH the ENTITYCLASS PULSE. By locating the 

point for data measurement (VALIDATION POINT) at the output to the radar 

subsystem, the specific DATA and FILES required by the test procedure are 

accessed and retrieved such that the particular test can be exercised, 

thereby eliminating ambiguity in the performance requirement statement. 

Inclusion of the VALIDATION_PATH descriptors for connectivity and trace- 

ability to the ORIGINATING_REquiREMENT and any DECISIONS involved in 
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interpretations of the performance constraint completes the definition 

and clarifies the requirement. 

Determination of consistency between the derived performance require- 

ments and the performance specifications depends heavily on simulation as 

does determination of consistency between the functional  requirements and 

the functional  specifications.    Performance requirements include two ranges 

of constraints - those local to the process and those of a global nature 

which apply to the system as a whole; functional  requirements are local  to 

the process.    Performance requirements, taken as a whole, can be said to 

be consistent (both with one another and with the laws of nature) when 

there is an existence proof of a simultaneous solution to both the local 

and global  requirements.    Therefore, to demonstrate that the performance 

specification and the derived performance requirements are achievable in 

some process, it is sufficient to find a set of algorithms which, when 

executed as specified by the R_NET STRUCTURE and the data connectivity, 

satisfies the collection of performance requirements.   The candidate 

algorithms mechanized for this execution are written as PASCAL procedures 

and are attributed to the ALPHAS which each analytically models.    These 

PASCAL procedures (GAMMA models) are linked together by the REVS simulation 

generation process to form an analytical simulator in exactly the same sense 

that the functional models (BETA models) are linked to form a functional 

simulator.    To the user, the principal difference between the functional 

and performance requirements simulators is that the performance results 

from analytic simulation are assessed against the requirements defined in 

each PERFORMANCE_REQUIREMENT TEST to determine sufficiency of the solution. 

The precision of the methodology developed for specifying functional 

requirements is not readily available in specifying performance requirements 

due primarily to the local and global  range inherent in the performance 

specification.    That is, although the capabilities within the methodology 

provide for an explicit and precise statement of each performance require- 

ment, translation from the English representation of the specifications in 

the source material  to the particular PERFORMANCE_REQUIREMENT depends 

heavily on the judgement of the requirements engineer and consequently can 

be treated as "methodical" only in a limited sense.    Therefore, the following 

sections, describing the approach to developing performance requirements, 
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will tend to be more illustrative than dennitive and represent the thought 

process to De conducted by the requirements engineer rather than specific 

rules to be followed. 

O 

The following steps outline the guidelines developed in subsequent 

sections to specify performance requirements. 

Step 1. The system specification is analyzed and each performance 
requirement is identified, named and entered into the ASSM data 
base. This activity is continued until all PERFORMANCE_REQUIRE- 
MENTs have been inserted along with the ORIGINATING REQUIREMENT 
or DECISION that each PERFORMANCE_REQUIREMENT is TRÄCEDJROM. 

Step 2. Each PERFORMANCE_REQUIREMENT is considered in conjunction with 
the R_NET or SUBNET STRUCTURES to identify the point along the 
net at which the test for satisfaction of the requirement most 
appropriately applies. This point establishes the location of the 
VALIDATION-POINT that determines the termination of the VALIDATION_ 
PATH that is to be CONSTRAINED BY the PERFORMANCE REQUIREMENT. 
(It should be noted that in certain cases a single VALIDATION_POINT 
may be all that is required to implement a TEST of the PERFORMANCE_ 
REQUIREMENT.) This activity is continued until a point of 
application for the TEST for each PERFORMANCE REQUIREMENT has been 
located along the R_NET or SUBNET STRUCTURES and a VALIDATION_P0INT 
has been named and entered into the ASSM data base as an element- 
type and located on the STRUCTURE. 

Step 3. An initial TEST which satisfies each PERFORMANCE REQUIREMENT is 
formulated and analyzed based on data at the VALTDATIÜN_PüINT. In 
general, analysis of the initial TEST formulation will result in 
the determination that additional data, not available at the single 
VALIDATION_POINT, will be required to support the TEST. Consequently, 
additional VALIDATION_POINTs are identified, named and appropriately 
located on the RJJET and SUBNET STRUCTURES within the ASSM. This 
activity is continued until the necessary VALIDATION_POINTs have 
been defined such that the collection of data required for each 
TEST has been made available from the DATA and FILEs accessible 
on the nets. At this time, DATA and FILEs required from each 
VALIDATION_POINT are declared to be INPUT TO the respective 
VALIDATIÜN_P0IN7 and entered into the ASSM. The VALIDATION^ 
POINTS are then considered collectively and VALIDATION_PATHs 
are then named. 

Step 4. An initial PATH structure for each VALIDATION_PATH is entered into 
the ASSM considering the VALIDATION_POINTs and EVENTs required 
for each initial TEST formulation. This activity is continued 
until a PATH structure has been declared for each VALIDATION PATH 
constrained by each PERFORMANCE REQUIREMENT. 

J 
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Step 5.    The requirements engineer is now in a position to finalize each 
TEST formulation and refine the initial declaration of VALIDATION_ 
POINTS and VALIDATION_PATHs for each PERFORMANCE_REQUIREMENT TEST. 
Each TEST is coded as a PASCAL procedure and entered into the ASSM 
as an attribute of the respective PERFORMANCE_REQUIREMENT. 

Step 6.    The requirements engineer now identifies the port-to-port response 
times required by the system specification.    For each performance 
specification a PERFORMANCE_REQUIREMENT TEST is defined Including 
the attendant VALIDATION_POINTs and their RECORDS relationships, 
and the constrained VALIDATION_PATH with PATH structure and with 
MAXIMUM TIME, MINIMUM TIME and UNITS attributes in the same manner 
that other PERFORMANCE_REQUIREMENT statements are developed.    These 
descriptors are entered into the ASSM to complete the initial 
definition of the performance requirements statement. 

At this point the requirements engineer has completed the initial 

activities of SREM necessary to explicitly and unambiguously state 

PERFORMANCE_REQUIREMENTs.    The remaining activities involve confirmation 

that the statements are consistent and complete.    These activities employ 

the static afnd dynamic checking features of REVS and the execution of 

the analytical  simulation built by REVS. 

4.1    LOCATE TEST POINTS 

A PERFORMANCE REQUIREMENT is stated relative to data collected at 

specific VALIDATION_POINTs located on the RJET and SUBNET STRUCTURES.    Even 

in simple cases, identification of the data-collection points is critical 

to the interpretation of a system performance constraint.    The content and 

context of the specification in the source material is used by the require- 

ments engineer to determine the system engineer's intent and from which 

the test point is defined. 

As an example, consider the specification statement in the TLS DPSPR 

(Appendix F) which requires that "The DPS shall allocate radar coimands 

so that not more than (TBD) joules are commanded per image, .  .  .."   At 

least three interpretations can be associated with this apparently explicit 

requirement. 

1)    The allocator shall assign track rates such that the 
accumulated sum of the energy for each image over the 
engagement (the product of the allocated pulse rate, the 
energy per pulse and the duration of the allocation) shall 
not exceed the specified limits; 
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2) The energy required by the radar commands transmitted across 
the interface to the radar shall not exceed the specified 
limit; or 

3) The energy required by the radar commands acted upon by 
the radar, as detected by the DPS in the radar return 
messages, shall not exceed the specified limit. 

Since not all of the pulses allocated per image may be scheduled and 

since some of the scheduled pulses may be pre-empted by the radar, the 

three interpretations lead to different performance requirement definitions. 

The first point in the methodology at which the interpretation becomes 
important is during the process of locating the VALIDATIONPOINT on the 

R_NET or SUBNET at which the TEST for compliance with the system specification 

is to be made. For the first interpretation, the test point should be 
located at the output of the allocator; for the second interpretation, 

the test point should be located at the input to the OUTPUTJNTERFACE RADAR_ 

OUT; for the third interpretation, the test point should be located at the 
output of the INPUTJNTERFACE RADARJN. In the Track Loop example, 

development of the PERFORM.'NCE__REQUIREMENT was based on the second interpre- 

tation and is TRACED FROM a DECISION which delineated the development 
process, through use of the DECISION attributes, the PROBLEM, the ALTERNATIVES 

and the CHOICE. 

The VALIDATION_POINT at which the final data is collected on which 
the PERFORMANCE_REQUIREMENT TEST operates in most cases is associated with 

the point in processing along the path at which the test is relevant. In 
general, selection of the appropriate R_NET or SUBNET is critical to the 
requirements definition; however, the particular location along the net 

may offer some flexibility depending on the type of data involved. Since, 
in REVS, execution of a net occurs in zero time, the selected location may 
be any point at which the required data are available. As an example, 

the energy per image constraint defined by the third interpretation could 

be applied at a point on the RESPONSE_TO_RADAR R_NET either preceding or 
following the ALPHA: ACCEPT_AND_CHECK_RADAR_RETURN_MESSAGE. 

At th's point in the methodology, the ASSM should contain the following 

performance related RSL statements, described in the order in which they 
would generally be entered. 

O 
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1) Each ORIGINATING_REQUIREMENT will have been defined. 

2) Each PERFORMANCE REQUIREMENT will have been identified 
including traceability to the 0RIG1NAT1NG__REQUIREMENT. 

3) Each DECISION involved in deriving each PERFORMANCE REQUIREMENT 
based on interpretation of the ORIGINATING _REQUIREMENT will 
have been defined. Explicit declaration of the DECISION 
attributes PROBLEM, ALTERNATIVES and CHOICE will be included. 

4) The VALIUATI0N_P0INT at which each PERFORMANCE_REQUIREMENT 
TEST is to be applied will have been identified and uniquely 
named. 

5) The appropriate R-NET and SUBNET STRUCTURES will have been 
updated to include the location of each VALIDATION_POINT 
node. 

t 

The RSL statements and R_NET STRUCTURE are provided in Figure 4-1 for 

the energy-per-image constraint. 

4.2 DEFINE DATA AND TESTS 

A VALIDATIONJ'OINT is precisely a port through which simple DATA are 

accessed and through which DATA and FILEs ASSOCIATED WITH ENTITY_CLASSes 

and ENTITYJTYPEs are extracted, all of which is RECORDed for post-processing 

by the PERFORMANCE_REQUIREMENT TEST in the REVS validation segment.    These 

DATA are obtained during simulation from the global data base defined by 

the functional requirements specifications.    Simple DATA (not in an entity, 

file, or message hierarchy) which must be recorded at a VALIDATION_POINT 

are related to that point via RECORDS.    Message DATA are similarly RECORDED 

BY a named VALIDATIONJOINT on the RJET to which they are LOCAL.    If an 

entire FILE Is to be recorded, the relationship RECORDS may be applied to 

it as well. 

For DATA which are CONTAINED IN a FILE, or are ASSOCIATED WITH an 

ENTITY_CLASS or ENTITY_TYPE, a problem may arise in defining the instance 

of the repeated data for which the DATA are to be RECORDED.    In general, 

the instance desired will have been selected earlier on the R_NET.    For 

example, the PULSE which is relevant for the PERFORMANCE_REQUIREMENT: 

ENERGY_PERJMAGE is the one which was CREATED BY the ALPHA:    PICK_COMMAND. 

Since no intervening activity could modify the selection, the DATA corre- 

sponding to that PULSE are available to the VALIDATIONJOINT used for the 
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ORIGINATING J»FQUIREMENT: PAOAR-RESOILRCE_CONTROL..B, 
DESCRIPTIOM: 

RDPSPR PARAGRAPH 3.2.4(B), RESOURCE CONTROL» STATES THAT 
("THE OPS SHALL ALLOCATE RAOAR COMMANDS SO THAT NOT MORE 
THAN (TRH) JOULES ARE COMMANDED PER IMAGE» NOR MORE THAN 
(TBD) KILOWATTS OR (TPD) PULSES/SECOND FOR ALL IMAGES IN 
TRACK.»H. 

PFRFORM&NCE.REQimEMENT: ENER6Y_PER.IMAGE. 
TRACED FROM: ORIGINATING^REQUIREMENT: RAOAP,RESOUPCE_CONTROL_B. 

PERFORMANCE.REQUIREMFNT: PULSES_PER„SECOND. 
TRACED FROM: 0RI6INATING_REQUIREMENT: RADAR_RESOURCE_CONTROL.B. 

PEBFORMANCE.REQUTREMFNT: RADIATED_POWER, 
TR&CFD FROM: OOIGINATING.REQUIREMENT: RADAR_RESOURCE_CONTROL.B. 

DFCISION: RADARJ9ESOUPCE_CONTROL..81. 
PROBLEM: 

(OPSPR PARAGRAPH 3,?,4(B)» STATEMENT ("THE DPS SHALL 
ALLOCATE RADAR COMMANDS SO THAT NOT MORE THAN (TBD) JOULES 
ARE COMMAMDED PER IMAGE»...") ALLOWS FOR THREE POSSIBLE 
TNTFRPRFTATIONS IN DETERMINING THE POIMT AT WHICH THE 
PERFOPMANCEJ'EQUIREMENT TEST IS APPLIED.I. 

ALTERNATIVES: 
H. THE ALLOCATOR SHALL ASSIGN TRACK PATES SUCH THAT THE 

CUMULATIVE SUM OF THE ENERGY FOP EACH IMAGE OVER THE 
(THE PRODUCT OF ALLOCATED PULSE RATE» 
PULSE.» AND DURATION OF ALLOCATION) SHALL 
(TBD) JOULES. 
REOUIRED BY THE RADAR COMMANDS TRANSMITTED 
INTERFACE TO THE RADAR SHALL NOT EXCEED 

(TBD) JOULES. 
3. THE ENERGY REQUIRED BY THE »ADAR COMMANDS ACTED UPON 

BY THE RADAR AS DETECTED BY THE DPS IN THE RETURN 
MESSAGES, SHALL NOT EXCEED (TBD) JOULFS.T. 

CHOICE: 
{?,   THE ENERGY REQUIRED BY THE RADAR COMMANDS TRANSMITTED 

ACROSS THE INTERFACE TO THE RADAR SHALL NOT EXCEED 
(TBD) JOULES SHALL BE TESTED FOR COMPLIANCE AT THE 
INPUT TO THE OUTPUT INTERFACE: RADARJ3UT,t. 

TRACED FROM: OPIGINATINGJ>EQUIREMFNT: RADAR_RESOURCE_CONTROL.B. 
TRACES TO: PERFORMANCEJ?EQUIREMENT: ENERGY.PER.IMAGE. 

VAL IOAT ION„POINT: RADAR.COMMAND^OUTPUT.POINT. 
TRACED FROM: DECISION: PADAR..RESOURCE_CONTROL_Pl. 

?. 

ENGAGEMENT 
ENERGY PER 
NOT EXCEED 
THE ENERGY 
ACROSS THE 

Figure 4-1 Performance Requirements Statements Representation 
at the Completion of SREM Step - Locate Test Points 

t 
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Figure 4-1    Performance Requirements Statements Representation 
at the Completion of SREM Step - Locate Test Points 
(Continued) 
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requirement. However, the energy of that command, which is also needed 

for the TEST, is not so simply available. 

The energy of the pulse is a part of the WF_CHARACTERISTICS in the 

FILE: WAVEFORMJABLE. The link between the PULSE and the WAVEFORMJABLE 

is the identifier of the kind of transmission, the PULSEJYPE and WF_NAME, 

respectively. (Similarly, the waveform identifier is the RADAR_TYPE of the 

outgoing command MESSAGE.) There are three obvious ways of obtaining the 

required information. 

1) RECORD either the PULSE TYPE or the RADARJYPL from XMIT_R; 
RECORD the WAVEFORMJABLE once (say after ALPHA: STARTER, 
where it was created); co-relate the information in the TEST. 

2) Provide an ALPHA with ARTIFICIALITY: VALIDATION before the 
VALIDATION_POINT to select the WFJAME; assign the WF CHARAC- 
TERISTICS in that ALPHA to a new LOCAL DATA item; and RECORD 
that DATA item. 

3) Provide a GLOBAL DATA item at some earlier processing point 
with ARTIFICIALITY: VALIDATION and pass it along appropriately 
to the VALIDATION_POINT where it is to be RECORDED. 

In TLS, the third choice is attractive because there is a DATA item left 

from early thinking on the problem which has the required properties. The 

DATA: COMMAND_ENERGY was once thought to be useful on RJET: XMIT_R. Con- 

sequently, it was included in each record of the FILE: COMMAND. But develop- 

ment of the models made it clear that the element was not needed for XMIT_R, 

so it might be deleted. However, it has exactly the right properties for 

an ARTIFICIAL element, since its value is the energy of the COMMAND which 

would be selected by PICK_COMMAND for this transmission. 

The choice among the options available is up to the requirements 

engineer, and the process designer should recognize that there are degrees 

of freedom in the selection which can be reexamined if the design would 

benefit. For TLS, the first option is particularly attractive: the FILE 

to be recorded contains only constants, so that correlation of data in the 

TEST poses no problem. The third option may also be acceptable, since it 

ensures that the DATA RECORDED for the PERFORMANCE_REQUIREMENT are clearly 

those which are needed. The second option, which modifies the R_NET with 

an ARTIFICIAL element is esthetically less desirable than either of the 

other choices. For the purposes of this document, the first option is 
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selected, and an additional VALIDATION_POINT: STARTING-POINT is identified 

immediately following the ALPHA: STARTER to RECORD the FILE: WAVEFORMJABLE. 

A TEST is a PASCAL procedure attributed to a PERFORMANCE_REQUIREMENT 

which CONSTRAINS one or more VALIDATION_PATHs. The TEST executes, in a 

post-processing environment, on those DATA which have been RECORDED BY one 

or more VALIDATION_POINTs required to collect the DATA to be tested and 

which appear as nodes on the PATH structure of a VALIDATION_PATH that is 

CONSTRAINED BY the PERFORMANCE_REQUIREMENT. Recall that data required for 

the TEST are RECORDed on an output data set by means of the VALIDATION_ 

POINT relationships and attributes and each data record is labeled in the 

output data set by the VALIDAUON_POINi name. During post-process TEST 

execution, the TEST must access the appropriate data record in the output 

data set and does so with use of the RETRIEVE operator. 

The requirements engineer may choose to define the VALIDATION_PATHs, 

the PERFORMANCE_REQUIREMENTs and the TESTs concurrently; however, in doing 

so he minimizes the effectiveness of REVS capabilities which support this 

activity through static checking of the RSL statements. It is recognized 

that the requirements engineer must have a concept of the TEST configuration 

at the time the VALIDATIONJ'OINTs and VALIDATION_PATHs are defined. Keep 

in mind, however, that it is mandatory that the TEST be configured based on 

the data available on the RJIET and SUBNET STRUCTURES. It is only after 

all attempts have failed to produce a valid TEST configuration, under these 

constraints, that the requirements engineer should redefine the R_NET and 

SUBNET STRUCTURES or introduce STRUCTURES and element types with attribute 

ARTIFICIALITY in order to accomplish the TEST definition. Consequently, 

it is recommended that the requirements engineer approach the PERFORMANCE_ 

REQUIREMENTS definition in a top-down, step-wise manner. That is, 

1) Examine each PERFGRMANCE_REQUIREMENT to determine the functional 
requirement, defined by the R NET and SUBNET STRUCTURES, to 
which the PERFORMANCE_REQUIREMENT applies. 

2) Examine the DATA available along the RJET and SUBNET STRUCTURES 
to a) determine a point of optimal location (the terminal 
VALIDATIONJOINT) at which a TEST should be performed and b) 
provide insight into formulation of the TEST. 

3) Declare the necessary DATA and FILEs at this point as RECORDED 
BY the terminal VALIDATION POINT and formulate the initial 
TEST. 
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4) Define and locate additional  VALIDATION POINTs based on 
data requirements for the TEST formulation and declare the 
necessary DATA and FILEs as RECORDED BY these additional 
VALIDATION_POINTs. 

5) Define and locate the initial  VALIDATIONPOINT, that is, the 
earliest occurring VALIDATION^01 NT appearing along the R_NET 
and SUBNET processing flow that defines the functional  require- 
ment to which the PERFORMANCE^REQUIREMENT applies. 

6) Name the VALIDATION__PATHs of the nets. 

7) Relate the VALIDATION_PATHs to the PERFORMANCE_REQUIREMENT 
which CONSTRAINS them. 

Application of these steps to the definition of PERFORMANCE_REQUIRE- 

MENT statements yields an orderly development process and provides maximum 

utility of the features provided in the REVS RADX and VALIDATION segments. 

Exceptions to this step-wise development process may occur when a single 

PERFORMANCE REQUIREMENT applies to more than one functional  requirement 

defined by R_NETs and SUBNETS that are not connected by EVENT enablements. 

Under these circumstances, the general  solution is effected by allowing the 

PERFORMANCE_REQUIREMENT to constrain multiple VALIDATIONJATHs.    Alternatively, 

the requirements engineer may choose to decompose the single PERFORMANCE^ 

REQUIREMENT into multiple requirements which apply explicitly to the func- 

tional  requirements defined by each non-connective R_NET and SUBNET STRUCTURE. 

In mechanically applying the step-wise process, the requirements 

engineer would read the system specification and enumerate the statements 

of performance as ORIGINATING_REQUIREMENTs.    Each requirement is then 

located on the R_NETs and SUBNETS as one or more V.UIDATION_POINTs.    Each 

PERFORMANCE_REQUIREMENT and VALIDATION_PATH is then named.    A PERFORMANCE_ 

REQUIREMENT is logically named for its content, such as ENERGY_PERJMAGE 

which is used for the track loop example discussed previously.    Similarly, 

where the second interpretation of the ORIGINATING_REQUIREMENT was implemented, 

the VALIDATION_PATH is named RADAR COMMAND OUTPUT which signifies both 

the location of the test and the data to which the test applies.    In this 

particular case the PERFORMANCE_REQUIREMENT CONSTRAINS a degenerate 

VALIDATION_PATH (i.e., only one VALIDATION_POINT is required); consequently, 

the VALIDATIONJ'ATH declaration serves only to establish continuity within 

the RSL statements.    The single VALIDATION POINT is appropriately named 

RADAR COMMAND OUTPUT POINT. 

. * 
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The requirements engineer next considers each requirement in the 

specification separately, and identifies for each VALIDATIONPOINT the 

information which must be extracted to support the TEST for compliance. 

Note that a single VALIDATION POINT may be used to collect data for multiple 

PERFORMANCE_REQUIREMENTs; consequently, it may appear in the PATH structures 

of several  VALIDATIONJATHs.    Therefore, the DATA and FILEs declared as 

RECORDED BY a VALIDATION_POINT will  be the logical OR of the data to be 

collected for each of the PERFORMANCE_REQUIREMENTs that use the VALIDATION_ 

POINT.    Subsequently, each specified requirement is translated into a 

PASCAL procedure which is written as the TEST for that PERFORMANCE_REQUIREMENT, 

At this point in the methodology for developing performance require- 

ments,  the ASSM data base should contain the following additional  performance- 

related RSL statements, described in the order in which they would generally 

be entered. 

1) The DATA and FILEs accessible from those appearing on the 
nets will have been declared as input to each terminal 
VALIDATION_POINT through use of the RECORDS relationship. 

2) Additional  VALIDATION_POINTs required by each PERFORMANCE_ 
REQUIREMENT will have been defined and appropriately located 
as nodes on the net STRUCTURES.    DATA and FILEs RECORDED BY 
these VALIDATION_POINTs will  have been declared. 

3) Each VALIDATION_PATH CONSTRAINED BY each PERFORMANCE_REQUIRE- 
MENT will have been defined and a PATH structure for each 
VALIDATION_PATH will  have been defined by declaration of the 
VALIDATION_POINTs and EVENTs appearing on the net STRUCTURES 
between the initial and terminal VALIDATION_POINTs. 

4) A TEST will have been written for each PERFORMANCE_REQUIREMENT. 

An example of the RSL statements in the ASSM at this point is provided 

in Figure 4-2 for the energy-per-image constraint discussed in preceding 

sections. 

4.3    DEFINE SUPPLEMENTAL VALIDATION POINTS AND DATA 

A VALIDATIONJ'OINT not only defines a point in the processing flow 

at which data are collected for evaluation against a PERFORMANCE_REQUIRE- 

MENT, but also may identify the point along the nets at which the measure- 

ment is made for compliance with the system performance specification. 
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ORIGINATING.RFOUIREMENT; RADAR.RESOMRCc ,CONTPOL«R. 
DFSCRIPTIÖN: 

"OPSPR PARAGRAPH 3.?.4(B)f RESOORCF CONTROL» STATES THAT 
M'THE DPS SHALL ALLOCATE RADAR COMMANDS SO THAT NOT MORE 
THAN (T9D) JOULES ARE COMMANDED PER IMAGE» NOR MORE THAN 
(T8D) KILOWATTS OR (TBO) PULSES/SECOND FOR ALL IMAGES IN 
TRACK.")", 

i 

PERFORMANCE.REOUIREMFNT: ENER6Y_PER_IMAGE. 
TEST: (* THE TBD BELOW MUST BE REPLACED BEFORE EXECUTION») 
"CONST 

ENERGY_LIM7T=(TBD) I 
VAR 
IMAGE.ENERGr: REAL I 

BEGIN 
ENER6Y_PER.IMAGE «=TRUEI 
FOR EACH C?.IMAGE_HANDOVER RECORDING 
DO 

IMAGE_EMEPGy:=0.0 
FOR EACH RADAR^COMMAND^OUTPUT.POINT RECORDING 

SUCH THAT (RAOAR.COMMAND_OUTPUT_POINT.TARGET.lD= 
Ca_IMAGE_HANDOVER.HO_ID) 

DO 
SELECT FIRST FROM STARTING.POINT.WAVEF0RM_TA8LE 

SUCH THAT {RAOAR_COMMAND..OUPUT_POINT,RADAR.jrPEs 
STARTlNG_POINT,WF_NAME)I 

IF FOUND THEN 
IMAGE_ENER6Y:=IMAGE_ENERGY* 

STARTING.POINT.WF^CHARACTERISTICSI 
ENO» 

ENDFOREACHI 
IF (IMAGE_ENERGY>ENERGY_LIMIT) THEN 
ENFRGY_PER_IMAGE:=FAL5EI 

ENDFOREACH 
ENDI". 

TRACED FROM: ORIGlNATING_REQUIREMFNT: RAOAR_RESOURCE_CONTROL.B. 

PFRFORMANCE.RE'JUIREMENT: PULSES„PER_SECOND. 
TRACED FROM: ORIGINATING.REOUIREMENT: RAOAR.RESOURCE.CONTROL.B. 

PERFOR»rAMCE_REOUIREMENT: PAOIATED_POWER. 
TRACED FROM: ORIGINATING.REQUIREMENT: RA0AR_RESOURCE_CONTROL«S. 

Figure 4-2   Performance Requirements Statements Representation at 
the Completion of SREM Step - Define Data and Tests 

0 
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3. 

ENGAGEMEWT 
ENERGY PE» 
NOT EXCEED 
THE ENERGY 
ACROSS THE 

DECISION: RAOAR.RESOURCE^CONTROL.Bl, 
PROBLEM: 

"DPSPR PARAGRAPH 3.?,4(9)» STATEMENT ("THE DPS SHALL 
ALLOCATE RADAR COMMANDS SO THAT NOT MO^E THAN (TRD) JOULES 
ARE COMMANDED PFR IMAGE...."J ALLOWS EOR THREE POSSIBLE 
INTERPRETATIONS IN DETERMINING THE POINT AT WHICH THE 
PEREOPMANCE.REOUIREMENT TEST IS APPLIED.", 

ALTERNATIVES; 
"1. THE ALLOCATOR SHALL ASSIGN TRACK RATES SUCH THAT THE 

CUMULATIVE SUM OE THE ENERGY EOR EACH IMAGE OVER THE 
(THE PRODUCT OE ALLOCATED PULSE RATE» 
PULSE» AND DURATION Of ALLOCATION) SHALL 
(TBD) JOULES. 
REQUIRED BY THE RADAR COKMANDS TRANSMITTED 
INTEREACE TO  THE RADAR SHALL NOT EXCEED 

(TBD) JOULES, 
THE ENERGY REQUIRED BY THE RADAR COMMANDS ACTEO UPON 
PY THE RADAR AS DETECTED BY THE DPS IN THE RETURN 
MESSAGES. SHALL NOT EXCEED (TBD) JOULES.". 

CHOICE; 
"2. THE ENERGY REQUIRED BY THE RADAR COMMANDS TRANSMITTED 

ACROSS TME INTEREACE TO THE RADAR SHALL NOT EXCEED 
(TBD) JOULES SHALL RE TESTED EOR COMPLIANCE AT THE 
INPUT TO THE OUTPUT INTERFACE: RADAR_OüT. •'. 

TRACED FROM: 0RI6INATING_RE0UIRFMF-NT: RAOAR_RESOURCE_CONTROL_fl. 
TRACES TO: PERPORMANCE.REQUIREMENT: ENERGY_PER_IMAGE7 

VALIDATION.POINT: RADAR_COMMAND_OUTPUT_POINT, 
RECORDS: 

OATA: TARGET.ID. 
OATA: RADAR„TYPE. 

TRACED FROM: DECISION: RADAR_RESOURCE_CONTROL.Hl. 

VALIDATION^POINT: C?_IMAGE„HANDOVER. 
RECORDS: DATA: HO.ID. 
TRACED FROM: 

ORIGINATING_REOUIREMENT: RADAR.RESOURCE_CONTROL_B. 
PERFORMANCE.REOUIREMENT: ENERGY_PER_IMAGE. 

VALIDATION^POTNTt STARTING-POINT. 
RECORDS: FILE: WAVEFORM_TABLE. 
TRACED FROM: PFRFORMANCE.REOUIREMFNT: ENERGY.PER.IMAGE. 

Figure 4-2   Performance Requirements Statements Representation at 
the Completion of SREM Stfp - Define Data and Tests 
(Continued) 

4-15 

i-l-ttitf£i 



VALIOATION.PATH: RADAR_COMMAND,OUTPIiT, 
CONSTRAINED 8V: PFRFORMANCE.REQUIREMENT: ENERGY.PER.IHAGE. 
TRACED FROM: 
ORIGINATING.PEOUIREMENT: RAOAR.RESOüRCE_CONTROL^9. 
DECISION: RAOAR_RESöURCE_CONTROI.Rl. 

PATH: 
VALIDATION.POINT: RADAR^COMMAND.OUTPUT.POI^T 
FND. 

VALIOATION_PATH: ^P.HANDOVER.COMMAND^INPUT. 
CONSTRAINED BY: PERFORMANCE„REQUIREMENT: ENERGY.PER.IMAGE. 
TRACED FROM: ORIGINATING.REQUIREMENTS RAOAR.RESOURCE.CONTROL.R. 
PATH: 

VALIDATIDN^POINT: CZ^IMAGE^HANOOVER 
END, 

VALIDATION^PATH: RADAR.WAVEFORM^PROPERTIES. 
CONSTRAINED BY: PEPFORMANCE.REOUIREMENT: ENERGY.PER.IMAGE. 
TRftCED FROM: ORTGINATING.REQUIREMFNT: RA0ARj.RESOUrtCE_CONTROL.B. 
PATH: 

VALIDATIONJ»OINT:   STARTING-POINT 
PND, 

0 

Figure 4-2   Performance Requirements Statements Representation at 
the Completion of SREM Step - Define Data and Tests 
(Continued) 
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Through identification of the initial VALIDATIONJOINT on a VALIDATION__PATH 

(i.e., the earliest VALIDATION POINT along the R-NET and SUBNET STRUCTURES 

representing the functional requirement to which the performance constraint 

applies), the requirements engineer may define the PERFORMANCE_REQUIREMENT 

in terms of performance between the initial and terminal \/ALIDATION_POINTs. 

Processing of synchronous threads (i.e., elementary, stimulus-response 

processing) will frequently employ such paths, as will requirements which 

reflect the decomposition and partitioning of system performance specifications 

to a level below that where the constraint is defined to be applicable to 

the DPS treated as a "black-box." For example, in a complete BMD system, 

constraints on discrimination may be specified in terms of target classifi- 

cation relative to the object state vector obtained at the output of the 

tracking function. In such cases, a VALIDATION_POINT would be located at 

the entry point of the net which defines the functional requirements for 

discrimination to identify the starting point of the PERFORMANCE_REQUIREMENT 

TE5T. 

Early identification of a specific TEST for a PERFORMANCE_REQUIREMENT 

within the development process implies a capability to define, early in 

development, data needed for testing that has no counterpart in the functional 

requirement description of the system. On a synchronous thread, these data 

are commonly collected at an early VALIDATION_POINT; however, on an 

asynchronous thread, it may be inconvenient to collect and correlate data 

from two VALIDATIONPOINTs appearing on disjoint paths or net structures. 

Therefore, the requirements engineer defines DATA items, element types 

and in extreme cases R-NET or SUBNET STRUCTURES with attributes ARTIFICIALITY: 

VALIDATION to convey the needed DATA to a VALIDATION_POINT at which it may 

be extracted for a TEST. For example, in Track Loop suppose that a 

performance constraint establishes a maximum delay time between the arrival 

of a track return message at the INPUT INTERFACE RADARJN and the time at 

which the data contained in the return message is incorporated in the data 

which makes the command message that passes to the rac^r through the 

OUTPUTJNTERFACE RADAR OUT. The connection between tne two interfaces is 

asynchronous due to scheduling operations and use of the IMAGE_INJRACK 

ENTITY_TYPE in R-NET SKEDR. Since no one-to-one correlation exists 

between the return received and the command issued, a validation DATA 
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item, RETURN JIME, can be defined and ASSOCIATED WITH the ENTITY_TYPE 

IMAGEJNJRACK.    This DATA item would be OUTPUT FROM the UPDATE_STATE 

ALPHA, where it would be set equal  to the current value of engagement 

time, and would be RECORDED BY a VALIDATIONJOINT located on the RJET 

XMIT_R immediately preceding the OUTPUTJNTERFACE RADAR_0UT. 

Note that information conveyed by an element type with ARTIFICIALITY: 

VALIDATION must be provided in the real-time process when it is being used 

to validate the process design against the system performance specifica- 

tion.    In practice, element types so defined represent a counterpart to 

the hardware test point, and like their equivalent may be retained in the 

fielded system by management directive. 

At this point the requirements engineer has completed the steps of 

the methodology for developing performance requirements.    The ASSM data 

base has been built with liberal  use of the TRANSLATOR and RADX segments 

of REVS to insure the accuracy and completeness of each PERFORMANCE^ 

REQUIREMENT description.    The requirements engineer is now in a position 

to begin the compilation debug process and execution of the analytic 

simulator for verification and refinement of the PERFORMANCE_REQUIREMENT 

statements. 

li 
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PART 11 - MANAGEMENT APPROACH 

I 

5.0 INTRODUCTION 

One of the major benefits in using the SREM tools and techniques dis- 

cussed in Part I to develop software requirements is that the process is 

inherently manageable. The technical approach consists of specific activi- 

ties which have well defined beginnings and endings, and the high degree 

of automation provided by REVS allows a degree of management visibility 

which is ordinarily not attainable in the specification development 

process. 

The three sections which follow discuss the three important aspects 

of managing software requirements engineering: 

• Defining Measurable Milestones 

• Planning 

• Management Control. 

The emphasis in these sections is to describe the management considera- 

tions which are unique to the application of SREM. Just as Part I will not 

make good requirements engineers out of technicians. Part II will not make 

good managers out of clerks. Even good managers, however, are helpless if 

they do not have the means to establish visibility and control. Part II 

is intended to give the experienced manager an understanding of how the tools 

and techniques of SREM can be used to establish and maintain a sound manage- 

ment plan for the specification of software requirements. 
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6.0 DEFINING MEASURABLE MILESTONES 

The key to successful management of software requirements engineering 

is the establishment of meaningful, clear, and measurable milestones. There 

is a tendency to treat requirements generation as a level of effort problem, 

since the job of milestone definition is not easy and requires a technical 

understanding of the work to be performed. Establishing milestones such as 

"Processing Performance Specification - First Draft", "Processing Perfor- 

mance Specification - Second Draft", etc., may provide clarity and a super- 

ficial measurability but does not establish a meaningful or effective 

management tool. 

Management of an activity using the Software Requirements Engineering 

Methodology (SREM) can be extremely effective because the discipline 

inherent in SREM permits segmenting the effort into activities which have 

meaningful and measurable terminations. An example approach to defining 

SREM related milestones is illustrated in this section. The milestones 

are divided into two groups: 

Group 1 - Functional software requirements development. 

Group 2 - Functional software requirements validation. 

An overview of the SREM activities described in Section 3 is shown 

in Figure 6-1. Simply, software requirements are generated by transforming 

corresponding system requirements. The initial activity is a preliminary 

evaluation and organization of the source specifications. This is accotnplished 

by drawing the R-Nets. Once this activity is complete, parallel development 

of the segmented requirements can proceed. As the requirements segments are 

developed, they are entered into the REVS data base (ASSM) from which they are 

drawn for static evaluation. When the ASSM entry for all software require- 

ments is complete, a dynamic simulation (functional and/or analytic) can be 

generated and a dynamic evaluation performed to complete the requirements 

validation. At various points in this process, problems with the source 

specifications can be identified and fed back to the system engineer. 

%». 
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6.1  SOFTWARE REQUIREMENTS DEVELOPMENT 

Starting with the initial set of milestones, the natural beginning of 

software requirements development is the acceptance of source specifica- 

tions. This is not a final acceptance. That can't take place until the 

software requirements are validated. Rather, the software requirements 

manager must establish that the source specifications provide a sufficient 

base from which the requirements engineering can proceed. Ideally this 

base is complete, clear, and correct. In complex systems, such as those 

required for ballistic missile defense, establishing an ideal base is a 

goal seldom achieved. The best that can be hoped for is to identify those 

places where the source specifications are incomplete, unclear, or of 

questionable correctness, and then proceed with risk -- but under control. 

Immediate feedback is provided to system engineering on the deficiencies 

found in the source specifications so that answers can be developed. 

t 
Th«3 initial set of milestones shown in Figure 6-2 is designed to 

accomplish two objectives. The obvious purpose of specification review 

is to establish specification acceptance and identify exceptions to and 

conditions on this acceptance. The second objective is to begin the actual 

software requirements devnopment. Drawing the R-Nets is used to 

organize the source specifications and to establish a basis for commitment 

of the individuals responsible for writing the software requires2nts. It 

is this commitment which is the best measure of progress through the 

acceptance of source specifications. 

As discussed in Section 3, the R-Nets typically require some creative 

engineering before they can be completed. Therefore, this initial review 

will not normally result in fully complete R-Nets. It should, however 

identify what information or assumptions are needed for completion. These 

are described in RSL as DECISIONS as shown in  Figure 6-3. At this point, 

only the statement of the PROBLEM and the TRACES TO attributes are entered 

(and maybe the ALTERNATIVES). Each DECISION is reviewed with system engi- 

neering to verify that the source specifications have been correctly 

interpreted before the ALTERNATIVES and CHOICE are completed. 
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t Criteria for this initial review should include: 

• Can you, the reviewer, develop software requirements from 
the informar.ion contained in the source specifications? 

§  What changes or additional information would make your job 
easier? 

t  Are the performance requirements present and understandable? 

• Do the source requirements appear to be overly restrictive 
(i.e., at too low a level of detail)? 

, 

For each milestone of Figure 6-3 the Software Requirements Manager 

or his Configuration Control Board (CCB) is responsible for recognizing 

the milestone completion. On a very large software development project 

a hierarchy of secondary milestones may be necessary. These lower level 

milestones should be under the cognizance of lower level managers and are 

represented to the Software Requirements manager only in aggregate as 

higher level milestones. 

The first effort is aimed at completing each R-NET to the ALPHA 

level. Most of this activity can be segmented to the R-NET and SUBNET 

levels. However, it is advisable to assign one individual the responsi- 

bility to coordinate the data base  This is a third party action to 

bring about agreement on interfaces between R-NETS and SUBNETS. In addi- 

tion, this data base approval activity should include analysis of the data 

base to eliminate dead (unused) or orphaned (unset) data entities. 

To a very large project, the Requirements Manager may also wish to 

have an independent group transcribe the source specifications into ORIGINATING_ 

REQUIREMENTS and enter them Into the ASSM and then place them under configu- 

ration control. Since this step is critical to the validity of traceability 

audits later on, this independent entry may be justified. On smaller projects, 

this may not be appropriate. 

Again, an opportunity exists for the software requirements engineer to 

feed back problems to the system engineer via DECISIONS. While there Is a 

tendency to identify and comnunicate problems in a continuous manner, this 

destroys the baseline and gives the entire project a drifting feeling. It 

■'s therefore necessary to set up specific milestones for DECISIONS. The 

6-5 



DECISION : RAOAR_SCHEOULER„PRIORIT1ZATION. 
ALTERNATIVES: "I, SCHEOI'LE PULSE..BY.PULSE.  THIS 

NETS BUT WOULD OBVIATE OPTIMIZATI 
2. OPTIMIZE OVER THE ENTIRE FRAME, 

AS A «HOLE GIVES BEST RESULTS BUT 
FACTORS FOR PULSE ENSEMBLES, 

3, PRIORITIZE PULSES SUCH THAT ANY 
PRIORITY BEATS ALL PULSES OF LOWE 
SUBOPTIMAL» BUT REALIZABLE BOTH I 
THE SOFTWARE DESIGN.  NO A PRIORI 

"OPTION 3. PRIORITIZED 

WOULD SIMPLIFY THE 

0TAKIN6 THE FRAME 
REQUIRES WEIGHTING 

PULSE OF HIGH 
R,  THIS IS 
N THE SPEC AND IN 
WEIGHTS NEEDED.". 
PULSES". 

CHOICE: 

TRACES TO: 
R NET: SKED.R 
R'NET: XMITJ*. 

mCEÄiTINS.REOÜ.RE^T:0PSPR.3.2-*-B. 

FINITE RADAR FRAME. 
INTENDED ORDERS."- 

FUNCTIONAL. 

DECISION : SYNCHPONOUS.VS.ASYNCHRONOUS.TRACK. 
ALTERNATIVES: "I. SYNCHRONOUS TPACKING (OR RESPONSIVE) 

REQUIRES THE LAST RADAR RETURN ON 
AN IMAGE. BE USED TO 
PRODUCE THE NEXT RADAR 
ORDER. 

2. ASYNCHRONOUS TRACKING "OR AUTOGENIC" 
ALLOW* A TRACK PULSE 
TO~BE SENT USING WHAT EVER 
STATE IS IN THE DATA BASE.". 

CHOICEt 
"ASYNCHRONOUS TRACKING IS 

SELECTED TO MAXIMIZE THE 
ALLOWED DP TIME RESPONSE 
FOR PROCESSING RADAR RETURNS. 
THIS DOES NOT PROHIBIT A RESPONSIVE 
TRACKING IMPLEMENTATION.". 

PROBLEM: 
"TRACKING CAN BE EXPRESSED AS 

SYNCHRONOUS OR ASYNCHRONOUS.". 

TRACES TO*. 
ALPHA: PICK.CANDIDATES. 

TRACED FROM: > 0RI6INATINGJREQUIREMENT:   DPSPRJ3.2.3.A.FUNCTIONAL» 

O 

Figure 6-3 Sample Decisions fro-n Track Loop 
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ones recommended here seem to be a minimum set and can be augmented to 

tailor the process to a specific project. 

After documenting all known source specification problems the soft- 

ware requirements can proceed with internal baselining. This baselining 

culminates with formal approval of the Software Requirements Engineering 

(SRE) Configuration Control Board (CCB). The use of the Requirements 

Engineering and Validation System (REVS) enforces quality control. Because 

of this, the CCB baselining can address higher level issues of whether or 

not the software requirements adequately reflect the intent of the source 

specifications and to what extent the software requirements provide an 

appropriate base for process design. The former issue can be resolved 

by analyzing the DECISIONS against the source specification. These can 

be categorized into those with major effect on software requirements 

and those with minor effect on the software requirements. Baselining may 

be deferred until certain major problems are resolved and the number of 

minor problems is reduced to an acceptable level. The visible act of 

deferring a major milestone can bring considerable pressure to work problems 

expeditiously. 

6.2  SOFTWARE REQUIREMENTS VALIDATION 

The major effort in software requirements engineering is in the vali- 

dation phase. Validation begins with static evaluation which is a check of 

data consistency. Validation also includes the development of BETA 

(functional) models and simulator to test the software requirements for 

dynamic consistency. This is primarily a test to verify that the specified 

logic is correct in a dynamic sense. With appropriate functional models 

(BETAs), a BETA-level simulation can also be used to examine and predict 

system level performance as a function of data processing performance. 

Validation may include the development of GAMMA (analytic) models 

and simulator. GAMMA models are non-real-time algorithms which input and 

output the specified data at its elemental level. The purpose of the 

GAMMA simulator is to demonstrate that a design solution to the software 

requirements exists at least if the real time constraint is relaxed. 
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A sample activity network for requirements validation is shown in 

Figure 6-4. The first effort establishes that the completed R-Nets at 

the ALPHA level are fully complete and consistent. When this is established, 

the DECISIONS related to the cource specifications and the resulting soft- 

ware requirements are reviewed and approved. Following this, the require- 

ments are completed to BETA level as described in Section 3, and the BETA 

models and the BETA data base are reviewed and approved. When the BETA- 

level dynamic performance evaluation is completed and all DECISIONS have 

been approved (milestone 2.11), then a new requirements baseline is 

established at milestone 2.12 and the functional requirements are complete. 

In a project in which there are well known design solutions available 

for all the processing specified, the functional requirements validation 

would end with milestone 2.12, the updated baseline. However, in BMD 

systems, and in fact in most modern large scale systems, there are algorithm 

issues which present considerable development risk. If this is the case, 

the requirements validation is not complete until the computational feasi- 

bility of the requirements is established. This is called the analytic 

feasibility demonstration. The purpose of this phase is to demonstrate 

through simulation that it is possible to process the specified input data 

to obtain the specified results. The sequence of activities for this 

phase of the effort begins with milestone 2.13 and ends with a second base- 

line release of the requirements at milestone 2.22. The intervening mile- 

stones are similar to those for functional validation discussed earlier. 

The final event is the formal release of the internally-approved specifica- 

tion (milestone 2.23). 

6.3  SUMMARY 

The foregoing is an example of how the SREM activities described in 

Section 3 can be related to measurable and meaningful milestones. An 

identical approach can be used for the activities described in Section 4. 

The activity networks presented here are not intended to be a universal 

SREM management plan in which one can fill in dates and names and be done. 

Every program is different as is each engineering organization. Therefore, 

there cannot be a universal management plan any more than there can be a 
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t 7.0 PLANNING 

Planning for software requirements engineering using SREM is unique 

in two respects. First, several of the automated features of REVS ran have 

a strong effect on scheduling. For example, the automatic simulation 

generation produces a simulation in much less time than conventional manual 

techniques. Second, very little data exists on the cost and schedule aspects 

of implementing SREM. 

With these two thoughts in mind it seems appropriate to identify those 

planning characteristics peculiar to SREM, organize them into a simple 

model and evaluate that model. This approach has the promise of producing 

some quantitative measures for SREM planning. 

t 

To date, there is no usable data on which to base a firm cost and 

schedule model for SREM. The Track Loop System used as the example problem 

in Sections 3 and 4 was an experimental model used to test and refine the 

methodology steps, RSL, and the REVS software. Consequently, the TLS soft- 

ware requirements were developed several times and the effect of prior 

knowledge cannot be factored out of the data. 

7.1  PRELIMINARY GUIDELINES 

From the TLS development experience, some preliminary guidelines can 

be established. These guidelines form the basis of a cost and schedule 

estimation technique. 

1) The overall technical coordination of the activity must be 
the responsibility of one person. In a small problem such as 
TLS, this person can also be a "working" enginepr. In a 
large project, this technical management function is a full 
time job by itself. This is analogous to the chief of a 
chief programmer team. 

2) The initial R-Net development effort should not be broken 
down beyond the point of assigning one engineer to each 
R-Net. The number of R-Nets can be initially estimated to 
equal the number of input interfaces plus the number of 
independent (asynchronous) output interfaces. 

3) The development of BETA and GAMMA models and performance TESTS 
is essentially an engineering modeling and programming effort. 
These can be estimated by conventional software estimation tech- 
niques except that the integration effort is greatly reduced 
through the use of the automatic simulation feature of REVS. 
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While these guidelines are very preliminary and general, they form a better 

basis for estimating than the current practice of allocating 10 to 20 per- 

cent of the estimated software cost (derived by cost-per-instruction times 

estimated-number-of-instructions) to the requirements development. 

f 

7.2     C0S1 MODEL 

The formalism of the RSL expression of software requirements a.^d the 

methodical approach of developing and validating them using SREM suggests 

that a formal cost model can be developed. A proposed starting point for 

such a modei follows the general form of 

xEci • D. N. 

where 

n 

Ci 

D. 

Ni 

a weighting factor equal to the cost per typical element 
(equivalent to dollars-per-instruction in software development) 

number of elements (ALPHAs, etc.). 
4* h 

the relative complexity of the i  element. 

the relative newness (state-of-the-art) of the i  element. 

the size of the i  element. 

It appears that the cost of the requirements is sensitive to the 

following elements: 

t  Overall logic and data-flow complexity which can be 
reasonably represented by the ALPHAs. ALPHAs are chosen 
because: 

1) their INPUT and OUTPUT relationships are a direct 
indicator of the data flow complexity, and 

2) there is almost a one-to-one relationship between an 
ALPHA and a logic node or node-branch on an R-Net. 

•  Functional Models - BETAs. 

t  Analytic Models - GAMMAs. 

*} 

' ) 
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i • Performance Allocations - VALIDATION PATHs. 

• Performance Measures - TESTs. 

• Simulator/Driver Integration - MESSAGES. 

One additional factor is the firmness of the source requirements which 

directly effects the number of times the requirements engineering work 

will have to be redone. 

A model of the cost of developing and validating the software require- 
ments is then given by the following: 

H = S R 
L  i=l  1    1    1     i-1  1   1 

N 
Bi 

+ KG E CG. ' DG. ' NG. 4 KP E CP. * DP. 
i=1  l 1    1     i=1  1    i 

+ KT ZCT. • DT. ' nj.  +K<?A' 
1=1  1 1    i   '   J 

The parameters in this model ere defined in Table 7.1. 

This model estimates the cost of direct man-hours only. Costs for 
management, ODC (Other Direct Charge, such as travel), and computer time 
must be added. 

Ä: 

Not only can such a cost model  be used to estimate costs before SRE 

actually starts, it can also be used during SRE to project cost to complete. 

This is done by updating the estimated parameters with real values as they 

become available.    Cost control  is discussed in Section 8. 

7.3      SCHEDULING 

Having completed a top down cost estimate, that result can be used 

to obtain a gross schedule of activities.    The cost model must first be 

partitioned into six parts. 

HA = SR KA t 
i=l S X \ 
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Table 7.1 Definition of Symbols Used in Cost Model 

SYMBOL 

'A.. 

'P. 

Bi 

Pi 

KG 

Kp 

T 

DEFINITION 

Complexity factor for 1     ALPHA.    (Value of minimum complexity 
is unity.) 

X.L. 

Complexity factor for i      BETA.    (Value of minimum complexity 
is unity.) 

A. U 

Complexity factor for i      GAMMA.    (Value of minimum complexity 
is unity.) 

i.L| 

Complexing factor i  PATH decomposition. (One-to-one 
correspondence between a performance requirement in the 
source specification to a PATH is unity; more complex 
relationships are higher.) 

th 
Complexity factor of i  TEST. (Value of minimum complexity 
is unity.) 

A.L. 

Newness factor for i     ALPHA.    (Value for completely off- 
the-shelf is 0, completely new is 1.) 

Newness factor for i     BETA.    (Value for completely off-the- 
shelf is 0, completely new is 1.) 

Newness factor for i     GAMMA.    (Value for completely off-the- 
shelf is 0, completely new is 1.) 

Newness factor of i      PATH decomposition.    (Known decomposi- 
tions are unity; if trade-off analyses are required, the 
factor i;". higher.) 

A.L. 

Newness factor of i      TEST.    (Completely off-the-shelf is 0, 
completely new is unity.) 

Newness factor for SETS.    (A fully tested, well documented, 
and previously used SETS is 1; others are higher.) 

Weighting factor for ALPHA development. 

Weighting factor for BETA development. 

Weighting factor for GAMMA development. 

Weighting factor for PATH decomposition. 

Weighting factor for TEST development. 

1 
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Table 7.1    Definition of 

SYMBOL 

A.. 

n 

P 

t 

,Bi 

G1 

Symbols Used in Cost Model (Continued) 

DEFINITION 

Weighting factor for simulation integration. 

Number of I/O messages. 

Size of ith ALPHA in lines of RSL. 

Number of ALPHAS (BETAs and GAMMAs). 

Number of VALIDATION PATHs. 

Number of TESTs. 

Size of ith ALPHA in lines of RSL. 

Size of ith BETA in lii 

^th 

mes of RSL. 

Size of itn GAMMA in lines of RSL. 

Size of ith TEST in lines of RSL. 

g^'thlnTr reqU1>eTOntS-    (""» - 1. soft 1. 



n 
HB ' SR KB Z^ CB. rjB. NB. I 

HG = SR KG ]C CG. DG. NG. 
1«!  1  1  1 

HP = SR KP £ CP. " DP. 
i=l i   i 

HT = SR KT Z CT. * DT. • \ 
i-1  1    1    1 

Hs = SR Ks Ds M 

Then four estimates are extracted as folTows; 

H1  = HA 1 

U^GJ H2 =   HB + |HB +'HG |HS 

K^GJ H3 = HG + Ih^TTTg |HS 

H4 = HP + HT 

Note that H = H1 + H2 + H3 + H4, 

Looking at the milestones in Section 5 these are grouped into three 

sets. The first is associated with the R-NET development and includes mile- 

stones 1.1 through 1.4. The second set, 2.1 through 2.6, is related to 

BETA modeling. The final set includes the remaining milestones, 2.7 through 

2.23, and Is roughly related to GAMMA modeling. Figure 7-1 shows the three 

7-6 

".-^^.^i1"* HI**'-***-'**~***;t****'-r***. •n/—-^ „. 



i 

X 

o 

( 

■ 

<4 

■ 

(X. 
o 

( 

00 Q   2Z 
UJ Ui   Ul ■<* 

t— t—i        O 
>• <J»— _l I 
•—• O UJ UJ 
h- </) z: :> r- 
o (.-> • LU > 
< «c a: Q r- 

DC 
H- 
*—4 
■JC 

Q 
UI 
1— 
< 
1—1 
o 
o 
in 
oo 
<c 
»/) _J 
UJ UJ vo 
>-t 2»      o 
h- UJ CVJ 
►-• _l 

>       » 
—* <C 
h-f-r- 
O UJ 
< oa oj 

OJ 

^Q ujfn 
LUUJ > CM 

i 

►- ui 5: rv. 

*! «C Cj CM 

> 

V) 
0) 

< 

■o 

a. 

3 
O 

I 

CD 

ro 
X 

o 

7-7 

:y^' ■""";.*  - T- ^^ ' ■  '   



sets of activities related to these milestones crudely spread over time 

periods T-,, 1,.  and T^ expressed in work hours. Then effort divided by time 

is equivalent to manloading. 

O 

For activities related to R-NET development the effort in hours is 

approximately H,.    Assuming a constant, flat-loaded activity the loading 

then is H-j/T, A small group should be working this phase of the require- 

ments development. Even on a very large project no more than five engineers 

should be directly involved in the R-NET development. Assuming 10 percent 

for direct support and 10 percent for management support this translates 

into a constraint: 

T1 > ye 

Schedule times Tp and T^ can also be roughly estimated by examining values 

for Hp^Z  an^ ^3^3 not1n9 t'iat; these two activities should overlap. For 

a small SRE project the following might apply: 

H, = 80 man hours 

Hp = 400 man hours 

H3 = 800 man hours 

Then, the planning might select 

T, = 40 work hours 

Tp = 80 work hours 

T3 = 160 work hours 

giving a manloading as shown in the top part of Figure 7-2. Since it is 

usually unrealistic to expect adequate performance from short assignments, 

a better approach is to smooth the total manpower curve somewhat. This 

is done in the bottom part of Figure 7-2. 

Having obtained a rough manpower curve it is now necessary to establish 

a detailed milestone schedule. For a small project such as the one just 

discussed it is probably better to lump some of the serial milestones so that 

0 
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EXAMPLE: 
FIRST CUT KANLOADING 

4        6 
WEEKS FROM START 

10 

EXAMPLES 
SMOOTHED MANLOADING 

4        6 
WEEKS FROM START 

10 

Figure 7-2   Rough Spread of Manpower for Example 
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a week-by-week measurement is adequate. For the sake of demonstration the 

complete set of milestones will be laid out on the seven-week schedule shown 

in Figure 7-2 (bottom). Figure 7-3 shows the detail milestone schedule. 

The two major activities are the BETA and GAMMA modeling which occur in 

parallel. For a small project many of the review and approval milestones 

can be accomplished simultaneously. 

The schedule in Figure 7-3 shows no slack time. An end-to-end schedule 

with no slack time is dangerous even on a small project. Since the SRE 

activities are laid out on a seven-week or thirty-five day period with no 

slack, then 10 percent or about 4 days is a conservative amount of slack. 

The slack should be inserted after the most vulnerable milestones so that 

the overall schedule is minimally perturbed if a milestone is missed. 

Figure 7-4 shows a revised schedule with slack time (dashed) protecting key 

milestones. With slack time on the parallel BETA and GAMMA branches addi- 

tional flesibility is achieved since manpower not required during one slack 

activity can be shifted to the other branch. 

Note that the schedules do not provide the typical periods for docu- 

ment preparation, review, and publication. The automatic documentation 

features of REVS reduce the need for these activities. The technical and 

management review of the requirements is accomplished using REVS gei.'rated 

reports. Once approved, the generation of the final documentation is simply 

one more computer run using the appropriate RADX directives with REVS. 

The planning process has been illustrated using the milestones defined 

in Section b for the activities discussed in Section 3. The planning of the 

Section 4 activities is accomplished in a similar manner using the H4 term 

in the cost breakdown. 

w 
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8.0 MANAGEMENT CONTROL. 

The Software Requirements Engineering activity must interface with 

other activities during the system development phase. Figure 8-1 explains 

the major interests shared by SRE with these other activities. The key 

interactions may be summarized as follows: 

t  SRE supports SE in system definition by accepting the speci- 
fications and pointing out deficiencies. 

• SRE may question the subsystem allocation because of implemen- 
tation problems. 

t  SRE participates in the overall system cost/schedule planning 
and control by providing status data to SE and visibility to 
Process Design. 

• SRE must work with the other subsystem engineering activities 
to define interfaces to a functional level. Process Design 
can work to design the detail interfaces. When a referee 
is needed the SE must decide interface issues. 

• SRE defines the processing via software requirements which 
may be modified if real-time implementation is a problem. 

8.1  CONTROL MECHANISMS 

Management of SREM can be viewed as a two-level process. REVS pro- 

vides certain direct, automatic control of the product under development 

(the software requirements). As described in Table 8.1 this frees manage- 

ment to focus on higher level issues and the implementation of REVS. With 

a validated REVS, implementation of its control features is completely 

mechanical and can be delegated with confidence. In particular, in Table 

8.1, we note the following observations: 

• At each level the manager can focus on intent, softness of 
decisions, level of detail and schedule performance. 

• At the BETA, GAMMA and PATH/PERFORMANCE levels, cost perfor- 
mance becomes important. Overkill must be avoided by main- 
taining pressure to use the simplest, cheapest models which 
will do the job. (Thus level of detail is an issue here also.) 

• At the GAMMA level the manager must assess real-time feasi- 
bility even though the GAMMA models are not real-time. 

■ 
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t  Note all of the control which REVS gives cheaply and 
quickly. Previously, managers had to strain to get this 
kind of visibility. 

O 

The major managerial issue? identified in Table 8.1 require mechanisms 

outside of REVS. These are the more widely used managerial controls, and are 

much more effective when based on the timely, complete, and organized infor- 

mation provided by REVS. The kinds of control mechanisms used for these 

issues are shown in Table 8.2 and are summarized below: 

• Internal reviews can be used to establish confidence in the 
software requirements by addressing items checked in the Table. 

• Starting with a parametric cost model, projected cost can be 
estimated as actual parameter values are determined (e.g.* 
number and complexity of ALPHAs). 

• Earned value as a measure of progress toward each milestone 
can be used in the C-SPEC sense to evaluate cost/schedule 
performance in a continuous fashion. Earned value can be 
quantified by using number of ALPHAs, BETAs, GAMMAs, PATHs, 
and TESTs weighted by complexity factors. 

• The milestone schedule is a standard schedule performance 
control best implemented by public display. 

t  Reviews with the system engineer should help understand 
questions of intent and softness of decisions plus adequacy 
of level of detail. 

• The process designer should be involved in reviews of level 
of detail and real-time feasibility (includes storage capacity). 

8.2  CHANGE CONTROL 

The process of change control is a critical one on a large, complex 

system development activity. Figure 8-2 shows how collected decisions are 

folded into the baseline as scheduled updates. The updates are inserted 

at points in the schedule where they are likely to have significant inputs 

from, within the SRE activity and from System Engineering and Process Design. 

Thay also follow specific measures of the software requirements, namely the 

initial dynamic evaluation and the initial feasibility demonstration. 
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t 8.3 SELLING THE SOFTWARE REQUIREMENTS 

Both the System Engineer and Process Designer must "buy off" the soft- 

ware requirements. SREM possesses key features which should assist the SRE 

manager in effecting the buy-off. These are explained in Table 8.3 in terms 

of answers to concerns of both System Engineering and Process Design. 
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.....  . . .... 

9.0 CONCLUSIONS 

This manual has attempted to explain bcth the technical and management 

considerations in the development and validation of software requirements 

using the tools and techniques of SREM. The engineering and management 

principles explained here are not new -- they are the result of hundreds 

of man-years cc experience in large-scale r3al-time software development. 

The discipline of RSL and the power of REVS are new, as is the formalization 

of the detailed steps to be followed in their use. 

This manual will not make instant engineers or managers out of in- 

experienced people. It will, however, guide the experienced engineer and 

manager in the application of RSL, REVS, and SREM techniques to obtain a 

software requirements specification which is superior in terms of the 

qualities of a good specification discussed in the opening Section. 

. 

t 
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(*  *   PffOCCSSINC  STEP   IN   THE  fUNCTIONAL  REOUl»C»<ENT« 
DOMAIN, »). 

91*VC1on  APPLICABILtTVl     NET, 

«LCHiNT.Tmi 

EUCMtNT.TVPEi 

ELEMENT.trPEl 

DATA 
(• A SINGLE ITEM OB SET er DATA TH*T IJ SPECIFIED 

AND THAT WILL EITHER BE REQUIRED IN THE 
(»EAL-TI»*E SOFTWARE OR IS NEEDED FOR 
DESCRIPTIVE PURPOSES, •), 

DECISIAN " • 
(e THE DECISION THAT HA« PEEK MADE TO fNABLE 

BEOUIREHENTS TO BE TAKEN FROH THE OF?PR TO THE PPR, 
THIS HEAN8 THAT THE REQUIREMENTS ARf NOT SIMPLY 
ALLOCATED, BUT HAVE BEEN SUBJECTED IP 
DERIVATION, •), 

ENTITY CLASS 
(• A^CENERAL CLASS OF »OBJECTS" IN THE PE*L «OPLr; 

OUTSIDE THE DATA PROCESSING SYSTEM /NO WHICH IS 
IMPORTANT TO IT,  FOR EXAMPLE, AN EfTITY.CLASS 
MIGHT BE RVS OR INTERCEPTORS,  THE fNTITY.TYPES 
MIGHT BE DETECTION, PO1ENTIAL.RV, It£NTIFIEO_RV, 
ETC, •), 

CNTITY^TYPE 
(• A SPECIFIC TYPE OF "OPJECT* IN THE FEAL WORLD 

OUTSIDE THE DATA PROCESSING SYSTEM /ND WHICH IS OF 
IMPORTANCE TO IT,  WHEN A SPECIFIC 1VPE OF "OBJECT" 
IS DETERMINED TO EXIST IN AN ENTITY CLASS, FILES 
AND DATA HAY BE TEMPORARILY CREATED TO MAINTAIN 
TigrftPHArrftN m*i\y   TT  »J , 

ELIHENT^TYPEl  EVENT 
(• AN IDENTIFIED POINT THAT EXISTS IN 1 HE PROCESSING 

OF ONE OR MORE R^NETS OR SUBNETS ANf WHICH MAY 
CAUSE THE ENA6LEMENT OF AN R.NET, •}, 

«TBUCTURE APPLICABILITY!  NET, 
STRUCTURE APPLICABILITY!  PATH, 

ELEMENT.TYPEl 

ELEMENT.TYPEl FILE 
(• AN AGGREGATION OF INSTANCES OF DATA, EACH INSTANCE 

OF WHICH IS TREATED IN THE SAME MANNER, «O, 

ELEMENT.TYPEl  ZNPUONTERFACE 
(• A "PORT" BETWEEN THE DATA PROCESSING SYSTEM 

AND THE REST OF THE 8MD SYSTEM WHICH ACCEPTS 
DATA FROM THE OTHER SYSTEM (E,C, THE 
RADAR.RETURNS), •), 

STRUCTURE APPLICABILITY!  NET. 

( 

ELEMENT.! V^ l 

ELEHENT.TYPEl  MESSAGE 
(• AN AGGREGATION OF DATA AND FILES 

THAT PASS THROUGH AN INTERFACE AS A LOGICAL 
UMT, *), 

BRIG INATINGlRECUlREMENT 
(• THE HIGHER LEVEL (DPSPR) REQUIREMENT FROM WHICH 

LOWER LEVEL REQUIREMENTS (THE ONES DESCRIBED IN 
THE RSL) ARE TRACEABLE, •). 

ILEHCNT.TYPEl  OUTPUT.INTERFACE 
(• A "PORT" BETWEEN THE DATA PROCESSING SYSTEM 

AND THE REST OF THE BMO SYSTEH WMICH TRANSMITS 
DATA TO THE OTHER SYSTEM  <E,C, THE 
RADAR COMMANDS), *), 

STRUCTURE APPLICABILITY!  NET, 

v^mimHißmmmiH 



ELtMCNT.TYrH «BFeRMANCE.BrnumHENT 
(« *N *N*LVTIC PERFflRMiNCE »EQUIREHENT CR 

NON-STI^ULUS-RESPB^SE TIMING Rtf:UIRE''ENT 
WHICH 15 TO 61   MET BY THE RE*L-TI^E 8ÖFTW*BE. •). 

t 
ClCMtNT.TYPCl 

EWtHENT.TYPEl 

R_N£T 
(• THE PROEB if   LOGlCiL PRBCESSINC STEPS THAT HU8T Bt 

PEfFflRMED.  AN R^NET M»Y C')NT*1^4 *NDS, CRS» ANO 
FOR EACH NflOESI TT MUST ^E ENAHLEO A^O TERMINATED, 
THE PHflCESSINC STEPS ARE ALPHAS BR SU6MET5 WHICH 
MAY §E EXPANDED INTO LO**ER LEVELS BF DETAIL,  AN 
»INCT MAY ALSO CONTAIN VAUIDATIBNIPOINTS, EVENTSI 
AND INTERFACES, *), 

REFERENCE 
(• 56URCE MATERIAL FER REQUIREMENTS, •), 

CLEHENT.TYPEl  SUBNET 
(• THE 6R0ER BF LOGICAL PRBCESSING STEPS THAT MUST PC 

PCRFBRMEO IN BROER TB PEPFlRM THE REQUIREMENTS OF 
THE PRfiCFSSlNG STEP THAT REPRESENTS IT AT THE NEXT 
HIGHER LEVEL. •), 

STRUCTURE APPLICABILITY!  NET. 

ELEMENT.TYPEl 

ELCHINT.TYPEI 

SUBSYSTEM 
(• A PART CF THE 6MD SYSTEM (SUCH AS RAO*R) WHICH 

COMMUNICATES WITH THE DATA PRBCESSING SYSTEM, •), 

8YN6NYM 
(• A 8YN6NYH IS MERELY AN ALTERNATE NAMf THAT 

CAN BE USED IN PLACE BF THE PRIME NAKE.  IT 
IS USED AS AN AP8REVIATICN IN MBST CASES» 
BUT MAY BE USED FAR BTHEH REASBNS ALSO, 
NflTtl        IN    AN    <l-UMtNT    ITMt    LlST>,       "ALt* 
ALWAYS IMPLIES "ALL EXCEPT SYNONYM», •)., 

ELCHENT.T»PEI UN8TRUCTURED_REQUIREMENT 
(• A REQUIREMENT THAT MUST BE PASSED T9 

THE REAL-TIME C8DE BUT THAT OBES NBT 
STRUCTURED FRAMEWBRK PRBVIDED BY RSL 
MIGHT BE USED BECAUSE THE REQUIREM£N 
T88 UNIQUE TB JUSTIFY OEFIMITIBN OF 
CLEMENT, A NEW RELATIBNSHIP, BR A NE 
ALSO MIGHT BE USED BECAUSE THE HEOUl 
DOES NOT CARE TB DESIGN A NEW CONCEP 
REnUIREM^NT, BR BECAUSE THE REOUlREf 
A DESIGN LIMITATION THAT SHOULD BE 0 
IN ENGLISH TEXT,  (AN EXAMPLE BF THE 
REASON MIGHT HE PRECLUSION OF USING 
MULTIPRUESS8R WITH ASSOCIATIVE MEMO 

THE DESIGNER OF 
FIT INTO THE 

THIS ELEMENT 
T IN QUESTION 13 
A NEw TYPE OF 
w ATTRIBUTE,  IT 
REMENTS ANALYST 
T TO FIT THE 
ENT IS CLEARLY 
ESCRIBED 
LAST 

A 
RV.) •), 

CLEHENT.TYPEI VALIDATION PATH 
(• THE PATH OF PROCESSING OVER WHICH THE QUANTITATIVE 

VALIDATION TESTING WILL BE PERFORMED, *), 

CLCHCNT_TYPC|  VALIDATICN.POINT 
(• A LOGICAL POINT IN THE PROCESSING AT WHICH TIMING» 

VALUE. BR PRESENCE DATA MUST BE OBTAINABLE IN THE 
REAL-TIME SOFTWARE IN ORDER TO VALICATE THAT THE 
REQUIREMENTS HAVE BEEN FULFILLED, •), 

STRUCTURE APPLICABILITY!  NET, 
»TRUCTURE APPLICABILITY!  PATH, 

KLCMENT.TYPEl VERSION 
(• THE AGGREGATION OF REQUIREMENTS THAT ARC T8 

APPLY AS A UNIT TO THE DATA PROCESSING 
SYSTEM AT A PARTICULAR TIME,  LOeP„l» 
t8BP_2» ETC, ARE VERSIONS, AS IS Ah I«C 
SYSTEM, •), 

o 
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ftCumsNSHiPi   Associms 
<• TELLS *<-nC*  DATA ANO FILES 

COME iNTfl EXISTENCE WHEN THE DATA 
PROCESSING SYSTEM (SflHC ALPHA) CREATES AN 
INSTANCE IF AN ENTITY.CLASS OR AN R_NET IS 
E4ABLED, *), 

COMPLEMENTARY RELAT I 3NSHlf-5  ASSOCIATED (»WITH«), 
SUBJECT!  £NTITY_TyPE, ENTn?ICL*S8, 
eBJECTl  DATA, FILE. 

•ELATI8«SMIP|  C8HP1SE8 
(• TELLS WHICH ENTITYlTVPES ARE HEMBEPS 8F AN 

ENTITy_CL*SS. •). 
COMPLEMENTARY PEL AT I5NSHIP |  COHPOSEO ("«F»), 
8UBJECTI  ENTITY.TYPE. 
OBJECTl  ENTITYICLASS. 

RELATIONSHIP!  CONNECTS (•TO») 
(* TELLS WHICH SUBSYSTEM THE INPUT_INURFACE OR 

OUTPUT.INTEBFACE COMMUNICATES KITH, •), 
COMPLEMENTARY RELATIONSHIP!  CONNECTED ("TO"), 
SUBJECT!  iNPUTllNTERFACE, OUTPUTllNTERFACE, 
OBJECTl  SUBSYSTEM. 

RELATIONSHIP!  CONTAINS 
{• TELLS THE IDENTITY OF EACH CONSTITUENT PART OF EACH 

INSTANCE IN A FILE,  * DIRECT I^PLtMENTATION IN 
SOFTWARE WOULD USE THIS RELATIONSHIP TO GIVE THE 
MAKE-UP OF RECORDS IN FILES, •), 

COMPLEMENTARY RELATIONSHIP!  CONTAINED ("IN»), 
SUBJECT!  FILE, 
OBJECT!  DATA, 

RELATIONSHIP!  CONSTRAINS 
(« I'JENTIMES T! UHICH ViLI0ATreN>lTH(3) THE 

PERFORM*NCE_fiEQUIPEMENT APPLIES, *), 
COMPLEMENTARY RELATIONSHIP!  CONSTRAINED ("BY"), 
SUBJECT!  PERFORMANCE_REOUIREMENT, 
OBJECTl  VAHDATION_PATM, 

RELATIONSHIPI  CREATES 
(• TELLS WHICH PROCESSING STEPS CREATE THE INSTANCE 

OF AN ENTITYlCLASS. •), 
C9HPLEHENTARY RELATIONSHIP!  CREATED ("BY"), 
SUBJECT!  ALPHAi 
OBJECTl  ENTITY.CLASS, . , 

• 

RCLAYIONSHIPl  DELAYS 
(• THE ENAPLEHENT OF R.NETS BY THE OBJECT EVENT IS 

POSTPONED FOR THE AMOUNT OF 'IME SPECIFIED BY 
THE DATA, •), 

COMPLEMENTARY RELATIONSHIP!  DELAYED ("BY"), 
8UBJECTI  DATA, 
OBJECT!  EVENT, 

RELATIONSHIP!  DESTROYS 
(• TELLS WHICH PROCESSING STEPS DESTROY AN 

INSTANCE OF THE ENTITYlCLASS, •), 
COMPLEMENTARY RELATIONSHIP!  DESTROYED ("BY"), 
8UBJECTI  ALPHAi 
OBJECTl  ENTITY_CL*SS. 

RELATIONSHIP!  ENABLES 
(« WHEN THE EVEHT(S) IS (ARE) PASSED TwROUSH BY THE 

CONTROL FLO« ?N AN R^NET» OR WHEN DATA ARE 
AVAILABLE AT AN INTERFACE (AS DEFINED IN THE 
INTERFACE DEFINITION), THE FUNCTIONAL PROCESSING 
INDICATED ON THF. R.NfT CAN BE BEGUN, •), 

COMPLEMENTARY RELATIONSHIP}  ENABLED ("6Y«), 
SUBJECT!  EVENT, INPUT.INTERFACE, 
BBJECTl  R.NET, 
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ifß <•  ttfl^li   4N   *.TPPN«TE   N»np   F«0   »N   PLE^FNT.     THE 
tRJlIC"   IS   r»',(,£0  THF   OCJMC   NtME,     T>-F   St'ftJECT   N»ME 
C*K   9E   USm   rOU   ir.PlT   T«   T^E   *53M,   EUT   iLL 
BEL*TI9KS-IfS.   »TTBIBUT^S»   *ND   ST^^CTURES   *S 
OEFI^tD   ARS   ACTü*Li.V   C<-4R«CT£aiiTIC!   fiF   T'lJE   »»SI»'? 
NAHE, •). 

.fxei rx-t.'isv SFLiTirMSMIPl  EQUATED ("TO'K 
i«b,"E;Tl  ITNCNYM, 
JöJEC't  »UL, 

OtL'TleNSMlH  EXPLAINS 
(• TME »EFFSEMCt EXPLAINS THE BACKGB9U»0 

INfB^HATIBN AB9UT THE ORJECT EirnENVS. •), 
f'fUFKE^TtRY l»flATIBNSHI»l  EXPLAINED (•BY»), 
.,)■:. ,r-Tf  (ifrF»CncE, 
CöJtCTi  ALL EXCEPT RJ.FEPENCE. 

9*1 *7T9N5H2P|  FCBMS 
(• INDICATES THE ALPHA WHICH DEFINES A HESSA3E 

T8 BE PAvSED THR5UGH 4N BüTPUT^lNTERFACE, «O, 
C^oLEMENTAtiY RELATIS'.SHIPI  FARMCO (»PY»), 
Si,?JECT|  «.»"A. 
BBJfCTl  »"EFSACE, 

RtLATlSNSnlPI  IHPLEHE^TS 
(• TELL'. THE vCPr>I|,,J! TP WHICH THE ELE^E^T, AS 

DESCRIBED, APPLIES, •). 
:r>',lEuENTARY PELATIPNSHlPi  IMPL£HENTEO ("BY"), 
S'jRJICTl  ALL EXCEPT VERSION, 
CPJEtTt  vtRSIBN, 

OFLAI'IONSHIPI  INCLUDES 
(« INDICATES T«. nlt^AHC^ICAL StLATIftNSwIr oET'ctcH 

DATA.  IF A INCLUDE« 3# THEN OBTAINING A WILL 
»MAIN B, •), 

C'HPl.rHENTABY PEL»TI9NSHIP|  INCLUDED ("IN»), 
5iJBJ?CT|  DATA, 
8BJCCT1  CAT*, 

RELAHONSHIPI  INPUTS 
(• INDICATES THAT THE NAMED ELEMENT INPUTS THE 

OBJECT fLEHENT(S), •), 
r^PLEHENTABV RFLATIINSHIPI  INPUT ("TB«), 
£u<»JrCT|  ALPHA, VALIOATIBN^POINT, 
eSJECTl  DATA, FILE, 

RELATIBNSHIPI  MAKES 
C* TELLS TM1£ IDENTITY OF DATA AND FILES THAT 

HAKE UP A MESSAGE, *). 
COMPLEMENTARY RELATIONSHIP!  MADE ("BY»), 
SURJECTl  DATA, FILE, 
MJttlt     MESSAGE, 

BELATIe^SMIPi  ORDERS 
(• THE ELEMENT ON WHICH THE INSTANCES ARE 

BRDEPEO IN A FILE. •), 
COMPLEMENTARY RELATIONSHIP!  ORDERED CBY»), 
8U9JECTI  DATA, 
BflJECTl  FILE, 

RELATIONSHIP!  OUTPUTS 
(• INDICATES THE NAMED ELE-ENT OUTPUTS THE 

OBJECT ELEMENT(S), •), 
COMPLEMENTARY RELATIONSHIP!  OUTPUT (•FROM«), 
SURJECTl  AL^HA, 
OBJECT!  DATA, FILE. 

0 

1 
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AtLiTIONSHlM  PASSES 
(* INDICATES THE INFOBMATIftN NHICH PASSES THROUGH 

THE INTERFACE, *), 
COMPLEMCNTARV RELATIÖNSMIPi  PASSED CTHRflUCH"), 
SUBJECT!  iNPUT^INTERFACt, OUTPUT'INTERFACE, 
OBJECTl  MESSAGE. 

HCIATI8NSHIPI  SETS 
(• TELLS WHICH ALPHA SETS THE ENTITV.TVPE Of  AN 

INSTANCE IN AN ENTITY_CLASS, •), 
CÖHPLEHENTARV RELATIBNSHIPi  SET ("BY''), 
8UBJECTI  ALPHA4 
OBJECTl  ENTITY.TYPE, 

RILATI6N8HIPI  TRACES ("To") 
(• TEJ.LS THE HIGHER LEVEL (ORIGINATING) REQUIREMENT 

FRBH WHICH THE ELEHfNT WAS TRACED (ALLOCATED), 
A DEFAULT ORIGINATING REQUIREMENT IS "NflNE", 
WHICH INDICATES THAT THE ELEMENT IS DERIVED, 
NE WOULD EXPECT THAT THg ATTRIBUTE 
"ARTIFICIALITY" wflULD HAVE VALUE 
■ARTIFICIAL" IF THE ELEMENT 13 TRACED FROM 
■NONE",  HOWEVER, THIS «AY BE UNTRUE IN 
CASES WHERE AN ARBITRARY HEURISTIC MUST BE 
EMPLOYED. •), 

COMPLEMENTARY RELATIONSHIP«  TRACED (»FROM«), 
SUBJECTI  0RIGINATING_REQUIREMENT, DECISION, 
OBJECTl  ALL EXCEPT ORICINATINC.REOUIREMENT, 

c: 

ATTR1BUTEI  ALTERNATIVES 
(• THE ALTERNATIVES THAT HAVE BEEN ENVISIONED To 

RESOLVE THE PROBLEM, *), 
iDPLirARl.C T«|  OFCIStON, 
VALUE!  TEXT, 

ATTRIBUTE!  ARTIFICIALITY, 
APPLICABLE TO!  ALL. 
mUEl  ARTIFICIAL 

(• THE ELEMENT HAS BEEN DEFINED FOR EXFLANATORY OR 
EXECUTAB1LITY PURPOSES IN THE REOUIfEVENTS 
STATEMENT AND NEED NPT BE PRESENT I*   THE REAL- THE 
SOFTWARE, •), 

VALUEl  IMPLEMENT>RECISELr 
(• TH£ ELEMENT MUST BE IMPLEMENTED IN THE REAL-TIME 

SOFTWARE EXACTLY AS DEFINED»  NO CH/NGES SHOULD BE 
CONSIDERED UNTIL PERMISSION IS OBTAjNCO FROM THE 
REQUIREMENTS «NALY8T. •), 

VAUUtl IHPLEHENTIAPPROXIMATELV 
(• THE ELEMENT MUST BE IMPLEMENTED IN THE REAL-TIME 

SOFTWARE, BUT THE PRECISE IMPLEMENTATION IS LEFT TO 
THE PROCESS DESIGNER,  OF CflURSE, THE DETAILED 
IMPLEMENTATION MUST BE VALIDATED BY THE 
REQUIREMENTS ANALYST. •), 

VALUE!  VALIDATION 
<• THE ELEMENT IS NECESSARY FOR DESCRIBING 

PERFORMANCE REQUIREMENTS BUT IS NOT 
REQUIRED IN THE REAL-TIME SOFTWARE. •). 

t 

ATTRIBUTE!  BETA 
(• THIS PROVIDES THE PROCEDURAL CODE (HHICH IS NOT 

INTERPRETED BY THE RSL PROCESSORS) FOR FUNCTIONAL 
MODELS,  IT IS PASSED TO THE SIMULATION GENERATOR 
AND, SUBSEQUENTLY, TO THE COMPILER, •). 

APPLICABLE TOl  ALPHA, 
VALUEl  TEXT, 
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ATTRIPUTtt  CHOICE 
(• THE 0CCISI8N F«BH *MflNC THt ALTERNATIVES WITH THE 

RATIONALE FOR THE DECISION, *). 
APPLICABLE T8|  DECISION. 
VALUEl  TEXT, 

ATTRI8UTCI  CrtHPLETENESS, 
APPLICABLE TOl  ALL. 
VALUEl  INCOMPLETE 

(• THE ELEHENT'S DESCRIPTION IS KNflWN TO BE 
INCOMPLETE,  THEWEFORE, READERS SMOHLO 8E AWA3C 
THAT, EVEN IF ALL RELATIONSHIPS, ATTRIBUTES, AND 
STRUCTURES ARE STATED, THE ELEMENT IS STILL 
INCOMPLETE.  INFORMATION ABOUT THE ELEMENT SHOULD 
BE EMPLOYED ONLY AT THE USER'S-OWN RISK, •), 

VALUEl  CHANGEABLE 
(• ALTHOUGH ALL RELATIONSHIPS, ATTRIBUTES» AND 

STRUCTURES "AY flE DEFINEO FOR THE ELEMENT, SOME OF 
THEM WILL PR0HA9LY BE CHANGED,  INFORMATION ABOUT 
THE ELEMENT IS BELIEVED TO BE CORRECT» BUT IT IS 
SUBJECT TO CHANGE, •}, 

VALUEl  COHPLETE 
(• THE ELEMENT'S DESCRIPTION SHOULD BE ASSUMED T9 

HE COMPLETE AND HILL PROBABLY NOT CHANCE. •). 

ATTRIBUTCl  DESCRIPTION 
(* TEXTUAL DESCRIPTION, •), 

APPLICABLE TOl  ALL, 
VALUEl  TEXT, 

ATTRIBUTCl ENTERED_BY, 
APPLICABLE TOl ALL. 
VALUEl  TEXT 

(• THE IDENTITY OF THE LAST PERSON TO ENTER 
IHFORMATION ABOUT THE ELEMENT, •), 

ATTRIBUTEI  EXTRACTOR 
(• PROCEPUtAL CODE IDENTIFYING F«R WHICH INSTANCES 

OF FILES AND ENTITIES THE DATA INPUT TO THE 
VALIDATION>OINT IS TO BE EXTRACTED IN THE 
REAL-TIME SOFTWARE, •), 

APPLIC*BLE TOl  VAlIOATION_POINT, 
VALUEl  TEXT, 

ATTRIBUTCl  GAMMA 
(* THIS PROVIDES THE PROCEDURAL CODE (HHICH IS NOT 

INTERPRETED BY RSL PROCESSORS) FOR ANALYTIC 
MODELS,  IT IS PASSED TO THE SIMULATION GCNERATO* 
«NO» SUBSEQUENTLY» TO THE COMPILER. •). 

APPLICABLE TOl  ALPHA. 
VALUEl  TEXT, 

ATTRIBUTE!  INITIAL^VALUE 
(• THE INITIAL.VALUE A DATA ITEM IS RECUIREO TO 

HAVE IN THE IMPLEMENTED SOFTWARE,  THIS VALUE 
HILL BE ASSUMED BY THE DATA ITEM WHEN IT COMES 
INTO EXISTENCE IN A SIMULATION. •). 

AMLZCABLC TOl  DATA, 
VALUEl  NUHCRIC. 
VALUEl  TEXT, 
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ATTHISUTEl  LflCAtlTV, 
APPLICABLE T9|  0*TA, FILE, 
VALUEl  GL9B*L 

(• GLOBAL OAT* AND FILES HAY BE 
ASSOCIATED WITH ENTITVlTYPES 8R 
ENTITY-CLASSES 8R HAY BE IN THE 
GLOBAL DATA BASE. •). 

VALUEl  LOCAL 
(• LNCAL DATA AND FILES ARE 

CREATED AND INITIALIZED F8'  UCH ENABLEMENT 
OF AN B.NET, *), 

ATTPTBUTEl  HAKIHUH TIME, 
APPLICABLE TB|  VALIOATION_PATH, 
VALUE!  NUMERIC 

(• THE HAXIHUM TIHE THAT CAN BE TAKEN U TRAVERSE THE 
VALIDATION PATH, •), 

ATTRIBUTEl  MAXIHUH_VALUE 
(* THE MAXIHUH.VALUE APP'LIES TO DATA VALUES AND 

EMPLOYS THE UNITS STATED IN TH£ UNITS 
ATTRIBUTE, *), 

APPLICABLE TOl  DATA, 
VALUEl  NUHERIC, 

ATTRIBUTEl  HINIMUH.TIME 
(• THE HINIMUM TIME THAT CAN BE TAKEN TO TRAVERSE THE 

VALIDATION PATH, •), 
APPLICABLE TOl  VALIDATION_PATH, 
VALUEl  NUMERIC. 

ATTRIBUTEl  MINIMUM_VALUE 
{• THE KINIKUMJ/ALUC APPLIES TS DATA VAJ.ÜC8 AN5 

EMPLOYS THE UNITS IN THE UNITS ATTRIBUTE, •). 
APPLICABLE TOl  DATA. 
VALUEl  NUMERIC. 

ATTRIBUUl  PROBLEM 
(• THE PROBLEM THAT HAS LEO TO THE NEEC FIR A 

DECISION, •), 
APPLICABLE TOl  DECISION, 
VALUEl  TEXT, 

ATTRIBUTEl  RANGE 
(• THE RANGE OF THE DATA IS ENUMERATED HERE, 

IT IS MEANINGFUL ONLY IF ENUMERATION IS THE 
VALUE OF TYPE, O, 

APPLICABLE TOl  DATA. 
VALUEl  TEXT 

(• THE ALLOMED VALUES ARE SEPARATED BY COMMAS. •). 

ATTRIBUTEl  RESOLUTION 
(• DESCRIBES THE REQUIRED MAXIMUM VALUf OF THE LEAST 

SIGNIFICANT BIT FAR THE DATA IN UNT0 DESCRIBED IN 
THE UNITS ATTRIBUTE, *), 

APPLICABLE TOl  DATA. 
VALUEl  NUMERIC. 

ATTRIBUTEl  TEST 
(• PROCEDURAL CODE WHICH DEFINES T^E Ct.HPUTATIONS 

NECESSARY TO TEST THE SATISFACTION nf A 
PERFORMANCE_REOUIREMENT USING DATA INMUT TB 
VALIDATI8N>0INTS, •), 

APPLICABLE TOl  PERFORM*NCE_REQUIPEMENT, 
VALUEl  TEXT, 

t 
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ATTI»IBUT£l  TYPE 
{* THE TYPE F8R THE 0*T* ITEHS WHICH Wt   «EFEBCNCID 

ON f>fTS OR ARE USED IN BETA 8H CAMHA 
S1HUL*TI9NS, •), 

APPLICABLE TOl  DATA. 
VALUE»  REAL, 
VALUEl  INTEGER, 
VALUEl  BBSLEAN, 
VALUEt  ENUMERATION 

(• THE ALLIED VALUES MUST BE 8PECIFIIC' IN THt 
RANGE ATTRIBUTE. •), 

O 

ATTRlBUTCl  UNITS 

APPLICABLE TOl 
VALUEl  NAMED» 

(ft THE CHNriGURATIBN MANAGEMENT MANAGES MUST CREATE 
THE ATTRIBUTE VALUES THAT MAY 'BE EMPLflYEO IN 
OfSCRlRING THE REOUIREHENTS FftR THE DATA 
PROCESSING SYSTEM UNDER CONSIDERATKiN, ft)« 

DATA, VALIOATION_PATH, 

ATTRIBUTEI  USE 

APPLICABLE TPI 
VALUE!  BETA, 
VALUEl  GAMHA, 
VALUEl  BOTH 

(• THE APPLICABILITY OF TYPE AND RANGE ARE 
SPECIFIED IN THE USE. •), 

DATA, 

(ft BOTH BETA AND GAMMA ft). 

OATAl  CLOCKJTIME 
(ft A PREDEFINED DATA ITEM MHICH INCREMENTS AT THE 

SAME PATE AS ENGAGEMENT TIME,  EXCEPT FOR ITS 
INITIAL VALUE WHICH IS ARBITRARY, CIOCK.TIME MAY 
BE REGARDED AS CN6A8CHENT TI^E,  IT HAS N8 CLOCK 
ERROR, •), 

LOCALITYl  GLOBAL, 
TYPEI  REAL, 
UN.ITSI  SECONDS, 
USEl  BOTH, 

OATAl  FOUND 
(ft A PREDEFINED DATA ITEM WHICH IS SET Tfi EITHER 

TRUE OR FALSE AFTER EACH SELECT IN A BETA OR 
GAMMA,  FOUND IS SET TO TRUE IF AN INSTANCE 
SATISFYING THE SELECTION CRITERION TS LOCATED, 
OTHERWISE, FOUND IS ASSIGNED THE VAIUC FALSE, ft), 

LOCALITY!  GLOBAL. 
TYPE!  BOOLEAN, 
USEl  BOTH, 
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SYMBOL DEFINITION 

? R_NET INITIATION 

Y SUBNET INITIATION 

INPUTJNTERFACE 

<   ) ♦               OR 

OUTPUTJNTERFACE 

ALPHA REFERENCE 

c    ) SUBNET REFERENCE 

e OR-NODE 

© AND-NODE 

© EVENT-NODE 

© FOR EACH-NODE 

© VALIDATION_POINT-N 

A SUBNET TERMINATION 

A R_NET TERMINATION 

Figure A-1    RSL Symbols 
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R.NET   :   CC.PESPONSE. 
STRUCTURE: 

INPUT.INTERFACE . CC_IN 
ALPHA : VALIOATE.HEAOER 
00 

ALPHA   !   ACKNOWLEDGE 
0UTPUT_1NTERFACE   :   CC_OUT 

AND 
CONSIDER     DATA   :   COMMAND„IO 
00 

(HAN00VER_IMAGE) 
ALPHA   :   TRACK..1NITIATE 
EVENT   :   ALLOCATE 
OUTPUT   INTERFACE   :   OATA_RECORD 

OR 
(DROP_TRACK) 

ALPHA   :    TERM_TRACK 
OUTPUT_INTERFACE    :   OATA.RECORO 

OR 
(INITIATE_ENGAGEMENT_HOOE) 

ALPHA : STARTER 
ALPHA : ENGAGEMENT.INITIATION 
EVENT : SCHEDULE 
EVENT : SUMMARIZE 
TERMINATE 

OR 
(TERMINATE_EN6AGEMENT.M0DE) 

ALPHA : TERM.ENGAGEMENT 
TERMINATE 

OTHERWISE 
ALPHA   :   rc_EH«OK_PROCESSI»JG 
TERMINATE 

END 
END 

'£N0 . 

fit. 

R_NET : CONTROL.RESOURCES. 
STRUCTURE: 

ALPHA : ALL0CATE.AND_CONTROL_RES0URCES 
TERMINATE 

END . 

R NET : RADAR.SUMMARY, 
STRUCTURE: 

CONSIDER  DATA : MODE 
00 

(EM6&GE0) 
FOR EACH  ENTITY_TYPE : RETURNEO.PULSE 
00        ALPHA : SUMHARIZE^USAGE END 
ALPHA ! COMPLETE_SUMMARY 
EVENT : SUMMARIZE 
OUTPUT„INTERFACE : OATA_RECORO 

OTHERWISE 
TERMINATE 

END 
END . 

t 
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R NET : RADAR.TIMING. 
STRUCTURE: 

INPUT INTERFACE : RADAR„CLOCK_LH 
ALPHA": UPOATE„RADAR_CLOCK 
TERMINATE 

END . 
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t 

m 

R_NET T RESPONSE.TO.RADAR. 
STRUCTURE: 

INPUT.INTERF-ACE ;  RAOAR_!N 
ALPHA : ACCEPT_ANO_CMECK_RADAR_SETUPN_MESSAGE 
CONSIOER DATA : RETURN.IMAGE STATUS 
00 

(1N_TRACK) 
CONSIDER  DATA : RAOAR_TYPE 
DO 

(T3) 
OTHERWISE 

ALPHA : T1WT2_MEASUREMENT.EXTRACTI0N 
ENO 

.  00 
(VALIO_RETURN) 

ALPHA : UPOATE_STATE 
00 

OUTPUT.INTERFACE : DATA.RECORO 
AND 

ALPHA : REDUN.OETERMINATION 
DO 

(REOUNDANT.iyAGE) 
ALPH.i : REOUN_TERMINATION 
EVENT : ALLOCATE 
OUTPUT.INTERFACE : DATA.RECORO 

OTHERWISE 
TERMINATE 

END 
AND 

ALPHA : LOW.ELEVATION.OETERMINATION 
Bft 

(LOW_ELEVATION) 
ALPHA : L0W_TERMINAT10N 
EVENT : ALLOCATE 
OUTPUT.INTEREACE : OATA_RECORO 

OTHERWISE 
TERMINATE 

END 
END 

OTHERWISE 
ALPHA : GHOST_DETERMINATI0N 
00 

(GHOST_IMAGE) 
ALPHA : GH0ST_TERMINATI0N 
EVENT : ALLOCATE 
0UTPUT_INTERFACE : DATA.RECORO 

OTHERWISE 
TERMINATE 

END 
END 

OR 
(DROPPED) 

TERMINATE 
OTHERWISE 

ALPHA : RR.ERROR PROCESSING 
TERMINATE 

END 
END . 

C-5 
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NET   :   SKEDJ*. 
STRUCTURE: 

CONSIDER     DATA   :   MODE 
DO 

(ENGAGED) 
ALPHA   :    INITIALIZE.SKFD.R 
FOR   EACH     ENTITY_rYPE   :    IMAG£.IN_TRACK 
(LAST_PULSE*(1.0/TRACK_RATE)<TEOF) 
DO ALPHA   :   PICK..CANOIDATES  END 
FO«  EACH     FILE   :   CANDIDATE 
DO SUBNET   :   FORH..FRAME  END 
EVENT   :   XR8 
TERMINATE 

OTHERWISE 
TERMINATE 

ENO 
END   . 

SUCH   TH*T 

R_NET   :   XMIT_R. 
STRUCTURE: 

ALPHA   :   PICK.COMMANO 
DO 

(FOUND) 
EVENT   :   XRB 
CONSIDER     DATA   :   RAOAR.TYPE 
DO 

(T3) 
ALPHA   :   FORMjra 

OTHERWISE 
ALPHA   :   F0RM_ri_T2 

ENO 
OUTPUT.INTERFACE   :   RADAR.OUT 

OTHERWISE 

^1 

ENO 
ENO   • 

EVENT   :   SCHEDULE 
TERMINATE 
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« SUHNtT    :    FORM.t-KAMF.. 
STKUCTJHt: 

ALPHA : h lNU..COMt-LlCJ 

Uli 

AL^HA    :    "1AM: _CUI>^IAIMU 

KfTUHM 
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ENTITY.CLASS : IMAGE 
ASSOCIATES 

DATA : ENTRV^TIME 
DATA : IMAGE^IO 

COMPOSED 

ESTITY.TYPE : DROPPEO.IMAGE 
ASSOCIATES 

FILE : TERMINATOR 
CONTAINS 

DATA : OROP_REASON 
DATA : r>ROP_TIME 

ENTITY_TYPE : IMAGE^IN.TRACK 
ASSOCIATES 

DATA 
DATA 
DATA 
DATA 
DATA 

COVARIANCE 
LAST^PULSE 
STATE 
TRACK.RATE 
WAVEFORM 

PULSE 

PULSE.TYPE 
TARGET 10 
XMIT^START 

ENTITY.CLASS 
ASSOCIATES 

DATA : PULSE.ID 
DATA 
DATA 
DATA 

COMPOSED 
ENTITY.TYPE : LOST.PULSE 

ASSOCIATES 
DATA : ACCOUNTED_FOR 

ENTITYwTYPE : RETURNEO.PULSE 
AUSOC!ATP$ 

DATA 7 ACCOUNTED.FOR 
ENTITY^TYPE : T1.T2_PULSE 

ASSOCIATES 
DATA : RECEIVE_STOP 
DATA : T1.T2_XMIT 

ASSOCIATES 
FILE : •Tl.tZ.WINOOW 

CONTAINS 
DATA : T1.T2.WIND0W.0ATA 

ENTITY^TYPE : T3.PULSE 
ASSOCIATES 

DATA : RECEIVE.STOP 
DATA : T3..XMIT 

ASSOCIATES 
FILE : T3.WIND0W 

CONTAINS 
DATA : Ta^INDOW.DATA 

Q 

-  . 

• 
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COMMAND^IO 
HO.ID 
INITIAL..COVARIANCE 
INITIAL.STATE 

MODE.CHANGE 

INPUT.INTERFACE : CC.IN 
PASSES 

MESSAGE : HANDOVER 
MADE 

DATA 
DATA 
DATA 
DATA 

MESSAGE : 
MADE 

DATA : COMMANO.IO 
MESSAGE : TERMINATION 

MADE 
DATA : COMMANO_IO 
DATA t HO.ID 

iNPUT.INTERFACE : RADAR.CLOCK.IN 
PASSES 

MESSAGE : R.CLOCK_MESSAGE 
MADE 

DATA : RADAR.CLOCK_TIME 

;' 

, 

€ 
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INPUT_INTERFACE : RAOAR^IN 
PASSES 

MESSAGE : Tl^TZ.RETURN 
MADE 

DATA : RAOÄR..TYPE 
DATA : RR_ORDER_ID 
DATA : T1_T2.RECEIVE 

INCLUDES 
DATA : ALPHA..ERROR 
DATA : BETA.ERROR 
DATA : T1T2RTN..ERROR..REPORT 

INCLUDES 
DATA : REASON.FOR.TRANSMISSION FAIUM» 

DATA : WAKE_ARRAY 
INCLUDES 

DATA ! AVERAGE_SIGNAL_POWER 
DATA : THRESHOLD_DOl«IN_CROSSlNG Tl-F 
DATA : THRESHOLO^UP.CROSSING.TIME 

MADE 
FILE : Tl.TZ^DATA 

CONTAINS 
DATA : T1_T2_REC0R0 

INCLUDES 
DATA : NOISE.LEVEL 
DATA : RANGE.MARK.INFORMATION 

INCLUDES 
DATA 
DATA 

T3,RETURN 

RANGE.MARK.TIME 
SIG^AL.AMPLITUDE 

MESSAGE 
MADE 

DATA : RAnAR_TYPE 
DATA : RR_ORDER_IO 
DATA : T3.RECEIVE 

INCLUDES 
DATA : ALPHA_ERROR 
DATA I BETA^ERROR 
DATA ; T3RTN..ERR0R..REP0RT 

INCLUDES 
DATA : REASON.FOR.TRANSMISSION.FAILURE 

DATA : WAKE.ARRAY 
INCLUDES 

DATA : AVERAGE_SI6NAL.P0WER 
DATA : THRESHOLOJ)OWN_CROSSING_TlME 
DATA : THRESH0L0.UP.CR0SSIN6.TIME 

MADE 
FILE : T3.DATA 

CONTAINS 
DATA : T3.RECORO 

INCLUDES 
DATA : NOISE.LEVEL 
DATA : RANGE.MARK_INFORMATION 

INCLUDES 
DATA   :   RANGE.MARK.TIME 
DATA   :   SI6NAL..AMPLITUDE ' 

C-10 
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t OUTPUT_lNTERFACe   ;   CC.OUT 
PASSES 

MESSAGE   :   ACKNOWLEDGEMENT 
M40E 

DATA   :   COMMAND^IO 

OUTPUT.INTERFACE   :   OATA.RECORD 
PASSES 

MESSAGE   :   RADARJJSAGE 
MADE 

DATA   :   OATA_RECORO_TYPE 
DATA   :   ENGAGEMENT_TIME 
DATA   :   RESOURCES 

MESSAGE   :   STATEJJPDATE 
MADE 

DATA   :   CURRENT_STATE 
DATA   :   DATA_RECORD.TYP£ 
DATA   :   HO.ID 

MESSAGE   :   TRACK.INITIATION 
MADE 

DATA 
DATA 
DATA 
DATA 

MESSAGE : 
MADE 

DATA 
DATA 
DATA 
DATA 

:   DATA_RECORD_TYPE 
:   HO_ID 
:   INITIAL.STATE 
:   TIME_OF_INITIATION 

TRACK_TERMIMATI0N 

:   DATA.RECORDJTYPE 
HO.ID 
REASON.FOR.DROP 
TIME.OF.DROP 

C-ll 
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OUTPUT.INTERFACE : RAOAR.OUT 
PASSES 

MESSAGE : T1_T2_C0MMAND 
MADE 

DATA 
DATA 
DATA 
DATA 

RADAR..TYPE 
RR_ORDER.ID 
TRANSMIT_START 
Tl>T2_TnANSMIT 

INCLUDES 
DATA : ALPHA_PHASE_TAPER 
DATA : 0ETA_PHA5E_TAPER 
DATA : RECEIVE_lNFORMATION 

INCLUDES 
LFNGTH OF.RECEIVE 
RECF1VE.5TART.TIME 

RFCEIVER-G*!^-^111"6 

DATA 
DATA 
DATA 

MADE 
FILE : Tl_T2>6ATE 

CONTAINS 
DATA : T1_T2_GATEJ5ATA 

INCLUDES 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

MESSAGE : T3_COMMAND 
MADE 

DATA : RADAR_TYPE 
DATA : RR_ORDER.IO 
DATA : TRANSMIT.START 
DATA : T3_TRANSMIT 

INCLUDES 
DATA *. ALPHA_PHASE_TAPER 
DATA : BETA.PHASE.TAPER 
DATA : RECEIVE.INFORMATIOM 

INCLUDES 
DATA 
DATA 
DATA 

MADE 
FILE : T3_GATE 

CONTAINS 
DATA : T3J5ATEJ)ATA 

INCLUDES 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

ACCEPTANCEJTHRESHOLO 
GATE.LENGTH 

RAN6E
S
MARK'GENERATION.TECHNIQUE 

SIGNAL_PR0CESSING.MODE 
THRESHOLD.TYPE 1 

LENGTH.OF.RECEIVE 
RFCEIVE.START.TIME 
RFCEIVER.GAIN.SETTIN6 

ACCEPTANCE_THRESHOLO 
GATE.L£NGTH 
GATE.START.TIME 
RANGE MARK.TECHNIQUE 
STGNAL.PROCESSING.MODE 
THRESHOLD.TYPE 
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FILE   :   CANDIDATE 
CONTAINS 

DATA   : CANDIDATE„ENERGY 
DATA   : CANDIOATE.IMAGE.ID 
DATA   : CANDIDATE_WAVEFORM 
DATA   : PRIORITY 

E   :   COMMAND 
CONTAINS 

DATA   : COMMAND_ENERGY 
DATA   : C0MMAND_IMA6E_ID 
DATA   : COMMAND_WAVEFORM 
DATA   ! START^TIME 
DATA   : WINDOW 

FILE   :   WAVEFORM_rABLE 
CONTAINS 

DATA   :   WF.CHARACTERISTICS 
DATA   :   WF_NAME 

€ 

i 

t 
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DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

CLOCK.TIME 
DELTAT 
DR0P_FLA6 
ELEVATION_LIMIT 
ENEPGY.BOUND 
FOUND 
FRAME.RATE 
GHOST.IMAGE 
1ST 
LAST.ALLOCATE 
LOW_ELEVATION 
MODE 
RAOAR_CLO": 
RAOAR.MEASUREMENT 
RAOAR_MODEL_OATA 
REOUNDANT.IMAGE 
RETMRN.IMAGE^STATUS 
RR_OROFR_IOC 
SUMMARYWRATE 
TEOF 
VALID^RETURN 
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RflOflR_TIMI 
NG 

RRÜRR 
/J:LOCK_JN 

1 
UPDflTE_RflO 
flR_CLPCK 
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BRANCH 
NO. 

1 
2 
3 
4 
5 

0R01NRL 
VPLUE 

CC_RESPONSE 
8RP.NCH LEGEND 

CONDITIONRL EXPRESSION 

(HPN00VER_innGE) 
(DRCP_TRRCK) 
( INITIRTE_ENGCiCEMENT_MOOE ) 
( TERMINRTE_ENGRGEMENT_riOOE) 
OTHERWISE 

0-5 

"■™        i »Mi ■ 



"1 ) 

~ 

o 
D-6 

:.-:..    .....     . 



SKüBIWIS^fl^SStf ^«^as*.^«*:1-»^-?-.'^'"»-':-'-';^'-'»'.^ «SV-K-W.,'>-;.■ ■*:■ 

Biis 

1 RESPONSL   fO   RBORR 
BRfiNCH LEGENO 

BRANCH OROINRL 
NO. VALUE C0NC1TI0NRL   EXPRESSION 

1 ! IN   TRRCK ) 
2 (DROPPED) 
3 OTHERWISE 
4 (T3) 
5 OTHERWISE 
6 (VALID   RETURN) 
7 0THERW1SL 
8 (REDUNDRNT   IMRQE) 
9 OTHERWISE 
10 (LOW_ELEVRTION) 
11 OTHERWISE 

t 

12 
13 

tCHOST_IMRGE) 
OTHERWISE 
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SKEO_R 

nooE 

INlTlfiLlit 
_snro_R 

jnBGE_IN_T 
ROCK 

I   PICK_CSN01 
I   DAUb 

F 
CBNOIORTE 

FORfl.. 

E 
XRB 

': 

1 
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i 
SKEO_R 

BRANCH LEGEND 
B^fiNCH  OROINRL 

NO.   .VALUE CONOITIONflL EXPRESSION 

(ENGAGED) 
OTHERWISE 
(LRST_PULSEt( 1 .0/TRRC(LRHTE)<rEOF 
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• FORM_/RfiME 
BRfiNCH  LEGENC 

B^RNCH     0R01NRL 
NO. VRLUE CONCITIONPL  EXPRESSION 

(NOT   OROP_FLRG) 
OTHERWISE 

D-ll 

-"■mtmm 

■.«»■;i<«»--—^-»-«imBli'^l,».«' 



• • I ■       , .     . 

xrmj 

S  MEOULE 

f 

o 
i 'Cf'_T:_'f 

D-12 

-> ■ ^_^B__^__aBaaaaHaaM^Ba^aMB^Maa^_MMMaKav,MVka^BBaii 



t 
8RRNCH  QROINRL 

NO.    VALUE 

XMITJ? 
SRRNCH LECENO 

CONOITIONaL EXPRESSION 

(FOUND) 
OTHERWISE 
(T3) 
OfMERWISE 

c 

D-13 



RflOflR_suriti 
flRY 

RETURNEO_P 
ULSE 

conPLrTi_s 
unnflRf 

SUMMRRIZE 

o 

o 
D-14 

u~~ 
•—"!■■—'■"'■"'   ■«•^-^•^T^  L 



■ 

t 
RROPR_SUfW«RY 
BRANCH LEGEND ,i 

BRANCH 
NO. 

OROJNSL 
VALUE CONDITIONAL EXPRESSION 

._      'I 

1 
2 

• 

(ENGAGED) 
OTHERWISE 

• 

i' 

!i 

l! 

i 

.i 

:l 

1 •; 
!i 

ii 

ij 

11 
l 

■t 

jl 
1 

•■ 

I 
,1 

>i 

il 
I 

;i 
!i 
.1 

;j 

D-15 

'*SyA 



■ 

o 

1 



tnffB VtmtiiwnMitMi'itn' i iiii 

• 

C 
APPENDIX E 

COMPLETE TLS DATA BASE 

t 

^^2^^MI 



ALPHA : ACCEPT.ANO_CHECK_RADAR.RETURN_MESSAGE. 
BE TA! 
"VAR XtREAL» 
BEGIN SELECT FIRST FROM PULSE SUCH THAT 

(PULSE_IOsRP..OROER-IO) J 
IF NOT FOUND THEN RFTURN.IMAGE STATUStsNO ORDER 

ELSE IF «RADAR.TYPEoPULSE TYPE) THEN ' 
RETURN_IMAGE_STATUSi=*RONG ORDER 

ELSE BEGIN SET RETURNEO.PULSEl 
ACC0UNTE0_F0R:=NEITHERJ 
SELECT FIRST FROM IMAGE.IN.TRACK 
SUCH THAT (IMA6E_ID = TARGET,.IDM 

IF NOT FOUND THEN RtTURN_lMAGE„STATUSSsOROPPED 
ELSE BEGIN RETURN_IMAGE_STATUS:«IN.TRACKr 

X:=RFCEIVE.ST0P| 
FOR EACH PULSE SUCH THAT 
(RECEIVE_ST0P<K AND (PULSE TYPEaTl OR 
PULSE.TYPEsT? OR PULSE.TYPEsT3)» DO 
SET LOSTJ>ULSE? 
ACCOUNTED.FORraNEITHERI 
ENDFOREACH 

END 

C 
ENDI", 

INPUTS: 
DATA 
DATA 
DATA 
OAT« 

END 

IMA6E.I0 
PULSE.IO 
PULSE.TYPE 
PADAR.TYPE 

DATA: PECEIVE.STOP 
DATA: PR.OROER.IO 
DATA? TAHGET.Iö. 

OUTPUTS: 
DATA:   RETURN_IMAGE_STATUS. 

SETS: 
ENTITY.TYPE: LOST PULSF 
FNTITY_TYPE: RETURNED PULSE, 

EQUATED TO: 
SYNONYM:.CKRAOMES. 

REFERRED BYi 
R.NET   :   RESPONSE.TO.RAOAR. 

e 



ALPHA   r   ACKNOWLEDGE. 
BETA: 

"BEGIN 

FOHM ACKNOWLEDGEMENT 
END»". 

FORMS: 

MESSAGE: ACKNOWLEDGEMENT, 
REFERRED BY: 

R.NET : CC.RESPONSE. 
DECISION: TRACK.PERFORMANCE.ALLOCATION 
ORIßlNATING.REOUlREMENT: DPSPR.3.?_?.8„PERF0RMANCE 
ORIGINATING.RFQUIRFMENT : DPSPR.3_?^_0_FUNCriONAL 
ORIGINATING.REOUIREMENT: DPSPR_3-2.4.B FUNCTIONAL» REFERRED BY: 
R.NET : CONTROL.RESOURCES. 

ALPMA : CC.ERROR.PROCESSING. 
BETA: 
"BEGIN 
ENOI". 

REFERRED BV: 

R.NET : CC.RESPONSE. 

t 

O 
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ALPHA : ALLOCATE.ANO.CONTROL.RESOURCES. 
BETA: 
"VAR EtP»«R»DELTA.TIME:REALIJ:iNTEöERI 

BEGIN 
E:«0.0l 
POR EACH RETURNED PULSE DO 

IF ACCOUNTED FOR=SUMMED THEN 
BEGIN 

SELECT FIRST FROM WAVEFORM.TABLE SUCH THAT 
(*F_NAME=PULS£_TVPe)I 

IF FOUND THEN E.'sE^F.CHARACTERISTICSl 
DESTROY PULSEI 

END 
ELSE IF ACCOUNTED.FORa NEITHER  THEN 

BEGIN 
SELECT FIRST FROM WAVEFORM.7ABLE SUCH THAT 

(WF_NAME=PULSE_TYPE)I 
IF FOUND THEN E.'sE-^F.CHARACTERISTlCSl 
ACCJUNTED.FOR:«COUNTEDI 

END I 
ENDFOREACHI 
FOR EACH LOST.PULSE DO 

SELECT FIRST FROM WAVEFORM.TABLE SUCH THAT 
(WF^NAMEsPULSE.TYPE) I 

IF FOUND THEN E:=E»WF.CHARACTERISTlCSf 
DESTROY PULSEI 

ENDFOREACHI 
DELTA_TTME:=CLOCK.TIME-LAST.ALLOCATEI 
LAST.ALLOCATE!=CLOCK_TIMEI 
ir c-»ü»u tnc.it 
BEGIN 
PWR:=E/DELTAWTIMEI 
JtmQt 
FOR EACH IMAGE.IN.TRACK DO J.'sJ*! lENOFOREACHl 
FOR EACH IMAGE.IN.TRACK DO 

SELECT FIRST FROM WAVEFORM.TABLE SUCH THAT 
(WF_NAME=WAVEFORM)I 

IF FOUND THEN TRACK.RATE.'s (PWR/J)/WF.CHARACTERISTICSI 
ENDFOREACHI 
END 

ENDI". 
OESTROYSt 

ENTITY.CLASS: PULSE. 
INPUTS: 

ACCOUNTEDlFOR 
CLOCK.TIME 
IMAGE.IO 
LAST.ALLOCATE . 
PULSE.TYPE 
WAVEFORM 
WAVEFORM.TABLE. 

DATA: 
DATA: 
DATA: 
DATA: 
DATA: 
DATA: 
FILE: 

OUTPUTS: 
DATA: 
DATA: 
DATA: 

ACCOUNTEO.FOR 
LAST.ALLOCATE 
TRACK.RATE. 

TRACED PROM: 

E-5 
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ALPHA   :   COMPLETE^SUHMARY. 
BETA: m 
"BEGIN FORM RAOAR_USAGEI 

DATA_RECORD_TYPE:=RADAR_USAGE-REPORTI 
ENöAGEMENT_TIME:=CLOCK«TIME 

END»". 
FORMSi 

MESSAGE: RAOAR^USAGE. 
INPUTS: 

DATA: CLOCK.TIME. 
OUTPUTS: 

DATA: DATAJ*FCORO_TYPE 
DATA: ENGAGEMENT^TIME, 

REFERRED BY: 
R.NET : RADAR.SUMMARY, 

ALPHA : ENGAGEMENT.INITIATION. 
BETA: 
"CONST X=ENGA6E0I 
BEGIN MOOE:aX 
ENDI", 

OUTPUTSl 
DATA: MODE. 

REFERRED BY: 
R.NET : CC_RESPONSE. 

ALPHA : FIND_CONFLICT. "t 
BETA« ^ 

"BEGIN 
OKÜP.FLAG:=FALSEt 
FOR EACH COMMAND DO 

IF START_riME>TEOF THEN BEGIN 
DPOP_FLAG:=TRUEI 
DESTROY CANDIDATE ENDI 

ENDFOREACHI 
ENDI", 

DESCRIPTION« 
«COMPARES TRANSMIT RECEIVE WINDOW OF THE CANDIDATE WITH 
THOSE OF THE THEN.CURRENT COMMAND.FOR CONFLICT, IF 
A CONFLICT IS FOUND DROP.FLAG IS SET TRUE,", 

INPUTS« 
DATA: START.TIME 
DATA« TEOF, 

OUTPUTS« 
DATA: DROP.FLAG, 

TRACED FROM: 
DECISION: TRACK.PERFORMANCE.ALLOCATION 
ORIGINATING.REOUIREMENT« DPSPR_3_?.J?.B.PERFORMANCC 
DRISINATING.REQUIHEMENT« 0PSPR.3-2.3_E.FUNCTI0NAL. 

REFERRED BY« 
SUBNET J FORM FRAME, 

o 
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«LPHA : F0RM_T1.,T2, 
BETA: 
"BEGIN 

FORM n_T2_C0MMAN0l 
T1_T2_TRANSM1T:=0.0I 
CREATE   TI_T2_GATei 
Tl_T2_GATE_OATA:=0.OI 
SET   T1_T2_PULSEI 

RECEIVE.STOP:=START   TIMEI 
T1_T2_XMIT:=0.0I 
CPEATE   Tl_T2_WlND0Wf 
Ti.T2_WIN0OW_0ATA:«0.0l 

ENDI". 
FORMS: 

MESSAGE: Tl,T2_COMMANO. 
INPUTS: 

FILE: COMMAND, 
OUTPUTS: 

DATA: PECEIVE^STOP 
DATA: Tl_T2_TRANSMIT 
DATA: T1_T2_X^IT 
FILE: T1.T2-GATE 
FILE: Tl_T2_WINDOW, 

SETS: 

ENTITY.TYPE: T1_T2.PULSE4 
TRACED FROM: 

ORIGINATING.REOUIREMENT: DPSPR-3_2_2.C_FUNCTIONAL • 
ORIGINATING.REQUIREMENT: DPSP^_3_2,3.E_FUNCTIONAL. 

REFERRED 8Y: 
R.NET : XMIT^R. 

ALPHA : FORMATS. 
BETA: 
"BEGIN 
FORM T3_COMMANDI 
T3_TRANSMIT:=0.0I 
CREATE T3_GATEI 
T3_GATE_DATA:=0.0I 
SET T3_PULSE| 
T3_XMlT:sO.0l 
RECEIVE_STOP:»START_TIMEI 
CREATE TS.WINOOrfl 
T3_WINDOW^DATA:»O.OI 
ENDI". 

FORMS: 
MESSAGE: T3..C0MMAN0. 

INPUTS: 
FILE! COMMAND, 

OUTPUTS: 
DATA: RECEIVE.STOP 
DATA: T3.TRANSMIT 
DATA: T3_XMIT 
FILE! T3«GATE 
FILE: T3_WIND0W, 

SETS! 
ENTITY.TYPE! T3.PULSE. 

TRACED FROM! 

ORIGINATING.REQUIREMENT! DPSPR_3_?_2.C_FUNCTI0NAL 
ORIGINATING.REQUIREMENT! OPSPR„3.?.1_E.FUNCTIONAL. 

REFERRED BY! 
R.NET I XMIT.R. 
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ALPHA   :   GMOST.OETERMINATION, 
BETA: 

"BEGIN 6H0ST_IMAGE:= (RADAP„MEASUREMENT>«10.0> ENDI", 
INPUTS: 

OATA: RADAR.MEASUREMENT. 
OUTPUTS: 

DATA: GHOST.IMAGE, 
TRACED FROM: 

DECISION: TRäCK_PERFORMANCE_ALLOCATION 
ORIGINATING.REOUIREMENT: DPSPR_3.?-?.R_FUNCTI0NML 
ORIGINATING.REQUIREMENT: 0PSPR„3..?-2-B»pERF0RMANCE 
ORIGINATING.REQUIREMENT: DPSPR^.?_3.C_FUNCTI0NAL. 

REFERRED BY: 
R.NET : RESPONSE_TO_RADAR. 

( ) 

ALPHA : GHOST.TERMINATION, 
BETA: 
"BEGIN SET DR0PPED..IMA6EI 

FORM TRACK.TERMINATIONI 
CREATE TERMINATOR! 

\      HO_ID:=IMAGE_IO; 
\     REASON.FOR.OROP^^GHOSTI 

DROP_REASON:=GHOSTI 
TIME.OF.DROP.'sCLOCK^TIMEl 

OATA_RECORD.TYPE:=TRÄCK.TERMINATlON_REPORT| 
OROP.TIME:=CLOCK_TIME 

ENOI». 
FORMS: 

MESSAGE:   TRACK.TERMINATION. 
!N*UT5» 

CLOCK.TIME 
IMAGE.IO. 

w 

DATA: 
DATA: 

OUTPUTS: 
DATA: 
DATA: 
DATA: 
DATA: 
FILE: 

SETS: 
ENTITY.TYPE: DROPPEO.IMAGE, 

TRACED FROM: 
ORIGINATING„REQUIREMENT: DPSPRJJ.?.?.B.FUNCTIONAL« 

REFERRED BY: 
R_NET : RESPONSE.TO.RAOAR. 

DATA.RECORD.TYPE 
HO.ID 
REASON.FOR.OROP 
TIME.OF.OROP 
TERMINAfÜR. 

■• 

o 
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ALPHA   J   1NITUL1ZE_SKE0_R. 
BETA: 
"BEGIM 

TE0F:=CL0CK_T1ME»FRAMEJ»ATE» IST:=Ct.QCK.Tl»EI 
ENDI". 

DESCRIPTION: 
"COMPUTES THE TIME OF THE E^tO OF THE CURRENT FRAME.". 

INPUTS: 
DATA: CLOCKjriME 
DATA: FRAMEJUTE. 

OUTPUTS» 
DATA: 1ST 
DATA: TEOF. 

REFERRED BY: 
R_NET   :   SKEO.R. 

IS' 1 

• 

ALPHA   :   LOW_ELEVAT10N_OETERMINATION. 
BETA: 
"BEGIN LOi_ELEVAT10N: = (ENTRY.JfIME-CLOCKjriME>ELEWATIONJ.IHlTI 
ENDI". 

INPUTS*. 
DATA: CURRENT.STATE 
DATA: ELEVATION.LIMIT. 

OUTPUTS: 
DATA: LOW.ELEVATION, 

TRACED FROM: 
0RIGINATIN6JJEQUIREMENT: DPSPRJL^J'.D.FUNCTIONALI 

REFERRED BY: 
RJ4ET : RESPONSE.TO.RADAR. 

ALPHA : LOH.TERMINATION, 
BETA*. 

"BEGIN   SET   DROPPED_IMAGEI 
FORM   TRArK.TF.RMINATIONI 
CREATE   TEHMiNATORI 
HOjm: = IMAGE,IOI 
REASON_FOR_OHOP:aLOMl 
OROP_REASON:=LO«U 
TIME_OF_OROP:=CLOCK_TIME« 

OATA^RECOHD.TYPE:=TRACK_TE«MINATION.REPORTI 
DROP JTIME:=CLOCK_TIME 

ENDI". 
FORMSt 

MESSAGE! TRACK.TERMINATION. 
INPUTS: 

DATA: CLOCK.TIME 
DATA: IMAGE.IO. 

OUTPUTS: 
DATA: DATA_RECORD_TYPE 
DATA: HO_ID 
DATA: REASQN_FOR_OROP 
DATA: TIME.OF.DROP 
FILE: TERMINATOR. 

SETS: 
ENTITY_TYPE: OROPPED.IMAQE. 

TRACED FROM: 
ORIGINATING.REQUIREMENT: 0PSPR„3_3«2.0_FUNCTI0NAL. 

REFERRED BYJ 
».NET » RESPONSE_TO_RAOAR. 
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ALPHA : MAKE.COMMAND, 
BETA: 
■BEGIN 

CREATE COMMANOI 
COMMANO.lMAGE_IO:=CANOIDATE_IMAGE_IOI 
COMMANO_WAVEFORM:=CAND10ATE«WAVEFORMI 
COMMAND_ENERGY:sCANOIOATE_ENERGy| 
START.TIMErsISTl 
IST:=IST*DELTATI 
SELECT FIRST FROM IMA6E_IN.TRACK SUCH THAT 
(IMAGE_in=CANDIDATE_IMAGE.IOII 

LAST_PULSE:s:START_TIMEI 
DESTROY CANDIDATE 
ENDI". 

INPUTS: 
DATA: 
DATA: 
DATA: 
DATA: 
DATA: 
DATA: 

OUTPUTS: 
DATA: 
DATA: 
DATA: 
DATA: 
DATA: 
DATA: 

REFERRED BY: 
CMQUPT 

CANDIDATE_ENER6Y 
CANDIOATE„IMAGE_IO 
CANDIDATE_WAVEFORH 
DELTAT 
IMAGE.IO 
1ST. 

C0MMAND_ENER6V 
COMHAND_IMAGE.ID 
COHMANO.WAVEFORM 
1ST 
LAST.PULSE 
START-.TIMr. 

FnOM^FRAME, 

D 

I fe) 
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ALPWA   S   PiaC_C*NOIOATCS, 
eCTAS 

'   "BEGIN 
D»CITi:  CANDIOATEI 
CÄM!JnÄlf_IMAGe_in: = IMAGE.lOl 
If   V<AVEFOSM=n THEN PRIORITYtal ,0 

ELSE IF WAVEE0PN=T2 THEN PRIORITY:s2,0 
ELSE PRI0RITY:=3.0J 

CAWaiOATE.,.WAVEFORM:=»iAVEFORM| 
SELECT FIRST FROM WAVEF0RM_JA8LE 

SUCH THAT WF^NAMEstfAVEFORMI 
IF NOT FOUND THEN CANOIOATE.ENERGY:sO.O 

ELSE CANDIDATE_ENERGY:=WF_CHA*ACTERISTICSI 
ENDS". 

DESCRIPTION! 
"EACH IMAGE_IN_TRACK WHICH MIGHT GENERATE A MESSAGE THIS 
FRAME HAS ITS T iNSMIT AND DECEIVE START AND STOP TIMES 
EXTRACTED« ITS ENERGY DEMAND DETERMINED AND ITS 
PRIORITY ESTABLISHED.", 

INPUTS: 

IMAGE.IN.TRACK»» 

f 

DATA: IMAGE.ID 
DATA: WAVEFORM 

(»INSTANCES OF ENTITY.TYPE 
FILE: WAVEF0RM.TA6LE. 

OUTPUTS: 
DATA: CANDIDATE. .ENERGY 
DATA: CANDIDATE. .IMAGE.IO 
DATA: CANDIDATE, .WAVEFORM 
DATA: PRIORITY. 

TUArcri F30" «: 
DECISION: SYNCHRONOUS.VS_ASYNCHRONOUS 

REFERRED BY: 
R_NET : SKED.R, 

E-n 
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ALPHA : PICK.COMMANO. 
BETA: 
"BEGIN 

SELECT FIRST FROM COMMANOI 
IF FOUND THEN 
BEGIN 

TRANSMIT.STARTZSSTAHT.TIHEI 
R4DAP_TYPE:aC0MMAND_WAVEF0RM| 
RR_OPDEH_IOC:sRR_ORDER-IDC*ll 
CREATE PULSEI 
PULSE.TYPE:sCOMMAND.WAVEFORNI 
TARGET_ID:=COMMAND.IMAGE_IOI 
PULSE.TotsRR.ORDER.IDCI 
XMIT^START:=START_TIMEI 
DESTROY COMMANDI 

END 
END;*

1
« 

DESCRIPTION: 

0 

RR.O«DER.ID:«RR.OROER.IDCl 

"PICK.COMMAND SELE 
CREATES: 

ENTITY.CLASS: PULSE, 
INPUTS: 

DATA: RR_ORDER_IOC 
DATA: START.TIME 
FILE: COMMAND. 

OUTPUTS: 
DATA: FOUND 
DATA: PULSE.IO 
DATA: PULSE.TYPE 
DATA: RADAR^TYPE 
DATA: PR.ORDER.ID 
DATA: RR.ORDER.IOC 
DATA: TARGET.IO 
DATA: TRANSMIT.START 
DATA: XMIT.START. 

REFERRED BY: 

NEXT   COMMAND. 

1 

R.NET   :   XMITJ», 

I*«/ 
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ALPHA : RE0UNJ)ETERMINATI0N. 
BETA: 

"VAo XiINTEGERI 
»EGIN x:soi 

FOR  EACH IMA6E.IN.TRACK 00 
IF STATE=C(JRHENT_STATE THEN X:=X»ll 
ENDFOREACHI 

SELECT FIRST FROM IMA6E.IN_TRACK SUCH THAT 
IMAGE.ID=TARGET_IOI 

REDUN0ANT-IMAGE:*(X>1) 
ENOI". 
INPUTS: 

DATA: CURRENT.STATE 
DATA: STATE. 

OUTPUTS: 
DATA: PEDUNOANT^IMAGE. 

TRACED FROM: 
DECISION: TRACK_PERFORMANCE_ALLOCATION 
ORIGINATING.REQUIREMENT: 0PSPR.3_?.?_A.FUNCTI0NAL 
0RIGINATIN6_REQUIREMENT: DPSP«..1.?_?«B_PERF0RMANCE 
ORIGINATING.PFQUIREMENT: 0PSPR.3_?.1_9_FUNCTI0NAL. 

REFERRED BY: 
R.NET : RESPONSE.TO.RAOAR. 

II 

ALPHA : REOUN 
BETA: 
"BEGIN 

TERMINATION. 

ENOI 

SET OROPPEO_IMAGEl 
FORM TPACK.TFRMINATIONI 
CREATE TERMINATORI 
HU.IO^IMAGE.IOI 
PEA50N_F0R_0R0P:sREDUN0ANTI 
D90P.REAS0N:= REDUNDANT» 
TIME_0F_0R0P:=CL0CK_riMEI 

DATA.RECORD.TYPE^TRACK.TERMINATION.REPORT» 
OROP.TIME.'^CLOCK.TIME 

^ 

FORMS: 
MESSAGE: TRACK.TERMINATION. 

INPUTS: 
DATA: 
DATA: 

OUTPUTS: 
DATA: 
DATA: 
DATA: 
DATA: 
FILE: 

SETS : 
ENTITY.TYPE: OROPPEO.IMAGE. 

TRACED FROM: 
ORIGINATING.REQUIREMENT: 0PSPRJ.2.2.A.FUNCTI0NAL« 

REFERRED BY» 
R.NET : RESPONSE.TO.RAOAR. 

E-13 
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IMAGE.ID. 

OATA.RECORO^TYPE 
HO.IO 
REASON.FOR.DROP 
TIME.OF.DROP 
TERMINATOR. 
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ALPHA   :   RR_ERR0R_PR0CESSIN6. 
BETA: "BEGIN  ENDI", 
REFERRED  BY: 

R.NET   :   RESPONSE.TO^RAOAR. 

ALPHA   :   STARTER. 
ARTIFICIALITY:   ARTIFICIAL, 
BETA: 
"BEGIN CREATE WAVEFORM..TABLEI 

«F.NAME-.aTll 
«F_CMARACTERISTICS:«l.OI 
CREATE WAVEFORM.TABLEI 
WP.NAME:=T2I 
WF_CHARACTEflISTICS:=2.0l 
CREATE   WAVEF0RM_TA8LEI 
WF_NAME:sT3» 
WF_CHARACTERISTIC'...'a3.0 

END I". 
DESCRIPTION: "THIS ELEMENT INITIALIZES WAVEFORMJTABLE". 

OUTPUTS: 
FILE: WAVEF0RM.TA8LE, 

REFERRED BY: 
R.NET : CC.RESPONSE. 

ALPHA : SUMMARIZE_USA6E. 
BETA: 
"BEGIN IF ACCOUNTED„FOR<>SUMMEO THEN BEGIN 

SELECT FIRST FROM -AVEFORM.TABLE SUCH THAT 
(WF_NAME=PULSE_TYPE)t 

RESOURCES:=RESOURCES*KF.CHARACTERISTICS| 
IF ACCOUMT£D_FOR=COUNTEO THEN DESTROY PULSE 

ELSE ACCOUNTED«FOR:sSUMMEO 

f 

END 
ENDI». 

OESTROYSt 
ENTITY.CLASS: PULSE, 

INPUTS: 
DATA: ACCOUNTEO.FOR 
DATA: PULSEJTYPE 
FILE: WAVEFORH.TABLE. 

OUTPUTS: 
DATA: ACCOUNTED_FOR 
DATA: RESOURCES, 

TRACED  FROM: 
ORIGlNATINGJ»EQUIREMENT:   DPSPRJ_2.4.A.FUNCTI0NAL 
ORIGINAT1N6.REQUIREMENT:   DPSPRJJ«?Ji.D.FUNCTIONAL« 

REFERRED  BY: 
RJ^ET   :   RADAR.SUMMARY, 
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ALPHA : TERH.ENGAGEMENT, 
BETA: 
•CONST X« STANDBY I 
BEGIN HOOE:BX 
ENOI". 

OUTPUTS: 
DATA: MODE. 

REFERRED BY: 
R„NET : CC.RESPONSE. 

ALPHA : TERM.TRACK. 
BETA: 
"LABEL lOOl» 
CONST XsCC.COMMAND_TO_OROP| 

BEGIN SELECT FIRST FROM IMAGE_IN_TRACK SUCH 
IF FOUND THEN SET 0R0PPED.IMA6E 

ELSE 
BEGIN 

SELECT FIRST FROM OROPPED.IMAGE 
(IMAGE^IOsHO^IO)! 
IF NOT FOUND THEN GOTO 1001 

END! 
FORM TRACK.TERMINATIONI 

CREATE TERMINATORI 
OROP.TIME:aCLOCK.TIMEI 
DROP REASON:=XI 
DATA.RECORD.TYPE^TRACK.TERMINATION.REPORT» 

REASON_FOR J)ROP:aX» 
TI Mr. _nF JjROP : sDROP^T 1MF I 

1001»       ^ENOI". 
FORMS: 

MESSAGE: TRACK.JERMINATION, 

INPUTS: 
  CLOCK.T1ME 

HO.ID. 

THAT (IMAGE.I0=H0.ID)I 

SUCH THAT 

DATA: 
DATA: 

OUTPUTS« 
DATA: 
DATA: 
DATA: 
FILE: 

""'ENT.TY.TyPe-. 

"•"Tiir". «.RESPONSE. 

DATA.RECORO.TYPE 
PEASON^FOR.OROP 
TIME.OF.DROP 
TERMINATOR. 

DROPPEO.IMAGE, 

• 
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ALPHA » TPACK.INITIATE, 
BETA: 

"BEGIN 
t 

. 

FORM   TRACK_INITIATI0N| 
CRfATE   IMAGE» 
SET   IMAGE_IN_TRACK| 
TIME.OF.INITIATIONlsCLOCK.TlMEl 
IMA6E_I0S=H0„I0I 
STATE^INlTIAL.STArEI 
COVARIANCE^INITIAL.COVARIAMCEI 
TRACK.RATE:=20.0I 
WAVEFORM:*TII 

OATA_RECOHD_TYPE:=TRäCK_INITIATION.REPORTI 
ENTRr_TIME:sCLOCK_TIME 

END»», 
CREATES: 

ENTITY_CLASS: IMAGE. 
FORMS: 

MESSAGE: TRACK.INITIATION. 
INPUTS: 

CLOCKJTIME 
HO.IO 
INITIAL.COVARIANCE 
INITIAL.STATE, 

DATA: 
DATA: 
DATA: 
DATA: 

OUTPUTS: 
DATA: 
DATA: 
DATA: 
DATA: 
DATA: 
DATA: 
DATA: 
DATA: 

COVARIANCE 
DATA.RECORO^TYPE 
ENTRY^TIME 
IMAGE.IO 
STATE 
TIME.OF.INITIATION 
TRACK.RATE 
WAVEFORM. 

fl $ 

SETS: 
ENTITY.TYPE: IMAGE.IN.TRACK. 

TRACED FROM: 
0RIGINATIN6.REQUIREMENT: OPSPRJ3.2.1.A.FUNCTIONAL 
ORIGINATING.REQUIREMENT: OPSPR»l.?Ji.A.FUNCTIONAL. 

REFERRED BY» 
R.NET : CC..RESPONSE. 

ALPHA : T1_T2_MEASUREMENT_EXTRACTI0N. 
BETA» 
"BEGIN VALID RETURN:arRUEl 

RADAR.MEASUREMENT :aTl.T2.RECEIVE 
ENOt"* 

INPUTS» 
DATA» 
FILE: 

OUTPUTS» 
DATA» 
DATA: 

Tl_T2.RECEIVE 
T1.T2J)ATA. 

RADAR.MEASUREMENT 
VALID.RETURN. 

REFERRED BY» 
R.NET : RESPONSE.TO^RADAR. 
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ALPHA ! T3_MEASUREMENT.EXTRACTI0N, 
BETAt 

"BC6IN 
VALIO.RETURN:=000(TRUNC(T3 RECEIVE»©.1))» 

RADAR_MEASUREMENT:=T3_RECE1VE 
ENO t ••. 

INPUTS« 
DATA! T3_RECEIVE 
FILE! T3_0ATA. 

OUTPUTS: 
DATA: RADAR.MEASUREMENT 
DATA: VALIO.HETUHN, 

REFERREO 8Y: 
R.NET : RESP0NSE..TO_RA0AR. 

ALPHA : UPDATE_RAOAR„CLOCK. 
BETA: 
"BEGIN 

RADAR. .CLOCK:=RAOAR_CLOCK_TIME 
ENOI«, 

INPUTS: 
DATA: RA0AR_CL0CK_T1ME. 

OUTPUTS: 
DATA: RAOAR.CLOCK. 

REFERREO Or: 
R^4ET : RADARjriMING. 

I 

t 
ALPHA : UPDATE,STATE. 

BETA: 
fBEGIN IF WAVFFORMaTI THFN tf4VFF0RH:=T? ELS€ 

IF WAVEF0RM=T2 THEN WAVEFORM:=T3 ELSE 
WAVEFORM:aTll 

FORM STATE.UPOATEI 
HO.IO^IMAGE.IOI 
STATE:= RAOAR.MEASUREMENTI 
CURRENT_STATE:»STATE I 

DATA_RECORD,.TYPE:sSTATE_UPOATE..HEPORTr 
COVARIANCE:=CLOCK_TIME 

ENDI«. 
FORMS: 

MESSAGE: STATE_UPOATE. 
INPUTS: 

DATA: CLOCK.TIME 
DATA: IMAGE..ID 
DATA: RADAR.MEASUREMENT 

WAVEFORM. DATA: 
OUTPUTS: 

DATA: 
DATA: 

DATA: 
DATA: 

t 

COVARIANCE 
CURRENT.STATE 

DATA: DATA.RECORO.TYPE 
DATA: HO..IO 

STATE 
WAVEFORM. 

TRACED FROM: 
DECISION: TRACK.PERFORMANCE.ALLOCATION 
0RIGINATIN6.RE0UIREMENT: DPSPR ,3_2_2_B_PERF0RMANCe 
ORIGINATING.REQUIREMENT: DPSP <_I_?.?_O.FUNCTIONAL 
DRIRINATING.RFOUIREMENT: 0PSPR_l_?.3_A_FUNCri0NAL. 

REFERRED BY: 
R.NET : RESP0NSE_T0_RADAR, 
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ALPHA : VALIDATE^HE-AOER. 
BETA: 
"BEGIN 
ENDt". 

INPUTS: 
DATA: COMMANO.IO. 

OUTPUTS: 
DATA:   CONMANO„IO. 

TRACED FROH:- 

REFE(,pE
RiG8y?TING-RE0UIReHtNT!0PS,,''-^-l-*.^CTI0N.L. 

R«NET : CC.RESPONSE, 

1 

, 

t 
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DATA : ACCEPTANCE.THRESHOLO, 
LOCALITY: LOCAL, 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN*. 

DATA: TUT2_rjATE_DATA 
DATA: T3_GATEJ)ATA, 

DATA : ACCOUNTEDJFOR. 
LOCALITY: GLOBAL. 
RANGES "NEITHER.COUNTED.SUMMED". 
TYPE: cNUMERATION. 
USE*. BOTH, 
ASSOCIATED WITH: 

ENTITY_TYPE: LOST^PULSE 
ENTITY_TYPE: RETURNED.PULSE. 

INPUT TO: 
ALPHA: ALLOCATE_ANO_CONTROL«RESOURCES 
ALPHA: SUMHARIZE.USAGE. 

OUTPUT  FROM: 
ALPHA:   ALLOCATEJkNO.CONTROL.RESOURCES 
ALPHA:   SUMMARIZE.USAGE. 

DATA : ALPHA„ERROR. 
LOCALITY: LOCAL.. 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN: 

DATA: T1_T2_RECEIVE 
OATA: T3_aECETWE. 

DATA : ALPHAJ>HASE_TAPER. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN: 

DATA: T1.T2.TRANSMIT 
DATA: T3.JRANSM1T, 

DATA : AVERAGE_SI6NALJ»0WER, 
LOCALITY: LOCAL. 
TYPE: REAL, 
USE: GAMMAS- 
INCLUDED IN: 

DATA: WAKEJtRRAy. 

t 

DATA : BETA..ERROR. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: C-AMMA. 
INCLUDED IN: 

DATA: T1_T2„RECEIVE 
DATA: T3_RECEIVE. 

D*5YA : 0ETA„PHASE_TAPEH. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: GAMMA, 
INCLUDED IN: 

DATA: TljrZ.TRANSMIT 
DATA: T3..TRANSMIT, 
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DATA : CANOIOATE.ENERGY, 
LOCALITY: GLOBAL. 
TYPE: REAL, 
USE: BOTH. 
CONTAINED IN: 

FILE: CANDIDATE. 
INPUT TO: 

ALPHA: MAKE.COMMAND. 
OUTPUT FROM: 

ALPHA: PICK.CANDIOATES. 

DATA : CANOIOATE_IMAGE_ID. 
LOCALITY: GLOBAL. 
TYPE: INTEGER. 
USE: POTH. 
CONTAINED INt 

FIL£: CANDIDATE. 
INPUT TO: 

ALPHA: MAKE.COMMANO. 
OUTPUT FROM? 

ALPHA: PICK.CANDIOATES. 

DATA : CAN01DATE_WAVEFCRM, 
LOCALITY: GLOBAL. 
RANGE: "TltT2»T3". 
TYPE: ENUMERATION. 
USE: BOTH. 
CONTAINED IN: 

FILE: CANDIDATE. 
IWPIJT TO» 

ALPHA: MAKE.COMHANO. 
OUTPUT FROM: 

ALPHA: PICKJCANOIDATES. 

0 

DATA : CLOCK.TIME 
(• A PREDEFINED DATA ITEM *HICH INCREMENTS AT THE 

SAME RATE AS ENGAGEMENT TIME.  EXCEPT FOR ITS 
INITIAL_VALUE WHICH IS ARBITRARY, CLOCK.TIME MAY 
BE REGARDED AS ENGAGEMENT TIME.  IT HAS NO CLOCK 
ERROR, •>. 

LOCALITY: GLOBAL. 
TYPE: REAL. 
UNITS! SECONDS. 
USE: BOTH, 
INPUT TOS 

ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 

ALLOCATE.AND.CONTROL.RESOURCES 
COMPLETE_SUMMARY 
GHOST.TERMINATION 
INITIALIZE.SKEO.R 
LOW.TERMINATION 
REDUN.TERMINATION 
TERM.TRACK 
TRACK.INITIATE 
UPÖATE^STATE- 
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DATA ! COMMANO^ENERQY, 
LOCALITr: GLOBAL. 
TYPE: REAL. 
USE: BOTH* 
CONTAINED IN: 

FILE: COMMAND, 
OUTPUT FROM: 

ALPHA: MAKE.COMMANO, 

DATA : COMMANO.ID, 
LOCALITY: LOCAL. 
RANGE: 
"HANnOVER_IMAGEtOpOP_TRACK.lNITIATE_ENGAGEMENT_MOOEt 
TERM INATE_EN6AGEMENT_M0DE". 

TYPE: ENUMERATION. 
USE: ROTH. 
MAKES: 

MESSAGE: ACKNOWLEDGEMENT 
MESSAGE: HANDOVER 
MESSAGE: MOOE.CHANGE 
MESSAGE: TERMINATION. 

INPUT TO! 
ALPHA: VALIOATE.HEADER. 

OUTPUT FROMi 
ALPHA! VALIOATE_HEADER. 

REFERRED BY: 
R.NFT ! CC.RESPONSE. 

DATA : COMMANO.lMAGE_IO. 
LOCALITY! GLOBAL. 
TYPE: INTEGER. 
USE: BOTH. 
CONTAINED IN: 

FILE: COMMAND. 
OUTPUT FROM: 

ALPHA: MAKE.COMMANO. 

« 

DATA : COMMANO_WAVEFORM. 
LOCALITY! GLOBAL. 
RANGE! "T1.T2.T3". 
TYPE! ENUMERATION, 
USE! BOTH. 
CONTAINED IN: 

FILE! COMMAND. 
OUTPUT FROM: 

ALPHA! MAKE.COMMANO. 

DATA ! COVARIANCE, 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: BETA. 
ASSOCIATED WITH: 

ENTITY_TYPE: IMAGE.IN.TRACK. 
OUTPUT FROM: 

ALPHA! TRA ^„INITIATE 
ALPHA: UPDATC.STATE. 
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DATA : CURRENT.STATE, 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: BETA. 
MAKES! 

MESSAGE! STATE_UPDATE. 
INPUT TO: 

ALPHA: LOW_ELEVATION_OETERMINATIOH 
ALPHA! REDUN.DETERMINATION. 

OUTPUT FROM! 
ALPHA: UPDATE.STATE. 

DATA ! OATAJ*ECORO_TYPE. 
LOCALITY: LOCAL. 
RANGE! 
"RADAR USAGE REPORTfSTATE_UPOATE.REPORT. 
TRACK.TERMINATION.REPORT.THACK.INITI ATION_REPORT". 

TYPE! ENUMERATION. 
USE! BOTH. 
MAKES! 

MESSAGE! 
MESSAGE: 
MESSAGE: 
MESSAGE! 

OUTPUT FROM! 
ALPHA! 
ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 
ALPHA! 

u 

RAOAR.USAGE 
STATE..UPDATE 
TRACK..INITIATION 
TRACK_TERMINATION. 

COMPLETE.SUMMARY 
GHOST.TERMINATION 
LOW_TERMINATION 
REDUN.TERMINATION 
TERM_TRACK 
TRACK.INITIATE 
UPOATE.STATE. 

9 

DATA J DELTAT. 
DESCRIPTION! 

"MINIMUM PULSE SPACING FOR BEAM SWITCHING. •'. 
INITIAL.VALUE! 3.0E-6. 
LOCALITY! LOCAL. 
TYPE: REAL. 
USE! BOTH. 
INPUT TO! 

ALPHA! MAKE.COMMANO. 

DATA ! OROP_FLAG. 
LOCALITY: LOCAL. 
TYPE! BOOLEAN. 
USE! ROTH. 
OUTPUT FROM! 

ALPHA! FIND.CONFLICT. 
REFERRED BY! 

SUBNET ! FORM.FRAME. 
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DATA : DROP_REASOM. 
LOCALITY: GLOBAL, 

PA^GE: "GHOST,REDUNOANT,L0*.CC COMMANO.TOJ)ROPH. 
TYPE: ENUMERATION. 
USE: BOTH. 
CONTAINED IN: 

FILE: TERMINATOR, 
TRACED FROM: 

ORIGINATING.REQUIREMENT: OP5PR 1 ? ? A_FUNCTIONAL 
ORJGINATING.REQUIREMENT: DPSP^'J'/^'R^PUNCTIONAL 
ORIGINATING_REQUIREMENT: OPSP^II'^I?IO_FUNCTIONAL 
ORIGINATING.REQUIREMENT: DPSPOI?J?I£-FU^CTION*L• 

DATA : DROP.TIME, 
LOCALITY: GLOBAL, 
TYPE: REAL, 
USE: ROTS, 
CONTAINED IN? 

FILE: TERMINATOR. 

DATA : ELEVATIONJ_IMIT, 
LOCALITY: GLOBAL, 
TYPE: REAL. 
USE: BOTH. 
INPUT TO: 

ALPHA: LOW.ELEVATION.DETERMINATION. 

DATA : ENERGYJ30UNO, 
LOCALITY: GLOBAL, 
TYPE: REAL» 
USE: GAMMA, 

DATA : ENGAGEMENT.TIME. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: BOTH. 
MAKES: 

MESSAGE: RA0ARJJSA6E. 
OUTPUT FROM: 

ALPHA.* COMPLETE.SUMMARY. 

DATA : ENTRY.TIME. 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: BOTH, 
ASSOCIATED WITH: 

ENTITY_CLASS: IMAGE. 
OUTPUT FROM:   

AUPHA1 TRACK,INITIATE. 
TRACED FROM; 

ORIGINATING.REOUIREMENT: DPSPR«3«2-2«E.FUNCTI0NAL. 
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DATA : FOUND 
(• A PREDEKINEO DATA ITEM iHICM tS  SET TO EITHEP 

TPUE OR FALSE AFTER EACH SELECT IN A BETA 0« 
GAMMA.  FOUND IS SET TO TRUE IF AN INSTANCE 
SATISFYING THE SELECTION CRITERION IS LOCATED. 
OTHERWISEt FOUND IS ASSIGNED THE VALUE FALSE. ♦!. 

LOCALITY: GLOBAL. 
TYPE! BOOLEAN. 
USE: BOTH, 
OUTfUT FROM: 

ALPHA: PICK.COMMAND. 
REFERRED BY: 

R^NET : XMIT.R. 

( .) 

DATA S FRAHE.RATE. 
INITIAL.VALUE: 0.01. 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE:   ROTH. 
DELAYS: 

EVENT: SCHEDULE. 
INPUT  TO: 

ALPHA: INITIALIZE.SKEOJ». 

DATA ; GATEJ.ENGTM. 
LOCALITY: LOCAL. 
TYPE:   REAL. 
USE: GAMMA. 
INCLUDED IN: 

wy I M •     'i_>C- „»J A T u«,D •» • A 
DATA: T3_GATE_0ATA. 

DATA : GATE.START.TIME. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN: 

DATA:   Tljr2j5ATEJ)ATA 
DATA: T3„6ATEJ)ATA. 

DATA : GHOST..IMAGE. 
LOCALITY: LOCAL. 
TYPE: BOOLEAN. 
USE:   BOTH. 
OUTPUT FROM: 

ALPHA: GHOSTJ)ETERMINATION. 
TRACED FROM: 

ORIGINATING.REOUIREMENT: DPSPR.3-2.;».B.FUNCTI0NAL 
ORIGINATING.REQUIREMENT: DPSPRJ.2.3.C„FUNCTIONAL. 

REFERRED BY: 
P.NET : RESPONSE.TO..RADAR. 
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0«TA : HO^IO, 
tOCACIT/'J LOCAL, 
TYPE:   iHltMQ. 
USE:   83f^# 
HAKES: 

MESSAGE: 
MESSAGf: 
MESSAGE: 
MESSAGE: 
MESSAGES 

INPUT TO: 
ALPHA: 
ALPHA: 

OUTPUT FROM 
ALPHA: 

- ALPHA: 
ALPHA: 
ALPHA: 

MANOOVE» 
: STATE.UPOATE 
: TEHMINATIOM 
: TRArK.INlTIATION 
: TRACK_TEWMINATION, 

TERM_TRACK 
TRACK_INITIATE, 

GHOST.TERMINATION 
LOW_TERMINATION . 
REOUN.TEWMINATION 
UPDATE STATE. 

t 

DATA : IMAGE^IO, 
LOCALITY: GLOBAL» 
TYPE: INTEGER, 
USE: BOTH. 
ASSOCIATED WITH« 

ENTITY.CLASS: 
INPUT TO: 

ALPHA: 
ALPHA: 
ALPHA: 
ALPH«: 
ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 

IMAGE, 

ACCEPT_AND_CHECK_RADAR_RETURN_MESSA6E 
ALLOCATE_AMD_CONTROL_RESOURCES 
GHOSTJTERMINATION 
LCW.TEf^ir.'ATION 
MAKE.COMMAND 
PICK_CANOIDATES 
REOUNJTERMINATION 
UPDATE_STATE. 

OUTPUT FROM: 
ALPHA: TRACK_INITIATE. 

DATA : INITIAL_C0VARIANCE. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: BOTH. 
HAKES: 

MESSAGE: HANDOVER. 
INPUT TO: 

ALPHA: TRACK.INITIATE, 

DATA s INITIAL_STATE. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE! BOTH. 
MAKES: 

MESSAGE: HANDOVER 
MESSAGE: TRACK.'NITIATION. 

INPUT TO: 
ALPHA: TRACK.INITIATE. 
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DATA . 1ST, 
OESCRIPTIOM« "INITIAL START VIME FOR THE FRAME.», 
LOCALITY: LOCAL. 
TYPE» REAL. 
USE: ROTH, 
INPdT TO: 

ALPHA: MAKE_COMMANO. 
OUTPUT FPOM: 

ALPHA: INITIALIZE_SKE0_R 
ALPHA: HAKE.COHMANO. 

DATA : LAST.AILOCATE. 
LOCALITY. GLOBAL. 
TYPE: REAL. 
USE: BOTH, 
INPUT TO: 

ALPHA: ALLOCATE_ANO_CONTROL_RESOURCES, 
OUTPUT FROMI 

ALPHA: ALLOCATEJkND_CONTROL_RESOURCES, 

DATA s LASTJ»ULSE, 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: BOTH. 
ASSOCIATED WITH: 

ENTITY.TYPE: IMAGE.IN.TRACK. 
OUTPUT FROM: 

ALPHA: MAKE.COMHAND. 
REFERRED BY: 

P_NET : SKEO.R. 

DATA I LENGTH_OF_RECEIVE. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN: 

DATA: RECEIVE_INFORMATION. 

DATA r LOW.ELEVATION, 
LOCALITY: LOCAL. 
TYPE: BOOLEAN. 
USE! BOTH. 
OUTPUT F«OM: 

ALPHA: LOW.,ELEVATION.DETERMINATION. 
. TRACED FROM: 

ORIGINATING.REOUIREMENT: DPSPRJ.a.Z.C.FUNCTlONAL. 
REFERRED BYl 

H.NET : RESPONSE_TO_RADAR, 

DATA t MODE. 
LOCALITY! GLOBAL. 
RANGE: "EN6AGED*STANDBY". 
TYPE! ENUMERATION. 
USE! BOTH. 
OUTPUT FROM: 

ALPHA! ENGAGEMENT.INITIATION 
ALPHA! TE»M_ENGA6EMENT. 

REFERRED BY! 
R.NET I RADAR_SUMMARV 
*J*tJ   I   SKED.R, 
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DATA   :   NOISE.LEVEL. 
LOCALITY:   LOCAL. 
TYPE:   REAL, 
USE:   GAMMA, 
INCLUDED   IN: 

OATft:   Tl.Ta.RECORD 
DATA:   T3_WEC0R0, 

DATA   :   PRIORITY, 
LOCALITY:   GLOBAL, 
TYPE:   REAL, 
USE:   BOTH. 
ORDERS: 

FILE:   CANDIDATE, 
FILE:   CANDIDATE, 

OUTPUT   FROM: 
ALPHA:   PICK.^CANOIDATES. 

TRACED   FROM: 
DECISION:   TRACKJ'ERFORMANCE   ALLOCATION 
0RIGINATINGJ?EQUIREMENT:   DPSPR^.a^.B.PERFORMANCE« 

DATA   :   PULSE.IO, 
LOCALITY:   GLOBAL, 
TYPE:   INTEGER, 
USE:   BOTH, 
ASSOCIATED   WITH: 

ENTITY.CLASS:   PULSE. 
INPUT   TO: 

ALPHA:   ACCEPT_AND-CHECK_RADAR.RETURN_MESSA6E. 
OUTPUT   FROM: 

ALPHA:   PICK.COMMANO. 

DATA   :   PULSE^TYPE. 
LOCALITY:   GLOBAL. 
RANGE: "T1»T2.T3". 
TYPE:   ENUMERATION. 
USE:   BOTH. 
ASSOCIATED   WITH: 

ENTITY.CLASS:   PULSE. 
INPUT   TO: 

ALPHA:   ACCEPT.AND^CHECK.PADARJ*ETURNJ«ESSAGE 
ALPHA:   ALLOCATE.AND.CONTROL.RESOURCES 
ALPHA:   SUMMARIZEJJSAGE. 

OUTPUT   FROM: 
ALPHA:   PICK.COMMANO. 

t 

DATA   :   RADAR_CLOCK. 
LOCALITY:   GLOBAL. 
TYPE:   REAL. 
USE:   BOTH. 
OUTPUT  FROM: 

ALPHA:   UPOATE.RAOAR.CLOCK. 
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DATA : RAnAR_CLOCK_TlME, 
LOCALITY: LOCAL. 
RESOLUTION: 6.25E-9, 
TYPE: REAL. 
UNITS: SECONDS. 
USE: BOTH. 
MAKES: 

MESSAGE: R_CL0CK_MESSA6E. 
INPUT TO: 

ALPHA: UPOATE_RAOAR_CLOCK. 
TRACED F^OM: 

ORIGINATING.REQUIREMENT: RADAR^PS.IFS.S^.^FUNCTIONAL. 

DATA : RADAR_MEASUREMENT. 
LOCALITY: LOCAL, 
TYPE: REAL. 
USE: BETA. 
INPUT TO: 

ALPHA: GHOST_DETERMINATION 
ALPHA: UPDATE^STATE. 

OUTPUT FROM: 
ALPHA: T1_T2.MEASUMEMENT_EXTRACTI0N 
ALPHA: Ta.MEASUREMENT.EXTRACTION, 

DATA : RAOAR_MODEL_DATA, 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: GAMMA. 

DAT» J RAOAR.TYPE, 
LOCALITY! LOCAL. 
RANGE: "11*12*13», 
TYPE: ENUMERATION. 
USE: BOTH. 
MAKES: 

MESSAGE: T1_T2_CCMMAN0 
MESSAGE! T1_T2_R1LTURN 
MESSAGE: Ta.COMMANO 
MESSAGE: T3_RETURN, 

INPUT TO: 
ALPHA: ACCEPT_AN0_CHECK_RADAR_RETURN_MESSA6C. 

OUTPUT FROM: 
ALPHA: PICK.COMMANO. 

REFERRED BY» 
R.NET   :   RESPONSE.TCRAOA« 
RJitl   t   XMITJ*. 

^ 

DATA : RANGE_HAHK_GENERATION_TECHNIOUE. 
LOCALITY: LOCAL. 
TYPE: INTEGER, 
USEt GAMMA, 
INCLUDED IN: 

DATA: T1.T2.GATE_DATA, 

DATA t RANGE.HARK.INFORMATION. 
INCLUDES: 

DATA:   RANGE.MARK.TIMC 
DAYA:   5IGNAL.,AHPLITUD£, 

INCLUDED IN: - 
DATA: T1WT2_REC0R0 
DATA: T3_RECORD. 9 

-" * •*!•■ 
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DATA : RANGE.HARK.TECHNIQUE, 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: GAMMA, 
INCLUDED IN: 

DATA: T3J5ATEJ)ATA. 

DATA : RANGE_MARK_TIME. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN: 

DATA: RANGE.MARK^INFORMATION. 

DATA : REASON_FOPJ)ROP. 
LOCALITY: LOCAL. 
RANGE: "GHOST.REDUNDANT.LOK.CC.COMMAND.TO.OROP". 
TYPE: ENUMERATION. 
USE: BOTH. 
MAKES: 

MESSAGE: TRACK.TERMINATION. 
OUTPUT FROM: 

ALPHA: GHOST.TERMINATION 
ALPMA: LOW.TERMINATION 

REDUN.TERMINATION 
TERMJTRACK. 

ALPHA: 
ALPHA: 

TRACED FOOM: 
ORISINATTNG.REOUIREMENT: 
ORIGINATING PEQUIREMENT: 
ORIGINATING^REQUIREMENT: 
ORIGINATING^REQUIREMENT: 

DPSPR_3_2_2«A_FUNCTI0NAL 
DPSPRJ^Z^-O.FUNCTIONAL 
DPSPR_3 2.2_D_FUNCTI0NAL 
DPSPR_3.2_2.E.FUNCTIONAL. 

DATA 

t 

: REASON.FOR.TRANSMISSION.FAILURE. 
LOCALITY: LOCAL. 
RANGE: 
"PRE_EMPTED_TRANSMlSSION» 
RECEIVE.WlNDOW.OVERLAPt 
TRANSMIT>INOOW_OVERLAP. 
INS'JFFICIFNTJTRANSMlSSION.TIMEt 
RADAR^COMMAND.INCONSISTENCY. 
TRANSMIT.START.TIME.EXCEEDEO«, 

TYPE: ENUMERATION. 
INCLUDED IN: 

DATA: T1T2RTN.ERR0R.REP0RT 
DATA: T3RTN.ERROR.REPORT. 

DATA : RECElVE_INFO»MAT!ON. 
INCLUDES: 

DATA! LENGTHJDF.RECEIVC 
DATA: RECEIVE.START.TIME 
DATA: RECEIVER.6A1N.SETTIN0, 

INCLUDED IN: 
DATA: T1.T2_TRANSMIT 
DATA: T3.TRANSMIT, 
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DATA   :   RECnvE_START..TlME# 

UOCALITY:   LOCAL. 
TYPE:   REAL. 
USES   GAMMA. 
INCLUDED IN: 

DATA: RECEIVE_INFORMATION. 

DATA : RECEIVE.STOP. 
LOCALITY: GLOPAL. 
TYPE: REAL. 
USE: ROTH. 
ASSOCIATED WITH: 

ENTITY_TYPE:   Tl.TiJ.JHiLSE 
ENTITY.TYPc: T3_PULSE. 

INPUT TO: 
ALPHA: ACC(1"PT_.AND.CHtCK-RADAR-RETURN MESSAGE« 

OUTPUT FROM: 
ALPHA: F0RMWT1_T2 
ALPHA: FORCLTJ. 

DATA : RECEIVER_GAIN„SETTIN0, 
LOCALITY: LOCAL.. 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN: 

DATA: RECEIVE.INFORMATION. 

DATA s REDUNOftMT_TMAiSE. 
LOCALITY: LOCAL. 
7YrE: SOOLCAN. 
USE: ROTH. 
OUTPUT FROHI 

ALPHA: REOUN.DETERMINATION, 
TRACED FROM: 

ORIGINATING.PEOUIREMENT: DPSPR_3.2«2_A FUNCTIONAL 
ORISINATING.REOUIREMENT: DPSPR.3_2_3.BlFUNCTIONAL. 

REFERRED BY: 
P.NET : RESPONSE.TO.RAOAR. 

DATA : RESOURCES. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE! BETA. 
HAKESt 

MESSAGE: RAOAft.USAGE. 
OUTPUT FROM: 

ALPHA: SUMHARIZE.USA6E. 

DATA t RETURN_IHA6E_STATUS. 
LOCALITY: LOCAL. 
RANGE: "lN_TRACKfDROPPED.NO.ORDERtWRONG.ORDER". 
TYPE: ENUMERATION. 
USE: ROTH. 
OUTPUT FROM: 

ALPHA: ACCEPT_AND_CHECK_RADAR_RETURN MESSAGE. 
REFERRED BYI 

R.NET : RESPDNSE.TO^RAOAR. 
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• 
DATA : RR.OROER.ID, 

LOCALITY: LOCAL. 
TYPE: INTEGER, 
USE: ROTH. 
MAKESt 

MESSAGE: Tl/ta.COMMANO 
MESSAGE: TlCT2_RETURM 
MESSAGE: T3_COMMANO 
MESSAGE: T3_RETURN. 

INPUT   TO: 
ALPHA:   ACCEPTJWO.CHECKJUDAR.RETURN^MESSAGE, 

OUTPUT FROM: 
ALPHA: PICK.COMMANO* 

■: t 

DATA   :   RR_ORDER.IOC, 
INITIAL^VALUEJ   0. 
LOCALITY:   GLOBAL. 
TYPE:    INTEGER. 
USE:   ROTH. 
INPUT  TO: 

ALPHA*.   PICK.COMMAND. 
OUTPUT FROM: 

ALPHA: PICK.COMMANO. 

DATA : SIGNAL.AMPLITUOE. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN: 

DATA: RAMGE.MAHK.INFORMATION. 

DATA 

D»TA 

: SIGNALJ'ROCESSING.MODE. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN: 

DATA: T1..T2J5ATEJ5ATA 
DATA: T3.GATE.DATA. 

: START.TIME. 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: BOTH. 
ORDERS: 

FILE: COMMAND. 
CONTAINED IN» 

FILE: COMMAND. 
INPUT TO: 

ALPHA: FIND.CONFLICT 
ALPHA: PICK.COMMANO. 

OUTPUT FROM: 
ALPHA: MAKE.COMMAND. 
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OAT* : STATE. 
LOCALITr: GLOBAL. 
TYPE: REAL. 
USE: RETA. 
ASSOCIATED WTTHS 

ENTITY^TYPE« 1MA6E„1N_TRACK. 
INPUT TO: 

ALPHA: REOUN..DETERM1NATION, 
OUTPUT FROM: 

ALPHA: TRACK_INITIATE 
ALPHA: UPOATE„STATE. 

TRACED EROM: 
• 0R1GINAT1N6_REQU1REMENT: DPSPR_3_2-3_A.FUNCTIONAL. 

DATA i SUMHARYJUTE. 
INITIAL.VALUE: 0.3. 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: ROTH. 
DELAYS: 

EVENT: SUMMARIZE. 

DATA ? TARGETED. 
LOCALITY: GLOBAL. 
TYPE: INTEGER. 
USE: BOTH. 
ASSOCIATED WITH: 

ENTITY.CLASS: PULSE. 
INPUT TOI 

ALPHA! ÄCCE?T._AMO_CHECK_RADÄRJ5CTi;RN_MESSAGE. 
OUTPUT FROM: 

ALPHA: PICK.COMHANO. 

DATA t TEOF. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: ROTH, 
INPUT TO: 

ALPHA: FIND.CONFLICT. 
OUTPUT FROM: 

ALPHA: INITIALIZE.SKED.R. 
REFERRED BY» 

R.NET : SKEDJ*. 

DATA i THRESHOLD.OOWN.CROSSING.TIHE. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN: 

DATA: WAKE.ARRAY. 

DATA J THRESHOLD.TYPE. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: GAMMA. 
INCLUDED IN: 

DATA: Tl.TZ.GATE.OAT» 
DATA« T3.GATE.DATA. 

, 

•äV* 

# 
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• DATA   :   THPESHOLO_UP_CROSSING_TIME. 
LOCALITY:   LOCAL, 
TYPE:   PEAL, 
USE:   nAHMA. 
INCLUDED   IN: 

DATA:   WAKE_ARRAY» 

DATA   :   TIME^0FJ)POP, 
LOCALITY:   LOCAL. 
TYPE:   PEAL. 
USE:   ROTH, 
MAKES: 

MESSAGE:   TRACK.TERMINATIOM, 
OUTPUT   FPOM: 

ALPHA:   GHOST^TERMINATIOM 
ALPHA:   LOW_TERMINATION 
ALPHA:   PEDUN.TERMINATION 
ALPHA:   TEr<M,TRACK, 

DATA   :   TIME.OF.INITIATION, 
LOCALITY:   LOCAL, 
TYPE:   REAL, 
USE:   ROTH, 
MAKESt 

MESSAGE:   TRACK.INITIATIOM^ 
OUTPUT FROM: 

ALPHAS   TRACK..INITIATE, 

DATA   t   TRACK_PATE, 
LOCALITY!   Gl ORAL, 
TYPE:   REAL. 
USE:   ROTH, 
ASSOCIATED   WITH: 

ENTITY.TYPE:   IMAGE.IN.TRACK, 
OUTPUT   FROM: 

ALPHA:   ALLOCATE_AND_CONTROL«RESOURCES 
ALPHA:   TRACK_INITIATE, 

REFERRED  8YS 
R.NET   t   SKEO.R, 

DATA   :   TRANSMTT_START, 
LOCALITY:   LOCAL, 
TYPE:   REAL. 
USE:   ROTH, 
MAKESt 

MESSAGE*.   T1.T2_C0MMAND 
MESSAGE:   T3WC0MMAMD, 

OUTPUT  FROM: 
ALPHA:   PTCK.COMMAND, 
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DATA   :   Tl_T2_6ATE_0ATA. 
LOCALITY:   LOCAL, 
TYPE:   REAL. 
USE:   BETA. 
INCLUDES: 

DATA: ACCEPTANCE.THRESHOLO 
OATA: 6ATE.LENGTH 
DATA: GATE.START.TIME 
OATA: RANGE.KARK.GENERATION.TECHNIQUE 
DATA: SIGNALJ'ROCESSING.HOOE 
DATA: THRESHOLO_TYPE. 

CONTAINED IN: 
FILE: TUT2.6ATE. 

9 

ALPHA_ERROR 
BETA.EPROR • 
TIT2RTN.ERR0R_REP0RT 
WAKE.ARRAY. 

DATA : Tljr2_RECEIVE. 
LOCALITv: LOCAL. 
TYPE: REAL. 
USE: BOTH. 
INCLUDES: 

DATA: 
DATA: 
DATA: 
DATA: 

MAKES* 
MESSAGE: T1.T2.RETURN. 

INPUT TO: 
ALPHA: Tl.T2«MtASUREMENT.EXTRACTI0N. 

DATA : Tl_T2.RECORf). 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE*. BETA. 
INCLUDESt 

DATA: NOISE.LEVEL 
DATA: PANGE.MARK.INFORMATIOM. 

CONTAINED IN: 
FILE: Tl.TZ.OATA. 

DATA : T1.T2.TRANSMIT. 
TYPE: REAL. 
USE: BETA. 
INCLUDES: 

DATA: ALPHA.PHASE.TAPER 
DATA: BETA.PHASEJTAPER 
DATA: RECEIVE.INFORMATION. 

MAKESt 
MESSAGE: TI.T2.COHMANO. 

OUTPUT FROM» 
ALPHA» F0RM.Tl.T2. 

9 

DATA » TI.T2.WIN0OW.OATA. 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: ROTH, 
CONTAINED INI 

FILES TI.T2.WIN00«. 

1 
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DATA : Tl_T2.XMIT. 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: ROTH. 
ASSOCIATED WITH: 

ENTITY.TYPE: Tl_T2 PUL-SÄM 
OUTPUT FROM: 

ALPHA: FORH.Tl.Ta. 

DATA   :   T1T2RTM_ERR0R  REPORT. 
INCLUDES: 

DATA:   REASON.FOR   TRANSMCSS:IOf<tafAiI'LÜJlE.. 
INCLUDED   IN: 

DATA:   TI.TZ.RECCIVE. 

DATA s T3_GATE_0ATA. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: RETA. 
INCLUDES: 

DATA: 
DATA: 
DATA: 
OATA: 
DATA: 
DATA: 

CONTAINED 

ACCEPTANCE.THRESKOUO 
GATE.LENGTH 
GATE.START.TIME 
RANGE.MARK.TECHNlOUt 
SlGNAL_PROCESSlNG«HOOf 
THPF.SHOLD.TYPE. 

IN: 
FILE: T3J5ATE. 

urn  i «  •  I .j_rM.V«w 4 * C • 

LOCALITY: LOCAL. 
TYPE: REAL. 
USE: ROTH. 
INCLUDES: 

DATA: ALPHA„ERROR 
DATA: BETAJERROR 
DATA: T3RTN«ERROR„REPOIIT 
DATA: WAKE.ARRAY. 

HAKES: 
MESSAGE: T3.RETURN. 

INPUT TO: 
ALPHA: T3.MEASUREMENT.EXTRACTI0N, 

DATA : T3_RECORO. 
LOCALITY: LOCAL. 
TYPE: REAL. 
USE: BETA. 
INCLUDES: 

DATA: NOISEJ-EVCL 
DATA: RAN6E.HARK.INFORMATI0N» 

CONTAINED INt 
FILE: T3.0ATA. 
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DATA : T3_TRANSMIT, 
TYPE: REAL. 
USE: BETA. 
INCLUDES: 

DATA: ALPHA.PHASE_TAPER 
DATA: BETA.PHASE.TAPER 
DATA: RECEIVE..INFORMATION. 

MAKES: 
MESSAGE: T3.C0NMAND, 

OUTPUT FROM: 
ALPHA: FORHjra. 

DATA : T3>lNOOW_OATA. 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: BETA. 
CONTAINED INt 

FILE: T3.WIN00W, 

DATA : T3_XMIT. 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: BOTH. 
ASSOCIATED MITHt 

ENTITY.TYPE: T3_PULSE. 
OUTPUT FROM: 

ALPHA: FGRM.T3. 

DATA : T3PTN_ERR0R-REP0RT. 
INCLUDES: 

DATA: REASON_FOR_TRANSMISSION-FAILURE, 
INCLUDED IN: 

DATA: T3.RECEIVE. 

DATA : VALIO.RETURN. 
LOCALITY: LOCAL. 
TYPE: BOOLEAN. 
USE: BOTH. 
OUTPUT FROM: 

ALPHA: T1.T2.MEASUREMENT.EXTRACTI0N 
ALPHA: T3.MEASUREMENT.EXTRACTIDN. 

REFERRED BY: 
R.NET : RESPONSE.TO..RAOAR. 

DATA : MAKE.ARRAY. 
INCLUDES: 

DATA: AVERA6E„SI6NAL.P0«ER 
DATA: THRESM0LD.00WN.CR0SSIN6.TIME 
DATA: THRESHOLD.UP^CROSSING.T I ME . 

INCLUDED IN« 
DATA? T1_T2.RECEIVC 
DATA» T3.RECEIVC. 

1 

t 
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• DATA : WAVFFORH, 
LOCALITY: GLOBAL. 
RANGE: MTl»T2tT3". 
TYPE: ENUMERATION, 
USE: BOTH. 
ASSOCIATED WITH; 

ENTITY.TYPE: IMAGE.INJfRACK. 
INPUT TO: 

ALPHA: ALLOCATE_ANO_CONTROL_RESOURCES 
ALPHA: PICK.CANOIOATES 

(•INSTANCES OF ENTITY.TYPE IMAGE IN mc*®» 
ALPHA: UPDATE_STATE. 

OUTPUT FROM: 
ALPHA: TRACK.INITIATE 
ALPHA: UPOATE.STATE. 

DATA : WF.CHARACTERISTICS. 
LOCALITY: GLOBAL. 
TYPE: REAL. 
USE: BOTH, 
CONTAINED IN: 

FILE: WAVEFORM.TABUE. 

: c 
DATA ; WF.NAME. 

LOCALITY: GLOBAL. 
RANGE: "TltT2tT3", 
TYPE: ENUMEPATIOM, 
USE: BOTH, 
CONTAINED IN: 

FILE? y*.VEFOR!l*—TABLE» 

DATA I WINDOW, 
LOCALITY: GLOBAL. 
TYPE: REAL, 
USE: GAMMA, 
CONTAINED IN: 

FILE: COMMAND, 

¥ft: 

DATA : XMIT_START, 
LOCALITY: GLOBAL« 
TYPE: REAL, 
USE: BOTH. 
ASSOCIATED WITH: 

ENTITY.CLASSi PULSE, 
OUTPUT FROM: 

ALPHA: PICK.COMHAMO, 

mS 
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DECISION : RA0AR_SCHE0ULER_PRIORITIZATI0M. 
ALTERNATIVES: 

»I. SCHEDULE PULSE_BY.PULSt.  THIS 
NETS BUT WOULD OBVIATE OPTIHIZATI 

2. OPTIMIZE OVER THE ENTIRE FRAME, 
AS A WHOLE GIVES BEST RESULTS BUI 
FACTORS FOR PULSE ENSEMBLES. 

3. PRIORITIZE PULSES SUCH THAT ANY 
PRIORITY BEATS ALL PULSES OF LOWE 
SUBOPTIMAL» BUT REALIZABLE BOTH i 
THE SOFTWARE DESIGN.  NO A PRIORI 

"OPTION 3. PRIORITIZED 

WOULD SIMP! IFY THE 
ON* 
TAKING THE FRAME 
REQUIRES WEIGHTING 

PULSE OF HIGH 
R.  THIS IS 
N THE SPEC AND IN 
WEIGHTS NEEDED,", 
PULSES". 

FINITE RADAR FRAME, 
INTENDED ORDERS.". 

CHOICE: 
PROBLEM: 

"OPTIMIZATION OF RADAR USAGE REQUIRES A 
THIS IMPLIES A PRIORITIZATION SCHEME FOR 

TRACES TO: 
R_NET: SKEO..R 
R_NET: XMITJ?. 

TRACED FROM: 
ORIGINATING.REQUIREMENT: DPSPR.3.2_4.B.FUNCTIONAL. 

DECISION : SYNCMPONOUS.VS.ASYNCHRONOUS^TRACK. 
ALTERNATIVES: 

"1. SYNCHRONOUS TRACKING (OR RESPONSIVE» 
REQUIRES THE LAST RADAR RETURN ON 
AN IMAGE BE USED TO 
PRODUCE THE NEXT RADAR 
ORDER. 

2.   ASYNCHRONOUS TRACKING "OR AUT06ENIC" 
ALLOW* A TP».CK PULSE 
TO BE SENT USING WHAT EVER 
STATE IS IN THE DATA BASE.". 

CHOICE? 
"ASYNCHRONOUS TRACKING IS 

SELECTED TO MAXIMIZE THE 
ALLOWED OP TIME RESPONSE 
FOR PROCESSING RADAR RETURNS. 
THIS DOES NOT PROHIBIT A RESPONSIVE 
TRACKING IMPLEMENTATION.", 

PROBLEM: 
"TRACKING CAN BE EXPRESSED AS 

SYNCHRONOUS OR ASYNCHRONOUS."^ 
TRACES TO: 

ALPHA: PIC»f.CANDIDATES. 
TRACED FROM:    ^ 

ORIGINATING.REQUIREMENT: OPSPR^.2^3.A.FUNCTIÜNAL« 

«I 
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DFCISION : TRACK.PERFOPMANCE.ALLOCATION. 
CHOICE: 

"1. ALLOCATION WILL BE PfPFOPMEO  TO CONSTRAIN 
IMAGE 5TATES AND PATFS AT ALL TlMESt 

2. PULSE SCHEDULING WILL BE CONSTRAINED 
BY A PEALTIONSHIP BETWEEN IMA6E 
STATES. ITS TRACK RATE* 
AND THE RADAR CONSTRAINTS» 

3, DEGHOSTING WILL BE A FUNCTION OF 
PADAP MEASUREMENTS ONLY. 

A, "UPDATE STATE" WILL BE CONSTRAINED 
BY ITS DIFFERENCE 
IN BETA AND CEP FROM A 
"PERFECT FILTER". 

5, REDUNDANT IMAGE ELIMINATION 
PERFORMANCE 
WILL BE EXPRESSED IN TERMS OF 
STATES ONLY.", 

PROBLEM; 
"TRACK ACCURACY IS A JOINT FUNCTION OF 
THE TRACK RATE. SUCCESSFUL SCHEDULING» 
ACCURATE PULSE COMMANDS» AND ACCURATE 
PROCESSING OF THE RADAR RETURN". 

TRACES TO: 
ALLOCATE JVND.CONTROL.RESOURCES 
FIND.CONFLICT 
GHOST.DETERMINATION 
RFOUN_DETERMINATlON 
UPDATE_STATE 

ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 
ALPHA: 
ruTA! PRTÜPITY. 

TRACED FROMJ 
ORIGINATING.REQUIREMENT: DPSPR_3_2.2_A-PERF0RMANCE 
ORIGINATING^REQUIREMENT: DPSPR.3.2.?.3_PERF0RMANCE 
ORIGINATTNG_REQUIREMENT: DPSPR..3_2..3.A..PERFORMANCE 
ORIGINATING.REQUIREMENT: DPSPR.3.2.3.B.PERFORMANCE 
ORIGINATING..REQUIREMENT: DPSPR_3.2.3«C,PERFORMANCE 
ORIGINATING.REQUIREMENT: DPSPR.3.2_3.0.PERFORMANCE. 

t 
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FMTITY_CLASS : iHAGt*. 
ASSOCTATnS: 

"ATA: FMT-*Y_TIME 
HATA:   I^AGt-I.IO. 

COMPOSED   OF: 
PNTTTV.TYPE:   OPO^PEO.IMAGE 
•■VTrTy.TYPE:   lM4(iE_IN-TrtACK. 

f^fATF1)   ^Y: 

ALP'-tA:    TPACK^INI riATF, 

f 

PULSE.ID 
P'JLSE.TYPE 
TARGtr^IO 
XMIT^STAHT. 

FMTITY.CLASS : PULSE. 
ASSOCIATES: 

DATA: 
HATA: 
oATfi : 
HATA: 

COMPOSED OF: 
KNTITY.TYPE: 
FNTITY.TYPE: 
FMTITY.TYPE: 
F^TITY.TYPE: 

fPEATPO  RY: 
ALP-f i   PICK.COMMANO. 

DEST'JOVED  FJY: 
ALPHA:   ALLOCATE„,AND.COMTROL.RESOl/PCES 
ALPHA:   SUMMA^IZEJiSARE. 

TPACFO  FPOM: 
ORISINATING.REOUIPEMFNT:  DPSP!»«l_?>.A_FUNCTIONAL. 

LOSr_PULSP 
PETUPNED.PULbE 
T1_T2_PULSE 
T3.PULSE. 
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FMTITY_TYOF : DUOPPfD.lMAGE. 
ASSOCIATES: 

FIL^: TF9MINATÜW. 
COMPOSES: 

FNTITY.CLASS: IMAGE, 
SET HY: 

ALPHA: GHOST_TER«INATION 
ALPHA: LGW.TEFV'-IINATION 
ALPHA: REDUN.TERMINATION 
ALPHA: TERM^TPACK. 

ENTITY_TYDF : IMAGE„IN_THACK. 
ASSOCIATES: 

PATA: COVARIANCE 
OATA: LAST^PULSE 
OATA: STATE 
OATA: TPACK_PATE 
DATA: WAVEFÖPM. 

COMPOSES: 
PNTITY.CLASS: IMAGE. 

SET PY: 
ALPHA: TOACK_INiriATE, 

TRACFO FROM: 
ORIGINATING.REQUIREMENT: DPSPR_3_?_3_A_FUNCTI0NAL. 

REFEPRED BY: 
R_NFT : SKEO.R. 

ENTITY.TYPE : LOST^PULSE.. 
ASSOCIATES: 

OATA: ACCOUNTEO_FOR. 
COMPOSES: 

cwTITy_CLASS: PULSE. 
SET MY: 

ALPHA: ACCEPT_ANO_CHECK_RADAR_RETJR(«i_MESSAGE. 

ENTITY^TYPE : RETURNED_PULSE. 
ASSOCIATES: 

DATA: ACCOUNTED_FOk. 
COMPOSES: 

PMTTTY.CLASS: PULSE. 
SET PY: 

ALPHA: ACCEPT.AND.CHECK^RAOAR.RETURN.MESSAGE, 
REFERPEO BY: 

R.NET : RAOAP_SUMMARY. 

FVTITY_TYPP : T1_T?_PULSE. 
ASSOCIATES: 

DATA: PFCeiVE.STOP 
OATA: T1_T2_XMIT 
FILE: Tl.Tp.niNDOW. 

COMPOSES: 
FNTITY.CLASS: PULSE. 

SET «Yt 
ALPHA: EORM_Tl_T2. 
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fNTlTY.TYPP : ra.PULSF.. 
ASSOCIATFS: 

OATft: HECtlVE.STOP 
OATft: T3_XMIY 
FILE: T3..WINOOW. 

coMPO<;es: 
FNTITY.CLASS: PULSE. 

SET RV: 
ALPHA: FORM_T3. 

t 

3 

E-42 

"■■  «ii -.—^,   J *. 



. ■.   .    .    . 

■ ■  ■■ ■ ■•..■...■ . . ■■ ■   ,   . 

t 

i 

EVENT   :   ALLOCATE. 
ENABLES: 

R_NET:   CONTROL .RESOURCES, 
REFERRED   BY: 

R_NET   :   CC^RESPONSE 
RJ4ET   :   RESPONSE.TO_RADAR, 

EVENT   :   SCHEDULE. 
ENABLES: 

R_NET: SKEO_P. 
DELAYED BY: 

DATA: FRAME.RATE. 
REFERRED BY: 

R^NET : CC.RESPONSE 
R«NET : XMIT.R, 

EVENT : SUMMARIZE, 
ENABLES: 

R.NET: RADAR.SUMMARY, 
DELAYED BY: 

DATA: SUMMARY.RATE, 
REFERRED BY: 

R.NET : CC.RESPONSE 
R.NET : RADAR.SUMMARY, 

EVENT : XRB, 
DESCRIPTION: 

'TURNS ON R.NET XMIT.R FOR THE CURRENT FRAME," 
ENABLES: 

R.NET; XMIT.R, 
REFERRED BY: 

R.NEf : SKED.R 
R.NET : XMIT.R, 

I 
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FILE : CANDIDATE. 
CONTAINS: 

DATA: 
DATA: 
DATA: 
DATA: 

ORDERED Br: 
DATA: PRIORITY, 

REFERRED BY: 
R.NET : SKED.R, 

CANDIDATE.ENERGY 
CANDIDATE_IMA6E.I0 
CANOIDATE.WAVEFORH 
PRIORITY, 

FILE : COMMAND, 
CONTAINS: 

DATA: 
DATA: 
DATA: 
DATA: 
DATA: 

INPUT TO: 
ALPHA: 
ALPHA: 
ALPHA: 

ORDERED BY: 

COMMAND.ENERGY 
C0MMAND_IMA8E_ID 
COMMAND.WAVEFORM 
START.TIME 
WINDOW, 

F0RM.T1„T2 
FORM.T3 
PICK.COMMANO. 

■ / 

DATA: START.TIME, 

FILE : TERMINATOR, 
CONTAINS: 

DATA: DROP.REASON 
DATA: DROP.TIME, 

ASSOCIATED WITH: 
ENTTTY.TVPE: DR0PPED..IMA6E, 

OUTPUT FROM: 
ALPHA: GHOST.TERMINATION 
ALPHA: LOW.TERMIMATION 
ALPHA: REDUN.TERMINATION 
ALPHAi TERM.TRACK, 

FILE : TUT2.0ATA. 
CONTAINS: 

DATA: Tl.TZ.RECORO, 
MAKES: 

MESSAGE: T1.T2.RETURN. 
INPUT TO: 

ALPHA: T1.T2.MEASUREMENT.EXTRACTI0N. 

FILE : TljrZ.GATE, 
CONTAINS: 

DATA: T1.T2.6ATE.DATA, 
MAKES: 

MESSAGE: T1.T2.C0MMAND. 
OUTPUT FROM: 

ALPHAI F0RM.T1.T2. 
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FILE   : T1_T2_WIND0W. 
CONTAINS: 

DATA! Tl_T2_WI^DOW,_OATA, 
ASSOCIATED WITH: 

ENTITY.TYPE: T1_T2_PULSE, 
OUTPUT F^OM: 

ALPHA: F0RM_T1_T2, 

FILE : T3J)ATA. 
CONTAINS: 

DATA.* T3_RECORD. 
HAKES: 

MESSAGE: T3J*ETURN. 
INPUT TO: 

ALPHA: TB.MEASUREMENT.EXTRACTION. 

FILE : T3_6ATE. 
CONTAINS: 

OATA: T3_GATE-OATA. 
MAKES: 

MESSAGE: T3..COMMANO. 
OUTPUT F90M; 

ALPHA: FORM_T3. 

FILE   :   T3J*IN00W. 
CONTAINS: 

DATA:   T3_WINDOWJ)ATA. 
ASSOCIATED   WITH: 

FNTITY_TYPE: T3_PULSE. 
OUTPUT FROM: 

«t_pMo; PORM.TS» 

FILE   :   WAVEFORM.TABLE. 
CONTAINS: 

DATA:   WF.CHARACTERISTICS    . 
DATA: WF.NAME. 

INPUT  TO: 
ALPHA: ALLOCATE_AND_CONTROL_RESOURCES 
ALPHA: PICK.CANDIDATFS 
ALPHA: SUMMARIZE.USAGE. 

OUTPUT FROM: 
ALPHA: STARTER. 
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INPUT.INTF.RFACE   :   CC.IN, 
CONNECTS   TO: 

SUBSYSTEM*.   SSCÜ. 
ENABLES: 

«-NET:   CC«RESPONSE, 
PASSES: 

MESSAGE: HANDOVER 
MESSAGE: MODE.CHANGE 
MESSAGE: TERMINATION. 

REFERRED BY: 
R_NET : CC.RESPONSE. 

INPUT.INTFRFACE : RADAR.CLOCK.IN. 
CONNECTS TO: 

SUBSYSTEM: SSRAOAR. 
ENABLES: 

R.NET: RADAR..TIMIN6, 

PASSES: 
MESSAGE: R.CLOCK.MESSAGE. 

EXPLAINED  BY*. REFERENCE:   TLS.RADAR.DPS.INTERFACE.SPECIFICATION, 

REFERRED BY: 
R«NET : RADAR.TIMIN6, 

INPUT.INTERFACE : RADAR.IN. 
DESCRIPTION: "THE RADIN INTERFACE PROVIDES THE MECHANISM THROUGH 

WHICH THE OPS RECEIVES RADAR SUBSYSTEM RETURNS IN 
RESPONSE TO RADAR COMMANDS ISSUED BY THE DPS THROUGH 
THE RADOUT INTERFACE. RADAR SUBSYSTEM RETURN MESSAGES 
SHALL COMPLY WITH RFQUIPE»«E^T« SBECIFIEO !M TMF T« S 
RADAR DPS INTERFACE SPEClFICATIONt PARAGRAPH^^^." • 

ENTEREDJIY: «M.A.HELTON» MAY, 3.1976.". 

CONNECTS  TO» 
SUBSYSTEM:   SSRAOAR. 

ENABLES: 
RWNET:   RESPONSE_TO.RADAR. 

IMPLEMENTS: VERSION:   ORIGINALJ»UBLICATI0NJ)ATE0<.AUGUST_1975. 

PASSESt 
MESSAGE: T1.T2.RETURN 
MESSAGE: iT3J*ETURN. 

ABBREVIATED BY I 
SYNONYM! RADIN. 

EXPLAINED Bv: REFERENCE:   TLS.RADAR.DPS^INTERFACC.SPECIFICATION. 

TRACED  FROM: 0RI6INATIN6.RE .JIREMENTt   OPSPRJ»ARAORAPH,3.2. 

REFERRED BY; 
R_NET : RESPONSE.TO.RAOAR. 

0  I 

0 
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MESSAGE : ACKNOWLCOGEMENT. 
FORMED BY: 

ALPHA: ACKNOWLLOGE. 
MADE BY: 

DATA: COMMAND.IO. 
PASSED THROUGH: 

OUTPUT_INTERPACE: CC.OUT, 

MESSAGE : HANDOVER. 
MADE BY: 

DATA: COMMAND.ID 
DATA: HO_ID 
DATA: INITIAL_COVARIANCE 
DATA: INITIAL.STATE, 

PASSED THROUGH: 
INPUT.INTERFACE: CC.IN, 

TRACED FROM: 
ORIGINATING.REQUIREMENT: 0PSPfl^«2.1.A_FUNCTI0NAL. 

MESSAGE : MODE_CHANGE, 
MADE BY: 

DATA: COMMANO.IO. 
PASSED THROUGH: 

INPUT_INTERFACE: CC_IN. 

MESSAGE : R.CLOCK.MESSAGE, 
MADE BY: 

DATA: RADAR_CLOCK_TIME. 
PASSED THROUGH: 

TNPJT.INTERFACE: RAOAR.CLOCK.IN* 
yrccARc • OArtfiu USAÖf. 

FORMED RV. 
ALPHA: COMPLETE.SUMMARY. 

MADE BY: 
DATA: DATAJ?ECORD_TYPE 
DATA: ENGAGEMENT.TIME 
DATA: RESOURCES, 

PASSED THROUGH: 
OUTPUT.INTERFACE: DATA.RECORD. 

TRACED FROM: 
ORIGINATING.REQUIREMENT: DPSPR«3.2_5«D«FUNCTI0NAL. 

MESSAGE : STATEJJPDATE. 
FORMED BY: 

ALPHA: UPDATE.STATE. 
MADE BY: 

DATA: CUORENT_STATE 
DATA: DATA._RECORD.TYPE 
DATA: HO.IO. 

PASSED THROUGH: 
OUTPUT_INTERFACE: DATA.RECGRO. 

TRACED FROM: 
0RIGINAT1NG.REQUIREMENT: DPSPR_3.2.5..C.FUNCTI0NAL. 
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MFSSA6E : TERMINATION. 
HADE BY: 

DATA*. COMMAND.IO 
DATA: HO.IO. 

PASSED THROUGH: 
1NPÜT_TNTERFACE: CC.IN, 

TRACED FROM*. 
0RIGINATIN6_REQUIREMENT: DPSPRJ3.2.2.E.FUNCTIONAL. 

MPSSAGE : TRACK^INITIATION. 
FORMED BY: 

ALPHA: TRACK.INITIATE. 
MADE BY: 

DATA: DATA.RECORO.TYPE 
DATA: HO_ID 
DATA: INITIAL.STATE 
DATA: TIME.OF.INITIATIOM, 

PASSED THROUGH: 
OUTPUT^INTERFACE: DATA.RECORO. 

TRACED FROM: ORIGINATINCPEOUIREMENT: DPSPR^.2.5.A.FUNCTI0NAL. 

MESSAGE : TRACK_TERMINATION. 
FORMED BY: 

ALPHA: GHOSTJTERMINATION 
ALPHA: LOW_TERMINATION 
ALPHA: PEDUN.TERMINATION 
ALPHA: TERM.TRACK, 

MADE BYJ 
DATA: DATA^RECORO.TYPE 
DATA:   hO.IO 
DATA:   PEASON_FORJJROP 
DATA:   TIME.OF.OROP. 

PASSED THROUGH: 
OUTPUT.INTERFACE: DATA.RECORO. 

TRACED FROM: 
ORIGINATING.REQUIREMENT: 0PSPR.3.2.5.B.FUNCTI0NAL« 

MESSAGE : TIJTZ.COMMAND. 
EQUATED TO: 

SYNONYM: T1T2CM0. 
EXPLAINED BY: 

REFERENCE*. TLS.RAOAR.OPS.INTERFACE.SPECIFICATIOM. 

FORMED BYS 
ALPHA: F0RM.T1.T2. 

MADE BY: 
DATA: RADAR.TYPE 
DATA: RR.OROER.IO 
DATA: TRANSMIT.START 
DATA: Tl.T2„TRANSMIT 
FILE: T1.T2.GATE. 

PASSED THROUGH: 
OÜTPUT.INTERFACE: RADAR.OÜT, 

f 

1 
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MFSSAGE : T1_T2_PFTURN. 
EQUATED TO: 

SYMONYH: T1T2RTN. 
EXPLAINED Br: 

REFERENCE: TLS_RAOARJ)PS INTFRFACE.SPECIFICATION, 
MADE «r: 

DATA; RADARJTYPE 
DATA: RR.ORDER_IO 
DATA: T1.T2_RECEIVE 
FILE: Tl_T2_OATA. 

PASSED THROUGH: 
INPUT.INTERFACE: RAOAR^IN. 

( 

MFSSAGE : T3_C0MMAN0. 
EQUATED TO: 

SYNONYM: T3CMO. 
EXPLAINED BY: 

REFERENCE: TLS_RADAR_DPS..lNTERFACE_SPECIFICATION, 
FORMED BY: 

ALPHA: FORMATS. 
HADE BY: 

DATA*. RADARJTYPE 
DATA: RR.ORDER.IO 
DATA: TRANSMIT.START 
DATA: T3_TRANSMIT 
FILE: T3_6ATE. 

PASSED THROUGH: 
OUTPUT.INTERFACE: RADAR.OUT. 

MFSSAGE : T3_RETURN. 
fQUATPO TOS 

SYNONYM: T3RTN. 
EXPLAINED BY: 

REFERENCE: TLS.RADAR.DPS.INTERFACE.SPECIFICATION, 
MADE RY: 

DATA:   RADAR.TYPE 
DATA:   RP_ORDER.ID 
DATA:   T3_RECEIVE 
FILE:   T3.0ATA. 

PASSED   THROUGH: 
INPUT.1NTERFACE:   RADAR.IN. 
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ORlGlNATlNG.REOUIREMtNT : 0PSPR_PARAGRAPH_3_2. 
TRACES TO: 

IMPJT^INTERFACE: RADAR.IN 
OUTOUT.INTERFACE: RAOAR.OUT. 

t 

0RIGINATIN6_REQUIREMENT i   0PSPR_3_2_1_A.FUNCTIONAL. 
DESCRIPTIONS 

"ACTIONS: ACCEPT C2 MESSAGE*INITIATE TRACK ON IMAGE» 
SEND RADAR ORDER 

INFORMATION: C? MESSAGE "INITIATE TRACK COMMAND"» 
HANDOVER IMAGE» RADAR ORDER", 

TRACES TO: 
ALPHA: TRACK.INITIATE 
ALPHA: VALIDATE.HEADER 
MESSAGE: HANDOVER. 

0RIGINATING_REQUIREMENT : DPSPR_l^_2.A_FUNCTIONAL. 
DESCRIPTION: 

"   ACTION: SEND RADAR ORDER 
INFORMATION: RADAR» REDUNDANT IMAGE,". 

TRACES TO: 
ALPHA: REDUN.DETERMINATION 
ALPHA: REOUN_TERMINATION 
DATA: DROP.REASON 
DATA: REASON.FOR.OROP 
DATA: REDUNDANT.IMAGE. 

ORISINATING_RFOUIREMENT : DPSPR.A^^.A.PERFORMANCE, 
TRACES TO: 

DECISION: TRACK.PERFORMANCE.ALLOCATION, 

ORIGINATING.PEQUIREMENT : OPSPR.3.2.2.8.FUNCTIONAL, 
DESCRIPTION: 

" ACTIONS: SEND RADAR ORDER 
INFORMATION: GHOST IMAGE* RADAR ORDER.*. 

TRACES TO: 
ALPHA: GHOST_DETERMINATION 
ALPHA: GHOST.TERMINATION 
DATA: OROP.REASON 
DATA: GHOST.IMAGE 
DATA: REASON.FOR.DROP, 

ORIGINATING.REOUIREMENT : DPSPR.3J?.2.B.PERFORMANCE, 
TRACES TO: 

ALPHA: ALLOCATE.AND.CONTROL.RESOURCES 
ALPHA: FINO.CONFLICT 
ALPHA: 6HOST_OETERMINATION 
ALPHA: REOUN.OETERMINATION 
ALPHA: UPDATE.STATE 
DATA: PRIORITY 
DECISION: TRACK.PERFORMANCE.ALLOCATION, 

/' 
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• ORIGINATING.REOUIREMENT : QPSPR_3_2 ? C FUNCTIONAL. 
OÜSCRIPTION: 

•  ACTION: SEND RAOAR ORDER 
INfORMATION: RAOAR ORDER« ELEVATION OF RAOAR OROEH", 

TRACES TO: 
ALPHA: F0RM_T1_T2 
ALPHA: FORM_T3 

OATA: LOW_ELEVATION, 

I 

ORIGINATING.REOUIREMENT : DPSPR_3_?_2 O.FUNCTIONAL. 
DESCRIPTION! 

U  ACTION: SEND RADAR OROERt DETERM1NE_IMA6E_ELEVAT101 
INFORMATION: iMAGEt ELEVATION OF iMAGEt RADAR ORO, ^t 

TRANSMISSION TIME OF RAOAR ORDER««, 
TRACES TO: 

ALPHA: LOW_ELEVATION_O?TERMINATION 
ALPHA: LOW_TfRMINATION • 
ALPHA: UPDAIE_STATE 
OAT*: DROP_REASON 

DATA: PEASON_FOR_OROP. 

0RI6INATIN6_RF0UIREMENT : DPSPR_3^_2_E_FUNCTI0NAL. 
DESCRIPTION: 

"   ACTION: DROP TRACK ON HANDOVER IMAGF» SEND RADAR ORDER 
INFORMATION: DROP TRACK C2 MESSAGE. RADAR OR 

OCR* TRANSMISSION 
TIME OF RADAR ORDER.". 

TRACES TO: 
ALPH»: TERM .TRACK 
DATA: DROP..REASON 
DATA I Ei'»TSY_.t IMc 
DATA: PEASON_FOR_DROP 
MESSAGE; TERMINATION. 

OPTSINATING.REOUIREMENT J DPSPR_3_2_3_A_FUNCTIONAL. 
DESCRIPTION: 

"   ACTION! MAINTAIN TRACK ON IMAGE 
INFORMATION: IMAGE«'FSTIMATE OF STATF". RADAR RETURN« 

TIME OF LAST PP3CESSE0 RETURN.«". 
TRACES TO: 

ALPHA: UPDATE.STATE 
DATA: STATE 
DECISION: SYNCHRONOUS_VS_ASYNCHRONOUS_TRACK 
ENTITY_TYPE: IMAGE_IN_TRACK, 

0RI6INATING_RE0UIREMENT : 0PSPR.3_2_3_A_PERF0RMANCE. 
TRACES TO: 

DECISION: TRACK.PERFORMANCE.ALLOCATION. 

0RI6INATING_RE0UIREMENT : DPSPR_3^2_3_B_FUNCTIONAL. 
DESCRIPTION! 

•■   ACTION: DROP IMACE"PEnUNOAMT<« 
INFORMATION! REDUNDANT IMAGE.". 

TRACES TO! 
ALPHA! REOUN.DFTERMINATION 
DATA! REOUNOANT.IMAGC. 

• 
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OPIGINATING.REQUIPEMENT : DPSPR.3_P_3.B_PERFORMANCE, 
TRACES TO: 

DECISION: TRACK J>ERFORMANCE_ALLOCATION, 

0PIGINAT1NG_REQUIREMENT : DPSPR_3_2_3 C.FUNCTIONAL. 
DESCPIPTION: 

"   ACTION: DROP IMAGE"GHOST" 
INFORMATION: GHOST IMAGE.". 

TRACES TO: 
ALPHA: GHOSTJ)ETERMINATION 
DATA: GHOST_IMAGE. 

ORIGINATING.REQUIREMENT : DPSPR_3.2_3.C.PERFORMANCE, 
TRACES TO: 

DECISION: THACK.PERFORMANCE_ALLOCATION. 

OPIGINATING.REQUIREMENT : DPSPR_3«2.3.0.FUNCTIONAL, 
DESCRIPTION: 

"  ACTION: SEND RADAR ORDER 
INFORMATION: RADAR ORDER,. "• 

TRACES TO: 
ALPHA: ALLOCATE.ANO.CONTPOL.RESOURCES. 

0RI6INATING.REQUIREMENT : DPSPR_3«2_3.0.PERFORMANCE. 
TRACES TOJ 

DECISION: TRACK.PERFORMANCE.ALLOCAriON. 

0RI6INATING.REQUIREMENT : DPSPR.3^.3.E.FUNCTIONAL. 
DESCRIPTION: 

"ACTION:  SEND RADAR ORDER 
INFORMATION: RADAR ORDER.". 

TRACES TO: 
ALPHA: FIND.CONFLICT 
ALPHA: F0RM.Tl.T2 
ALPHA: F0RM.T3. 

ORIGINATING.REOUIREMENT : DPSPR.3J2.4..A.FUNCTIONAL. 
OESCRTPTION: 

"ACTION:  MAINTAIN ESTIMATE OF RADAR RESOURCES 
INFORMATION:  RADAR RESOURCE USAGE ESTIMATEt RADAR 
ENERGY ESTIMATEt UPPER BOUND ESTIMATE.". 

TRACES TO: 
ALPHAS SUMMARIZE.USA6E 
ENTITY.CLASS: PULSE. 

0RI6INAT1N6.RE0UIREMENT :" DPSPR.3.2.4.B.FUNCTiaNAL. 
DESCRIPTION: 

"ACTION:  ALLOCATE RADAR ORDERS 
INFORMATION:  RADAR ORDERS» IMAGE.". 

TRACES TO» 
ALPHA: ALLOCATE.AND.CONTROL.RESOURCES 
DECISION: RADAR.SCHEDULER.PRI0RITI2ATION 
R.NET: CONTROL.RESOURCFS. 9 
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ORIGINATING.REQUIREMENT : DPSPR 3_? 5 A.FUNCTIONAL. 
DESCRIPTION! 

«ACTION: OUTPUT TO PERMANENT FILE 
INFORMATION: TIME OF APPEARANCE OF C2 MESSAGET 
HANDOVER IMAGE (ESTIMATED STATE).", 

TRACES TO: 
ALPHA: TRACK..INITIATE 
MESSAGE: TRACK_INITIATION. 

ORIöIWATINß,REQUIREMENT : DPSPR 3_2 5 B FUNCTIONAL, 

DESCRIPTION: 
"ACTION: OUTPUT TO PERMANENT FILE 
INFORMATION: TIME OF DROP TRACK. REASON FOR 

DROP TRACK.", 
TRACES TO: 

ALPHA: TERMJTRACK 
MESSAGE: TRACK^TERMINATWN. 

OPIGINATINCREQUIREMENT : DPSPR 3_2 5 C.FUNCTIONAL. 
DESCRIPTION: 

"ACTION:  OUTPUT TO PERMANENT FlLEt UPDATE STATE 
INFORMATION: IMAGE STATE ESTIMATE.", 

TRACES TO: 
MESSAGE; STATE_UPDATE 
R.NET: RE3PONSE.TO_RAOAR. 

0PIRINATING_REQUIREMENT : DPSPRJ!I_2_5.D«FUNCTIONAL. 
DESCRIPTION: 

"ACTION:  OUTPUT TO PERMANENT FILE 
INFORMATION:  RADAR RESOURCE USAGE,", 

TRACES TO! 
ALPHA: SUMMARIZEJJSAGE 
MESSAGE: RAOARJJSAGE 
R.NET: RADAR.SUMMARY. 

ORIGINATING.REQUIREMENT : RADAR.DPS_IFS.3.2.9_FUNCTIONAL, 
TRACES TO: 

DATA:   RAOAR.CLOCKjriME, 
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OUTPUT^INTERFACE   :   CC.OUT. 
CONNFCTS   TO: 

SUBSYSTEM:   SSC2. 
PASSES: 

MESSAGE:   ACKNOWLEDGEMENT, 
REFERRED  BY: 

R..NET   :   CC.RESPONSE. 

OUTPUT.INTERFACE   :   DATA.RECORD. 
CONNECTS  TO: 

SUBSYSTEM:   SSPERMFL. 
PASSES: 

MESSAGE 
MESSAGE 
MESSAGE 
MESSAGE 

REFERRED BY: 
R_NET : 
R_NET : 
R«NET   : 

RADAR_USA6E 
STATE.UPDATE 
TRACK.INITIATION 
TRACK.TERMINATION, 

CC_RESPONSE 
RADAR^SUMMARY 
RESPONSE.TO.RAOAR. 

OUTPUT.INTERFACE   :   RADAR.OUT, 
DESCRIPTION: 

••THE   RADOUT   INTERFACE  PROVIDES  THE  MECHANISM  THROUGH 
WHICH   THE   DPS   ISSUES  COMMANDS   TO   THE   RADAR   SUBSYSTEM, 
THE  RADAR  SUBSYSTEM  WILL  EXECUTE   ONLY  THE   COMMANDS 
ISSUED  BY   THE  DPS   AND   WILL   TRANSMIT  ONE  PULSE  FOR  E^CH 
COMMAND   WHICH  SATISFIES   THE   RADAR   SUBSYSTEM   AND 
INTERFACE  CONSTRAINTS.   THE   RADAR   SUBSYSTEM  WILL  EXECUTE 
THE   COMMANDS   IN  THE  ORDER   RECEIVED  AND  WILL  BEGIN 
EXECUTION  AFTER  RECEIPT  OF   EN0_OF_TP*NSMISSION.»• 

ENTERED.BY: "H.A.HELTON,   APR.   30t   1Q76.", 
CONNECTS  TO: 

SUBSYSTEM:  SSRADAR. 
IMPLEMENTS: 

VERSION:   0RI6INAL.,PUBLICATI0NJ)ATED.AUGUST.l975. 
PASSES: 

MESSAGE:   T1.T2.COMMANO 
MESSAGE:   T3_C0MMAND. 

ABBREVIATED  BY« 
SYNONYM:   RADOUT. 

EXPLAINED  BY« 
REFERENCE«   TLS.RADAR.DPS.INTERFACE.SPECIFICATION. 

TRACEO  FROM« 
0RISINATIN6.REQUIREMENT:   DPSPR.PARAGRAPH.3..2. 

REFEROEO  BY« 
*«NET   «   XMITJ*. 

t 
E-54 

«r; 
i 



' -  ' *'mmzm&mmmmm**' 'l^^«^^W«»v^:**!»#«a*^^ ^\^P!-'*-^-::-'^:f 

.NET : CC.RESPONSf-t 
REFERS TO: 

ALPHA 
ALPHA 
ALPHA 
ALPHA 
ALPHA 
ALPHA 
ALPHA 
ALPHA 
DATA 
EVENT 
EVENT 
EVENT 

ACKNOWwEOGE 
CC_ERROR_PROCESSING 
ENGAGEMENT_INITlATION 
STARTER 
TERM.ENGAGEMENT 
TERM_TRACK 
TRACK_INITIATE 
VALIDATE_HEADER 

CO^MAND.IO 

CC_IN 
CC.OUT 
DATA.RECORO, 

c 

ALLOCATE 
SCHEDULE 
SUMMARIZE 

INPUT_INTERFACE : 
OUTDUT_INTERFACE 
OUTPUT.INTERFACE 

ENABLED BY: 
INP'JT.INTERFACE: CC_IN. 

STRUCTURE: 
INPUT.INTERFACE : CC.IN 
ALPHA : VALIDATE_HEA0ER 
DO 

ALPHA : ACKNOWLEDGE 
OUTPUT.INTERFACE : CC.OUT 

AND 
CONSIDER  DATA : COMMAND.IO 
DO 

(HANOOVER.IMAGEI 
ALPHA : TRACK^INITIATE 
EVENT : AiLOCATE 
OUTPUT.INTERFACE DATA_RECORO 

OR 

OR 

(DROP.TRACK) 
ALPHA : TEPM.TRACK 
OUTPUT.INTERFACE : DATA.RECORO 

(INITIATE^ENGAGEMENT.MODE) 
ALPHA : STARTER 
ALPHA : ENGAGEMENT.INITIATION 
EVENT : SCHEDULE 
EVENT : SUMMARIZE 
TERMINATE 

OR 
(TERMINATE.ENGAGEMENT_HODE) 

ALPHA : TERM_EN6A6EMENT 
TERMINATE 

OTHERWISE 
ALPHA : CC.ERROR..PROCESSINS 
TERMINATE 

END 
END 

END 
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R.NET : CONTROL_RESOURCES. 
DESCRIPTION: 

"THE TLS.OPS SHALL IMPLEMENT THE REQUIREMENTS SPECIFIED 
IN THE OPSPRt REFERENCE 2,2*   ASSOCIATED WITH MANAGEMENT 
AND CONTROL OF TLS RESOURCES AND SHALL PERFORM THE 
FUNCTIONS HEREIN DEFINED AND DIAGRAMMED IN THE CONTRES R.NET, 

THE DPS SHALL ASSIGN TRACK RATES AND ENERGY ALLOWANCES 
TO EACH IMAGE HANDED OVER FROM COMMAND AND CONTROL 
AND SHALL DETERMINE ENERGY BOUNDS AND TRACK RATE 
ENVELOPES FOR EACH HANDOVER IMAGE WHICH REMAINS IN 
TRACK STATUS. THE ENERGY ROUNDS AND TRACK RATE 
ENVELOPES SHALL BE MAINTAINED WITHIN AN ACCURACY 
AND RESOLUTION TOLERANCE SUFFICIENT TO MEET THE 
SPECIFIED REQUIREMENTS FOR DETERMINATION OF TARGET 
INTERCEPT CONDITIONS. 

THE DPS SHALL ASSFSS STATUS OF THE TLS RESOURCES AND 
SHALL ALLOCATE TLS RESOURCES TO EACH HANDOVER IMAGE 
BASED ON RADAR SUBSYSTEM PERFORMANCE CAPABILITIES 
AND SHALL MAINTAIN A GRACEFUL DEGRADATION POSTURE 
WHILE UNDER OVERLOAD CONDITIONS. 

THE DPS SHALL GENFRATE TLS RESOURCE UTILIZATION 
PROFILES AND SHALL COMMIT THESE DATA TO PERMANENT 
FILE THROUGH THE DATA RECORD OUTPUT INTERFACE,"• REFERS TO: 

ALPHA : ALLOCATE.AND.CONTROL.RESOURCES, ABBREVIATED BY: 
SYNONYM: CONTRES, 

ENABLED BY: 
EVENT: ALLOCATE, 

TRACED FROM: 

0RIGINATINGJ?EQUIREMENT: DPSPR^.a^.B.FUNCVIONAL. STRUCTURE: 

ALPHA : ALLOCATE.AND.CONTROL.RESOURCES TERMINATE 
END . 

I 
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R_NET   :   RAOAR_SUMM/»RY. 
REFERS  TO: 

ALPHA   :   COMPLETE..SUMMARY 
ALPHA   :   SUMMARIZE_USAGE 
DATA   :   MODE 
FNTITY.TYPE   :   PETURNED_PULSE 
EVENT   :   SUMMARIZE 
OUTPUT_INTERFACE   :   DATA_RECORO. 

ENABLED  BY: 
EVENT:   SUMMARIZE. 

TRACED   F90M: 
0RIGINATIN6_REQUIREMENT:   DPSPR.a.e.S.D.FUNCTIONAL. 

STRUCTURE: 
CONSIDER     OATA   :   MODE 
DO 

(ENGAGED) 
FOR   EACH     ENTITY_TYPE   :   RETURNED.PULSE 
DO ALPHA   :   SUMMARIZE^USAGE   END 
AL0HA   :   COMPLETE_SUMMARY 
EVENT   :   SUMMARIZE 
OUTPUT.INTERFACE .:   DATA.RFCORO 

OTHERWISE 
TERMINATE 

END 
END   . 

R   NET   :   RADAR^TIMINQ. 
DESCRIPTION: 

"RADAR_TIMIN6   MAINTAINS   A   RECORD  OF   THE 
RADAR„CLOCK_TIME.", 

ALPHA   ;   UPDATE.RADAR.CLOCK 
INPUT.INTERFACE   :   RADAR.CLOCK^IN. 

ENABLED  9Y: 
INP'JT^INTERFACE:   RADAR.CLOCK.IN, 

STRUCTURE: 
INPUT..INTERFACE   :   RADAR.CLOCK.IN 
ALPHA   :   UPDATE.RADAR.CLOCK 
TERMINATE 

END   . 
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NET  : PFSPOMSE^TO^RAOAW, 
OESCWIPTION; 

"THT TLS.DPS SHALL IMPLFM^NT THE REOUIREMENTS SPECIFIED 
IN THE TLS.RADAR.DPS.INRERFACE.SCECIFICATION ASSOCIATED 
I^ITH PROCESSING RADAR SUBSYSTEM RESPONSES TO COMMANDST 
ANO SHALL PERFORM THE FUNCTIONS HEREIN DEFINED AND 
DlAf-iPAMMEO IN THE RFSPRAl) R^NET. 

THF DPS SHALL RECEIVE AND PROCESS RADAR MESSAGES 
TRANSMITTED BY THE TLS RAOAR SUBSYSTEM ANO SHALL 
INTERROGATF EACH MESSAGE FOR 
PROCESS ALL DETECTED MESSAGE 

THE DPS SHALL« UPON RECEIPT OF 
MESSAGES, DETECT AND PROCESS 
GHOST.IMAGES, AND LOW_ELEVAT TON..IMAGES» AND SMALL 
UPDATE STATE_PAPAMETERS FOR EACH IMAGE_IN_TRACK. 

THE DPS SHALL TERMINATE TRACK ON EACH IMAGE WHICH IS 
DETERMINED TO BP EITHER A REDUNPANT OR GHOST IMAGE 
OR WHICH IS FOUND' TO EXCEED THE LOW^ELEVATION 
CONSTRAINTS AND SHALL MAINTAIN TRACK ON EACH IMAGE 
DETERMINED TO 6^ REAL. 

THE DPS SHALL CONSTRUCT ANO MAINTAIN DESCRIPTIVE DATA 
FILES FOR EACH IMAGE WHICH IS EITHER MAINTAINED IN 
TRACK OR DROPPED FROM TRACK AND SHALL PERIOPICALLV 
COMMIT THESE DATA TO PERMANENT RECORDS THROUGH THE 
DATA RECORDS INTERFACE.". 

ERRORS ANO SHALL 
ERRORS. 
ERROR.FREE RADAR 
REDUNDANT.IMAGESt 

REFERS TO: 
ALPHA 
ALPHA 
ALPHA 
ALPHA 
«LPHA 
ALPHA 
ALPHA 
ALPHA 
ALPHA 
ALPHA 
ALPHA 
DATA 
DATA 
DATA 
DATA 
DATA 
OATA 
EVENT 

ACCEPT.ANÜ_CHECK_RAOAR_RETURN.MESSAGE 
GHOST.OETERMINATION 
GHOST_TERMlNATION 
LOW^ELEVATION.nETERMI NATION 
LOW.TERMINATION 
PEDUN_DETERMlNATION 
OEDUN.TERMINATION 
RR.ERROR.PPOCESSING 
Tl.TP.MEASUREMENT.EXTRACTION 
TS^MEASUREMENT^EXTRACTION 
UPDATE.STATE 
GHOST^IMAGE 
LOW.ELEVATION 
OADAR.TYPE 
PEOUNDANT.IMAGE 
RFTURN.IMAGE..STATUS 
VALID.RETURN 
ALLOCATE 

INP'JT.INTEHFACE : RADAR.IN 
OUTOUT..INTERFACE : DATA.RECORO. 

ABBREVIATED BY: 
SYNONfM« RESPHAO. 

ENABLED B¥J 
INPJT.INTERFACE! RADAR.IN* 

TRACED FROM: 
ORIGINATING.REOUIHEMENT: OPSPR.3„?.S.C«FUNCTIONAL. 
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CtmiUtR      UATM    :    KAUAK.TYHt 
DU 
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1)1 -ithV ISt 
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(v"i. ip_i't rjHij) 
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00 

i)ij l^iJl _1IN. I tHKAC-"    :    (>Al«^Kh.LOH!) 
ANI 

ALr'rtA    :   Kti.'Uw.Jk I>r HMiN«! I') ^1 
DO 

(wtOUNDANT.,! 1A jt) 
«LPUM    :    WLÜUN_I tHMl\«» I 1 JN 
tvi-wi   :  ^LLur,«rt 
OUlHUr.iWlhKFACt    :    UAlA_KtCOK|) 
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AH)I 
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O'J 

(LU*l_r-.LF: V     FiU1^) 
ALHhlA    :    LOW_TLH^lWA I iUN 
tVfNf     :    ALLuCAIc 
OUTHij^iwfLKFACt    :    JAI A.Kl-tJHÜ 

OTHthlnlbt 
FtW ^IfgATtr 

tNh 

((jMti^ r.iMA^t) 
ALK.-IA    :    ljnOSl_1KrtMlNA f iL):^ 
tVtNl    :   ALLOC A 1^" 
(l'JCf»Ul<.it

,4lr>f ACS     :     OA I tt_HtCOr(U 
Utrn.HMiäf 
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tM' 

0-* 
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NE
^CÄOH. ^ CONSTRUCTS THE 0R0E,E„ „u oF OM. ro. 

A FRAME."» 
REFERS TOS 

ALP«* 
ALPHA 
DATA 
DATA 
DATA 
DATA 

INIT1ALIZE..SKE0_R 
PICK.CANDIOATES 
LAST«PULSE 
MODE 
TEOF 

UP,..   TRACK_RATE 
FNTITY.TYPE S IHAGE.IN.TRACK 

EVENT : XRH 
F1LP ! CANDIDATE 
SUBNET *. FORM.FRAME. 

ENABLED aVS 
EVENT« SCHEDULE, 

TRACED  FROM: DECISION:   RAOAR.SCHEOULER.PRIORITIZATION. 

STRUCTURE» 
CONSIDER DATA : MODE 

DO 
(ENGAGED) 

ALPHA : INITIALIZE.SKEDJ* 
FOR EACH  ENTITY.TYPE : IMA6E.IN.TRACK SUCH THAT 
(LAST^PULSE* (I .0/TRACK.RATEXTEOF) 
DO       ALPHA : PICK.CANDIOATES END 

FOR EACH  FILE : CANDIDATE 
DO       SUBNET : FORM.FRAME END 

EVENT : XRB 
TERMINATE 

OTHERWISE 
TERMINATE 

END 
END • 

O 

O 
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R.NET : XMIT..R. 
DESCRIPTION: 

"XMIT.R BUILDS AND FORWARDS TO THE Ol'TPUT.INTEPFACt 
OA0AR_0UT THE COMMANDS OF THE FRAME.". 

REFERS TO: 
FORMAT1.T2 
FORMATS 
PICK.COMMANO 

FOUND 

ALPHA 
ALPHA 
ALPHA 
DATA ; 
DATA I 
EVENT 
EVENT 

PADARJTYPE 
SCHEDULE 
XR8 

OUTPUT_INTERFACE : RADAR_OUT. 
ENABLED BY: 

EVENT: XRB. 
TRACED FROM: 

DECISION: RADAR_SCHEDULER_PRI0RIT1"'ATI0N. 
STRUCTURE: 

ALPHA : PICK.COMMANO 
DO 

(FOUND) 
EVENT : XRB 
CONSIDER  DATA : RADAR.TYPE 
DO 

(T3I 
ALPHA : FORM.T3 

OTHERWISE 
ALPHA : F0RM.Tl.T2 

END 
OUTPUT.INTERFACE : RADAR.OUT 

OTHERWISE 
EvtNT : SCHbUULt 
TERMINATE 

END 
END . 
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REFERENCE : CISS_TOP_BASELLNE_CONSTRUCT, 
DESCRIPTION: 

"TRW REPORT NO, 2294*_977L.RE_01. VOLUME IT REVISION A.
H
. 

REFERENCE 5 OPSPP.SPECIFICATION. 
DESCRIPTION: 

"TRW REPORT NO. 27332„6921_ül5t REVISION 1* CORL AOOEt 
SECTION 3.2". 

REFERENCE : TLS_C2_DPS.INTERFACE.SPECIFICATION. 
DESCRIPTION: "TRW REPORT NO. 27332.6921_013."• 

REFERENCE : TLS.ENVIRONMENT^AND.THREAT.MOOEL. 
DESCRIPTION: 

"GRC REPORT NO. DRC_72-25499 (SECRET). VERSION I.". 

REFERENCE : TLS_RAOAR_OPS_INTERFACE.SPtCIFICATION. 
DESCRIPTION: "TRW REPORT NO. 27332.6921.012.". 
EXPLAINS: 

INPUT.JNTERFACE: RADAR.CLOCK.IN 
INPUT.INTERFACE: RAOAR.IN 
MESSAGE: T1_T2.C0MMAN0 
MESSAGE: T1.T2_RETURN 
MESSAGE: T3_COMMAND 
MESSAGE: T3.RETURN 
OUTPUT.INTERFACE*. RAPAR.OUT. 

REFERENCE : TLS_RADAR.PERFORMANCE.SPEC. 
DESCRIPTION: "GRC REPORT NO. CR_3.386 (SECRET)". 

REFERENCE : TLS.SYSTEM.REO'JIREMENTS. 

»TRW REPORT NO. 27332.6921.015. REVISION 1. CDRL AOOE 
SECTION 1.1". 
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i 
•FÜKM.FHA^fc.   KMUVlUtb   WAüArt   CJNFLlCI    WEbOLÜTION.«, 

Kf r-^S   Tü: 

ALHHA    !    FI'>iÜ_CON»-LiCI 

i)AT*i    :    l)H(JP_FLAl7, 
fythtR-tü  r»Y: 

bTKUrTJHf: 
ALHMA   ;    r INU_LUNI-L1CI 
DO 

(NO I    UKuH.r LA'i) 
AL^HM    :    H^t _CUi't>iAi<(l 

K»: T'JKN 

:# 

t 
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SUBSYSTEM ! SSC2. 
CONNPCTEO TO! 

INOJT.INTERFACE: CC_!N 
r»UTPUT_TNTEPFACE: CC.OUT, 

SUBSYSTEM : SSPEPMFL. 
CONNFCTEO TO: 

OUTPUT.INTERFACE: OATA.RECOHO. 

SUBSYSTEM ! SSRADAP. 
CONNECTEO   TO: 

INPUT_IMTE»FACE: PADAR_CLOCK_IN 
INPJT_INTERFACE: RA0AP_IN 
OUTPUT_INTERF,»CE: RADAR.OUT. 

1 

I 

I 

t 
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SYNONYM : CKRADHES. 
EQUATES TO: 

ALPHA t ACCEPT^ND.CHECK.RADAR.RETURN.MESSAGE• 

SYNONYM : CONTRES,, 
ABBREVIATES: 

R.NET: CONTROL.RESOURCES. 

SYNONYM : RAOIN, 
ABBREVIATESt 

INPUT.INTFRFACE: RAOAR.IN. 

SYNONYM : RAOOUT. 
ABBREVIATES: 

OUTPUT.INTERFACE: RAOAR.OUT, 

SYNONYM : RESPRAO, 
ABBREVIATES: 

R.NET: RESPONSE.TO.RAOAR. 

SYNONYM : T1T2CMO. 
EQUATES TOt 

MESSAGE: T1.T2.COMMANO. 

SYNONYM : TIT2RTN, 
EQUATES TO: 

MESSAGE: T1_T2_RETURN, 

SYNONYM   :   T3CMO. 
EQUATES  TO: 

MESSAGEi   T3.C0MHAN0. 

SYNONYM   :   T3RTN. 
EQUATES  TO: 

MESSAGE:   T3.RETURN. 

t 
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VFRSION   :   ORIGINAL.PUBLICATION.OATEO.AUGUST.IMTS, 
IMPLEMENTED  BY: 

INPJT^lNTERFACc:   PADAR.IN 
0UToUT.INTERFACE«   RAOAR.OUT. 

O 

9 

o 
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I. INTRODUCTION 

t 

1.0 PURPOSE AND SCOPE 

This report presents the preliminary Data Processing Subsystem Per- 

formance Requirements (DPSPR) for the Track Loop Experiment (X-l). The 

goals for this experiment are presented in Section 2.0. 

The primary intent of this document is to provide the initiating 

input to the Software Requirements Engineering Methodology which will sub- 

sequently produce a Process Performance Requirements (PPR) specification 

for the Track Loop System Data Processing Subsystem. It is further the 

intent of this document to present an example of the required contents and 

level of detail of a DPSPR discussed in Reference 1. As such, this example 

will provide a more concrete basis for technical exchange between the Soft- 

ware Requirements Engineering, DPSPR and V&V contractors. Such interchange is 

considered necessary to arrive at a final definition of the required form, 

contents and format of a DPSPR. Part II of this report constitutes the 

example DPSPR. 

1.1 The Track Loop System 

The Track Loop System (TLS) is a subset of a Preliminary Billistic 

Missile Defense System which is capable of nearly autonomous execution 

in response to external stimuli. It is the simplest known subsystem with 

properties of interest for software definition, and it is one which has 

been studied extensively, both in the academic literature and in such 

practical programs as Site Defense. Therefore, it has been selected as 

the testbed for supporting experimentation in development of the methodology 

for software requirements. A pictorial representation of the TLS is provided 

in Figure F-l. 

1.1.1 Preliminary Ballistic Missile Defense System 

A Preliminary Ballistic Missile Defense System (PUMüS) has been 

postulated as an environment in which the TLS would execute. It Is a 

generalized representative of the class of systems currently in develop- 

ment, and is particularized for the TLS through representative but non- 

real specifications where required. 
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The top level flow of the PBHDS is shown in the functional flow block 

diagram, Figure F-2. In the Conduct Engagement mode, an object entering the 

search region will be detected and designated, tracked, discriminated, and 

engaged (as required) in defense of the ground facilities. Those functions 

are implemented through the Data Processing System (DPS), a radar or other 

sensor, and a means of neutralizing hostile objects. For the purpose of 

the TLS, only the radar need be defined in detail; other system elements 

are identified only to the extent that they impact DPS requirements. 

1.1.2 TLS Requirements 

Functional Requirements on the TLS would normally be contained in a 

system specification (Level 1, or A in MIL STD 490 terminology). If soft- 

ware is developed from the requirements provided in Section II of this 

report, and if that software is to be installed and exercised in the field, 

then such a system specification may be required. In the interests of 

both economy and timeliness, only the subsection of the A Specification 

required for the DPSFR is provided nere. 

1.1.2.1 Initialization 

The TLS shall accept C2 messages for initialization with the following 
properties: 

a) An estimate of state shall be generated external to TLS and for- 
warded to TLS over the communication channel to initiate tracking. 

b) If an object corresponds to that estimate, the estimation accuracy 
shall be such that the expected (1-sigma) deviation of tne object 
from a perfect extrapolation of state shall be in accord with 
Table F.l. 

c) Initialization estimates shall be provided (handed off) at a rate not 
exceeding 150 per second over any interval greater than 50 milli- 
seconds . 

d) The total number of handoffs shall not exceed 1500. 

e) The total number of real objects shall not exceed 300. 

f) A handoff may be an estimate on a real object or an estimate relating 
to a state at which no object is located (ghost). Multiple handoffs 
of a single object may be generated. 

g) Each handoff shall consist of a unique designator, the state vector 
and Its covariance matrix. 
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Table F.2 Table F.l Handover Errors In Radar Face Coordinates 

■m 

COORDINATE MINIMUM 

3 

MAXIMUM UHITS 

R 5 M 

U 0.4 0.6 mslne 

V 0.03 0.05 msine 
• 
R 40 55 m/sec 
• 

2 4 mslne/sec 
• 
V 2 4 msine/sec 

r. 

t NOTES: 

1. All data l-o 

2. Handover altitude L 65 K meters 

i 
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1.1.2.2 Termination 

a) Redundant images of objects shall be dropped from track in order to 
conserve radar resources. The probability of dropping track on a 
non-redundant image shall be considered in determining leakage. 

b) Ghosts shall be dropped from track in order to conserve radar 
resources. The probability that a non-redundant image is dropped 
as a ghost shall be considered in determining leakage. 

c) For flight safety, no track pulse shall be commanded with true elevation 
angle less than 3°. 

d) Track shall be dropped in response to an external cotninand repre- 
senting handoff to another defense facility or successful intercept. 
No track pulse shall be transmitted to a designated image more than 
100 milliseconds after such a command appears at the TLS port, with 
probability .3. 

1.1.2.3 Tracking 

a) The TLS shall generate state estimates sufficient to support discrimi- 
nation through beta estimation accuracy in accordance with Figure F-3 
and impact point prediction in accordance with Figure F-4. 

Beta is required in the system for a variety of purposes at different 
stages in the er.cjagmcnt of en ohceot.    Early in track, it is used 
for junk rcjeation; at an intermediate state, it forms a key 
element of discrimination in elimination of decoys and assessment 
of the danger imposed by an RV; shortly thereafter, it is essential 
to intercept planning in estimating the intercept point.    The needs 
overlap in practice, so that a cormon ordinate for the plot of 
accuracy requirements is needed.    But each of the aspects of use of 
beta dictates a different ordinate at the system level.    The ordinate 
»elected in Figure  F-3 is time in track, a parameter known to be 
useful to the Software Requirements Engineer, and as useful for 
the systems-level definition as any of the other choices. 

Similarly, impact point prediction is used initially to reject cross 
traffic,  then to assess the threat posed by an RV; in some schema, 
it also assists discrimination.    The first might be expressed by the 
system engineer in terms of accuracy against track energy; the 
second in terms of time to commit contour (which is in turn a 
function of RV type, intercept capabilities, and other parameters). 
Again,  time in track was chosen as a convenient ordinate for the 
error requirements in Figure F-4. 

b) The TLS shall generate state estimates sufficient to support object 
intercept in accordance with Figure   (TBD). 

c) Leakage Is here defined to be the probability that all Images of 
a real object entered at an altitude not less than 150K feet are 
dropped from track for any reason other than the nilnimum-elevetlon 
constraints or external command defined In 1.1.2.2. Leakage in 
TLS shall not exceed .03. 
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Figure F-3 Beta Error Requirements 
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Figure F-4 Impact Point Error Requirements 
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1.1.2.4 Resource Control 

1 

a) The TLS shall conrrit to tracking functions not more than 1800 radar 
pulses per second, using not more than 25 kilowatts ERP. 

b) The TLS shall commit to tracking functions not more than 2500 joules 
per object.* 

1.1.2.5 Data Recording 

The TLS shall provide records for post test analysis of the following 
data: 

a) Time of hdndoff and designator and estimate received. 

b) Time of termination of track on each designation with reason 
for termination. 

c) At intervals not greater than 100 milliseconds, the estimate of 
state for each designation received and not yet terminated. 
That estimate shall consist of the following data: position, 
velocity, a beta estimation parameter and estimates of the 
uncertainty of each. 

d) At Intervals not greater than 300 milliseconds, the usage of 
radar resources. That measure snail include: radar energy profile 
and DPS estimates of expected and maximum energy commanded. 

t 
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2.0  SREP OBJECTIVES FOR X-l 

a) Demonstrate the scope, contents and level of detail of the DPSPR, 
described in Reference 1, and transmit the results to the DPSPR 
contractors for their evaluation. 

b) Demonstrate the scope, contents, format, and level of detail of 
PPR Volume I specified in Reference 2. The PPR will be written 
In preliminary RSL (see Reference 4). In particular: 

1) Evaluate the format of the PPR described 1n Reference 2 for 
completeness and adequacy. 

2) Evaluate the adequacy of the preliminary RSL definition for 
stating requirements. 

3} Provide the PPK for evaluation; in particular, the form and 
content of the performance requirements. 

4) Evaluate the extent of the traceability of the PPR to the 
DPSPR. 

c) Evaluate the steps of SREM (see Reference 3) from the DPSPR to a 
PPR; in particular, the procedural steps, form, and content of the 
performance allocation activities. 

d) Exercise the available experimental software to generate portions 
of the PPR (e.g., the structure segment of RSL). 

w 
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3.0  LIMITATIONS 

Two primary forces limit the application of the DPSPR of Section II. 

The first is the result of excising the track loop from the total PBMÜS. 

Although the loop is nearly self-contained, it has extensive interfaces 

both in terms of requirements and in the sense of implementation with other 

software functions. Consequently, requirements are imposed on TLS which 

originate or terminate within the DPS in ways and to an extent not believed 

appropriate for a true, functional system. 

The second major area of limitation arises from the novelty of the 

approach. While the methodology employed is believed valid, it has not 

yet been tried. (In fact, this experiment is its trial.) Consequently, 

It is likely that this initial DPSPR wiil be found to be incomplete in some 

materials needed for the PPR and for software development. Every effort has 

been made to anticipate such failings, but we anticipate methodologic bugs 

In the same way we would expect to find bugs in a new compiler or t»th»?r 

rr.ajor software development. 

3.1 System Objectives 

Isolation of TLS from PBMDS was artificial, and the objectives of 

Section 1.1 are correspondingly less than real. The selection of thos«? 

objectives was based on simplicity of implementation, expected usefulness 

of the TLS as a testbed, and availability of comparison criteria. Since 

no DPSPR had ever been prepared before, it was not possible to select 

criteria to optimize its quality. The objectives provided are believed 

to be good for generation of the DPSPR, but cannot be shown to be optimal. 

3.2 Allocation to DP 

Again, the absence of precedent and the artificiality of the TLS make 

an "optimum" allocation of functions unreasonable. A complete allocation 

Is provided, which is believed to be sufficient for the experiment. 

3.3 Level of Detail 

The objective of the DPSPR of  Part II Is to provide the complete 
specification required for the PPR Feasibility Demonstration.    It is likely 
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that some of the material will prove to be unnecessary; It is certain that 

not all data presently missing will be required before Initiating work on 

Volume I of the PkR. Therefore, revisions are planned both to complete 

specification of the requirements and to delete data found to be non-essential 

3.4  FormuUtion of DP Requirements 

The X-l DPSPR defines some data in a form and to a depth we feel to be 

undesirable. In particular, efforts are now under way to express require- 

ments on Redundant Track Elimination in terms of total radar energy per 

object. Converting both redundant tracking and other explicit requirements 

to a derivable form will te an objective for revisions of the DPSPR. 

0 

3.5 rftrnllary Documents 

The DPSPR is on. docu^nt in . family required to develop the Process 

Perfomence Requ1r«nents (PPR). For the TLS. the other documents a«: 

TLS System Requirements 
TLS Radar/DPS Interface Specification 

TLS C2/DPS Interface Specification 

„TLS Radar Performance Specification*     ^ 

TLS Environment and Threat Model Definition. 

§ 

The system requirements are sketched in Section 1.1 above. The starred (*) docu- 

ments In this family are not yet prepared.   

For the purposes of development of the PPR, the absence of the docu- 

ments Is believed to be less than critical. For the X-l effort, the contents 

of the missing specifications are subsets of the corresponding Terminal 

Defense Program (TDP) documents. Therefore, the required information for 

the PPR Is avail«ible from TDP documentation. However, a property of the 

methodology is its recognition that not all specifications ultimately required 

to support software design will be available early in that design effort. 

To the extent that the TLS documentation corresponding to initiation of a 

PPR Is required, the TDP documents are excessive. Thus, there Is an effort 

required as a part of the ongoing work to edit the TDP material to the 

specific, appropriate contents for the stage of development represented by 

the DPSPR. That work Is under way on the Radar/DPS Interface spedfication, 

ano will soon be undertaken on the other elements of the DPSPR package. 
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II. DATA PROCESSING SUBSYSTEM 
PERFORMANCE REQUIREMENTS - TRACK LOOP SYSTEM 

1.0  SCOPE 

This specification establishes the functional, performance, design 

and test requirements for the Track Loop System (TLS) to the extent 

necessary to develop the Process Performance Requirements (PPR) for the 

Data Processing Subsystem (DPS) portion of the system. The TLS is a test 

configuration of an Integral element of a Preliminary Ballistic Missile 

Defense System (PBMOS). 

The primary objective of this specification is to constrain the DPS 

so that it fulfills the intended obligations to the functions and perfor- 

mance of the overall TLS of which it is a part. To accomplish this, this 

specification 

• identifies the TLS mission and performance goals. 

• identifies the various subsystems, their functional capa- 
bilities, and the interfaces between the Data Processing 
Subsystem and each of the others. 

• allocates a portion of the system performance to the 
Data Processing Subsystem. 

• describes the system operational design. I.e., how the 
subsystems are to be used in order to achieve the system 
performance goals by utilization of the subsystem capa- 
bilities. 

This specification provides the technical basis for the development of the 

DPS» but is not a TLS system specification. 

C 
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2.0  APPLICABLE DOCUMENTS 

2.1 DPSPR Content Requirements. TRW Report 27332-6921-003, (CDRL A004), 
Revision 1, December 12, 1975. 

2.2 TLS System Requirements. (Part I, Section 1.1 of this report). 

2.3 TLS Radar/DPS Interface Specification TR',4 Report No. 27332-6921-012 

2.4 TLS C2/DPS interface Specification TRW Report No. 27332-6921-013 

2.5 TLS Radar Performance Specification 

2.6 TLS Environment and Threat Model Definition 

1 
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3.0  DATA PROCtSSING SUBSYSTEM 

The TLS is defined in [2.2] (Part I, Section 1.1 of this report). 

Section 1.1.2 provides the system requirements, while Figure F-l represents 

the operation of the system. TLS consists of a radar and a data processor, 

and receives input data from radar echoes and from interface with the C 

system. A model of the system environment is to be provided as [2.6]. 

Within the TLS, the radar-data processor interface specification is to be 

[2.4], while the C2/DPS interface will be defined in [2.3]. The radar models 

will be in [2.5]. 

The TLS DPS has been allocated requirements from those establisned on 

the TLS as a whole. The resulting requirements on the DPS are defined in 

Section 3.2 of this DPSPR. Traceability of the DPSPR requirements to the 

TLS requirements is shown in Figure F-6. All TLS requirements not allocated 

to the DPS are satisfied by the radar. Quantitative verification of the 

sufficiency of the allocation will be undertaken in the preparation of the 

PPR. 

3.1  Traceability 

Figure F-6 Is the traceability matrix for this DPSPR, and Illustrates 

the relationship between the TLS requirements [2.2], and the DPS requirements 

of Section 3.2. It also depicts the allocation of portions of system require- 

, ments to the radar; not all of that allocation Is clearly visible in the 

Interface specification, some of It being located in [2.5]. 

The funotion of the traceability matrix ie twofold: to locate the 8ub~ 

eyetem requirements derived from each syatem requirement, and to faoilitats 

. recognition that each DPS requirement originates from an appropriate eourae. 

The firot function is insurance that the DPSPP (md its counterparts for other 

euboystems) are sufficient tc embody the eyetem requirements, while the second 

verifies that no gratuitous requirements nave been introduced. 

To determine the source (s) of a DPS requirement, the appropriate row is 

located in the left-hand coliom.    Reading across the row, an entry of "C" 

indicates that virtually complete satisfaction of the system requirement fo? 

that column is provided,   A :'P" indicates that a portion of the system require- 

ment is there satisfied.   Scanning the entire chartt one finds t}iat the DPS 
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requirement to satisfy the interface specification is not traceable to the 

system requirements; however, it is clearly required, and is clearly in- 

appropriate for the system specification. 

Determining the impact of a system requirement on the subsystems is 

constructive both in confirming that every requirement is covered and in 

tracking the consequences of a change to the system specification.    Reading 

a aoluim will show the partial (P) or complete (C) satisfaction of a system 

requirement in the corresponding DPSPR section.    In the present case, each 

system requirement has some DPS impact; that might not be true in general. 

For example,  if a hard stop on elevation angle were implemented in the inzdar, 

then the third requirement wider 3.2.2 vould be deleted, and the inqilementa- 

Hon of the third requirement of (Part 1} 1.1.2.2 would be virtually completely 

contained in the radar subsystem. 

3.2  Data Processing Subsystem Requirements 

Many of the following specific requirements are stated in terms of a 

value and a probability of its satisfaction. In each such case, the inter- 

pretation shall be that at every point in the engagement, the probability of 

satisfying the inequality shall be at least the stated value. The required 

confidence in that assertion is established in test planning. 

3.2.1 Initialization 

a) The DPS shall accept commands from the C2 to initiate track on a 
designated object. A radar order in response to such a command 
shall be provided at the radar interface for transmission within 
55 milliseconds of the comiiiand with probability .9. These conmands 
are defined in Reference ZA  [TLS C2/DPS Interface Specification]. 

b) Capacities. The UPS shall be able to accept handoffs at a rate 
of 150 per second over any interval greater than 50 milliseconds, 
and a total of 1500 handoffs per engagement, of which up to 300 
will be real Images. 

3.2.2 Termination 

a) The DPS shall command not more than 15 pulses to a redundant image 
with probability .7, nor more than 50 with probability .99. 
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b) The DPS shall command not more than seven pulses to a ghost with 
probability .7. 

c) The DPS shall command no track pulse with elevation angle less than 
3°. 

d) The DPS shall command no track pulse to an image of an object which 
has achieved an elevation of less than 5°, or which will attain 
such an elevation by the time of transmission, with probability .9. 

e) For an image on which a drop-track command is received, the DPS 
shall command.no transmission with execution time more than 100 
milliseconds after appearance of the ordor at the c2 interface 
with probability .7, nor more than 300 milliseconds with probability 
.99. 

i 

3.?.3 Tracking 

a) 

b) 

The DPS shall maintain an estimate of state for each image in track. 
Defining the true state of an Image by Attachment A, estimated 
state shall deviate from true state by not more than the tolerance 
of Figure F-7 (TB1"') with the probabilities of that Figure, where 
the assessment is relative to the time of the last processed return. 

The probability that all images of an object shall be dropped as 
redundant shall not exceed .01. 

c) The probability that any image of an object shall be dropped as 
a ghost shall not exceed .2. 

d) The DPS shall command track pulses at a rate sufficient to keep th« 
propagated error defined by Attachment B less than the tolerances 
of Figure F-8 (TBD) with probabilities defined in that Figure. 

e) The DPS shall proyide orders to the radar in accordance with the 
Interface specification. The relevant fields, timing, etc., are 
defined in [2.3]. In particular, the DPS shall select waveforms, 
frequencies, beamwidtha and related parameters in accordance with 
radar constraints in order to satisfy TLS performance requirements. 

f) The DPS shall accept radar returns In accordance with the Interface 
Specification [2.3]. 

g) The DPS shall maintain track on each image until one of the following 
conditions is satisfied: 

1) Drop Track command received, 

2) Image determined to be redundant, 

3) Image determined to be a ghost, or 

4) Estimated elevation of object or of image expected to violate 
elevation-angle constraint before next assessment. 
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3.2.4   Resource Control 

a)   The DPS shall maintain an estimate of radar energy scheduled by 
track functions which shall be within three percent of the energy 
nominally expended, and an upper-bound estimate such that the 
actual ERP and total radiateci energy do not exceed the bound with 
probability (T8D). 

b)     The DPS shall allocate radar commands so that not more than (TBD) 
joules are commanded per imagp   nor more than (TBD) kilowatts or (TBD) 
pulses/second for all images in track. 

3.2.5   Data Recording 

The DPS shall output to permanent file the following data: 

a) Time of handoff and designation and estimate provided« 

b) Time of termination of track on etch designation with reason 
for termination.    The reason shall be one of the following. 

1) Drop Track Command 
2) Minimum Elevation 
3) Image Declared Redundant 
4) Image Declared Ghost. 

c) Subsequent to each state update, the resulting estimate ttf 
state on that image. Contents of that estimate are TBD. 

d) At Intervals not greater than 300 milliseconds the usage of 
radar resources. That estimate shall include the nominal 
and upper bounds defined in 3.2.4, and TBD additional data. 
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4.0 GLOSSARY 

State Vector: A set of data pertaining to a specified image defining its 

location in space and permitting extrapolation of its location to 

other times. The contents of the state vector may vary with different 

applications; ir particular, the coordinate system employed Is dependent 

on the use to which it will be put. A conventional state vector in 

RFCC is: R, U. V, R, U, V, g , and the time to which all are 

referenced. 

Object; A physical entity external to the DPS with radar reflection properties 

corresponding to a reentry vehicle of the defined threat. 

Image: A target defined to the TLS DPS for tracking and categorization as the 

image to be tracked, a redundant image, or a ghost. 

• 

Ghost: An irage with which no object is correlated. 

Redundant Image: An image which correlates with both an object and another 

image. Of the set of redundant Images of an object, one is intended to 

be retained in track while the others are categorized as redundant 

and dropped. 

Handoff: The receipt by the TLS DPS of a valid order to initiate track on 

an image. 

Track Termination: The receipt by the TLS DPS of a valid order to Drop 

Track, or the determination by the DPS that tracking should be terminated. 

1 
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ATTACHMENT A 

STATE VECTOR PREDICTION 

The filter maintains the state vector in the RFCC system at all times. 

Specific details of the equations of motion and the method of trajectory 

integration employed for state vector prediction in the RFCC system are 

presented in this section. Figure A-l defines the RFCC system. 

1.1 Equations of Motion 

In the general formulation of the equations of motion, it is assumed 

that all vector variables appearing in the differential equations are 

appropriately referenced to the RFCC system associated with the face of a 

given radar under consideration. Explicit expressions for the transformed 

variables are given whenever they first appear. 

Let the RFCC position vector to a target, denoted r^, have Cartesian 

components X~, Y£ and Z*. The differential equations describing the 

motion of a target in the rotating RFCC system may, in general,   ritten 

as 

-  vKt  . aaii? i ~ 
\\\l (A.l) 

- 2 uf x rf - uf x (ü)f x Rf) 

and assuming constant X model 

where 

u ■ ÖM 
G ■ universal gravitational constant 
M « mass of the earth 

ft- is the vector from the geocenter to the target 

p  is the atmospheric density which is a function 
of the altitude h 

g ■ earth's sea level gravity 
X     is the inverse of the ballistic coefficient 
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r* is the velocity vector of the target 

x  is the vector cross-product 

üjf earth's angular rotation rate, a vector 
quantity resolved along an earth-centered 
Cartesian coordinate system aligned with the 
RFCC system. 

Define R * as the vector from the geocenter to the radar site expressed 

in the RFCC system. Then 

vf   sf (A. 2) 

where the vector R , is given by 

sf R„ Cos E 
c 

II Sin E 
■ o. 

(A.3) 

f 

:■■,■ ■ m 

and E is the elevation angle of the radar boresight with respect to the 
local horizon plant. 

The earth rotates about the polar axis with a constant angular 

Ity w . The compor 

RFCC system is given by 

velocity w . The components of the earth's angular velocity vector in the 

u. 

w. 

O), 

w. 

'*) Sin A Cos ((> 
e T 

J (Cos E Sin >> - Sin E Cos A Cos <{>) 

we(Cos A Cos E Cos * + Sin E Sin <(>) 

(A.4) 

where A is the azimuth of the radar boresight with respect to the radar 

centered horizon coordinate system and * is the geocentric latitude of the 

radar site. 

1.2 Trajectory Integration 

The trajectory integration involved in th« prediction of the state 

vector will be performed by a second-order Taylor's series expansion in 

Atn ■ t^ - tn for the position vector rf which gives 

F-29 

n "~**~       i   i—■*"" 'n ""  i   mm • i;.^. i»  
•.«-«»»w«»,<*MSWasniiiB;,i: i 



>»»wws»iMaMiWiiiM^ -'•m""'"^^:-y:f-^'^:- ■!'-. 

'^n+J " W + ?f<tn)Atn + 1/2 'f<fcn)A^ (A.5) 

and consequently, the velocity vector Is given by 

VW - 'f<g + ?f«V^n (A.6) 

and 

x<w - ^g (A. 7) 

where rf(tn) is readily evaluated from Eq. (1.1) by using the current 
estimate of the state vector at t . n 

1 
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t ATTACHMENT B 

PROPAGATION OF ERRORS 

€ 

Ignoring the process noise, the propagation of the state error covariance 
matrix from cycle to cycle is computed by 

,, P(n+l/n) - *(n+l,u) P(n) *T(n+l,n)   (B.l) 

in which «(n+Ln) is the state transition matrix expressed in terms of the 
appropriate filter coordinate system (RVCC). 

The derivation of the * matrix starts with the first order Taylor's 
expansion of a set of nonlinear differential equations describing the target 
motion about some nominal solution of the state. For this specific develop- 
ment, the target motion Eq. (A.l) is approximated by 

i   ..PJL* |r I ^ rf    2  irf| Ti (B.2) 

that is, all other accelerating forces except that due to the atmospheric 
drag are Ignored. 

The decoupled in-plane and out-of-plane transition matrices * and 
♦ in the RVCC system are given by 

1 0 A n 0 0 

0 1 0 A n 0 

♦  (n+l,n) - 
P 

0 0 I 0 -DZ.A 
1 n 

0 0 0 1 -DLftn 

J) 0 0 0 31 

~1 A~ 
n 

• 
n 

(n+l .n) - 
JS 1 

(B.3) 

(B.4) 

1-^-^. 
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APPENDIX F-II: RADAR/DPS INTERFACE SPECIFICATION 



1.0   SCOPE 

c 

This specification defines the physical and functional interface between 
the Radar and the Data Processing Subsystem (DPS) of the Track Loop System (TL5). 
The TLS itself is a testbed derived from a Preliminary Ballistic Missile Defense 
System (PBMDS), which is in turn a representative but unreal environment for 
these studies.   TLS is intended to have development and test capability, 
although realization of that capacity in actual testing is not no,-/ contemplated. 

This apecifiaation aorreeponds to one which would he available prior 
to preparation of a PPR.    To that endt its contents have been extracted from 
TDP doowientation.    Reference is made to that material ao the source from 
which data here labelled "TBS" and "TBD" will be derived.    In this publication 
"TBS" ie used to identify material expected to be required during early stages 
of PPR preparation, while "TBD" denotes material which may be supplied later in 
thu synaification process.   Material present cd in italics ^ such as this 
paragraph, is illustrative or informative in nature, and would not noimally 
appear.in such a specification. 

Some of the paragraphs in this Interface Specification place constraints 
or requirements on the DPS; these have been identified by a * in front of that 
paragraph. 

,,5 
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2.0 APPLICABLE DOCUMENTS 
( ) 

2.1 TLS SYSTEM REQUIREMENTS 27332-6921-011. PART I, SECTION 1.1 

2.2 TLS DATA PROCESSING SUBSYSTEM PERFORMANCE REQUIREMENTS (DPSPR) 27332- 

6921-011, PART II 

2.3 TLS RADAR PERFORMANCE SPECIFICATION 

2.4 TLS ENVIRONMENT ANÜ THREAT MODEL DEFINITION 
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3.0 INTERFACE REQUIREMENTS 

3.1 PHYSICAL INTERFACE 

TBD 

The physical interface ie highly dependent on hardware selection for 

both the DPS and the   Radar; in general» it will be irrelevant to the speci- 

fication process through the Preliminary Design Review.    Some portions of 

the physical interface may be specified during PPR, notably those relating 

to timing of signals and clock protocol, 

3.2 FUNCTIONAL INTERFACE 

The functional Interface between the DP and the Radar shall consist of: 

• Commands Issued by the UP to the Radar 

• Returns Issued by the Radar to the DP 

• Engagement Clock Issued by the Radar to the DP 

3.2.1 Radar Command Generation 

.a. The Radar will execute only the conmands Issued by the DP. 

* b. Each command shall contain transmit, receive and synchronization 

data as described herein. 

c. The radar shall transmit one pulse for each command which satisfies 

the radar and Interface constraints. Within PBMDS, but external to TLS, 

there are exceptions for pulse pairs and for verify pulses, 

* d. The DPS shall command a single receive window for each pulse. 

Within each receive window, the OPS shall conmand at least one receive gate. 

3.2.2 Command Ordering 

a. Radar shall execute commands In the order received. 

* b. The DPS shall provide End of Transmission at least 1 mse, before 

the scheduled execution time of the first command In the message. 

3.2.3 Command Unpacking and Decoding 

* The DPS shall Issue commands In accordance with the format of TBD. 
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3.2.4 Timing Control 

* a.   The comrnanded times for Radar actions or for returns shall be in 

absolute time measured from a clock with nominal 1.68 second rollover.   The 

least significant time bit shall be 6.25 nsec. 

b<    Radar shall determine all intermediate times needed to comply with 

command data for transmission and reception. 

* c.   The DPS shall not command receive windows which overlap.   The 

receive window duration in each case shall be at least the uncompressed pulse 

length plus the desired range coverage. 

d.   The DPS shall not command conflicting transmissions.   Consecutive 

commands shall be separated in execution time by at least the uncompressed 

pulse length of the earlier plus TBS. 

3.2.5 Command Contents 

a. The DPS shall provide a waveform identifier corresponding to one of 

the waveforms of Table F.2 (TBD) in each command. 

b. The DPS shall provide in each command both transmit and receive codes 

corresponding to direction cosine phase tapers. 

* 5. The DPS shall provide a receiver gain setting in each receive window. 

d. The OPS shall provide a signal processing mode code in each receive 

gate. 

e. The OPS snail provide a fixed signal acceptance threshold and threshold 

type selection for each receive gate. 

f. The OPS shall provide the range gate mark generation technique for 

each receive gate. 

g. The DPS shall provide the transmit power level for each command. 

3.2.6 Return Contents 

a. Radar shall return identifier data provided in the command. 

b. Radar shall return actual range mark times and the signal amplitude 

at «ach range mark. 

c. Radar shall return video signal amplitudes at commanded points. 

Amplitude shall be corrected by the Radar for stored instrumental errors. 
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d. For appropriate commanded signal-processing modes and waveforms, 

the Radar shall return direction cosines of the echo. Directional data shall 

be corrected by the Radar for stored instrumental errors. 

e. For appropriate commands, the Radar shall return TBS wake array data. 

f. Radar shall return noise level relevant to each amplitude in a return. 

3.2.7 Error Handling 

a. Radar shall return an error message for each discernible command not 

implemented. That message shall include a code corresponding to the reason 

for the failure of transmission. Among the reasons may be preemption, receive 

or transmit window overlap, insufficient time for transmission, and faulty 

command (internal inconsistency). 

* b. The DPS shall initiate a record on permanent file of each error return. 

* c. The DPS shall determine whether the fault is persistent or unique; 

If persistent, whether it is safety-related. (Definitions TBS). A persistent, 

safety-related fault shall cause test termination to bP rommanded by the DPS 

within TBS milliseconds; in particular, no command shall be issued for trans- 

mission by the Radar more than TBD milliseconds after a persistent, safety- 

related fault is detectable from returns. 

3.2.8 Mode Change 

* The DPS shall control all Radar mode changes through issuance of 

appropriate commands.    The changes shall  include startup and shutdown.    Time- 

line constraints on mode changes and on preparation time for transmission are TBS. 

3.2.9 Timing 

a. Radar shall provide a master timing reference to DPS via TCS interface. 

b. The clock shall provide 28 bits of data with a least significant bit 

of 6.25 nsec. 

c. The resetting of the clock shall be entirely under Radar control. In 

consequence, its absolute value shall be regarded by the DPS as arbitrary. The 

Radar shall reset the clock within TBS milliseconds of startup, and shall not 

again reset it during the engagement. 
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3.2.10 Miscenaneous Requirements 

a. Negative numbers crossing the interface shall be represented in 

two's complement form. 

b. Radar coordinates shall be defined in accordance with Figure F-9. 

3.3 DATA REQUIREMENTS AND FORMATS 

TBS 

Data requirements and formats have been defined for TDP, and that 

definition might be carried over to the present document.    Houever, it is 

not characteristic of systems such as TLS that details of bit positions, 

message formats, etc., would be known at this stage of development.   However, 

the dynamic range, units, and least significant bit information is necessary 

in order to write performance requirements on radar command generation.    The 

formats identification can be postponed until process design time. 

'O 
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Figure F-9 Radar Coordinate System 
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1.0 SCOPE 

This specification defines the physical and functional interface between 

the Command and Communications (C ) System and the Data Processing Subsystem 

(DPS) of the Track Loop System (TLS). The TLS itself is a testbed derived 

from a Preliminary Ballistic Missile Defense System (PBMUS), which is in turn 

a representative but unreal environment for these studies. TLS is intended 

to have development and test capability, although realization of that 

capacity in actual testing is not now contemplated. 

This specification correeponds to one which would be available prior to 

preparation of a PPR.    To that end, it3 contents have been extracted from TDP 

documentation.    Reference is made to that material as the source from which 

data here labeled "TBS" and "TBD" will be derived.    In this publication,  "TBS" 

is used to identify material expected to be required during early stages of 

PPR preparation, while "TBD" denotes material which may be supplied- later in 

the dpeoification process.    Material presented in italics, such as this 

paragraph, is illusvrative or infomative in natuxv, atul would not noiwally 

appear in such a specification. 

Some of the paragraphs in this Interface Specification place constraints 

or requirements on the DPS; these J-iave been identified by a * in front of 

that paragraph. 

% 
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2.0   APPLICABLE DOCUMENTS 

2.1 TLS SYSTEM REQUIREMENTS 27332-6921-011, PART I. SECTION 1.1 

2.2 TLS DATA PROCESSING SUBSYSTEM PERFORMANCE REQUIREMENTS (DPSPR) 

27332-6921-011, PART II 

2.3 TLS RADAR/D^S INTERFACE SPECIFICATION 

2.4 TLS ENVIRONMENT AND THREAT MODEL DEFINITION 

^ 
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3.0 INTERFACE REQUIREMENTS 

3.1 PHYSICAL INTERFACE 

TBD 

The physical interface between the (r and the DPS is entirely dependent 

on hardware selection.    It will define polarity conventions, signal levels, 

and related parameters of interest only following PDF, and accountable only 

from the time of hardware integration.    Although this section is required in 

euch an interface specification, it will normally remain undetermined throughout 

the early stages of software design. 

3.2 FUNCTIONAL INTERFACE 

The functional interface between the C and the UPS shall consist of 
2 

messages of four types transmitted from the C to the OPS. 

• Initiate Engagement Mode 

c Tcrainate Er.gagenent Mode 

t Handover Image 

• Drop Image Track 

3.2.1 Initiate Engagement Mode 

*   a. The DPS shall accept an Initiate Engagement Mode message from any of 

the following prior modes of the DPS: TBD. . 

b. The DPS shall be prepared to accept a Handover Image message within 

TBS seconds of appearance of the Initiate Engagement Mode message at the 

interfa-e. 

3.2.2 Terminate Engagement Mode 

a. The DPS shall accept a Terminate Engagement Mode message at any 

time when it is in Engagement Mode. The DPS shall transition to TBD mode in 

response to a Terminate Engagement Mode message. 

b. The DPS shall command no Radar transmission with an execution time 

more than TBS milliseconds following appearance of a Terminate Engagement Mode 

message at the Interface. 
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3.2.3 Handover Image 

a. The contents of the Handover Image message shall be 

Image designation 

Image estimated state 

TBS 
2 

b. The C shall transmit no Handover Image.message except when the DPS 

has been placed In the Engagement Mode by transmission of ah Initiate Engage- 

ment Mode message at least TBS milliseconds earlier, and since the last 

Terminate Engagement Mode message. 

3.2.4 Drop Image Track 

a. The contents of the Drop Image Track message shall be the Image 

designator. 
2 

b. The C shall transmit no Drop Image Track message for an Image designator 

unless that designator was previously Included In a Handover Image message. 

3.2.5 Message Acknowledgement 

TBS 

3.2.6 Error Handling 

TBS 

3.3 DATA REQUIREMENTS AND FORMATS 

TBD 

Data requiremnte and formte have been defined for TDPt and that 

definition might be carried over to the'present document.   It ia not 

oharaoterietio of eyeteme euch ae TLS that details of bit poeition8t meeeage 

formatef eto.t would be known at this stage of development.    However, tlie 

dyrvamia ränget wnite, and leaet eignificant bit information ie neaeeeary 

in order to write performance requirements on the radar cormand generation. 

The formats identification can be poetponed until process design time. 

T 

F-48 

-,-^— "■•■ 



■'  l--"  ■ ■,,•.•..; . , 

f REFERENCES 

1. 

2. 

"Requirements Engineering and Validation System Users Manual", TRW 
Report No. 27332-6921-02?, 15 July 1976 (Draft). 

"Software Requirements Engineering Methodology," Final Report, TRW 
Report No. 27332-6921-019, 12 December 1975. 

R-l 

Tr—" i—mm mi ii um 
m   ' !■' " ii i— 


