<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD NUMBER</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ADB009421</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LIMITATION CHANGES</td>
</tr>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>Approved for public release; distribution is unlimited.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; FEB 1976. Other requests shall be referred to Ballistic Research Laboratories, Aberdeen Proving Ground, MD 21005.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AUTHORITY</td>
</tr>
<tr>
<td>USAARDC ltr dtd 23 Aug 1978</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>THIS PAGE IS UNCLASSIFIED</td>
</tr>
</tbody>
</table>
MEMORANDUM REPORT NO. 2581
(Supersedes IMR No. 450)

EFFECT OF LARGE HIGH-FREQUENCY ANGULAR
MOTION OF A SHELL ON THE ANALYSIS OF ITS
YAWSonde RECORDS

Charles H. Murphy

February 1976

Approved for public release; distribution unlimited.

USA BALLISTIC RESEARCH LABORATORIES
ABERDEEN PROVING GROUND, MARYLAND
Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
EFFECT OF LARGE HIGH-FREQUENCY ANGULAR MOTION OF A SHELL ON THE ANALYSIS OF ITS YAWSONDE RECORDS

Charles H. Murphy

U.S. Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

U.S. Army Materiel Development & Readiness Command
5001 Eisenhower Avenue
Alexandria, Virginia 22333

FEBRUARY 1976

Approved for public release; distribution unlimited.

THIS MEMORANDUM REPORT SUPERSEDES BRL INTERIM MEMORANDUM REPORT NO. 450

Yawsonde Roll Rate Analysis
Sun Sensor Angular Motion of a Shell
Sun Angle Analysis

The usual data analysis of yawsonde records assumes that the sun angle is constant during one revolution of the shell and uses three successive sightings of the sun to yield sun angle and \(\phi \), the roll rate with respect to the plane containing the sun and the missile's axis. An improved analysis technique is described which assumes a linear variation of the sun angle and uses five successive sun sights to obtain sun angle and \(\phi \). For large high-frequency yawing motion, \(\phi \) has a periodic component which is usually at the frequency of the yawing motion. An expression for this periodic component is derived and it is...
shown that the average of ϕ is very close to the spin rate of the shell.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS.</td>
<td>3</td>
</tr>
<tr>
<td>LIST OF FIGURES.</td>
<td>5</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>II. CONSTANT SUN ANGLE ANALYSIS.</td>
<td>7</td>
</tr>
<tr>
<td>III. VARYING SUN ANGLE ANALYSIS.</td>
<td>10</td>
</tr>
<tr>
<td>IV. EFFECT OF MOVING COORDINATE SYSTEM</td>
<td>11</td>
</tr>
<tr>
<td>V. DISCUSSION</td>
<td>13</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>21</td>
</tr>
<tr>
<td>LIST OF SYMBOLS.</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>27</td>
</tr>
<tr>
<td>DISTRIBUTION LIST.</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Sun Angle versus Time for Eight-Inch Shell Computed from Sets of Three Sun Sights</td>
<td>15</td>
</tr>
<tr>
<td>1B</td>
<td>ϕ versus Time for Eight-Inch Shell Computed from Sets of Three Sun Sights</td>
<td>16</td>
</tr>
<tr>
<td>2A</td>
<td>Sun Angle versus Time for Eight-Inch Shell Computed from Sets of Five Sun Sights ($\sigma_T \neq 90^\circ; \sigma_n \neq 0$)</td>
<td>17</td>
</tr>
<tr>
<td>2B</td>
<td>ϕ versus Time for Eight-Inch Shell Computed from Sets of Five Sun Sights ($\sigma_T \neq 90^\circ; \sigma_n \neq 0$)</td>
<td>18</td>
</tr>
<tr>
<td>3A</td>
<td>Sun Angle versus Time for Eight-Inch Shell Computed from Sets of Five Sun Sights ($\sigma_T = 90^\circ; \sigma_n = 0$)</td>
<td>19</td>
</tr>
<tr>
<td>3B</td>
<td>ϕ versus Time for Eight-Inch Shell Computed from Sets of Five Sun Sights ($\sigma_T = 90^\circ; \sigma_n = 0$)</td>
<td>20</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

A yawsonde is a device developed to give a continuous record of the angle between a shell's axis of rotation and the line of sight to the sun.\(^1-\)\(^6\). It consists of two light sensors located behind two inclined slits on the shell body and a telemetry unit. The instant each sensor sees the sun, a discrete pulse is transmitted to a ground station and recorded versus time. The resulting pulse train can then be analyzed to yield sun angles to an accuracy of 0.1° and the spin rate. The usual reduction, however, assumes the sun angle to be constant for a single revolution of the shell. If the shell is performing large high-frequency angular motion, this assumption can be invalid and erroneous data can be produced. It is the purpose of this report to develop a valid data analysis system to handle yawsonde data without assuming the constancy of the sun angle during a single revolution of the shell.

II. CONSTANT SUN ANGLE ANALYSIS

We will make use of a solar fixed-plane coordinate system which can be described in terms of three unit vectors. \(\hat{e}_1\) is along the missile's axis, \(\hat{e}_3\) is in the plane determined by the sun and the

missile's axis and points toward the sun's side of the missile's axis, while \(\hat{e}_{2s} \) is \(\hat{e}_{3s} \times \hat{e}_{1} \).

Each sun sensor unit emits a pulse at the instant that the sun is in the plane of its inclined slit. Let \(\gamma_a \) be the inclination of the first slit with respect to the missile's axis and let \(\phi_a \) be the missile's roll angle with respect to the vector \(\hat{e}_{2s} \) when the line-of-sight from the first sensor to the sun lies in the \(\hat{e}_{1} \hat{e}_{3s} \) plane. Then the vector normal to the plane of the first sun sensor is

\[
\vec{N}_a = \hat{e}_1 \sin \gamma_a + [\hat{e}_{2s} \cos (\phi_\theta_a) + \hat{e}_{3s} \sin (\phi_\theta_a)] \cos \gamma_a \tag{1}
\]

where \(\phi \) is the roll angle of the missile. The sun line-of-sight can be specified by the unit vector

\[
\hat{s} = \hat{e}_1 \cos \sigma + \hat{e}_{3s} \sin \sigma \tag{2}
\]

where \(\sigma \) is the angle between the sun's rays and the missile's axis. When the sun is in the plane of the first sensor

\[
\vec{N}_a \cdot \hat{s} = 0 \tag{3}
\]

or

\[
\sin (\phi_\theta_a) = - \tan \gamma_a \cot \sigma \tag{4}
\]

A similar relation applies to the second sun sensor:

\[
\sin (\phi_\theta_b) = - \tan \gamma_b \cot \sigma \tag{5}
\]

We now consider a triple of time pulses consisting of two sightings of the sun by the first sensor at \(t = t_1, t_3 \) and one by the second sensor at \(t = t_2 \). The pairs of \(\phi_i, \sigma_i \)'s for these three times satisfy the relations:

\[
\sin (\phi_1 - \phi_a) = - \tan \gamma_a \cot \sigma_1 \tag{6}
\]

\[
\sin (\phi_2 - \phi_b) = - \tan \gamma_b \cot \sigma_2 \tag{7}
\]

We now assume that \(\sigma_1 = \sigma_2 = \sigma_3 = \sigma \) and that \(\phi \) is a constant. Then

\[
\sin (\phi_1 - \phi_a) = \sin (\phi_3 - \phi_a) \tag{8}
\]
so that

\[\phi_3 - \phi_1 = 2\pi \] \hspace{1cm} (9)

or

\[\phi = \frac{2\pi}{t_3 - t_1} \] \hspace{1cm} (10)

Now

\[\phi_2 - \phi_1 = \phi (t_2 - t_1) \]

\[= 2\pi (t_2 - t_1) (t_3 - t_1)^{-1} \] \hspace{1cm} (11)

Let

\[\delta = \phi_2 - \phi_1 - (\phi_b - \phi_a) \] \hspace{1cm} (12)

Then

\[\sin (\phi_2 - \phi_b) = \sin (\phi_1 - \phi_a + \delta) \]

\[= \sin (\phi_1 - \phi_a) \cos \delta + \sin \delta \cos (\phi_1 - \phi_a) \] \hspace{1cm} (13)

Equations (6-7) can now be substituted in Equation (13) and the result simplified to yield

\[\tan \sigma = [\tan^2 \gamma_a - 2 \tan \gamma_a \tan \gamma_b \cos \delta + \tan^2 \gamma_b]^{\frac{1}{2}} (\sin \delta)^{-1} \] \hspace{1cm} (14)

This equation gives the sun angle in terms of the three times, \((t_1, t_2, t_3)\) and three parameters of the sensors \((\gamma_a, \gamma_b, \phi_b - \phi_a)\) and is valid for idealized sun sensors. Actual sun sensors will not exactly satisfy Equations (4-5) but roll angles for each sun sensor can be measured as functions of the sun angle\(^b\).

\[\phi_i = f_a (\sigma_i) + (i-1) \pi \quad i = 1, 3 \] \hspace{1cm} (15)

\[\phi_2 = f_b (\sigma_2) + 2\pi \ell \] \hspace{1cm} (16)

* Since the sun sensor plane is really a half plane, the root \(\phi_3 - \phi_1 = \pi\) is not appropriate.
where is an integer selected so that
\[\phi_1 < \phi_2 < \phi_3 \]
Once again we assume that \(\sigma_1 = \sigma_2 = \sigma_3 = \sigma \) and that \(\phi \) is a constant. Equations (10-11) are still valid and
\[\phi_2 - \phi_1 = f_b(\sigma) - f_a(\sigma) + 2\pi j \equiv g(\sigma) \tag{17} \]
or
\[\sigma = g^{-1}(\phi_2 - \phi_1) \tag{18} \]
where \(\phi_2 - \phi_1 \) is given by Equation (11).

III. VARYING SUN ANGLE ANALYSIS

We assume that the sun angle is a linear function of time and that the roll angle is a quadratic function of time and hence we need five successive sightings of the sun to determine the five parameters:
\[\sigma_i = \sigma_3 (t_i - t_3) + \sigma_3 \quad i = 1, 2, 3, 4, 5 \tag{19} \]
\[\phi_i = \phi_3 (t_i - t_2)^2/2 + \phi_3 (t_i - t_2) + \phi_3 \tag{20} \]
If three of the sightings are by the first sensor and two by the second, then
\[\phi_i = f_a(\sigma_i) + (i-1)\pi \quad i = 1, 3, 5 \tag{21} \]
\[\phi_i = f_b(\sigma_i) + 2\pi \ell + (i-2)\pi \quad i = 2, 4 \tag{22} \]
The five parameters \((\sigma_3, \dot{\sigma}_3, \phi_3, \dot{\phi}_3, \phi_3) \) can be obtained from the five times \((t_1, t_2, t_3, t_4, t_5) \) by substituting Equations (19-20) in Equations (21-22) and solving the resulting nonlinear algebraic equations by an iterative differential correction technique\(^7\). The first set of values of \((\sigma_3, \dot{\sigma}_3) \), i.e. \((\sigma_3, \dot{\sigma}_3) \) can be obtained by using the constant-sun-angle solutions for \((t_1, t_2, t_3) \) and \((t_3, t_4, t_5) \). Since these

approximately correspond to the sun angles for \(t_2 \) and \(t_4 \), we will denote them by \(\sigma_2, \sigma_4 \).

\[
\sigma_3 = (\sigma_2 + \sigma_4)/2
\]

(23)

\[
\sigma_3 = (\sigma_4 - \sigma_2)/(t_4 - t_2)
\]

(24)

Equations (19-20) for the \((j-1)\) iteration can be written in the form:

\[
\ddot{\phi}_{3j} (t_i - t_3)^2/2 + \dot{\phi}_{3j} (t_i - t_3) + \phi_{3j}
\]

\[
= f_K (\sigma_{ij-1}) + \left(\frac{\partial f_K (\sigma_{ij-1})}{\partial \sigma_3} \right) (\sigma_{3j} - \sigma_{3j-1})
\]

\[
+ \frac{\partial f_K (\sigma_{ij-1})}{\partial \sigma_3} (\dot{\sigma}_{3j} - \dot{\sigma}_{3j-1}) + m_i
\]

(25)

where

\[K = a, \ m = i-1 \ \text{for} \ i = 1,3,5 \]

\[K = b, \ m = 2(\ell-1) + i \ \text{for} \ i = 2,4 \]

Equations (25) are linear in the unknowns \((\sigma_{3j}, \sigma_{3j}', \phi_{3j}, \dot{\phi}_{3j}, \ddot{\phi}_{3j})\) and can be easily solved; usually only three or four iterations are required.

A second version of a varying sun angle analysis using five times can be used for constant \(\dot{\phi} \). In this case, Equations (19-20) are replaced by:

\[
\sigma_i = \sigma_3 (t_i - t_3)^2/2 + \dot{\sigma}_3 (t_i - t_3) + \sigma_3
\]

(26)

\[
\phi_i = \dot{\phi}_3 (t_i - t_3) + \phi_3
\]

(27)

Equations similar to Equations (25) can be easily derived for this variant.

IV. EFFECT OF MOVING COORDINATE SYSTEM

\(\phi \) is the roll angle measured with respect to \(\dot{e}_{2s} \). \(\dot{\phi} \) is a roll rate measured in this solar fixed-plane coordinate system and is not necessarily equal to the roll rate, \(p \), measured in an inertia coordinate system since the solar coordinate system can itself have a non-zero roll rate.
For our inertia system, we will use an earth-fixed coordinate system X_1, X_2, X_3, so aligned that the X_3 axis is vertical and the trajectory is initially in the X_1-X_3 plane. Since the actual trajectory can be reasonably well approximated by a planar trajectory, we will approximate the velocity vector along the trajectory by \((V \cos \theta_T, 0, V \sin \theta_T)\).

In the appendix, the roll component (ω_{1s}) of the angular velocity of the sun fixed-plane coordinates is computed in terms of the horizontal and vertical components of the complex yaw in the aeroballistic fixed-plane coordinates:\(^8\)

\[
\omega_{1s} = \left(b_1 \xi_H + b_2 \xi_V \right) \cos \sigma_T \\
+ b_3 \xi_H^2 \xi_H + b_4 \xi_V \xi_V + b_5 \xi_H \xi_V + b_6 \xi_H^2 \xi_V
\]

(28)

where

\[
\hat{\xi} = \hat{\xi}_H + i \hat{\xi}_V = \sin \hat{\beta} + i \cos \hat{\beta} \sin \hat{\alpha}
\]

\(\hat{\alpha}, \hat{\beta}\) are the angles of attack and sideslip

\(\sigma_T\) is the angle between the sun vector and the tangent to the trajectory;

\(b_i\)'s are defined in Table 1.

<table>
<thead>
<tr>
<th>TABLE 1. COEFFICIENTS IN EQUATIONS (28) AND (A17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_1 = (s_3 \cos \theta_T - s_1 \sin \theta_T) \csc^2 \sigma_T$</td>
</tr>
<tr>
<td>$b_2 = -s_2 \csc^2 \sigma_T$</td>
</tr>
<tr>
<td>$b_3 = b_2 [2 \cos \sigma_T \tan \theta_T - (1 + \cos^2 \sigma_T) b_1]$</td>
</tr>
<tr>
<td>$b_4 = b_2 [2 \cos \sigma_T \tan \theta_T + (1 + \cos^2 \sigma_T) b_1]$</td>
</tr>
<tr>
<td>$b_5 = \cot^2 \sigma_T - b_1 \cos \sigma_T \tan \theta_T - b_2^2 (1 + \cos^2 \sigma_T)$</td>
</tr>
<tr>
<td>$b_6 = -\cot^2 \sigma_T - b_1 \cos \sigma_T \tan \theta_T + b_1^2 (1 + \cos^2 \sigma_T)$</td>
</tr>
</tbody>
</table>

\(^8\) C. H. Murphy, "Free Flight Motion of Symmetric Missiles", BRL Report 1216, July 1963, AD 442757.
The variation of the complex yaw can be described by the usual epicycle

\[\dot{\zeta} = K_1 e^{i\phi_1} + K_2 e^{i\phi_2} \]

\[\phi_j = \phi_{j0} + \dot{\phi}_j t \]

(29)

The presence of derivatives in all terms of Equations (28) suggests that the high frequency mode is the more important mode in Equation (29). If we neglect the low frequency mode \((K_2=0)\), Equation (28) becomes

\[\omega_{1s} = (-b_1 \sin \phi_1 + b_2 \cos \phi_1) \dot{\phi}_1 K_1 \cos \sigma_T \]

\[+ [(b_4 - b_3) \sin \phi_1 \cos \phi_1 + b_5 \cos^2 \phi_1 - b_6 \sin^2 \phi_1] \dot{\phi}_1 K_1^2 \]

(30)

Since \(\dot{\phi} \) is the difference between the projectile spin and the coordinate system spin:

\[\dot{\phi} = p - \omega_{1s} \]

(31)

it will be a periodic function with frequency \(\dot{\phi}_1 \), except when \(\sigma_T = \pi/2 \). For this special case where the sun is perpendicular to the projectile, the frequency will be \(2\dot{\phi}_1 \). The average value of \(\dot{\phi} \) is, however, quite close to the projectile spin:

\[\dot{\phi}_{av} = p + (b_5 - b_6) \dot{\phi}_1 K_1^{1/2} \]

(32)

V. DISCUSSION

In Figure 1, the sun angle complement \(\sigma_n = \pi/2 - \sigma \) and \(\dot{\phi} \) as obtained from the three-time-measurements, constant-sun-angle reduction are plotted for an eight-inch projectile. These data are then reduced by the five-time-measurements analysis of this report and plotted in Figure 2. The sun angles are changed by very little but the oscillations in \(\phi \) are reduced by 50%. The remainder is clearly periodic with frequency \(\dot{\phi}_1 \). Later in the flight, the sun angle went through \(\pi/2 \); Figure 3 shows \(\sigma_n \) and \(\phi \) for this portion of the trajectory. We note the \(\dot{\phi} \) oscillations are much smaller, with frequency \(2\dot{\phi}_1 \).
It is interesting to note that the need for the varying σ data reduction can be eliminated by a modified yawsonde. If the first sun sensor is oriented so that $\gamma_a = 0$, that sensor is insensitive to sun angle (see Equation (4)), so that

$$f_a(\sigma) = 0$$ \hspace{1cm} (33)

This sensor directly measures $\dot{\phi}$. The second sensor, then, yields a σ_2 at $t=t_2$ from the standard three-time-measurements procedure.
Figure 1A. Sun Angle versus Time for Eight-Inch Shell Computed from Sets of Three Sun Sights
Figure 1B. ϕ versus Time for Eight-Inch Shell Computed from Sets of Three Sun Sights
Figure 2A. Sun Angle versus Time for Eight-Inch Shell Computed from Sets of Five Sun Sights
\(\sigma_T \neq 90^\circ; \sigma_n \neq 0 \)
Figure 2B. \(\phi \) versus Time for Eight-Inch Shell Computed from Sets of Five Sun Sights
\((\sigma_T \neq 90^0; \sigma_n \neq 0)\)
Figure 3A. Sun Angle versus Time for Eight-Inch Shell Computed from Sets of Five Sun Sights
($\sigma_T = 90^\circ$; $\sigma_n = 0$)
Figure 3B. \(\dot{\phi} \) versus Time for Eight-Inch Shell Computed from Sets of Five Sun Sights

\((\sigma_T = 90^\circ; \sigma_n = 0) \)
REFERENCES

LIST OF SYMBOLS

- \(b_1, b_2, \ldots, b_6 \) coefficients in the expression for \(\omega_{1s} \), Equation 28; defined in Table 1
- \(\vec{e}_1 \) unit vector along the missile's axis
- \(\vec{e}_1, \vec{e}_{2a}, \vec{e}_{3a} \) unit vectors in the aeroballistic fixed-plane system, Equations (A4-A5)
- \(\vec{e}_1, \vec{e}_{2s}, \vec{e}_{3s} \) unit vectors in the solar fixed-plane system, Equations (A7-A8)
- \(f_a, f_b \) sun angle functions obtained from roll angle versus sun angle data provided by sun sensor (a) or (b)
- \(f_K \) \(f_a \) or \(f_b \), Equation (25)
- \(g \) a function relating the difference in successive roll angle values to the sun angle, Equation (17)
- \(g^{-1} \) the inverse of function \(g \), Equation (18)
- \(K_1, K_2 \) magnitude of the high (1) or low (2) frequency yaw mode, Equation (29)
- \(\ell \) an integer in Equations (16, 22, 25) providing the proper multiple of \(2\pi \)
- \(m \) \(i - 1 \) \(i = 1, 3, 5 \)
 \(2(\ell - 1) + i \) \(i = 2, 4 \)
- \(\vec{N}_a \) vector normal to the plane of sun sensor (a)
- \(n_1, n_2, n_3 \) direction cosines of the missile's axis in the earth-fixed \(X_1, X_2, X_3 \) system
LIST OF SYMBOLS (CONTINUED)

\(p \) roll rate in the earth-fixed \(X_1, X_2, X_3 \) system

\(\hat{s} \) the unit vector from the missile to the sun

\(s_1, s_2, s_3 \) components of \(s \) in the earth-fixed \(X_1, X_2, X_3 \) system

\(t \) time

\(t_i \) time at which a sensor sees the sun, \(i = 1, 2, 3 \ldots \)

\(V \) magnitude of the velocity vector

\(\vec{V} \) velocity vector

\(X_1, X_2, X_3 \) axes in an earth-fixed coordinate system:
\(X_3 \) is vertical and the trajectory is initially in the \(X_1 - X_3 \) plane

\(\alpha \) angle of attack

\(\hat{\beta} \) angle of sideslip

\(\gamma_a, \gamma_b \) the inclination of slit (a) or (b) with respect to the missile's axis

\(\delta \) \(\phi_2 - \phi_1 - \left(\phi_b - \phi_a \right) \)

\(\eta_1, \eta_2, \eta_3 \) components of the yaw vector \(\hat{e}_1 - \hat{v}/V \) in the earth-fixed \(X_1, X_2, X_3 \) system

\(\theta_T \) the angle between the missile's axis and the tangent to the trajectory
LIST OF SYMBOLS (CONTINUED)

\(\hat{\xi} \)
\(\hat{\xi}_H + i \hat{\xi}_V \), the complex yaw in the aero-
ballistic fixed-plane system

\(\hat{\xi}_H \)
\(\sin \hat{\theta} \), the horizontal component of \(\hat{\xi} \)

\(\hat{\xi}_V \)
\(\cos \hat{\theta} \sin \hat{\alpha} \), the vertical component of \(\hat{\xi} \)

\(\sigma \)
the sun angle: the angle between the sun
vector and the missile's axis

\(\sigma_i \)
\(\sigma(t_i), \ i = 1, 2, 3, ... \)

\(\sigma_{ik} \)
the value of \(\sigma_i \) computed at the k-th
iteration of the data analysis

\(\sigma_n \)
\(\frac{\pi}{2} - \sigma \), the sun angle complement

\(\sigma_T \)
the angle between the sun vector and the
tangent to the trajectory

\(\phi \)
the missile's roll angle in the solar fixed-
plane system, that is, with respect to the
vector \(\mathbf{e}_{2S} \)

\(\phi_a, \ \phi_b \)
the value of \(\phi \) when the line-of-sight from
sun sensor (a) or (b) to the sun lies in
the \(\mathbf{e}_1 \mathbf{e}_{3S} \) plane

\(\phi_i \)
(a) \(\phi(t_i), \ i = 1, 2, 3 ... \) Equations (6-27)

(b) the orientation angle of the high- (i = 1)
or low- (i = 2) frequency yaw mode,
Equation (29, on)
LIST OF SYMBOLS (CONTINUED)

\(\phi_{ik} \) \hspace{1cm} the value of \(\phi(t_i) \) computed at the k-th
iteration of the data analysis

\(\dot{\phi} \) \hspace{1cm} roll rate in the solar fixed-plane system

\(\omega_{la} \) \hspace{1cm} roll component of the angular velocity of
the aeroballistic fixed-plane system

\(\omega_{ls} \) \hspace{1cm} roll component of the angular velocity of
the solar fixed-plane system

\(\cdot \) \hspace{1cm} derivative with respect to time

\(\hat{\cdot}, (\cdot)_a \) \hspace{1cm} value in the aeroballistic fixed-plane system

\(\cdot_s \) \hspace{1cm} value in the solar fixed-plane system
APPENDIX A. DERIVATION OF EQUATION (28)

Our earth-fixed coordinate system X_1, X_2, X_3 will be so oriented that the $X_1 - X_3$ plane is the vertical plane containing the initial velocity vector. If we make the very reasonable approximation that the velocity vector stays in this plane, it can be written in the form

$$\vec{V} = V (\cos \theta_T, 0, \sin \theta_T). \quad (A1)$$

The unit vector along the missile's axis then takes the form

$$\hat{e}_1 = (n_1, n_2, n_3) = (\cos \theta_T + n_1, n_2, \sin \theta_T + n_3) \quad (A2)$$

$$n_1^2 + n_2^2 + n_3^2 = 1 \quad (A3)$$

where the n_j's become zero for zero-amplitude yawing motion.

We will be using two coordinate systems which use two different fixed planes:

1. The usual aeroballistic fixed plane which contains the missile's axis and the vertical vector;

2. A sun fixed plane which contains the missile's axis and the sun vector and is the reference plane for the yaw sonde's ϕ.

The other two unit vectors for the aeroballistic fixed-plane system are

$$\hat{e}_{2a} = \frac{(0,0,1) \times \hat{e}_1}{\cos \theta} = \frac{(-n_2, \cos \theta_T + n_1, 0)}{\cos \theta} \quad (A4)$$

$$\hat{e}_{3a} = \frac{\hat{e}_1 \times [(0,0,1) \times \hat{e}_1]}{\cos \theta} = \frac{(0,0,1) - (\sin \theta_T + n_3) \hat{e}_1}{\cos \theta} \quad (A5)$$

$$\cos \theta = \sqrt{\cos^2 \theta_T + 2n_1 \cos \theta_T + n_1^2 + n_2^2} \quad (A6)$$
Similarly, the other two units vectors for the sun fixed-plane system are:

\[
\hat{e}_{2s} = \frac{\hat{s} \times \hat{e}_1}{\sin \sigma}
\]

\[
\hat{e}_{3s} = \frac{\hat{e}_1 \times (\hat{s} \times \hat{e}_1)}{\sin \sigma} = \hat{s} - (\cos \sigma) \hat{e}_1
\]

(A7)

(A8)

where

\[
\hat{s} = (s_1, s_2, s_3) \text{ is the unit vector pointing to the sun,}
\]

\[
\cos \sigma = \hat{s} \cdot \hat{e}_1,
\]

and \(\sigma\) is in the first quadrant when the sun's rays illuminate the missile's nose and is in the second quadrant when the sun's rays illuminate the missile's base.

The horizontal and vertical components of the complex yaw in the aeroballistic fixed-plane coordinates can be computed from their definitions:

\[
\xi_H = \frac{\hat{e}_{2a} \cdot \hat{V}}{V} = \frac{-\eta_2 \cos \theta_T}{\cos \theta}
\]

(A9)

\[
\xi_V = \frac{\hat{e}_{3a} \cdot \hat{V}}{V}
\]

\[
= \frac{\eta_1 \sin \theta_T \cos \theta_T - \eta_3 (1 + \sin^2 \theta_T + \eta_1 \cos \theta_T - \eta_3 \sin \theta_T)}{\cos \theta_T}
\]

(A10)

where

\[
\hat{\xi} = \hat{\xi}_H + i \hat{\xi}_V = \sin \hat{\beta} + i \cos \hat{\beta} \sin \hat{\alpha}
\]

and \(\hat{\beta}, \hat{\alpha}\) are the angles of attack and sideslip respectively. A quadratic approximation for \(\eta_1\) and a linear approximation for \(\cos \theta\) can be obtained from Equations (A3, A6, A9-10).
\[\eta_1 = -\eta_3 \tan \theta - \frac{\eta_2^2 \cos^2 \theta_T + \eta_3^2}{2 \cos^3 \theta_T} \]
(A11)

\[\frac{\cos \theta_T}{\cos \theta} = 1 + \frac{\eta_3 \sin \theta_T}{\cos^2 \theta_T} \]
(A12)

\[\eta_2 = -\hat{\xi}_H + \hat{\xi}_V \hat{\xi}_H \tan \theta_T \]
(A13)

\[\eta_3 = -\hat{\xi}_V \cos \theta_T + (\hat{\xi}_V^2 - \hat{\xi}_H^2)(\sin \theta_T)/2 \]
(A14)

The roll component of the angular velocity of the sun fixed-plane coordinates can now be computed in terms of the \(\eta_j \)'s:

\[\omega_{1s} = -\dot{\hat{\xi}}_{2s} \cdot \dot{\hat{\xi}}_{3s} \]

\[= -\dot{\hat{\xi}}_{2s} \cdot \left[(\csc \sigma) \cdot \hat{s} - (\ctn \sigma) \cdot \hat{e}_1 - \ctn \sigma \cdot \hat{e}_1 \right] \]

\[= (\ctn \sigma) \cdot \dot{\hat{\xi}}_{2s} \cdot \dot{\hat{\xi}}_{1s} \]

\[= \ctn \sigma \csc \sigma \left[\eta_1 (-s_2 \sin \theta_T + \eta_2 s_3 - \eta_3 s_2) \right. \]

\[+ \eta_2 (s_1 \sin \theta_T - s_3 \cos \theta_T + s_1 \eta_3 - s_3 \eta_1) \]

\[+ \eta_3 (s_2 \cos \theta_T + s_2 \eta_1 - s_1 \eta_2) \]
(A15)

\[\cos \sigma = \hat{s} \cdot \hat{e}_1 \]

\[= \cos \sigma_T + s_1 \eta_1 + s_2 \eta_2 + s_3 \eta_3 \]
(A16)

where

\[\cos \sigma_T = s_1 \cos \theta_T + s_3 \sin \theta_T \]

29
We can now use Equations (A11-13, A16) to express \(\omega_{1s} \) as a quadratic expansion in \(\xi_H \) and \(\xi_V \):

\[
\omega_{1s} = (b_1 \xi_H + b_2 \xi_V) \cos \sigma_T
\]

\[
+ b_3 \xi_H \xi_H + b_4 \xi_V \xi_V + b_5 \xi_H \xi_V + b_6 \xi_H \xi_V
\]

(A17)

where the \(b_j \)'s are defined in Table 1.

Equation (A17) is precisely Equation (28) of the text. It is interesting to note that for the special case of the sun directly overhead, the two fixed-plane coordinate systems are the same. For this case,

\[
s_1 = s_2 = 0 \quad s_3 = 1
\]

\[
\theta_T = \pi/2 - \sigma_T.
\]

(A18)

The \(b_j \)'s of Table 1 become

\[
b_1 = \sec \theta_T; \quad b_2 = b_3 = b_4 = b_5 = 0; \quad b_6 = 1
\]

(A19)

and

\[
\omega_1 = \omega_{1a} = \omega_{1s} = \xi_H \tan \theta_T + \xi_H \xi_V
\]

(A20)

Equation (A20) for \(\theta_T = 0 \) is equivalent to Equation (4.3) on page 150 of Reference 8.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Commander Defense Documentation Center</td>
<td>1</td>
<td>Commander US Army Materiel Development</td>
</tr>
<tr>
<td></td>
<td>ATTN: DDC-TCA Cameron Station</td>
<td></td>
<td>and Readiness Command ATTN: DRCDE-H</td>
</tr>
<tr>
<td></td>
<td>Alexandria, VA 22314</td>
<td></td>
<td>5001 Eisenhower Avenue Alexandria, VA 22333</td>
</tr>
<tr>
<td>1</td>
<td>Director Defense Nuclear Agency</td>
<td>1</td>
<td>Commander US Army Materiel Development</td>
</tr>
<tr>
<td></td>
<td>ATTN: STRA, Mr. W. W. Berning Washington,</td>
<td></td>
<td>and Readiness Command ATTN: DRCDE-W</td>
</tr>
<tr>
<td></td>
<td>DC 20305</td>
<td></td>
<td>5001 Eisenhower Avenue Alexandria, VA 22333</td>
</tr>
<tr>
<td>1</td>
<td>Director National Security Agency</td>
<td>1</td>
<td>Commander US Army Aviation Systems</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. P. W. Waldo, Jr. Fort George G</td>
<td></td>
<td>Command ATTN: DRSAV-E</td>
</tr>
<tr>
<td></td>
<td>G. Meade, MD 20755</td>
<td></td>
<td>12th and Spruce Streets St. Louis, MO 63166</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Materiel Development</td>
<td>1</td>
<td>Director US Army Air Mobility Research</td>
</tr>
<tr>
<td></td>
<td>and Readiness Command ATTN: DRCDE-A</td>
<td></td>
<td>and Development Laboratory Ames Research Center</td>
</tr>
<tr>
<td></td>
<td>5001 Eisenhower Avenue Alexandria, VA 22333</td>
<td></td>
<td>Moffett Field, CA 94035</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Materiel Development</td>
<td>3</td>
<td>Commander US Army Electronics Command</td>
</tr>
<tr>
<td></td>
<td>5001 Eisenhower Avenue Alexandria, VA 22333</td>
<td></td>
<td>SELRA-SMA, M. Lowenthal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Commander US Army Missile Command</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: DRSMI-R DRSMI-RBL, J. Howell</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DRSMI-RST, R. Eppes DRSMI-RDK, R. Becht</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R. Deep Redstone Arsenal, AL 35809</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Commander</td>
<td>US Army Tank Automotive Logistics Command</td>
<td>1 Commander</td>
<td>US Army White Sands Missile Range</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSTA-RHFL</td>
<td></td>
<td>ATTN: Mr. Webb</td>
</tr>
<tr>
<td></td>
<td>Warren, MI 48090</td>
<td></td>
<td>White Sands, NM 88002</td>
</tr>
<tr>
<td>2 Commander</td>
<td>US Army Mobility Equipment Research & Development Center</td>
<td>1 Commander</td>
<td>US Army Watervliet Arsenal</td>
</tr>
<tr>
<td></td>
<td>ATTN: Tech Docu Cen, Bldg 315</td>
<td></td>
<td>Watervliet, NY 12189</td>
</tr>
<tr>
<td></td>
<td>DRSME-RZT</td>
<td></td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Fort Belvoir, VA 22060</td>
<td></td>
<td>US Army Jefferson Proving Ground</td>
</tr>
<tr>
<td>1 Commander</td>
<td>US Army Armament Command</td>
<td>2 Commander</td>
<td>Yuma Proving Ground</td>
</tr>
<tr>
<td></td>
<td>ATTN: DRSAR-SA,</td>
<td></td>
<td>ATTN: STEYP-TMW,</td>
</tr>
<tr>
<td></td>
<td>Mr. B. Witherspoon</td>
<td></td>
<td>Mr. J. Callicotte</td>
</tr>
<tr>
<td></td>
<td>Rock Island, IL 61202</td>
<td></td>
<td>Mr. J. Mullins</td>
</tr>
<tr>
<td>3 Commander</td>
<td>US Army Frankford Arsenal</td>
<td>3 Commander</td>
<td>US Army Harry Diamond Laboratories</td>
</tr>
<tr>
<td></td>
<td>ATTN: SARPA-MDP, Mr. Mitchell</td>
<td></td>
<td>ATTN: DRXDO-TI,</td>
</tr>
<tr>
<td></td>
<td>6 SARPA-MDA-A,</td>
<td></td>
<td>Dr. M. Apsteil</td>
</tr>
<tr>
<td></td>
<td>Mr. S. Hirschman</td>
<td></td>
<td>DRXDO-DBC,</td>
</tr>
<tr>
<td></td>
<td>Mr. A. Cianciosi</td>
<td></td>
<td>Mr. T. Liss</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 19137</td>
<td></td>
<td>DRXDO-DAC,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mr. T. Tuccinardi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DRXDO-DAD, Mr. D. Finger</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DRXDO-DAB, Mr. H. Davis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2800 Powder Mill Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Adelphi, MD 20783</td>
</tr>
<tr>
<td>5 Commander</td>
<td>US Army Picatinny Arsenal</td>
<td>1 Commander</td>
<td>US Army Materials and</td>
</tr>
<tr>
<td></td>
<td>ATTN: SARPA-AD-D-R,</td>
<td></td>
<td>Mechanical Research Center</td>
</tr>
<tr>
<td></td>
<td>Mr. S. Wasserman</td>
<td></td>
<td>ATTN: DRXMR-ATL</td>
</tr>
<tr>
<td></td>
<td>SARPA-FR-S-A,</td>
<td></td>
<td>Watertown, MA 02172</td>
</tr>
<tr>
<td></td>
<td>Mr. A. Loeb</td>
<td></td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Mr. D. Mertz</td>
<td></td>
<td>US Army Natick Laboratories</td>
</tr>
<tr>
<td></td>
<td>SARPA-MI-H,</td>
<td></td>
<td>ATTN: DRXRE, Dr. D. Sieling</td>
</tr>
<tr>
<td></td>
<td>Mr. A. G. Edwards,</td>
<td></td>
<td>Natick, MA 01762</td>
</tr>
<tr>
<td></td>
<td>Bldg 352 (2 cys)</td>
<td></td>
<td>1 Commander</td>
</tr>
<tr>
<td></td>
<td>Dover, NJ 07801</td>
<td></td>
<td>US Army Materials and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mechanical Research Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ATTN: DRXMR-ATL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Watertown, MA 02172</td>
</tr>
<tr>
<td>2 Commander</td>
<td>US Army Picatinny Arsenal</td>
<td>1 Commander</td>
<td>US Army Natick Laboratories</td>
</tr>
<tr>
<td></td>
<td>Project Manager Selected</td>
<td></td>
<td>ATTN: DRXRE, Dr. D. Sieling</td>
</tr>
<tr>
<td></td>
<td>Ammunition</td>
<td></td>
<td>Natick, MA 01762</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. Marty Chase</td>
<td></td>
<td>32 Commander</td>
</tr>
<tr>
<td></td>
<td>Mr. R. Corn</td>
<td></td>
<td>US Army Natick Laboratories</td>
</tr>
<tr>
<td></td>
<td>Dover, NJ 07801</td>
<td></td>
<td>ATTN: DRXRE, Dr. D. Sieling</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Natick, MA 01762</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 1 | Project Manager
 Cannon Artillery Weapons Systems
 Rock Island, IL 61201 | 3 | Commander
 US Naval Ordnance Systems Command
 ATTN: ORD-0632, ORD-035, ORD-5524
 Washington, DC 20360 |
| 1 | Commander
 Training and Doctrine Command
 ATTN: ATCD-CF, LTC R. E. Camp
 Fort Monroe, VA 23651 | 1 | Director
 Office of Naval Research
 ATTN: Mr. S. Curley
 495 Summer Street
 Boston, MA 02210 |
| 1 | Director
 US Army TRADOC Systems
 Analysis Activity
 ATTN: ATAA-SA
 White Sands Missile Range
 NM 88002 | 5 | Commander
 US Naval Surface Weapons Center
 White Oak Laboratory
 ATTN: Code 312, Mr. R. Regan
 Mr. S. Hastings
 Code 730, Tech Lib
 Mr. D. Merritt
 Mr. P. Aronson
 Silver Spring, MD 20910 |
| 1 | Commander
 US Army Field Artillery School
 ATTN: CPT J. Harnish
 Fort Sill, OK 73503 | 1 | Commander
 US Naval Surface Weapons Center
 Dahlgren Laboratory
 ATTN: GBJ, Mr. R. Kapnick
 Mr. E. Ohlmeyer
 Code KBB, Mr. J. Hurtt
 Code DK20, Dr. T. Clare
 Code DG40, Dr. W. R. Chadwick
 Dahlgren, VA 22448 |
| 1 | HQDA (DAMA-DDC, LTC J. Ganahl)
 Washington, DC 20310 | 5 | Commander
 US Naval Surface Weapons Center
 Dahlgren Laboratory
 ATTN: Code 753, Lib
 Code 50704,
 Dr. W. Haseltine
 China Lake, CA 93555 |
| 1 | HQDA (DAMO-ZD, Mr. E. Smith)
 Washington, DC 20310 | 2 | Commander
 US Naval Weapons Center
 ATTN: Code 7700, Dr. A. Kolb
 Code 7720, Dr. E. McLean
 Washington, DC 20390 |
| 1 | HQDA (DAMA-ZD, Mr. E. Smith)
 Washington, DC 20310 | 3 | Commander
 US Naval Air Systems Command
 ATTN: AIR-604
 Washington, DC 20360 |

33
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Commander</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>US Naval Ordnance Station</td>
<td>National Aeronautics and Space Administration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. D. Monetta, Mr. W. Burnett, Mr. A. Hauckland</td>
<td>Scientific and Technical Information Facility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indian Head, MD 20640</td>
<td>ATTN: SAK/DL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADTC (ADBPS-12)</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Eglin AFB, FL 32542</td>
<td>National Aeronautics and Space Administration</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AFATL (DLRA, Mr. F. Burgess) (Tech Lib)</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Eglin AFB, FL 32542</td>
<td>National Aeronautics and Space Administration</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AFWL (SUL)</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Kirtland AFB, NM 87117</td>
<td>Goddard Space Flight Center</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>AFFDL</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson AFB, OH 45433</td>
<td>Jet Propulsion Laboratory</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>ASD (ASAMCC)</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson AFB, OH 45433</td>
<td>National Aeronautics and Space Administration</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Environmental Sciences Services Administration</td>
<td>1</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 82.70 Mr. J. W. Wright</td>
<td>Langley Research Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boulder, CO 80301</td>
<td>ATTN: MS 185, Tech Lib</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Director</td>
<td>5</td>
<td>Director</td>
</tr>
<tr>
<td></td>
<td>National Aeronautics and Space Administration Ames Research Center</td>
<td>National Aeronautics and Space Administration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. D. R. Harrison, Mr. T. Canning, Dr. D. Kirk, Dr. G. T. Chapman, Dr. M. Tobak</td>
<td>Wallops Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moffett Field, CA 94035</td>
<td>ATTN: Mr. R. Krieger, Mr. C. Layton, Mr. J. Green, Mr. J. Andre, Mr. W. Lord</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wallops Island, VA 23337</td>
<td></td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ARO, Inc. ATTN: Tech Lib (2 cys) PWT-HTP, Mr. D. Herron Arnold AFB, TN 37389</td>
</tr>
<tr>
<td>1</td>
<td>Calspan Corporation ATTN: Library P.O. Box 235 Buffalo, NY 14221</td>
</tr>
<tr>
<td>1</td>
<td>General Electric Company ATTN: Armament Department Mr. R. H. Whyte Room 1412 Lakeside Avenue Burlington, VT 05401</td>
</tr>
<tr>
<td>1</td>
<td>Sanders Associates ATTN: Mr. A. Colao Simon and Ledge Streets Nashua, NH 03060</td>
</tr>
<tr>
<td>4</td>
<td>Sandia Laboratories ATTN: Aerodynamics Department Org 5620, Mr. R. Maydew Org 5625, Mr. W. Curry Mr. R. Bentley Albuquerque, NM 87115</td>
</tr>
<tr>
<td>5</td>
<td>Space Research Corporation ATTN: Dr. G. V. Bull North Jay Road P.O. Box 60 North Troy, VT 05859</td>
</tr>
<tr>
<td>2</td>
<td>California Institute of Technology ATTN: Aeronautics Department Professor H. Liepmann Dr. W. Bekrens Pasadena, CA 91102</td>
</tr>
<tr>
<td>1</td>
<td>Guggenheim Aeronautical Lab California Institute of Technology ATTN: Tech Lib Pasadena, CA 91103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Director Applied Physics Laboratory The Johns Hopkins University Johns Hopkins Road Laurel, MD 20810</td>
</tr>
<tr>
<td>1</td>
<td>The Johns Hopkins University ATTN: Head of Department of Aeronautics 34th and Charles Streets Baltimore, MD 21218</td>
</tr>
<tr>
<td>1</td>
<td>Massachusetts Institute of Technology Department of Aeronautics and Astronautics ATTN: Tech Lib 77 Massachusetts Avenue Cambridge, MA 02139</td>
</tr>
<tr>
<td>1</td>
<td>Massachusetts Institute of Technology ATTN: Dr. H. P. Greenspan 77 Massachusetts Avenue Cambridge, MA 02139</td>
</tr>
<tr>
<td>1</td>
<td>Ohio State University Department of Aeronautical and Astronautical Engineering ATTN: Tech Lib Columbus, OH 43210</td>
</tr>
<tr>
<td>1</td>
<td>University of Maryland ATTN: Mathematics Department Professor Y. M. Lynn 5401 Wilkens Avenue Baltimore, MD 21228</td>
</tr>
<tr>
<td>2</td>
<td>University of Michigan ATTN: Department of Aeronautical Engineering Dr. A. Kuethe Dr. M. Sichel East Engineering Building Ann Arbor, MI 48104</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aberdeen Proving Ground</td>
</tr>
<tr>
<td></td>
<td>Marine Corps Ln Ofc</td>
</tr>
<tr>
<td>Cdr, USATECOM</td>
<td>ATTN: DRSTE-BE, Mr. Morrow</td>
</tr>
<tr>
<td></td>
<td>DRSTE-TA-R, Mr. Wise</td>
</tr>
<tr>
<td>Dir, USAMSAA</td>
<td>ATTN: Dr. J. Sperrazza</td>
</tr>
<tr>
<td></td>
<td>Mr. C. T. Odom</td>
</tr>
<tr>
<td>Cdr, USAEA</td>
<td>ATTN: SAREA-R, Mr. A. Flatau</td>
</tr>
<tr>
<td></td>
<td>SAREA-WGM, Mr. W. Dee</td>
</tr>
<tr>
<td></td>
<td>Mr. D. Cohen</td>
</tr>
<tr>
<td></td>
<td>SAREA-DE-WG, Mr. J. Jacoby</td>
</tr>
</tbody>
</table>

36