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I. INTRODUCTION

A yawsonde is a device developed to give a continuous record of
the angle between a shell's axis of rotation and the line of sight to
the sunl-®, It consists of two light sensors located behind two
inclined slits on the shell body and a telemetry unit. The instant
each sensor sees the sun, a discrete pulse is transmitted to a ground
station and recorded versus time. The resulting pulse train can then
be analyzed to yield sun angles to an accuracy of 0.1° and the spin
rate. The usual reduction, however, assumes the sun angle to be con-
stant for a single revolution of the shell. If the shell is perform-
ing large high-frequency angular motion, this assumption can be invalid
and erroneous data can be produced. It is the purpose of this report
to develop a valid data analysis system to handle yawsonde data without
assuming the constancy of the sun angle during a single revolution of
the shell,

IT. CONSTANT SUN ANGLE ANALYSIS

We will make use of a solar fixed-plane coordinate system which
can be described in terms of three unit vectors. ¢€; is along the

missile's axis, 335 is in the plane determined by the sun and the

1. I. Amery, H. Henmning, K. Lawrie, and E. Wlatnig, "A Telemetry
System for the Measurement of the Yaw of a Projectile Throughout
the Major Part of Its Trajectory (U),'" RARDE Report 1/65, March
1965. AD 359250. (Confidential Report)

2. W. R. Haseltine, "Yawing Motion of 5.0" MK 41 Progjectile Studied
by Means of Yaw Sondes," Naval Weapons Center Report NWC TP 4779,
August 1269. AD 862066,

3. W. H. Mermagen, "Measurements of the Dynamical Behavior of Pro-
Jectiles over Long Flight Paths," Journal of Spacecraft and
Rockets, Vol. 8, April 1971, pp. 380-385. (See also BRL MR 2079.
AD 717002)

4. W. H. Clay, "A Precision Yawsonde Calibration Technique," BRL MR
2263, January 1973. AD 758158.

5. R. H. Whyte and W. H. Mermagen, "A Method for Obtaining Aerody-
namic Coefficients from Yawsonde and Radar Data," Journal of
Spacecraft and Rockets, Vol. 10, June 1973, pp. 384-388. (See
also BRL MR 2280. AD 759482)

6. W. H. Mermagen and W. H. Clay, "The Design of a Second Generation
Yawsonde," BRL MR 2368, April 1974. AD 780064.
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missile's axis and points toward the sun's side of the missile's axis,
while &,5 is &35 X &;.

Each sun sensor unit emits a pulse at the instant that the sun is_
1in the plane of its inclined slit. Let Y, be the inclination of the first
slit with respect to the missile's axis and let ¢a be the missile's
roll angle with respect to the vector 325 when the line-of-sight from

the first sensor to the sun lies in the 31333 plane. Then the vector

normal to the plane of the first sun sensor is
—

N = €, sin Y, [ €5 cos (9-9) + €35 sin (¢-¢,) ] cos Y, (1)

where ¢ is the roll angle of the missile. The sun line-of-sight can
be specified by the unit vector

+
s = 31 Cos 0 + 335 sin o (2)

where o is the angle between the sun's rays and the missile's axis.
When the sun is in the plane of the first sensor

N .s=0 (3)

or

sin (¢-¢a) = - tany, ctn ¢ (4)

A similar relation applies to the second sun sensor:

sin (¢-¢b) = - tan Yy ctn o (5)

We now consider a triple of time pulses consisting of two sight-
ings of the sun by the first sensor at t = t;,t3 and one by the second

sensor at t = t,. The pairs of ¢i, ci's for these three times satisfy

the relations:

sin (¢i-¢a) - tan y_ ctn o, i=1,3 (6)
sin (¢2—¢b) = - tan Yb ctn o, (7

o and that & is a constant. Then

1]

We now assume that o, = 0y = 03

sin (¢;-¢.) = sin (¢3-¢a) (8)



so that*

¢3 - ¢; = 2m (9)
or
. 2m
¢ = Ta-t) (10)
Now
b - ¢y = é (to-ty)
(11)
= 21 (ty-t;) (ta-tp)~!
Let
§ = ¢p - ¢1 - (¢b - ¢a) (12)
Then

sin (¢2 - ¢) = sin (¢ - ¢ + 6)

sin (¢; - ¢a) cos § + sin § cos (¢] - ¢a) (13)

Equations (6-7) can now be substituted in Equation (13) and the result
simplified to yield
L .
tan o = [tan? Y, - 2 tan Y, tan Yy, €0s § *+ tan? Yb]2 (sin §)-1
(14)

This equation gives the sun angle in terms of the three times,(tl, t2,
t3) and three parameters of the sensors (Ya, Yy ¢b-¢a) and is valid

for idealized sun sensors. Actual sun sensors will not exactly satisfy
Equations (4-5) but roll angles for each sun sensor can be measured as
functions of the sun angle".

¢,
i

fa (ci) + (i-)nm i=1,3 (15)

$, = fb (0,) + 2mL (16)

* Since the sun sensor plane is really a half plane, the root
¢3 - ¢; = ® 1is not appropriate.



where £ is an integer selected so that

¢l<¢2<¢3

Once again we assume that o, = g, = 03 = 0 and that ¢ is a constant,

Equations (10-11) are still valid and
¢z - 01 = £(0) - £ (0) + 21j = g(o) (17)
or
o =gl ($2-¢7) (18)

where ¢,-¢; is given by Equation (11).

IITI. VARYING SUN ANGLE ANALYSIS

We assume that the sun angle is a linear function of time and that
the roll angle is a quadratic function of time and hence we need five
successive sightings of the sun to determine the five parameters:

o, = g3 (t.-t3) + o3 i=1,2,3,4,5 (19)

b5 = b3 (t5-t2)2/2 + by (ti-t2) + 43 (20)

If three of the sightings are by the first sensor and two by the second,
then

¢i = fa (oi) + (i-1)w i=1,3,5 (21)

¢, = fb (01) +2md * (i-2)m i = 2,4 (22)

The five parameters (03, 83, ¢3, &3’ ¢3),ean be obtained from the five
times (t;, tp, t3, ty, ts) by substituting Equations (19-20) in Equations

(21-22) and solving the resulting nonlinear algebraic equations by an
iterative differential correction technique7. The first set of values
of (o3, 03), i.e. (03;, G31) can be obtained by using the constant-sun-

angle solutions for (t;, ty, t3) and (ta, tys t53. Since these

7. P. R. Bevington, Data Reduction and Error Analysis for the
Physical Sciences, McGraw-Hill, New York, 1969.
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approximately correspond to the sun angles for t; and ty, we will
denote them by o3,04.

031 = (02 + 04)/2 (23)

a31 = (04 - 02)/(ty - t3) (24)

Equations (19-20) for the (j-1) iteration can be written in the form:

" ) .
¢3j (ti - t3) /2 + ¢3j (ti - t3) + ¢3j
3 £, (0., )
= __K_-_ll) - .
fx (045.4) *( 30 3 (035 = 9351
3£, (.. ) . .
TS L I R (25)
36 3 J-1
3
where
K=a, m=i-1 fori-=1,3,5
K=b, m=2(-1) +i fori= 2,4

]
can be easily solved; usually only three or four iterations are required.

Equations (25) are linear in the unknowns (035’ c3j’ ¢3j’ ¢3j’ ¢3.) and

A second version of a varying sun angle analysis using five times

can be used for constant $. In this case, Equations (19-20) are replaced
by:

0. = 04 (ti - t3)2/2 + &3 (ti - t3) + 04 (26)

¢.

i $3 (ti - t3) + ¢3 (27)

Equations similar to Equations (25) can be easily derived for this
variant.

IV. EFFECT OF MOVING COORDINATE SYSTEM

¢ is the roll angle measured with respect to gZS‘ ¢ is a roll rate

measured in this solar fixed-plane coordinate system and is not necessarily
equal to the roll rate, p, measured in an inertia coordinate system since
the solar coordinate system can itself have a non-zero roll rate.

11



For our inertia system, we will use an earth-fixed coordinate
system X;, Xz, X3, so aligned that the X; axis is vertical and the
trajectory is initially in the X;-X3; plane. Since the actual trajectory
can be reasonably well approximated by a planar trajectory, we will
approximate the velocity vector along the trajectory by (V cos eT,
V sin GT).

0,

In the appendix, the roll component (wls) of the angular velocity

of the sun fixed-plane coordinates is computed in terms of the hori-
zontal and vertical comgonents of the complex yaw in the aeroballistic
fixed-plane coordinates®:

[] [
~

wls = (bl EH + b2 EV) cos GT

+ bs EHEH + by EVEV + bg EHEV + bg EHEV (28)

where

EV = sin B + 1 cos B sin a

Fas BB
n
Ty
oy
+
=

>

a, B are the angles of attack and sideslip

Op is the angle between the sun vector
and the tangent to the trajectory;

bi's are defined in Table 1.

TABLE 1. COEFFICIENTS IN EQUATIONS (28) AND (Al7)

o
n

) = (35 cos 6y - 8, sin 6,) csc? o

T T

= _ 2
b, = s, csc or

- _ 2
b, = b, [2 cos or tan GT (1 + cos oT) b,]

b, = b, [2 cos o tan b + (1 + cos? oT) b,]

T

= 2 - _ 2 2
b, = cot op b, cos op tan b1 b,“ (1 + cos cT)

b, = -cot? g, - b, cos op tan 8. + b12 (1 + cos? o

6 T T T)

8. C. R, Murphy, "Free Flight Motion of Symmetric Missiles",
BRL Report 1216, July 1963, AD 442757.
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The variation of the complex yaw can be described by the usual
epicycle

- i¢ i¢
£ = l(1 e 1 + K2 e 2

The presence of derivatives in all terms of Equations (28) suggests
that the high frequency mode is the more important mode in Equation
(29). If we neglect the low frequency mode (K2=0), Equation (28)
becomes

wg = (b, sin ¢, + Db, cos ¢;) ¢, K, cos o

1 T

+ [(b,+ - bj) sin $, cos ¢, + bg cos? ¢, - b6 sin? ¢1] il K12

(30)
Since $ is the difference between the projectile spin and the
coordinate system spin:
$=p - w, (31)
it will be a periodic function with frequency él except when o_ = /2,

For this special case where the sun is perpendicular to the projectile,
the frequency will be 2¢1. The average value of ¢ is, however, quite
close to the projectile spin:

L] _ . 2
bay =P+ (g - b)) $) K 272 (32)

V. DISCUSSION

In Figure 1, the sun angle complement (o_ = 7/2 - o) and $ as
obtained from the three-time-measurements, constant-sun-angle reduction
are plotted for an eight-inch projectile. These data are then reduced
by the five-time-measurements analysis of this report and plotted in
Figure 2. The sun angles are changed by very little but the oscillations
in ¢ are reduced by 50%. The remainder is clearly periodic with
frequency ¢,. Later in the flight, the sun angle went through n/2;
Figure 3 shows L and ¢ for this portion of the trajectory. We note

the $ oscillations are much smaller, with frequency 2$1.

13



It is interesting to note that the need for the varying o data
reduction can be eliminated by a modified yawsonde. If the first sun
sensor is oriented so that Y, = 0, that sensor is insensitive to sun

angle (see Equation (4)), so that

£(0) =0 (33)

This sensor directly measures &. The second sensor, then, yields a

o, at tst, from the standard three-time-measurements procedure.

14
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LIST OF SYMBOLS

coefficients in the expression for w
Equation 28; defined in Table 1

1s’

unit vector along the missile's axis

unit vectors in the aeroballistic fixed-
plane system, Equations (A4-A5)

unit vectors in the solar fixed-plane
system, Equations (A7-A8)

sun angle functions obtained from roll
angle versus sun angle data provided
by sun sensor (a) or (b)

fa or f , Equation (25)

a function relating the difference in

successive roll angle values to the sun
angle, Equation (17)

the inverse of function g, Equation (18)

magnitude of the high (1) or low (2)
frequency yaw mode, Equation (29)

an integer in Equations (16, 22, 25)
providing the proper multiple of 2r
i-1 i=1, 3,5

2(0 - 1) +1i

(=
"
[\ ]

-
E=Y

vector normal to the plane of sun sensor (a)

direction cosines of the missile's axis in
the earth-fixed Xy, X5, X5 system
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n

>

Ya? Yb

n,n,n
1’ 27 3

LIST OF SYMBOLS (CONTINUED)
roll rate in the earth-fixed X], XZ, X3
system

the unit vector from the missile to the sun

components of s in the earth-fixed X , X_, X3
system 1 2

time

time at which a sensor sees the sun, i = 1, 2,
I ...

magnitude of the velocity vector

velocity vector

axes in an earth-fixed coordinate system:
x3 is vertical and the trajectory is

initially in the X] - X3 plane
angle of attack

angle of sideslip

the inclination of slit (a) or (b) with
respect to the missile's axis

¢

R NENCEE N

a

-+ > N
components of the yaw vector (e] - V/V) 1n

the earth-fixed Xl, X2, X3 system

the angle between the missile's axis and
the tangent to the trajectory
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LIST OF SYMBOLS (CONTINUED)

£ EH + i EV , the complex yaw in the aero-
ballistic fixed-plane system

EH sin é, the horizontal component of E

EV cos B sin @, the vertical component of £

o the sun angle: the angle between the sun
vector and the missile's axis

oi o(ti): 1‘= 1: 2, 3:

Osx the value of o5 computed at the k-th
iteration of the data analysis

o %-- o , the sun angle complement

O the angle between the sun vector and the
tangent to the trajectory

¢ the missile's roll angle in the solar fixed-
plane system, that is, with respect to the
vector Z

2s

¢a, ¢b the value of ¢ when the line-of-sight from
sun gensor (a) or (b) to the sun lies in
the €,8;, plane

¢i (a) ¢(ti) s i=1, 2, 3 ... Equations (6-27)

(b) the orientation angle of the high- (i = 1)
or low- (i = 2) frequency yaw mode,
Equation (29, on)
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the value of ¢(ti) computed at the k-th
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the solar fixed-plane system
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APPENDIX A. DERIVATION OF EQUATION (28)

Our earth-fixed coordinate system X,, X2, X3 will be so oriented
that the X; - X; plane is the vertical piane containing the initial
velocity vector. If we make the very reasonable approximation that
the velocity vector stays in this plane, it can be written in the form

> .
V =V (cos eT, 0, sin eT). (A1)

The unit vector along the missile's axis then takes the form

- .
e, = (n), ny, ng) = (cos By + ny, Ny, sin O+ ny) (A2)

n12+n2+n2=1 (A3)
where the nj's become zero for zero-amplitude yawing motion.

We will be using two coordinate systems which use two different
fixed planes:

1. The usual aeroballistic fixed plane which contains the
missile's axis and the vertical vector;

2. A sun fixed plane which contains the missile's axis and the
sun ‘'vector and is the reference plane for the yaw sonde's ¢.

The other two unit vectors for the aeroballistic fixed-plane
system are

(0,0,1) X gl (-ny, cos 65 + ny, 0)

eza = cos © = cos 6 (A4)

-> . ->
€ X [(0,0,1) X&]  (0,0,1) - (sin By + ny) €

3a cos 6 ‘ cos 6

L

(A5)

1
+2n) cos 8. + nlz + n22]2 (A6)

= 2
cos 9 [cos® 6 T

T

27



Similarly, the other two units vectors for the sun fixed-plane system
are:

> >
s X e1
ezs *Sin o (A7)
. €, X (SXe) §- (cos0)e
€35 sin o = sin o (A8)

where

-
s = (s1, s2, s3) is the unit vector pointing to the sun,

-
COSG=S'81,

and o is in the first quadrant when the sun's rays illuminate the

missile's nose and is in the second quadrant when the sun's rays
illuminate the missile's base.

The horizontal and vertical components of the complex yaw in the
aeroballistic fixed-plane coordinates can be computed from their
definitions:

-+ >
E ) eza . V ) -n, cos eT (A9)
H ™ v T cos 8

-+ >
g ) e3a « V
v~ Vv
. _ 2 i ‘
n sin 8, cos 84 - ny (1 + sin® 6, + n; cos B - ny sin o) (A10)
cos eT
where
£ = EH + IEV = sin B + i cos B sin o

~

and B, a are the angles of attack and sideslip respectively. A
quadratic approximation for n; and a linear approximation for cos 6
can be obtained from Equations (A3, A6, A9-10).
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2 2 2
n, cos eT + n3
n, = -ny tan 8 - (All)
2 3
cos eT
cos © n, sin 6
T 3 T
wse -t 2 (A12)
cos< 0
T
n, = -EH + Ev EH tan eT (A13)
- -A ~ 2_!\ 2 .
N, Ev cos eT + (gv EH ) (sin GT)/Z (Al4)

The roll component of the angular velocity of the sun fixed-plane

coordinates can now be computed in terms of the nj's:

T .3
1s 2s 3s

3>
ctn © el]

(1]
]
@
N
wn
—
~
[¢]
wn
[¢]
Q
—
L]
wn
I
~
(2]
(a4
=]
Q
—
.
@
]

>
o’ -
(ctn o) €, 1

ctn 0 ¢csc @ [n1 (-s, sin eT + N, S5 - N, 52)

+mn, (s, sin 6, - s; cos B + 5, ny - S, n,)
. 63 (s, cos 8 + s, n; - s, n,) (A15)
cos g =3 31
= COS Op + S Ny + S, N, *+ Sy, (Al16)
where
cos Oy = s1 cos eT + S, sin eT
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We can now use Equations (Al1-13, Al6) to express w, as a
quadratic expansion in EH and EV

. [
A A

w, = (b1 EH + b2 EV) cos O

1s T

.
A A -~

; (A17)

where the bj's are defined in Table 1.

Equation (Al17) is precisely Equation (28) of the text. It is
interesting to note that for the special case of the sun directly
overhead, the two fixed-plane coordinate systems are the same. For
this case,

S, =S, = 0 S, = 1
(Al18)
e,l_s n/2 - O
The bj's of Table 1 become
b. = sec eT; b2 = b3 = bu = b5 = 0; b6 =1 (A19)
and
w, = e = e = Eytan 8+ EuEy (A20)

Equation (A20) for eT = 0 is equivalent to Equation (4.3) on page 150
of Reference 8.
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