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I. INTRODUCTION

Recent Army interest in obtaining increased range and greater pay-
load capacity in artillery projectiles has led to designs with long,
slender ogives, increased projectile length, and boattailed afterbodies.
These designs have resulted in decreased drag with a resulting increase
in range; however, the aerodynamic stability of these shapes is less
than more conventional designs. This means that these new shapes are
more sensitive to a Magnus induced instability. As a result, the Army
has increased its research effort to develop a method for computing
Magnus effects that will be useful in artillery projectile design.

As shown in Figure 1, the Magius force is a side force that occurs
on a spinning projectile in flight at angle-of-attack. Magnus is a
small force, it is typically 1/1C¢ to 1/100 of the normal force; however,
its effect is important because the Magnus moment acts to undamp the
projectile throughout its flight.

Magnus has been modeled theoretically as resulting from spin
induced distortion of the boundary layer. This effect is illustrated
schematically in Figure 2 where a cross-sectional view of a body of
revolution is shown. The body is at angle of attack as indicated by
the cross flow velocity. In the view where there is no surface spin,
the profile of the edge of the boundary layer is symmetric with respect
to the plane of the angle of attack. In the view where the surface is
spinning, the profile of the boundary layer is asymmetric with respect
to the plane of the angle of attack--thus, the inviscid pressure
distribution is asymmetric and yields a net side force.

II. COMPUTATIONS OF THE MAGNUS EFFECT

Since the Magnus effect is a viscous phenomenon, the computation of
the boundary layer is the foundation for computations of the Magnus
force. The boundary layer we are considering is fully three-dimensional
with the added complication of the interaction of surface spin with the
cross flow velocity. The inviscid flow also requires special attention
since, in order to compute the Magnus force, the inviscid flow program
must be able to compute the three-dimensional flow over a body (plus
displacement surface) with no plane of symmetry. A 10° half angle cone
model with a laminar bourdary layer was chosen as the starting point for
this effort since convenient simplification is obtained in the equations
of motion; and, equally important, very accurate solutions were avail-
able in tabular form of the three-dimensional inviscid flow.

In this brief paper, no details of the numerical techniques will
be given. Instead, results of the computations and comparison with




experimental data will be discussed. The details of the numerical
techniques used may be found in references 1, 2, 3, and 4.

The sequence of the computations which must be run in order to
compute the Magnus force is indicated in Figures 3a and 3b. Each block
indicates a separate computer program along with its required input
information and the output. The two main programs are outlined in
asterisks. In order to start the boundary layer computation for the
spinning model, initial profile data are generated for the limiting
case of the boundary layer at the tip of a non-spinning cone. These
data, along with the outer boundary condition of the inviscid flow,
enable the marching technique to begin for specific conditions of Mach
number, angle-of-attack, wall temperature, spin rate, and free stream
properties. The output of this program consists of wall shear and
centrifugal pressure gradient contributions to the Magnus effect (these
will be discussed in more detail later) and the longitudinal and circum-
ferential components of the boundary-layer displacement surface as
functions of longitudinal and azimuthal position over the entire surface
of the model.

The three-dimensional boundary-layer displacement surface is not
merely the vector sum of the two components. A partial differential
equation, as derived by Moore®, must be integrated to yield the proper
displacement thickness. Up to this point, the computations have been
accomplished in surface coordinates., The inviscid flow program was
written using a cylindrical coordinate system to facilitate computations
for arbitrary body shapes. As shown in Figure 3b, a separate program

performs the transformation to the cylindrical coordinate system and

H. A. Dwyer and B. R. Sanders, "Magnus Forces on Spinning Supersonic
Cones. Part I: The Boundary Layer," AIAA Paper No. 75-193, AIAA 13th
Aerospace Sciences Meeting, Pasadena, California, 20-22 January 1975.

H. A. Dwyer, '"Three-Dimensional Flow Studies Over a Spinning Cone
ot Angle of Attack," BRL Zontract Report No. 137, U.S. Army
Ballistie Research Laboratories, Aberdeen Proving Ground, Maryland,
February 1974. AD# 774795,

B. R. Sanders, "Three-Dimensional Steady, Inviscid Flow Field
Caleulations with Application to the Magnus Problem,'" PhD Disserta-
tion, University of California, Davis, California, May 1974.

H. A. Dwyer and B. R. Sanders, "Magnus Forces -n Spinning Super-
sonic Cones. Part I: The Boundary Layer,” to be published as BRL
Contract Report, U.S. Army Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland.

F. N. Moore, "Displacement Effect of a Three-Dimensional Boundary
Layer," NACA TN 2722, June 19562.
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computes the surface derivatives that define the model plus three-
dimensional boundary-layer displacement thickness.

The final step is to compute the inviscid flow over the newly
defined body which is an arbitrary configuration with no plane of
symmetry. The numerical technijue is a shock capturing finite-
difference approach using MacCormack's scheme. This method has been
successfully used for space shuttle flow field computations6. The
starting conditions consist of the inviscid flow field for the original
model (no boundary-layer displacement surface) .

Examples of the circumferential velocity profiles are shown in
Figure 4. In this figure, the asymmetric interaction of the surface
spin with the inviscid cross flow is clearly indicated. The cross-over
from a positive to a negative circumferential velocity required special
attention in the numerical differencing technique.

The profile of the three dimensional boundary-layer displacement
thickness is shown in Figure 5 for different values of spin rate. The
profile for zero spin is symmetric about ¢ = 180°; while the profiles
for w > 0 are asymmetric. It is interesting that one effect of surface
spin is to reduce the maximum thickness of the boundary layer. Also,
it is seen that the boundary layer is more thick where the surface spin
opposes the cross flow velocity than on the opposite position where
surface spin and inviscid cross flow velocity are in the same direction.

The component of the Magnus force resulting from Tx = U (Bu/ay)y=0

due to asymmetry in the u velocity profiles is illustrated schematically
in Figure 6. Figure 7 illustrates a similar contribution from
Ty & gl (3w/8y)y=0. Figure 8 illustrates the origin of the centrifugal

pressure gradient component. Since the integral is greater on the
right side, P, =P - Ap1_2 <Pz =P - AP1-3'

The relative magnitude of these components of the Magnus force is
shown in Figure 9. It is of interest to note that this is the first
time that all four of these contributors to the Magnus effect have been
computed and compared. Previous analyses have considered only &* alone
or, which is actually worse, &* and 4p. The net Magnus force is the
arithmetic sum of the four contributors. In Figure 10 the computed
Magnus force is compared to experimental measurements made using the

6. P. Kutler, R. F. Warming, and H. Lomazx, "Computation of Space
Shuttle Flowfields Using Noncentered Finite-Difference Schemes,"
ATAA Journal, Vol. 11, No. 2, February 1973, pp. 196-204.
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strain-gage balance technique7 for two boundary-layer configurations,
Considering the small magnitude of the Magnus force, the agreement with
experiment is considered to be very encouraging.

III. THREE-DIMEMSIONAL FLOW MEASUREMENTS

Experimental studies are being carried out to provide data that
will be useful in evaluating and help guide the development of the
theoretical effort. The experimental studies consist of: (1) strain-
gage balance force measurements for different boundary-layer configura-
tions; (2) optical studies of the effects of spin and yaw on boundary-
layer transition; (3) detailed profile measurements of the boundary
layer on a yawed, spinning body of revolution; and (4) wall static
pressure measurements on a yawed body of revolution.

The profile measurements are being made on a tangent-ogive-
cylinder model that has a one caliber ogive section and an overall
length of seven calibers. Measurements have been made for M = 3,

o = 4°, and spin rates of 0 and 10,000 RPM. The model as installed in
the tunnel with the total head probe and survey mechanism is shown in
Figure 11. Measurements have been made at 30° increments in azimuth
completely about the circumference of the model. An example of some
measured velocity profiles for a tripped turbulent boundary layer is
shown in Figure 12. These measurements were made at an axial position
6.0 calibers from the tip of the model. The velocities were computed
from total pressure surveys of the boundary layer assuming a constant
total temperature through the boundary layer equal to the tunnel total
temperature and a-constant static pressure across the boundary layer
equal to the wall pressure measured as described below,

Measurements are being made of the wall static pressure on slender
bodies of revolution to enable velocity profiles to be computed from
the total head surveys, and also for comparison with computations made
using the inviscid flow computer program, Examples of these data are
shown in Figures 13 and 14. These data were obtained on a tangent-
ogive-cylinder model identical to the model used for the profile
measurements. These data indicate that the wall pressure is well
behaved for a < 4°; however, as a increases to 6° and 10°, the effect
of vortex formation on the inviscid pressure field is evident.

W. B. Sturek, "Boundary Layer Studies on a Spimning Cone," BRL
Report No. 1649, U.S. Army Ballistic Research Laboratories, Aberdeen
Proving Ground, Maryland, May 1973. AD 762564. Also, "Boundary-
Layer Distortion on a Spinning Cone," 4IAA Journal, Vol. 11, No. 3,
March 1973, pp. 395-396.
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IV. PLANS FOR FUTURE RESEARCH

Effort is underway to extend the capabilities of the boundary
layer computer program to include the effects of axial pressure
gradient and turbulence. These capabilities are essential in order
for the computation techniques to be of value in the design of
artillery projectiles.

Additional experiments are planned to obtain boundary layer
profile data (including turbulence measurements), wall static
pressure, and force measurements for additional slender bodies of
revolution including a boattail afterbody.
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Figure 6.

Schematic Illustration of the Longitudinal Velocity
Component of Wall Shear Stress for a Cone Model
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Figure 7. Schematic ITlustration of the Circumferential Velocity
Component of Wall Shear Stress for a Spinning Body of
Revolution
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LIST OF SYMBOLS
normal force coefficient
pitching moment coefficient
Magnus force coefficient
Magnus moment coefficient

diameter of base of model
reference length, 30.48 cm
Mach number

spin rate, radians per second

total pressure behind a normal shock wave, measured using the
total head probe

wall static pressure

tunnel free stream static pressure

distance from axis of cone to the outer edge of the cone plus
three-dimensional boundary-layer displacement thickness

Reynolds number based tunnel free stream properties and length
of model

local radius of cone

velocity in X direction

tunnel free stream velocity

circumferential component of velocity
longitudinal surface coordinate

coordinate perpendicular to the local surface

axial coordinate
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LIST OF SYMBOLS (Continued)

boundary-layer displacement thickness, also used to signify the

boundary-layer displacement thickness contribution to the
Magnus force

centrifugal pressure gradient contribution to the Magnus force

cone half angle

longitudinal velocity component of wall shear stress; also used

to signify the longitudinal velocity component of wall shear
stress contribution to the Magnus force

circumferential velocity component of wall shear stress; also
used to signify the circumferential velocity component of
wall shear stress contribution to the Magnus force
azimuthal position, ¢ = 0 is wind side

spin rate, RPM
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